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Using pseudo-parabolic and fractional equations

for option pricing in jump diffusion models *

A. Ttkin and P. Carr

Abstract In mathematical finance a popular approach for pricing options under some Lévy model would
be to consider underlying that follows a Poisson jump diffusion process. As it is well known this results in
a partial integro-differential equation (PIDE) that usually does not allow an analytical solution, while a
numerical solution also faces some problems. In this paper we develop a new approach on how to transform
the PIDE into a class of so-called pseudo-parabolic equations which are well known in mathematical
physics but are relatively new for mathematical finance. As an example we will discuss several jump-
diffusion models which Lévy measure allows such a transformation.

1 Introduction

In mathematical finance a popular approach for pricing options under some Lévy model would be to
consider underlying that follows a Poisson jump diffusion process. As it is well known this results in
a partial integro-differential equation (PIDE) that usually does not allow an analytical solution while
a numerical solution also faces some problems. These problems are mainly related to computation of
a non-local integral term, whereas computation of a differential part of the PIDE, discussed numerous
times in the literature, can be provided in a relatively standard way. Furthermore, it is always possible to
reduce the whole PIDE to a set of the simpler equations using a splitting technique. This set, in fact, will
contain just pure one-dimensional unsteady PDE and pure evolutionary-integral equations (EIDE) (see,
for instance, In’t Hout and Welfert (2009); Itkin and Carr (2006)). Here we are not concerned with the
solutions of the former equations. However, we do consider how to efficiently solve the latter equations
that is the main subject of this paper.

A thorough description of methods used for solving this kind of equations is given in Cont (2009);
Hilber et al. (2009). Some problems related to implementation of these methods are also discussed in
Carr and Mayo (2007); Strauss (2006).

According to the last cited publication we could distinguish the following methods that are currently
used to solve the EIDE. In an early paper, Amin (1993) used an explicit multinomial tree based approach.
d’Halluin et al. (2004); d’Halluin, Forsyth and Vetzal (2005) implemented implicit methods for evaluating
vanilla European options, barrier options, and American options. They also showed that when a log spaced
grid is used with a Crank Nicolson discretization on a problem with constant parameters the resulting
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scheme is unconditionally strictly stable. In addition, they showed that the simple Picard iteration scheme
(also suggested in Tavella and Randall (2000)) for solving the discretized equations is globally convergent.
Specifically, they reported that when they priced options in the Merton model the error was reduced by
two orders of magnitude at each iteration for typical values of the time step size and Poisson arrival
intensity. More recently, d’Halluin, Forsyth and Labahn (2005) presented a semi-Lagrangian approach
for pricing American Asian options under jump diffusion processes. Andersen and Andreasen (2000)
derived a forward equation describing the evolution of European call options as functions of strike and
maturity, and discussed its application to the problem of fitting the stock process to option prices in
the market. They also presented a second order accurate unconditionally stable operator splitting (ADI)
method for pricing options which does not require iterative solution of an algebraic equation at each time
step. (Unfortunately, it is not clear how to extend their method to the valuation of American options
while retaining second order accuracy.) Cont and Voltchkova (2003) used a discretization that is implicit
in the differential terms and implicit in the integral term, and showed that it converges to a viscosity
solution. Their method extends to infinite activity models, and does not require the diffusion part of
the equation to be non-degenerate. These partial integro-differential equations have also been solved by
many others. See, for example, Zhang (1993); Matache et al. (2002)). Although the pricing equations have
often been solved numerically, because of the integrals in the equations the methods have proven to be
relatively expensive. The obvious discretizations of the pricing equations combine standard discretization
methods for the differential terms with quadrature methods such as Simpsons rule or Gaussian quadrature
for evaluating the integral term. This approach is computationally expensive since the integral must be
approximated at each point of the mesh used for discretizing the differential terms. The difficulties are
greater if an implicit discretization of both the integral and the differential terms is used. The expense
of evaluating the integral at all points of the computational grid can, however, be reduced by making
the same exponential change of variables often used when solving the Black-Scholes differential equation
with no jumps. This converts the integral term into a correlation integral which can be evaluated at all
the mesh points simultaneously using the Fast Fourier Transform. This approach has been suggested by
many authors Wilmott (1998); Tavella and Randall (2000); Andersen and Andreasen (2000).

Various kind of finite elements methods were proposed for multidimensional Lévy processes (see survey
in Hilber et al. (2009)) since finite difference methods are not efficient when dimensionality of the problem
exceeds the number of 3.

Also worth noting a new method for exponential jumps proposed by Lipton and Sepp (2009) who
calculate the jump integral recursively on the spatial grid. This is a special trick for exponential jumps
and it does not work for more familiar Gaussian jumps. The authors claim that a simple interpolation
routine is sufficient for discrete jumps.

As Carr and Mayo mentioned (see Carr and Mayo (2007)) quadrature methods are expensive since
the integrals must be evaluated at every point of the mesh. Though less so, Fourier methods are also
computationally intensive since in order to avoid wrap around effects they require enlargement of the
computational domain. They are also slow to converge when the parameters of the jump process are
not smooth, and require uniform meshes for efficiency. Therefore, they proposed a different and more
efficient class of methods which are based on the fact that the integrals often satisfy differential equations.
Depending on the process the asset follows, the equations are either ordinary differential equations or
parabolic partial differential equations. Both types of equations can be accurately solved very rapidly.
Carr and Mayo (2007) used to demonstrate the advantage of such an approach for the Merton and Kou
models. However, the extension of their idea for other types of the Lévy models is yet unknown.

Therefore in this paper we propose two different approaches. The idea of the first one is to represent
a Lévy measure as the Green’s function of some yet unknown differential operator A. If we manage to
find an explicit form of this operator then the original PIDE will reduce to a new type of equation - a so-
called pseudo-parabolic equation. These equations are known in mathematical physics (see, for instance,
Cannon and Lin (1988)) but are new in mathematical finance.

Then we rely on two important results, namely: a) the inverse operator A1 exists, and b) the obtained
pseudo parabolic equation could be formally solved analytically via a matrix exponent. Having that we
discuss a numerical method of how to compute this matrix exponent. We show that this can be done
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using a finite difference scheme similar to that used for solving the parabolic PDEs, and the matrix of
this FD scheme is banded. We fulfill this program for general tempered stable processes (GTSP)! with
an integer damping exponent a.

Alternatively for the same class of the Lévy processes (GTSP/KoBoL/SSM) with the real dumping
exponent a we show how to transform the corresponding PIDE to a fractional PDE (method 2). Fractional
PDE:s for the Lévy processes with finite variation were derived by Boyarchenko and Levendorskii (2002)
and later by Cartea and del Castillo-Negrete (2007) using a characteristic function technique. Numerical
solution of these equations was investigated by Cartea and del Castillo-Negrete (2007) and Marom and
Momoniat (2009). In this paper we derive them in all cases, including processes with infinite variation,
using a different technique - shift operators. Then to solve them we apply a new method, namely: having
results computed for a € Z we then interpolate them with the second order in « to obtain the solution
at any a € R.

We also show that despite a common practice to integrate out all Lévy compensators in the integral
term when considered jumps are of finite activity and finite variation, this, in fact, breaks the stability of
the scheme, at least for the fractional PDE. Therefore, in order to construct the unconditionally stable
scheme one must keep the other terms under the integrals. To resolve this, Cartea (2007) were compelled
to change their definition of the fractional derivative.

It is important to note that the proposed methods could be easily generalized for the time-dependent
Lévy density.

