Last Name	First Name		МІ
Student ID Number:			Total Score
Circle the name of your TA:	HEATHER SUSAN	LINH	
Discussion Section – Day:	Time:		/ 30

Chem 30A Spring 2005

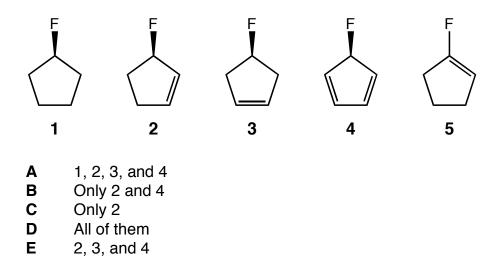
QUIZ #2A (15 Min)

Weds May 11th

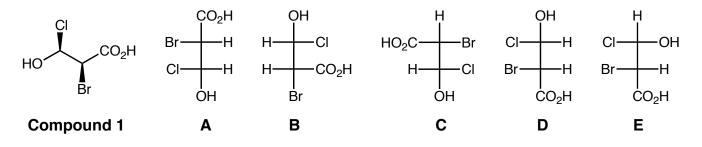
INTERPRETATION OF THE QUESTIONS IS PART OF THE EXAM – DO NOT ASK FOR THE QUESTIONS TO BE EXPLAINED TO YOU

USE CAPITAL LETTERS WHEN FILLING IN THE BOXES AND BE CLEAR – IF WE CAN'T FIGURE OUT WHAT A LETTER IS, IT WILL AUTOMATICALLY BE GRADED AS INCORRECT

DO NOT OPEN THIS EXAM UNTIL INSTRUCTED TO DO SO

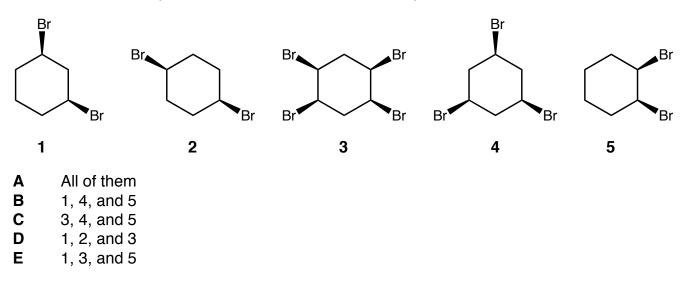

Q	1	2	3	4	5	6	7	8	9	10	Total
\mathbf{X}											
ANSWER TO BONUS QUESTION											

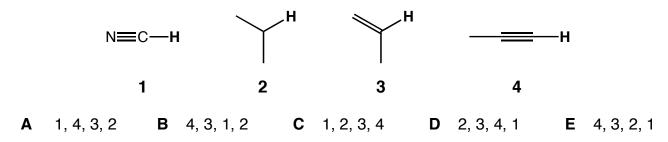
Here's a warm welcome to all the intelligent life forms out there. And to the rest of you... the trick is to bang the rocks together, guys.


– Douglas Adams

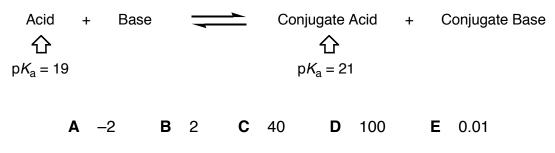
Questions 1–10 are worth **3** points each. The bonus is worth **5** points.

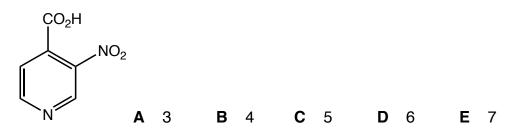
1. Which of the compounds shown below are chiral?

