Last Name	First Name		МІ
Student ID Number:			Total Score
Circle the name of your TA:	MIKE	ROB	
Discussion Section – Day:	Time:		/ 100

Chem 30A Winter 2005

MIDTERM #1 (50 Min)

Weds February 2nd

INTERPRETATION OF THE QUESTIONS IS PART OF THE EXAM – DO NOT ASK FOR THE QUESTIONS TO BE EXPLAINED TO YOU

ONLY ANSWERS WRITTEN IN THE BOXES PROVIDED WILL BE GRADED

DO NOT OPEN THIS EXAM UNTIL INSTRUCTED TO DO SO

Q1	/ 24	Q4	/ 22
Q2	/ 18	Q5 BONUS	/ 5
Q3	/ 36	Q6 BONUS	/ 10
		Total	/ 100

"A common mistake that people make when trying to design something completely foolproof is to underestimate the ingenuity of complete fools" - Douglas Adams **Q1**. (a) Using **LINE FORMULAE** draw the four different **CONSTITUTIONAL** isomers with the molecular formula C_4H_9Cl (2 pt each) (b) Name each isomer using **SYSTEMATIC** naming rules, in the knowledge that chloro groups are higher in priority than methyl groups (i.e., they get the smaller positional number if a choice has to be made) (2 pt each)

(c) Which of the constitutional isomers of C_4H_9Cl (A–D) has the highest boiling point (79 °C)? (2 pt)

(d) Which of the constitutional isomers of C_4H_9Cl (A–D) has the lowest boiling point (51 °C)? (2 pt)

(e) One of the constitutional isomers of C_4H_9Cl can exist in two stereoisomeric forms (enantiomers). Draw these two non-superimposable mirror images in the appropriate boxes below. (2 pt each)

(S)-Enantiomer		

Q2. (a) Above the 0° line on the graph below, fill in the groups on the Newman projection of the **MOST UNSTABLE** eclipsed conformation (**E1**) of 2,3-dimethylbutane, as viewed from C2 to C3, i.e., C2 is in the front. By rotating C2 (and the groups attached to it) 60° **CLOCKWISE**, the first staggered conformation (**S1**) is reached, fill in the groups on this Newman projection above the 60° line. Continue this clockwise rotation, and complete the Newman projections of the other eclipsed (**E2**, **E3**) and staggered (**S2**, **S3**) conformations. (2 pt each)

(b) Draw short horizontal bars on the **GRAPH ABOVE** (like those drawn for **E1** at 0° & 360°), indicating the relative energies of **S1**, **E2**, **S2**, **E3**, and **S3**, and complete the graph by drawing in a curve that shows how the energy changes relative to the dihedral angle. (6 pt)

Q3. (a) Methylcyclohexane can exist in two different chair conformations, one of which is 1.8 kcal/mol more stable than the other, i.e., the **A value** for the methyl group is 1.8. In each of the two boxes below, draw in a bond to one methyl (**CH**₃) group in the appropriate position. (2 pt)

(b) Chlorocyclohexane also exists in two different chair conformations, one of which is 0.6 kcal/mol more stable than the other, i.e., the **A value** for the chloro group is 0.6. In each of the two boxes below, draw in a bond to one chloro (**Cl**) group in the appropriate position. (2 pt)

(c) For *trans*-1-chloro-4-methylcyclohexane (shown below), draw in bonds to CH_3 and Cl groups as appropriate, to indicate the least and most stable chair conformers. Assuming that **A values** are additive (and hence subtractive if necessary...), predict what the ΔG value will be. (6 pt)

Question 3 is continued on the next page...

(d) For *cis*-1-chloro-4-methylcyclohexane (shown below), draw in bonds to CH_3 and Cl groups as appropriate, to indicate the least and most stable chair conformers. Assuming that **A values** are additive (and hence subtractive if necessary...), predict what the ΔG value will be. (6 pt)

(e) For the isomer of 1-chloro-3,5-dimethylcyclohexane shown below, draw in bonds to CH_3 and Cl groups as appropriate, to indicate the least and most stable chair conformers. Assuming that A values are additive (and hence subtractive if necessary...), predict what the ΔG value will be. (8 pt)

(f) In the appropriate boxes below, draw the three most stable conformations of cyclohexylcyclohexane (shown to the right) in which the indicated H atoms maintain an **ANTI** relationship, i.e., are 180° apart. Once you have drawn these three **different** conformers, use the box below them to briefly explain your answers. (12 pt)

Q4. (a)–(f) In each box, write down either **R**, **S**, or **X**, indicating that the carbon atom to which the arrow is pointing has the *R* configuration, the *S* configuration, or is (**X**) not a stereocenter. (3 pt each)

(g) The two enantiomers of limonene have **EXACTLY** the same boiling point, melting point, vapor pressure, and appallingly bad solubility in water. Interestingly, one of them smells of oranges (the *R* isomer) and the other (the *S* isomer) smells like lemons. Explain why they smell different. (4 pt)

Q5 (BONUS). Explain why trans-decalin systems cannot undergo chair flips, whereas cis-decalin systems can (examples are shown in the box below). (5 pt)

Q6 (BONUS). You've already seen that a chloro-substituent on a cyclohexane ring prefers to be in the equatorial position, i.e., the conformer with the Cl in the **EQUATORIAL** position is favored by 0.6 kcal/mol. Suggest why in the case of 2-chlorotetrahydropyran (shown below), the conformer in which the Cl atom is in the **AXIAL** position is favored by over 2 kcal/mol. (10 pt)

.Cl О. $\Delta G =$ Cl -2.2 kcal/mol 2-chlorotetrahydropyran CI **FAVORED**