The rest of the paper is organized as follows. In section 2 we discuss a basic example of the method
provided that the simple exponential Lévy measure is used to describe the jumps. In the next section we
consider GTSP models and show how to reduce the corresponding PIDE to the pseudo parabolic equation
in this case. Section 4 describes the numerical solution of the obtained pseudo parabolic equations in case
a € Z. Section 5 focuses on the general case of real a and introduces our method of deriving fractional
PDE based on the shift operators. In section 6 we discuss how to solve these FPDE by constructing
unconditionally stable finite difference schemes of high order of accuracy in space and time, and provide
some numerical examples and comparison with the other methods. The last section concludes.

2 Basic example

In this section we examine the simplest possible problem to demonstrate the basics of our new method.
We assume no arbitrage so that there exists a risk-neutral measure Q. We assume zero interest rates and
dividends so that the stock price is a Q-martingale. Suppose that the underlying stock price process is
pure jump (i.e. there is no continuous martingale component). Further suppose that the jump process
is a compound Poisson process. The arrival rate of a jump is constant at A > 0, while the jump size
distribution is a symmetric Laplace distribution, i.e the probability density for a jump of size j € R,
given that a jump has occurred is given by:

) ae—clil '
9(j) = —5— jeR, (1)

where o > 0 is a free parameter. We recognize that these dynamics let prices become negative and ignore
this complication. Let u(z,t) be the value of the contingent claim at calendar time ¢ € [0,7T] given that
the time t stock price is x € R. As a result of our assumptions, the contingent claim value solves the
following PIDE:

0 . 0 N g
au(m,t) + )\/[u(x +j,t) —u(z,t) — a—u(oﬁ7 t)jla(y)dj = 0, (2)
R Tz
on the domain = € R, ¢ € [0,T]. For a European call, the terminal condition is

u(z,T) = (x — K)*, z €R, (3)

1 In the literature they are also known as KoBol or SSM processes.
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where K € R is the strike price.
Now the symmetry of the PDF in (1) implies that:

[ datirai =o. (4)
R
and hence the PIDE (2) simplifies to:
7]
gy t) = dua) ) [ e+ 3. 0a()di = 0 (5)
R
If we do the change of variable z = —j in the integral, we obtain a convolution:
%u(az, t) — Au(z, t) + )\/ u(z — z,t)q(z)dz = 0. (6)
R

If we do the change of variable y = x — z in the integral, we obtain:
%u(m,t) —du(z, t) + )\/Ru(y, t)g(z —y)dy = 0. (7
Now consider the simple second order linear inhomogeneous ODE:
J'(@) = a’g(z) = —6(x), xR, (8)

where §(z) denotes Dirac’s delta function. Suppose that the ODE is to be solved subject to the boundary
conditions:
lim g¢(z) =0. 9)

r—+oo

The solution to this problem is usually referred to as a Green’s function. The solution is well known to
be:

e—clel
o) = . (10)
Comparing (10) and (1), we see that:
g(w) = a’g(x). (11)
Hence, the PIDE (16) can be re-written as:
%u(m,t) — du(z, t) + Aa? /lR u(y,t)g(z —y)dy = 0. (12)

To exploit the connection (11), let D denote the first derivative operator and let A, denote the
following linear differential operator:
Ay =D2 - %1, (13)

where Z; is the identity operator.
Using this operator notation, the ODE (8) reads:

Azg(z) = —6(z). (14)
Suppose that we apply the A; operator to (12):

.Az %U(xat) - AAI'LL(Qf,t) + Aaz/ u(y, t).Ag;g(:E — y)dy = 0. (15)
R

where we have assumed that the interchange of the integral and the differential operator is permissible.
Substituting (14) in (12) implies that:

Aw%u(x,t) — Mgu(z, t) — Ao /Ru(y, t)é(z — y)dy = 0. (16)
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Using the sifting property of the delta function implies that our problem reduces to a (third order) PDE:
AI%U(JJ, t) — AMgu(z, t) — Ae*u(z, t) = 0. (17)

Substituting (13) in (17) and simplifying implies:

9 20 9?
mu(m,t) -« Eu(x,t) - )\@u(m,t) =0. (18)

Thus, we managed to transform the original PIDE to the PDE which, however, is of a new type. This
is not a pure parabolic equation because it contains mixed derivatives in time and space. Fortunately,
such equations are well known in physics and called ”pseudo-parabolic”. We will show later that the
solution of these equations could be obtained by using standard finite-difference methods.

Note that a similar transformation could be derived for some other types of the jump size distribution.
For instance, for Erlang distributions (Evans et al. (2000)), which are the generalization of the exponential
type kernels, we can proceed in the same manner, but by replacing the second order differential operator
Az with a higher order differential operator. We also know from Carr and Mayo (2007) that transformation
from PIDE to PDEe is possible for the Gaussian type jumps. Having that in the rest of the paper we
want to demonstrate how to accomplish the same program for a more complicated type of jumps which
follow Generalized Tempered Stable Processes (GTSP).

3 GTSP/KoBoL/SSM model

Stochastic skew model (SSM) has been proposed by Carr and Wu (2004) for pricing currency options. It
makes use of a Lévy model also known as generalized tempered stable processes (see Cont and Tankov
(2004)) for the dynamics of stock prices which generalize the CGMY processes proposed by Carr et al.
(2002). A similar model was independently proposed by Koponen (1995) and then Boyarchenko and
Levendorskii (2002) The processes are obtained by specifying a more generalized Lévy measure with
two additional parameters. These two parameters provide control on asymmetry of small jumps and
different frequencies for upward and downward jumps. The results of Zhou et al. (2005) show that this
generalization allows for more accurate pricing of options.

GTSP have probability densities symmetric in a neighborhood of the origin and exponentially decaying
in the far tails. After this exponential softening, the small jumps keep their initial stable-like behavior,
whereas the large jumps become exponentially tempered. The Lévy measure of GTSP reads

e V-1l e~ v+l
H(?J) = )\_le<0 + )\+W1y>07 (19)

where v+ > 0, \+ > 0 and a+ < 2. The last condition is necessary to provide

/ y? pu(dy) < oo, 1(dy) < oo. (20)
1 ly|>1

The case Ay = A_,a+ = a_ corresponds to the CGMY process. The limiting case ay = a— =
0,A+ = A_ is the special case of the Variance Gamma process of Madan and Seneta (1990). As Hagan
at al mentioned (see Zhou et al. (2005)) six parameters of the model play an important role in capturing
various aspects of the stochastic process. The parameters A+ determine the overall and relative frequencies
of upward and downward jumps. If we are interested only in jumps larger than a given value, these two
parameters tell us how often we should expect such events. v+ control the tail behavior of the Lévy
measure, and they tell us how far the process may jump. They also lead to skewed distributions when
they are unequal. In the special case when they are equal, the Lévy measure is symmetric. Finally, a+ are
particularly useful for the local behavior of the process. They determine whether the process has finite
or infinite activity, or variation.
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Using this model of jumps Carr and Wu (2004) derived the following PIDE which governs an arbitrage-
free value of a European call option at time ¢

raC(S, Vi, Vi, ) = %C(S, Vit Vio ) + (ra — rf)s%o(s, Vie, Vi) (21)
4 k(1 - Vp) af/ C(S, Vi, Vi t) + r(1 VL)%C(S, Vie, Vi)
v waa;c@ Vie, Vi t) + opPoy SV asa;v C(8, Vi, Vi, 1)
+oploysvy, BS%QV C(S, VR, Vp,t) + ”V2VR 88520(5 Vi, Vi, t) + "V2VL 88‘/220(5, Vi, Vi, t)

bl e VrlYl
+ V VR/ |:C(Sey, VvaLat) - C(Sa VRava ) 8SC(S VRv VL7t)S(e - 1):| ‘ ‘1+o¢ dy
0

0 ’ 9 vilyl
L /m [C’(Se Vi Viat) - C(S, Vi, Vi) — 2508, Vi, Vi DS(e )] o

on the domain S > 0,Vg > 0,V > 0 and t € [0,T], where S, Vg, V], are state variables (spot price and
stochastic variances). For the following some important observations have to be made.