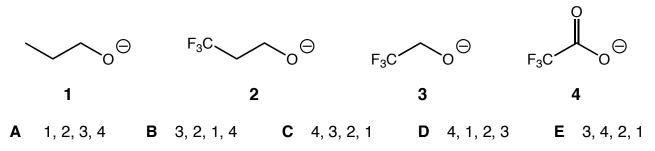

2. Only ONE of the Fischer projections corresponds to Compound 1 – which one is it?

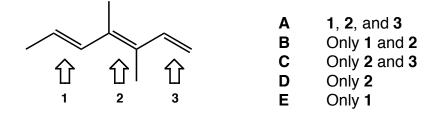

3. Assuming that the specific rotation of the *(R)*-enantiomer of a compound containing one chiral center is -50° , what would the specific rotation of a sample containing a mixture of 65% *(S)*-enantiomer and 35% *(R)*-enantiomer be?

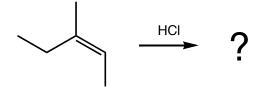
- **A** −35°
- **B** −15°
- **C** +15°
- **D** +35°
- **E** It is not possible to calculate the answer based on the data above


4. Which of the compounds shown below are meso compounds?

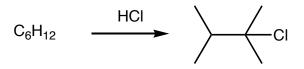

5. What is the order of acidity (from lowest pK_a value to highest pK_a value) of the bold hydrogen (**H**) atoms shown highlighted in the compounds drawn below?


6. The equilibrium constant (K_{eq}) for the reaction shown below is...?


7. What is the Index of Hydrogen Deficiency (number of double bond equivalents) for the compound drawn below?


8. What is the order of basicity (from most basic to least basic) of the oxygen-based anions (oxy-anions) drawn below?

9. For the triene shown below, for which double bond(s) is it possible to assign E or Z descriptors?



10. What is the major product of the reaction shown below?

- A 2-chloro-3-methylpentane
- B 2-chloro-2-ethylbutane
- **C** 3-chloro-2-methylpentane
- D 3-chloro-3-methylpentane
- E 2,3-dichloro-3-methylpentane

BONUS: Three different alkenes with the molecular formula C_6H_{12} yield 2-chloro-2,3dimethylbutane as the major product when reacted with HCI – draw the structures of these alkenes on the front cover of this quiz in the box provided.

Last Name	First Name		МІ
Student ID Number:			Total Score
Circle the name of your TA:	HEATHER SUSAN	LINH	
Discussion Section – Day:	Time:		/ 30

Chem 30A Spring 2005

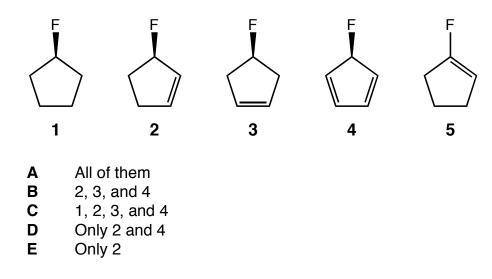
QUIZ #2B (15 Min)

Weds May 11th

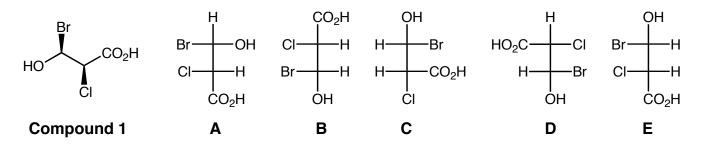
INTERPRETATION OF THE QUESTIONS IS PART OF THE EXAM – DO NOT ASK FOR THE QUESTIONS TO BE EXPLAINED TO YOU

USE CAPITAL LETTERS WHEN FILLING IN THE BOXES AND BE CLEAR – IF WE CAN'T FIGURE OUT WHAT A LETTER IS, IT WILL AUTOMATICALLY BE GRADED AS INCORRECT

