Last Name	First Name			мі
Student ID Number:				Total Score
Circle the name of your TA:	MIKE	ROB		
Discussion Section – Day:	Time:		/ 100	

Chem 30B Spring 2004

MIDTERM #2 (50 Min)

Weds May 26th

INTERPRETATION OF THE QUESTIONS IS PART OF THE EXAM – DO NOT ASK FOR THE QUESTIONS TO BE EXPLAINED TO YOU

ONLY ANSWERS WRITTEN IN THE BOXES PROVIDED WILL BE GRADED

DO NOT OPEN THIS EXAM UNTIL INSTRUCTED TO DO SO

Q1	/ 20	Q4	/ 15
Q2	/ 20	Q5	/ 30
Q3	/ 15	Bonus	/ 15
		Total	/ 100

"Marge, don't discourage the boy! Weaseling out of things is important to learn. It's what separates us from the animals ... except the weasel." - Homer Simpson **1**. Predict the number of signals you would expect to see in the 1H-decoupled 13C-NMR spectrum of each of the molecules shown below. (2 points each)

1

2. Some spectroscopic data for an unknown compound (**A**) are shown below. Use these data to answer the questions on the following page.

IR Spectrum

Mass Spectrum

The base peak (100% intensity) is at m/z = 54. The peaks at m/z = 133, 134, 135, and 136, have the following relative intensities (49:2:48:2), respectively.

1H-NMR Spectrum

 δ = 3.0 (triplet, integration = 1), δ = 3.5 (triplet, integration = 1) ppm

13C-NMR Spectrum

δ = 22, 25, 117 ppm

(a) What is the molecular formula of compound A? (3 points)

(c) What is the **precise** structure of the fragment that gives rise to a peak at m/z = 93? (2 points)

(d) What is the **precise** structure of the fragment that gives rise to a peak at m/z = 95? (Your answer should differ from that given in part (c)) (2 points)

3. Some spectroscopic data for an unknown compound (**B**) are shown below. Use these data to answer the questions on the following page.

1H-NMR Spectrum

The relative integration of the peak groupings from left to right are 2:3:3

(a) What is the molecular formula of compound **B**? (3 points)

(b) What is the structure of compound **B**? (10 points)

4. Compounds **C**, **D**, and **E** are isomers with the molecular formula $C_5H_{11}Br$. The 1H-decoupled 13C-NMR spectrum of each compound is shown below, with the assignment from the DEPT spectrum shown above each peak (All peaks are shown, there are no peaks at ppm values > 100). In the boxes provided below, draw the structures of **C**, **D**, and **E**, based upon these spectra. (5 points each)

5. The diols shown below react with ketones (acetone in a and b; methyl ethyl ketone in c and d) to form cyclic ketals. In each case, draw the product of the reaction (F, G, and H), note: in d, two different diastereomeric products (J and K) are formed. In parts a and b, predict how many methyl signals will be observed in the 1H NMR spectra of compounds F and G, respectively. In compounds H, J, and K, what are the stereotopical relationships between the phenyl groups in each case. (3 points per box)

6 (BONUS) At –100 °C, undecadeuteriocyclohexane (L) gives rise to two equal intensity signals in the 1H-NMR spectrum. In contrast, at room temperature, only one signal is observed in the 1H-NMR spectrum.

(a) Draw the two different species (L1 and L2) that give rise to the signals at -100 °C (3 points each)

(b) Briefly explain why only one signal is observed in the 1H-NMR spectrum when it is recorded at room temperature (4 points)

7 (BONUS) Compound **M** has the molecular formula $C_4H_8O_2$. Only one peak is observed in the 1H-decoupled 13C-NMR spectrum, and only one singlet is observed in the 1H-NMR spectrum. Propose a structure for **M**. (5 points)

Otherwise Blank Page