1. This PIDE could be generalized with allowance for GTSP processes, which means we substitute « in
Eq. (21) with ag,ar, and XA with Ag, A, correspondingly.

2. The obtained PIDE could be solved by using a splitting technique (see Itkin and Carr (2006)). In
more detail the numerical solution of the PIDE could be found in several steps. At every step we have
to solve a certain simpler subproblem. These subproblems include either solution of one-dimensional
advection-diffusion PDE with no jumps, or solution of a pure evolutionary jump equation (with no
diffusion and drift terms) of the type Eq. (2).

3. To demonstrate the idea of our method we start by considering the jumps with only the finite activity,
i.e. ag < 0,ar, < 0. Therefore, each compensator under the integral could be integrated out. In the
next sections a general case ar < 2,ay, < 2 will be discussed as well.

We assume that the advection-diffusion equations can be solved by using a standard finite-difference
technique, hence this is not a subject of our paper. We do consider only those steps of the splitting
method which deal with the remaining integral term. The corresponding equation reads

o —VR\ZI\

EC(S, Vg, Vi, 1) \/VR/ C(Sey,VR,VIM ))\R| |1+osz (22)
for positive jumps and

o —VL|ZJ\

EC(S, VR7VL, \/VL/ C(Se ,VR,VL, ))\ | |1+aL dy (23)

for negative jumps.
Making a change of variables x = log S and omitting dependence on dummy variables Vg, V;, we can
rewrite these two equations in a more standard form

—vr|y|

8 o0
&O(%t) =V VR/ C(x +y, t))\REJPT“Rdy (24)

—vrlyl

0 e
aC:rt \/VL/ I+y, )\ Wd’y

To make it clear the above is not a system of equations but rather two different steps of the splitting
procedure.
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In the first integral y varies in [0,00], and in the second one - in [—o0o, 0], while the kernel of both
integrals vanishes at y = 0. Therefore, nothing changes if we rewrite the above equations in the form

e VRIY]
D01 =~k / Clo+p,t AR| T Loy (25)
e~ VLYl

T 1tarn y<0dy

C(St \/ﬂ/ Clz+y,t) ||

This two equations are still PIDE or evolutionary integral equations. We want to apply our new
method to transform them to a certain pseudo parabolic equations.

First equation in the Eq. (25) Assuming z = z + y we rewrite it in the form

—VR|Z—:D\

70(1: t —/ VR/ Z t)ARWIZ*$>Od'Z (26)
— X

To achieve our goal we have to solve the following problem. We need to find a differential operator
.AJ which Green’s function is the kernel of the integral in the Eq. (26), i.e.
| el
Ay /\Wlwo =d(y) (27)
We prove the following proposition.

Proposition 1 Assume that in the Eq. (27) o € Z, and a < 0. Then the solution of the Eq. (27) with respect

to A;‘ is
1 .
1 R T S
A+:7(y+—> = C’p+ Pl p=—(1+a)>0,
Yo ! Ay Ap! ; oy’
where Cf'H are the binomial coefficients.

Proof This result could be proven by taking Laplace transform of both parts of the Eq. (27) (see below).
It could be also verified using any symbolic processor, e.g. Mathematica. B

Second equation in the Eq. (25) For the second equation in the Eq. (25) it is possible to elaborate an
analogous approach. Again assuming z = x + y we rewrite it in the form
—VR|z—z|

C(I t —/ VL/ Z t)AR%137$<OdZ (28)
— X

Now we need to find a differential operator .A;, which Green’s function is the kernel of the integral in
the Eq. (28), i.e.
| emvlul
Ay /\le<0 = 5(?4) (29)
We prove the following proposition.
Proposition 2 Assume that in the Eq. (29) a € Z, and oo < 0. Then the solution of the Eq. (29) with respect
to Ay is
1 o\t 1 [RR ) o'
A = — (v—— = 1C’p+ pHI=i 2 =—(14a
=) = |y 2l v=-ara,

Proof Using Laplace transform one can check the above result for any positive integer p. B
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To proceed we need to prove two other statements.

Proposition 3 Let us denote the kernels as

e~ VRlz—zl

gt (z—2) E)\lezﬂoo. (30)
Then
Azt (z—12)=6(z — ). (31)
Proof
p+1 p+1
A;g*‘(z—x):)\ip!(y—(%:) g+(27m):)\ip!(y+ﬁ) g (z—x)
= Al ,9"(z—2)=6(z —2)
|
Proposition 4 Let us denote the kernels as
- o—vrla—al
g (z—x) E)\Lmlz,zd). (32)
Then
Afg (z—z) =6(z— ). (33)
Proof

atr =L (2 e = L (v gily) e

= Azfxgi(z - x) = 5(2 - {E)
|

Transformation We now apply the operator A; to both parts of the Eq. (26) to obtain

T a = —\/VrA; / Oz, t)gT (2 — x)dz = —\/E{/:o C(z,t) Az g7 (2 — 2)dz + R} (34)
Vi {/z O, 0)0(z — 2)dz +R} = L VVRC(. 1)~ VAR

R = Zal (Z5vw) (Ziste-)

and a; are some constant coeﬁiments. As from the definition in the Eq. (30) g(z — ) « (# — )P, the only
term in the Eq. (35) which does not vanish is that at ¢ = p. Thus

Here

, (35)

z—x=0

R=V@) (ol =2)|_,_ = Ve =0 (36)

With allowance for this expression from the Eq. (34) we obtain the following pseudo parabolic equation
for C(z,t)
A o O, 1) = %\ /VaC (1) (37)

Applying the operator A5 to both parts of the second equation in the Eq. (28) and doing in the same
way as in the previous paragraph we obtain the following pseudo parabolic equation for C(z,t)

e 5C@t) = —Mv?cu t) (38)
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4 Solution of the pseudo parabolic equation

Assume that the inverse operator A~! exists (see discussion later) we can represent, for instance, the
Eq. (37) in the form

%o(% t) = —BC(z,t), B= %\/E(A;)—H (39)
This equation can be formally solved analytically to give
C(z,t) = BTDC(a,T), (40)

where T is the time to maturity and C(z,T) is payoff. Switching to a new variable 7 = T — ¢ to go
backward in time we rewrite the Eq. (40) as

C(z,7) = eB7C(x,0), (41)

Below we consider numerical methods which allow one to compute this operator exponent with a
prescribed accuracy. First we consider a straightforward approach when «a € Z.

4.1 Numerical method when o € Z

Suppose that the whole time space is uniformly divided into N steps, so the time step 6 = T'/N is known.
Assuming that the solution at time step k,0 < k < N is known and we go backward in time, we could
rewrite the Eq. (40) in the form

ckl(z) = P00 (), (42)

where C*(z) = C(x, kf). To get representation of the rhs of the Eq. (42) with given order of approximation
in 6, we can substitute the whole exponential operator with its Padé approximation of the corresponding
order m.
First, consider the case m = 1. A symmetric Padé approximation of the order (1, 1) for the exponential
operator is
BO 1+ 80/2
T 1-B6/2

Substituting this into the Eq. (42) and affecting both parts of the equation by the operator 1 — B6/2
gives

(43)

(1 - %BQ) cFl(z) = <1 + %BO) k(). (44)

This is a discrete equation which approximates the original solution given in the Eq. (42) with the
second order in 6. One can easily recognize in this scheme a famous Crank-Nicolson scheme.