DO NOT OPEN THIS EXAM UNTIL INSTRUCTED TO DO SO


Q	1	2	3	4	5	6	7	8	9	10	Total
\mathbb{X}											
ANSWER TO BONUS QUESTION											

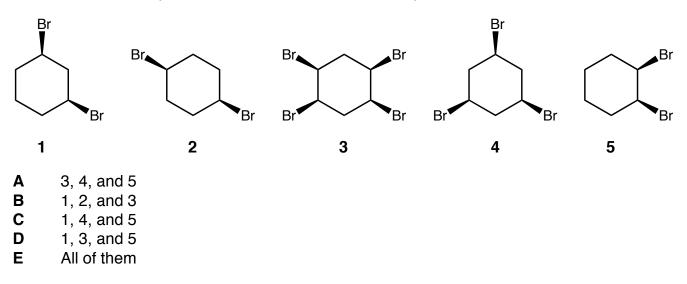
Here's a warm welcome to all the intelligent life forms out there. And to the rest of you... the trick is to bang the rocks together, guys.


– Douglas Adams

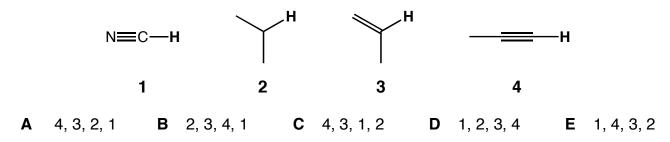
Questions 1–10 are worth **3** points each. The bonus is worth **5** points.

1. Which of the compounds shown below are chiral?

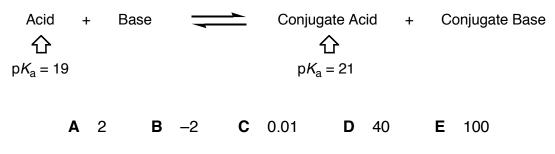
2. Only ONE of the Fischer projections corresponds to Compound 1 – which one is it?

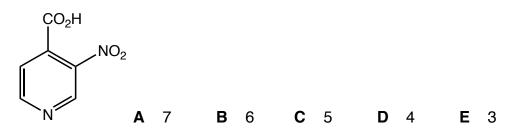


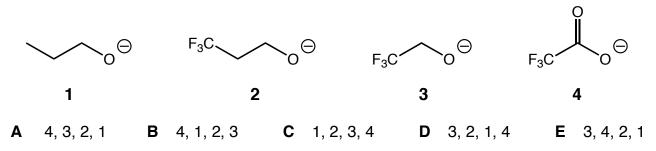
3. Assuming that the specific rotation of the *(R)*-enantiomer of a compound containing one chiral center is -50° , what would the specific rotation of a sample containing a mixture of 65% *(S)*-enantiomer and 35% *(R)*-enantiomer be?

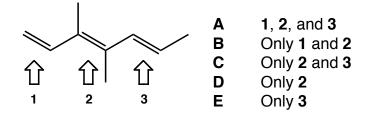

A It is not possible to calculate the answer based on the data above

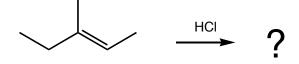
- **B** –35°
- **C** −15°
- **D** +15°
- **E** +35°


4. Which of the compounds shown below are meso compounds?

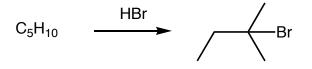

5. What is the order of acidity (from lowest pK_a value to highest pK_a value) of the bold hydrogen (**H**) atoms shown highlighted in the compounds drawn below?


6. The equilibrium constant (K_{eq}) for the reaction shown below is...?


7. What is the Index of Hydrogen Deficiency (number of double bond equivalents) for the compound drawn below?


8. What is the order of basicity (from most basic to least basic) of the oxygen-based anions (oxy-anions) drawn below?

9. For the triene shown below, for which double bond(s) is it possible to assign E or Z descriptors?



10. What is the major product of the reaction shown below?

- A 2,3-dichloro-3-methylpentane
- **B** 3-chloro-3-methylpentane
- C 2-chloro-2-ethylbutane
- D 2-chloro-3-methylpentane
- E 3-chloro-2-methylpentane

BONUS: Three different alkenes with the molecular formula C_5H_{10} yield 2-bromo-2methylbutane as the major product when reacted with HBr – draw the structures of these alkenes on the front cover of this quiz in the box provided.

