Combined Spectroscopy Problems

\$

(Remember H atoms bonded to heteroatoms, e.g., N, O, S etc., can often appear as broad peaks, and do not always participate in coupling with protons on adjacent atoms)

Compound A

13C–NMR: 4 peaks, $\delta = 24$, 26, 44, 214; [Only two peaks (24, 26) are observed in the 13C–DEPT spectrum, and they both point up (rather than down)]

1H–NMR: 2 peaks, $\delta = 1.5$ (singlet, integration = 3), $\delta = 2.3$ (singlet, integration = 1)

IR Spectrum:

Mass Spectrum: Base Peak (m/z = 57); Molecular Ion (m/z = 100; M+1 peak at m/z = 101 has a relative intensity of 6.9% as compared with the peak at m/z = 100)

What is the structure of **compound A**, and what fragment gives rise to the base peak (m/z = 57) in the mass spectrum?

Compound B

13C–NMR: 3 peaks, $\delta = 10$, 11, 121; [Only two peaks (10, 11) are observed in the 13C–DEPT spectrum, and they point in opposite directions, one up, one down]

1H-NMR:

i

IR Spectrum:

Mass Spectrum: Molecular Ion (m/z = 55)

What is the structure of **compound B**?

Compound C

5

13C–NMR: 6 peaks, δ = 23, 44, 113, 117, 129, 148; [Only five peaks (all except 148) are observed in the 13C–DEPT spectrum, and they all point up (rather than down)]

1H–NMR: 4 peaks, $\delta = 1.4$ (doublet, integration = 6), $\delta = 2.8$ (septet, integration = 1), $\delta = 3.5$ (broad singlet, integration = 1), $\delta = 6.9$ –7.4 (multiplet, integration = 5)

IR Spectrum:

Mass Spectrum: Molecular Ion (m/z = 135): What is the structure of **compound C**?

Compound D

13C–NMR: 2 peaks, δ = 34, 62; [Both peaks are observed in the 13C–DEPT spectrum, and they both point down (rather than up)]

1H–NMR: 3 peaks, $\delta = 1.8$ (quintet, integration = 1), $\delta = 2.6$ (slightly broad singlet, integration = 1), $\delta = 3.8$ (triplet, integration = 2)

IR Spectrum:

Mass Spectrum: Molecular Ion (m/z = 76; M+1 peak at m/z = 77 has a relative intensity of 3.7% as compared with the peak at m/z = 76): What is the structure of **compound D**?