We do not want to invert the operator A, in order to compute the operator B because B is an
integral operator. Therefore, we will apply the operator A; to the both sides of the Eq. (44). The
resulting equation is a pure differential equation and reads

(Ax - \/Fe) M (z) = (Az + \/V7R9> c* (). (45)

4

Let us work with the operator A; (for the operator A7 all corresponding results can be obtained
in a similar way). The operator A, contains derivatives in z up to the order p + 1. If one uses a finite
difference representation of these derivatives the resulting matrix in the rhs of the Eq. (45) is a band
matrix. The number of diagonals in the matrix depends on the value of p = —(1 4+ ag) > 0. For central
difference approximation of derivatives of order d in z with the order of approximation ¢ the matrix
will have at least | = d + ¢ diagonals, where it appears that d + ¢ is necessarily an odd number (Eberly
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(2008)). Therefore, if we consider a second order approximation in z, i.e. ¢ = 2 in our case the number
of diagonals is [ =p+3 =2 - ag.

As the rhs matrix D = A; — /Vg0/4 is a band matrix the solution of the corresponding system of
linear equations in the Eq. (45) could be efficiently obtained using a modern technique (for instance,
using a ScaLAPACK package?). The computational cost for the LU factorization of an N-by-N matrix
with lower bandwidth P and upper bandwidth @ is 2NPQ (this is an upper bound) and storage-wise
- N(P + Q). So in our case of the symmetric matrix the cost is (1 — ag)?N/2 performance-wise and
N(1—apg) storage-wise. This means that the complexity of our algorithm is still O(N) while the constant
(1 —ag)?/2 could be large.

A typical example could be if we solve our PDE using an z-grid with 300 nodes, so N = 300. Suppose
apr = —10. Then the complexity of the algorithm is 60N = 18000. Compare this with the FFT algorithm
complexity which is (34/9)2N log,(2N) ~ 20900 3, one can see that our algorithm is of the same speed
as the FFT.

The case m = 2 could be achieved either using symmetric (2,2) or diagonal (1,2) Padé approximations
of the operator exponent. The (1,2) Padé approximation reads

B0 _ 14 B0/3

; 46
1—2B6/3 + B*6/6 (46)
and the corresponding finite difference scheme for the solution of the Eq. (42) is
- 1 -1 S |

(AQQfgdwwAz+§?@f CH%@:a%[Ax+6 wwyﬁ@y (47)

which is of the third order in . The (2,2) Padé approximation is

1+ B60/2+ B>0° /12
P = + B9/ —1—32 2/ ; (48)

1—B0/2 + B*6/12

and the corresponding finite difference scheme for the solution of the Eq. (42) is
_ 1 _ 1

@%f—zwwwA,+@mw20“%@:{ 242 MwwAg+ V@ZCH) (49)

which is of the fourth order in 6.

Matrix of the operator (A )? has 2/ — 1 diagonals, where  is the number of diagonals of the matrix
Az . Thus, the finite difference equations Eq. (47) and Eq. (49) still have band matrices and could be
efficiently solved using an appropriate technique.

4.2 Stability analysis

Stability analysis of the derived finite difference schemes could be provided using a standard von-Neumann
method. Suppose that operator A; has eigenvalues ¢ which belong to continuous spectrum. Any finite
difference approximation of the operator Az - FD(A;) - transforms this continuous spectrum into some
discrete spectrum, so we denote the eigenvalues of the discrete operator FD(A;) as (;,i = 1, N, where
N is the total size of the finite difference grid.

Now let us consider, for example, the Crank-Nicolson scheme given in the Eq. (45). It is stable if in

some norm || - ||
N\ -1 —

7 7 <1. (50)

2 see http://www.netlib.org/scalapack/scalapack_home.html

3 We use 2N instead of N because in order to avoid undesirable wrap-round errors a common technique is to embed
a discretization Toeplitz matrix into a circulant matrix. This requires to double the initial vector of unknowns
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It is easy to see that this inequality obeys when all eigenvalues of the operator A, are negative.
However, based on the definition of this operator given in the Proposition 2, it is clear that the central
finite difference approximation of the first derivative does not give rise to a full negative spectrum of
eigenvalues of the operator FD(A; ). So below we define a different approximation.

Case ar < 0. Therefore, in this case we will use a one-sided forward approximation of the first derivative
aRr
which is a part of the operator (Z/R — %) . Define h = (Tmaz — Tmin)/N to be the grid step in the

z-direction, N is the total number of steps, Zin and zmaez are the left and right boundaries of the
grid. Also define ¢f = C*(z;). To make our method to be of the second order in = we use the following
numerical approximation

ack(z) - o +4CF, — 3CF 2
Era 5 +O(h%) (51)
Matrix of this discrete difference operator has the following form
-34 -10 ..0
1 0 -34 -1..0
Mp=g- 0 0 -34 .0 (52)

00.0 0 -3
All eigenvalues of My are equal to —3/(2h).
To get a power of the matrix M we use its spectral decomposition, i.e. we represent it in the form
M = EDE’, where D is a diagonal matrix of eigenvalues d;,i = 1, N of the matrix M, and E is a matrix
of eigenvectors of the matrix M. Then MP+t! = EDPE’ where the matrix DP*! is a diagonal matrix
with elements derl,i = 1, N. Therefore, the eigenvalues of the matrix (Z/R — %)QR are [vg + 3/(2h)]“".
And, consequently, the eigenvalues of the matrix B are

e = VVeArD (—ar) {[vr +3/(210)]*" —v5" } . (53)
As ap <0 and vi > 0 it follows that (g < 0. Rewriting the Eq. (44) in the form
1.\ " 1
cF () = (1 - 539) (1 + 530) ct(x), (54)
and taking into account that (g < 0 we arrive at the following result

—1
1 1
H <1 - 539) <1 + 589)

We also obey the condition R (VR — é%) > 0. Thus, our numerical method is unconditionally stable.

<1 (55)

Case ag, < 0. In this case we will use a one-sided backward approximation of the first derivative in the

a\E o
operator (l/L + %) which reads

ock(z)  3CF —4Cf , +CF,
ox 2h

Matrix of this discrete difference operator has the following form

+ 0(h?) (56)

3000 .0
L4300 .0
My=gr| 1 —430 .0 (57)

00.1-43
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All eigenvalues of M, are equal to 3/(2h). Then doing in a similar way as above we can show that the
eigenvalues of the operator B read

¢ = VViALT(—ap) {[vr +3/(20)]*F — vt} (58)

As ay, < 0 and vy, > 0 it follows that (g < 0, R (VL + 8%:) > 0, and the numerical method in this case
is unconditionally stable.

4.3 o € R - interpolation.

Before we discuss some alternative approaches (see next sections) let us consider a simple way how to
solve pure jump equations in the general case o € R. We already showed how to transform our PIDEs
to some pseudo-parabolic PDE and then solve them using a finite difference approach if a € Z. A simple
observation shows that having results computed for « € Z we may then interpolate them with the second
order in « to obtain the solution at any o € R. To make sure this is consistent we prove the following
proposition.

Proposition 5 Both integrals in the Eq. (21) are continuous in o at o < 2.

Proof See Appendix.

4.4 Numerical examples

Here we present results of various numerical tests aimed to compare our method with the standard FFT
approach. In doing so main attention is drawn to a relative performance and accuracy of both methods,
rather than to economic treatment of the results. That is done for two reasons. First, we apply our
method to the jump model which has already received a significant attention in the literature. See a
short discussion and references at the beginning of Section 3. Second, as was already mentioned, we
consider only one step (jumps) in the whole multi-step splitting algorithm. Therefore, to compute, e.g.
option prices under this model we need to implement all other steps as well. This subject is out of scope
of this paper and is discussed in more detail in Itkin and Carr (2011). There exists also a wide literature
(see Introduction) where this comparison is done using the FTT based calculation of the jump integrals.
Therefore, we don’t expect to obtain any new results in this way, but just to provide a new and efficient
algorithm to solve the jump-diffusion equations.
Below two series of numerical experiments are described. In the first series we solve the equation

e—VR\y|

a (o)
EC(.Z‘,T) —/O C’(x+y,7))\RWdy, ap < -1 (59)

by using FFT and the finite difference scheme constructed based on computation of the Eq. (59) with
ap € Z and interpolation as it was described in the above.

We solve an initial problem despite it is easy to consider a boundary problem as well. As an example
we consider a put option with time to maturity 7 = 30 days *. As the terminal condition (we compute
the solution backward in time) we choose a Black-Scholes put value at 7 = 0 where the interest rate is
r = 0.01, the volatility is 0.1 and the strike is K = 100. We create a uniform grid in time with N; = 50
nodes, so § = T/N; is the step in time.

4 We keep same notation for the put option value which is C(z,T), as this comparison means basically to compare
two numerical methods rather than provide some deep economic meaning
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FFT. To apply an FFT approach we first select a domain in = space where the values of function C(z, 7)
are of our interest. Suppose this is x € (—z«, x«). We define a uniform grid in this domain which contains
N points: 1 = —x4,22,..tN_1,TN = T+ such that x; — x;_1 = h,i = 2...N. We then approximate the
integral in the rhs of the Eq. (59) with the first order of accuracy in h as

—vrly| h —t e VR e
2

oo
e
/ C($+y77))\RW Yy = Z C’L-‘rj f]7 fg —)\R Tfan
0

+ O(h?). (60)
j=1—i | 5|

This approximation means that we have to extend our computational domain to the left up to x1_y =

— hN.

The matrix |f| is a Toeplitz matrix. Using FFT directly to compute a matrix-vector product in the
Eq. (60) will produce a wrap-round error that significantly lowers the accuracy. Therefore a standard
technique is to embed this Toeplitz matrix into a circulant matrix F which is defined as follows. The first
row of F is

Fl = (f07f17“'7fN—1707f1—N7"'7f—1)7

and others are generated by permutation (see, for instance, Zhang and Wang (2009)). We also define a
vector
¢ =[Ci(7),..Cn(7),0,...,0 .
N——
N

Then the matrix-vector product in the rhs Eq. (60) is given by the first N rows in the vector V =
ifft (fft(Fy) * fit(C)), where fft and ifft are the forward and inverse discrete Fourier transforms as they are
defined, say in Matlab. In practice, an error at edge points close to x; and zy is higher, therefore it is
useful first to add some points left to z; and right to zy and then apply the above described algorithm to
compute the integral. We investigated some test problems, for instance, where the function C' was chosen
as C(x) = x so the integral can be computed analytically. Based on the obtained results we found that it
is useful to extend the computational domain adding N/2 points left to x1 and right to z that provides
an accurate solution in the domain «1, ..., y. The drawback of this is that the resulting circulant matrix
has 4N x 4N elements that increases the computational work by 4 times (4N log,(4N) =~ 4(N log, N)).

In our calculations we used zx = 20,h = 2z4«/N regardless of the value of N which varies in the
experiments. Then we extended the domain to x1 = —zs« — h(N/2 — 1),zx = =+ + h(N/2+ 1), and so
this doubles the originally chosen value of N, i.e. Npew = 2N. But the final results were analyzed at the
domain x € (—z«, T*).

Integrating the Eq. (59) in time we use an explicit Euler scheme of the first order which is pretty
fast. This is done in order to provide the worst case scenario for the below FD scheme. Thus, if our FD
scheme is comparable in speed with FFT in this situation it will even better if some other more accurate
integration schemes are applied together with the FFT.

FD. We build a fixed grid in the z space by choosing Sy, = 1078, Spmaz = 500,21 = 1og(Spmin), N =
log(Smaz),h = (xxy — x1)/N,N = 256. A one-sided forward approximation of the first derivative was
used as it is defined in the Eq. (51) to approximate the operator in the Eq. (59). In the particular case
considered here in our experiments Vg = 1, and the compensators in the Eq. (21) are not considered,
because they could be integrated out at ap < 0 and added to the diffusion terms. The Crank-Nicolson
scheme Eq. (54) was applied to integrate the Eq. (59) in time.

Results The first series of tests was provided when ar € Z and v = 1, \g = 0.2. The results of this series
are presented in Fig. 1-2. The corresponding execution time is given in the Table 1.

In case agp = —1 in Fig. 1 the FFT solution computed with N = 256 provides a relatively big error
which disappears with N increasing. It is clear, because the Crank-Nicolson scheme is of the second order
in h while the approximation Eq. (60) of the integral is of the first order in h. Numerical values of the
corresponding steps in the described experiments are given in Tab. 2.
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FD vs FFT,, N=256, a,=-1.00 FD vs FFT,, N=256, a_,=-2.00
0.21 1 0.2t 1
0 \ 0 ';\/A'/‘j\//vﬂ_»
-0.2r FD-FFT 1 -02t FD-FFT,, -
FD-FFT,,, FD-FFT,y
04l FD-FFT,, 1 o4l FD-FFT, |
FD-FFT,, FD-FFTgy
—06ft FD-FFT ¢\ {1 —osl FD-FFT 6n 1
-0.8f 1 -o0s8f -
-1 : -1 :
=5 0 5 =5 0 5

Fig. 1 Difference (FD-FFT) in solutions of the Eq. (59) as a function of x obtained using our finite-difference method

(FD) and an explicit Euler scheme in time where the jump integral is computed using FFT. ag = —1, —2.
k
ar | FD (sec) 1 2 4 8 16

-1 0.0257 0.0657 | 0.0644 | 0.0543 | 0.0511 | 0.0338
-2 0.0273 0.0708 | 0.0686 | 0.0625 | 0.0543 | 0.0387
-5 0.0283 0.0733 | 0.0682 | 0.0582 | 0.0555 | 0.0387
-6 0.0280 0.0720 | 0.0645 | 0.0637 | 0.0550 | 0.0379

Table 1 Relative time FD(N)/FFT(kN) of computations for a € Z and N = 256 obtained in the numerical experiments.

FDgsg | FFETos6 | FET512 | FFT1024 | FFT2048 | FFT4096
h 0.096 0.1563 0.078 0.039 0.0195 0.00977

Table 2 Grid steps h used in the numerical experiments

Therefore, h%D ~ hprr,s- Actually, the difference between the FD solution with Npp = 256 and the
FFT one with N = 4Npp is almost negligible. However, the FD solution is computed almost 13 times
faster. Even the FFT solution with N = Ngp is 10 times slower than the FD one®.

For ap = —2 in Fig. 1 we see almost the same picture. For agp = —5 speed characteristics of both
solutions are almost same while the accuracy of the FD solution decreases. This is especially pronounced
for ag = —6 in Fig. 2 at low values of x < —7 (which lies outside of the graph). The problem is that when
ap decreases the eigenvalues of matrix B in the Eq. (44) grow significantly (in our tests at ag = —6 the
eigenvalues are of order of 107), so in the Eq. (55) the norm of the matrix is very close to 1. Thus, the
FD method becomes just an A-stable. However, a significant difference is observed mostly at very low
values of z which correspond to the spot price S = exp(z) close to zero. For a boundary problem this
effect is partly dumped by the boundary condition at the low end of the domain.

5 Tt actually uses 4N points as it was already discussed
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FD vs FFT,, N=256, O(R=—5.OO FD vs FFT,, N=256, O(R=—6.00

-0.4 1
FD-FFT,,
-15¢ FD-FFT,, |1
—06} FD_FFTZN | N
FD-FFT, FD-FFT,y
0l FD-FFT,,, | -2} FO-FFT,\ |
' _ FD-FFT
FD FFTlGN 8N
FD-FFT
-1 i -2.5¢ ‘ .
-5 0 5 -5 0 5
Fig. 2 Same as in Fig. 1. ap = —5, —6.
k
ar | FD (sec) 1 2 4 8 16

-0.5 0.1336 0.3330 | 0.3129 | 0.2847 | 0.2243 | 0.1417
-1.5 0.1289 0.3023 | 0.2958 | 0.2751 | 0.2374 | 0.1462
-3.5 0.1274 0.3280 | 0.3179 | 0.2801 | 0.2416 | 0.1703
-5.5 0.1379 0.3459 | 0.3408 | 0.2984 | 0.2553 | 0.1909

Table 3 Relative time FD(N)/FFT(kN) of computations for a € R and N = 256 obtained in the numerical experiments.

The second series of tests deals with ag € R using the same parameters vg = 1, \g = 0.2. The results
of this series are presented in Fig. 3-4. Four point cubic interpolation is used to compute the value of
C(z,7) at real ag using the closest four integer values of ar. The corresponding execution time is given
in the Table 3.

It is seen that cubic interpolation provides pretty good approximation to the solution which is com-
parable with the FFT method in the accuracy and is faster in speed. Again, as we already discussed
at arp < 5 the accuracy of the FD scheme drops down even for ap € R, therefore the same picture is
observed for ar € R.

At —1 < ap < 0 (see Fig. 3) the difference between FD and FFT solutions surprisingly increases with
N, used in the FFT method, increasing. To better understand what is the reason of that we fulfilled
a test calculation of the integral in the rhs of the Eq. (59) when C(xz,7) is a known function, namely
C(z,7) = x. In this case this integral can be computed analytically which gives

o e—VR|Z/| R
/ (=4l = (o~ o)V~ T (o). (61)
0

Then we apply the above described FFT approach and compare the numerical solution with the
analytical one. The results of this test are given in Fig. 5. It is seen that FFT algorithm used in our
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FD vs FFT,, N=256, a,=-0.50 FD vs FFT,, N=256, 0 ,=-1.50
0.2} :
0 \—ﬂ&mzn_
FD-FFT
_02 N 4
FD-FFT,,
ol FO-FFT, | ||
FD-FFT,,
— FD-FFT
06— FD-FFT || 16N
: N -0.6 :
FD-FFT,,
FD-FFT
-0.8} AN -0.8} J
FD-FFT,,
FD-FFT
. : 1 ‘
5 0 5 =5 0 5

Fig. 3 Difference (FD-FFT) in solutions of the Eq. (59) as a function of z at ar € R obtained using our finite-difference
method (FD) and interpolation and an explicit Euler scheme in time where the jump integral is computed using FFT.
ap = —0.5,—1.5.

calculations doesn’t provide a good approximation to the analytical solutions at low N. So we expect
this behavior of the FFT method occurred in our numerical experiments at agp = —0.5, but this doesn’t
explain the observed effect.

A plausible explanation is that at ar close to 0 the integral kernel becomes singular. That is why
in Cont and Voltchkova (2003) the part of the infinitesimal generator corresponding to small jumps is
approximated by a differential operator of second order (additional diffusion component). As we didn’t
use this technique here, an increase of N forces the distance between y = 0 and the closest FFT node
boundary to become smaller, thus the kernel becomes larger.

The other reason for the FD solution to differ from the FFT solution is that at —1 < agr < 0 we
don’t use the option values computed at agr = 0 (remember, this is a special case that was discussed
earlier). Thus, instead of interpolation we use extrapolation that certainly decreases the accuracy of the
FD solution. We will resolve this problem in the next section.

At the end of this section we present the option values computed using such a scheme as a function
of z obtained in the same test (Fig. 6).

5 General case

In the general case a € R, o < —1 propositions 1 and 2 could be generalized. To do that we need to replace
the binomial coefficients with that defined via the Gamma function, and also replace usual derivatives
with a properly defined fractional derivatives.
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0.2
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-0.8

-1

FD vs FFT,, N=256, O(R=—3.50 FD vs FFT,, N=256, O(R=—5.50

25} , 1
A »L\/MM | FD-FFT, | |
. FD-FFT,,
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Fig. 4 Same as in Fig. 4.

ar = —3.5,—5.5.

FFT computation of a test integral
Depicted: Numerical solution — exact solution

6} N=128 |4
N=512
N=1024
4 N=4096 |
N=8192
2 - .
ot T - N
_2 - .
_4 - .
_6 - .
=20 -15 -10 -5 0 5 10 15 20

Fig. 5 FFT computation of a test integral in the Eq. (61)
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Option value at various a, and time to compute it
140 T T T

120 |

100 |

o FD = 0.039698 sec, alpha,, = ~4.500000|

FD = 0.006165 sec, alpha,, = ~4.000000|
FD = 0.035964 sec, alpha,, = ~3.500000|
FD = 0.005952 sec, alpha,, = ~3.000000|
FD = 0.036014 sec, alpha,, = ~2.500000|
601 FD = 0.005499 sec, alphay, = ~2.000000| 7
FD = 0.034729 sec, alpha,, = ~1.500000|
FD = 0.005699 sec, alpha,, = ~1.000000|

FD = 0.033833 sec, alpha,, = ~0.500000|
a0 .

ClagvT). $

Fig. 6 Option values computed using such a scheme as a function of x obtained in the same test

Proposition 6 Assume that in the Eq. (27) a € R,a < —1. Then the solution of the Eq. (27) with respect to
AT s

ZC‘f’“v”“} Cop=—(l+a) 20,
i=0

P (,,+ 9
ox'

p+1 1
AL(p+1) %> T AC(p+1)

where Cf'H are the generalized binomial coefficients which could be expressed via the Gamma function, and
fractional derivatives are understood in the Riemann-Liouville sense (Oldham and Spanier (1974))

The proof is given in Appendix. For the operator A; the proof is similar.

This means that the whole analysis of the previous sections made in the case « € Z is still valid for
arbitrary a € R, a < 0. Moreover, we could now extend this proof for the whole range of a < 2. In order
to do that we have to consider the whole integrals in the Eq. (21). As this is well-known for jumps with
infinite activity or infinite variation the second and third integrands can not be integrated out, otherwise
the integral does not converge.

If we apply the second transformation to the first equation in the Eq. (24) the result is given by the
following proposition.

Proposition 7 The PIDE

0
aC(x,VR,VL,T) =
o 0
\ VR/ |:C(:U+y,VR,VL,T) — C(:IJ,VR,VL,T) — %C(m,VR,VL,T)(ey — 1) )‘R
0

e*VR\y\
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is equivalent to PDE

aR
2 0w, Vi Vi) = VVARI (—am) § (vr— ) v+ g — v = 129 2L O, Vi Vi),
or ox ox
R(agr) <2, R(vg — 8/0x) > 0, R(vg) > 1. (63)
In special cases this equation changes to

0 0 -1\ 0
EC(.& VR,VL,T) =\ VR/\R {log(zzR) — log (I/R — %) + log (%) %} C(l‘, VR, VL,T) (64)

aR = O,R(VR — a/a%) > O,R(Z/R) > 1,
and
0 1o} 0
EC(%’, Vg, VL,T) = \/%)‘R{ — VR IOgI/R + (Z/R — %) log (I/R — %> (65)

0
+ vrlogvr — (vr — 1) log(ve — )] 5 }C(a, Vi, V., 7)
aRp = I,R(E)/am) < O,R(VR) > 1,

where logarithm of the differential operator is defined in a sense of (Bakas et al. (1993)).

Proof We again use the shift operator introduced in the Eq. (98) to rewrite the Eq. (62) as

QC(JS,VI%VLJ) =B1C(x, Vg, Vi, T)

or
_ > o y 9 e~ VrlYl
B = \/VR/O [exp (ya—x> —1-(eV -1 7z )\RWdy (66)
o

Formal integration could be fulfilled if we treat a differential operator % as a parameter. As it could
be verified the result is that given in the Eq. (63). Same method is used to prove the formulae given in
the special cases ag =0 and agp =1. &

Also notice that at ag = 0 from the very beginning the last term in the Eq. (62) can be moved from
the integral to the diffusion part of the Eq. (21) because the remaining kernel converges at y = 0. If we
do so, at this special case the integrated equation transforms to

%C(%VR, VL, 7) =/ VRAR {log(VR) —log (VR - %) } C(z, Vg, Vi, T) (67)

ag =0,R(vg — 8/0z) > 0,R(vg) > 0,
This form is more useful as we show later when elaborating a numerical method to solve it.

The same approach could be utilized for the second equation in the Eq. (24), and the result is given
by the following proposition.

Proposition 8 The PIDE

0
50(1’7 VR, VL7 T) -

0
\ VL/ |:C(l’+y,VR,VL,T) — C(IE,VR,VL,T) — %C’(m,VR,VL,T)(ey — 1) )‘L
— 00

e~ vrlyl
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is equivalent to PDE

) a\** )
50($,VR,VL,7‘) = \/VL)\LF(—QL) {(VL + %> — V%L + [l/gl’ - (I/L + 1)()%] %} C(LE,VR,VL,T),

R(ar) <2, R(vy, +9/0z) > 0, R(vy) > 0. (69)
In special cases this equation changes to
2 O, Vi, Vi) = —/ Vi {log (VL + a%) ~ log(vz) — log <”L72“1) %} (70)
ar =0, R(vp +0/9z) >0, R(vy) > 0,
and
2 O, Vi, Vi) = VA ] v logws (71)

0 0 0
+ [I/L logvy, — (I/L + 1) log(VL + 1)] o + (Z/L + %) log (I/L + %> }C($,VR,VL,T)

ar =1, R(9/0z) <0, R(vy) >0,
where logarithm of the differential operator is defined in a sense of (Bakas et al. (1993)).

Proof The proof is similar to that given in the Proposition 7. B

Again at oy = 0 we can move out the last term in the Eq. (62) from the integral to the diffusion
part of the Eq. (21) because the remaining kernel converges at y = 0. If we do so, at this special case the
integrated equation transforms to

0 d
EC(% VR,VL,T) = —/VLAL {log <VL + %) - IOg(VL)} (72)
ar, =0, R(vp, +9/9z) > 0, R(v) >0,

We will use this form later when elaborating a numerical method to solve this equation.

It is important to underline that the integration in the Proposition 7 for positive jumps could be done
if R(vg) > 1 while in the Proposition 8 for negative jumps - if R(vy,) > 0. In the special cases ag = 1 this
limit could be extended to R(rg) > 0, however it gives rise to a complex values of the coefficients in the
rhs of the Eq. (71). Therefore, we keep the above constraint R(vg) > 1 unchanged in this case as well.

Similar representations were obtained first in Boyarchenko and Levendorskii (2002) and later in Cartea
and del Castillo-Negrete (2007) using a characteristic function approach. For instance, the latter authors
considered several Lévy processes with known characteristic function, namely LS, CGMY or KoBoL.
Then using Fourier transform they managed to convert the governing PIDE (same type as the Eq. (21)
but for the Black-Scholes model with jumps) to a fractional PDE. In their notation our operator A; is
represented as

Aj o (—1)*ReVR DOR (e*”RC(x, t)) , (73)

and operator As as
Az ox "t oDt (erLC(x,t)> , (74)

So to compare we have to note that aside of the different method of how to derive these equations
our main contribution in this paper is:

1. Special cases ar = 0,1,y = 0,1 are not considered in Cartea and del Castillo-Negrete (2007). In
Boyarchenko and Levendorskii (2002) a corresponding characteristic function of the KoBoL process
was obtained in all cases for a < 1. However, the authors did not consider numerical solution of the
fractional PDE. In this paper we derive a fractional PDE for all a < 2 and propose a numerical
method for their solution.
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2. We proposed the idea of solving FPDE with real ap < 0,y < 0 by using interpolation between option
prices computed for the closest integer values of ar, ay. For the latter we first used to transform the
fractional equation into a pseudo-parabolic equation. Then for the solution of this PPDE an efficient
FD scheme is constructed that results in LU factorization of the band matrix.

3. Also jumps up and down are considered separately so the model in use (SSM) is slightly different
from the model considered in Cartea and del Castillo-Negrete (2007).

4. In Cartea and del Castillo-Negrete (2007) a Crank-Nicolson type numerical scheme was proposed to
solve the obtained FPDE in time while discretization in space was done using the Grunwald-Letnikov
approximation which is of the first order in space. Here for fractional equations with 2 > ap > 0,2 >
ay, > 0 we obtain the solution using our new scheme which preserves the second order approximation
in time and space.

5. As it is known from recent papers (Abu-Saman and Assaf (2007); Meerschaert and Tadjeran (2004);
Tadjeran et al. (2006); Meerschaert and Tadjeran (2006); Sousa (2008)), a standard Grunwald-
Letnikov approximation leads to unconditionally unstable schemes. To improve this a shifted Grunwald-
Letnikov approximation was proposed which allows construction of the unconditionally stable scheme
of the first order in space. © Here we use a different approach to derive the unconditionally stable
scheme of higher order.

6. We show that when considering jumps with finite activity and finite variation despite it is a common
practice to integrate out all Lévy compensators in the Eq. (21) in the integral terms this breaks
the stability of the scheme at least for the fractional PDE. Therefore, in order to construct the
unconditionally stable scheme one must keep some other terms under the integrals. To resolve this in
Cartea (2007) the authors were compelled to change their definition of the fractional derivative (see
below).

7. Our approach could be easily generalized for a time-dependent Lévy density.

6 Numerical method

Let us consider a general case which is given by the Eq. (63) and Eq. (69) 7. We first discuss how to
construct an unconditionally stable scheme of the second order in space and second or higher order in
time. Then we consider some peculiarities of implementation of the derived finite difference schemes.

6.1 Case ag =0 or af, = 0.

This extreme case corresponds to the familiar Variance Gamma model. In this case the integrals in the
Eq. (62) and Eq. (68) exist if we keep just first two terms under the integral. Therefore we could integrate
out the last term R %C(m, 7)(e¥ —1). This term then will become a part of the convection part of the
total PIDE and therefore we will not consider it here, assuming that we use a splitting technique and
know how to solve the remaining convection-diffusion equation.

Then the Eq. (63) could be written in the form of the Eq. (39) with

Br = \/VrAr {log(VR) — log (VR - 8%) } (75)
Br =/ VLAL {log(VL) —log (VL + %)}

6 A second order approximation could in principle be constructed as well, however resulting in a massive calculation
of the coefficients. That probably stopped the scientists to further elaborate this approach.

7 In principal one can eliminate special cases when one of the following conditions is valid agr = 0,ar = 0,ar =
1,5, = 1, by just substituting, say ar = € << 1 instead of agp =0, agr = 1 + € instead of ap =1 etc
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Therefore, integrating it we obtain an explicit form of the Eq. (42)

chl(a) = <1 - i%) ck(z), m=+/VrArf >0, (76)
1o\ "
chl(a) = <1 + Z%) ck(z), m=+/VLALo,

In practical computation of the rhs operators we exploit a modification of our interpolation method
which was described above. First, note that typical values of Ag, A, as well as Vi, V}, are limited, i.e.
normally A\gp < M, Ap, < M, Vg < M,V;, < M where M could be chosen in the range, say 3-5. Second, if we
solve a general jump-diffusion equation using some kind of splitting methods, the time step of integration
6 in the Eq. (76) is determined by the time step used at the integration of the diffusion part. This means
that 6 is usually small. Therefore, it is pretty reasonable to assume that in the Eq. (76) m < 2. Next,
as follows from the definition of the fractional derivatives, the operators in the Eq. (76) are continuous
in m. Therefore, we could solve the Eq. (76) for m = 0,1,2 and then use quadratic interpolation to get
the solution given the real value of m, and the condition m < 2. Note, that m = 0 is a trivial case so the
solution C**1(X) = C*(z) is already known.

Note a choice of m = —1. On the one hand this is very attractive because then the solution of the
Eq. (76) is already found. On the other hand at m < 0 the scheme in the Eq. (76) becomes explicit which
breaks its unconditional stability. Apparently the best one can achieve in this case is to use a central
difference approximation for the first derivative. Then it is possible to show that all eigenvalues of the
rhs matrix have their real value equal to one. Thus the stability of the scheme is questionable.

We now construct a stable FD scheme to solve the first equation in the Eq. (76). Similar to what was
already discussed in the previous section a forward second order approximation of the first derivative has

—m
to be chosen. Then the eigenvalues of the discrete operator (1 — %ZAE) are

¢= (1 + thR>_m' (77)

—-m
We need to guarantee that || (1 - %ZAE) || < 1. Thus, if vg < 1 this FD scheme is stable at

h <3/[2(1 —vgr)], and if v > 1 - it is unconditionally stable. As follows from the Proposition Eq. (7)
R(vgr) > 1, therefore the scheme is unconditionally stable.

After this discretization the matrix of the lhs operator becomes one-sided tridiagonal if m = 1,
and one-sided pentadiagonal if m = 2. Therefore this equation can be efficiently solved with the total
complexity O(N(2m + 1)).

To preserve monotonicity of the solution for the second equation in the Eq. (76) a backward second
order approximation of the first derivative has to be chosen. This approximation was also already intro-
duced in the previous section. Then C*+1(z,m) can be computed as a product Am - C¥(z), where A, is
a band matrix with 2m + 1 diagonals. So the complexity of this is also O(N(2m + 1).

Based on these results we extend our numerical test described in the previous section to the case
ar = 0. However, to preserve convergence of the integral now instead of the Eq. (59) we have to use the
extended equation

e VRIYI

a o0
—C x,T):/ Clx+y,7)—Clx, )] A\p—75=dy, arp<-—1 78
2ot = [ )=o) An s (78)

We again compare the FFT solution of the Eq. (78) with that obtained based on our method.



Using pseudo-parabolic and fractional equations for option pricing in jump diffusion models * 23

FFT. 1t should be underlined that the presented simple FFT algorithm completely loses its accuracy
when ag — 0. Therefore, instead of ap = 0 we will chose real ap = —0.5. We again define a uniform grid
in the domain (—z«,z«) which contains N points: z1 = —z+,%2,...xN_1,ZN = T+ such that z; —z;_1 =
h,i = 2...N. We then approximate the integral in the rhs of the Eq. (78) with the first order of accuracy
in h as

o 6—VR\?J|
/0 (Cle+1.7) = Clo M An ey = b Z Ciss (V)5 — Cles ARy D (~an),
j=1—1
e VRIZ] 5

|z

The matrix-vector product in the lhs of the Eq. (79) is computed using FFT as it was described in
the previous section.

FD. We solve the Eq. (78) using interpolation in ar between the points ag = 0,—1,-2,—-3. At ag =0
we use the FD scheme in the Eq. (76). At agp < 0 we again use our approach of construction of the
pseudo-parabolic equations (see propositions 3, 4), and instead of the Eq. (39) now obtain

%C(m,t)zBC(x,t), B=1(4D)™ — ApSrr(—ap). (80)

N =

Further we use the Crank-Nicolson scheme Eq. (44) which now reads

({1—{— ARVeRT(— aR)01| A -3 )ck“( ) = <[1—%)\RV%RF(—QR)9} A;—i—i@) @) (81)

The stability analysis could be provided similar to what we did in the previous sections. Again it
is easy to show that the forward one-sided approximation of the operator A; given in the Eq. (51)
guarantees the unconditional stability of the above scheme.

Comparison. The results of this test are very close to that given in Fig. 3. Remember, the difference is
that now instead of extrapolation we use interpolation, because we are able to solve our test problem
numerically at ap = 0. Surprisingly the difference in the FFT and FD solutions very slightly increases in
case of interpolation. The FD solution is still faster than the FFT, and as follows from the above analysis
- more accurate.

6.2 Case ag = 1,ar, = 1.

This is a case of jumps with infinite variation and infinite activity. Therefore we have to keep the whole
integrals in the Eq. (62) and Eq. (68), i.e. in each integral we can not integrate the last term out because
otherwise the integral does not converge.

Let us remind that as follows from the Proposition 7 in this case the original PIDE Eq. (62) is
equivalent to the PIDE

0 0 0
EC(%’,VR,VL,T) = \/VR)\R{ —vrlogvr + (vg — %)log (1/ - %> (82)

0
+ [vrlogvr — (vr — 1) log(vg — )] 3 }C(a, Vi, V., 7)
R(8/8z) < 0,R(vg) > 1,
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while from Proposition 8 the PIDE Eq. (71) is equivalent to the PIDE

%C(%VR,VL,T) = \/V[)\L{ — Uy, logVL (83)
+ v log v — (v, + 1) log(vr, +1)] & + (v, + 21 + 2 }C( Vi, Vi,7)
vy logvy — (v og(vr, oz T WLt go)log | v+ o z, Vg, VL, T
R(9/0z) < 0, R(vr,) > 0.

For the following we need to prove the following Proposition.

Proposition 9 The following identity holds
—I/Rlogl/R—f—(VR— g)log VR — g —f—[l/RlOgZ/R—(llR—l)lOg(l/R—l)]2
or or ox

o 1o} VR — 1 9]
= logvr —log | vg — . + ( log e 3 dv (84)

Proof To prove this we have to note that

/00 VRl e~ VRIYI (85)
dv = , 85
v yltten yPrer

and then use Proposition 7 with ag =0. B
In a similar way we can prove the following proposition

Proposition 10

0 0 0
—vplogvy + [vp logvr — (v + 1) log(vy, + 1)] 3 + (vr + %) log (VL + %)

— > _ g I/L—|—1 g
_/V {log(yL) log (VL—I—&I)—Hog( L )am}dv (86)

These two identities gives us an idea of how to construct a FD numerical method for solving the
Eq. (82) and Eq. (83). First we rewrite the Eq. (82) and Eq. (83) in the form

O

%C(J%VR,VLJ) =LgrC(z, Vg, Vi, 7) (87)
%C(%V&VLJ) =L C(z,Vg, Vg, T)

_ o o} VR — 1 0
Lg= \/VR/\R/V {log(uR) —log <VR - %> + (log o ) Bx}dy

_ *° 1o} vy, + 1 0
]LL:\/VL)\L/V {log(uL)—log (VL-F%) +log( s > agc}dz/

We already know how to solve these equations if the operators Lz and L7, do not contain the integrals.
We want to utilize this approach by proceeding with the following steps.
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Step 1. First we truncate the upper limit in the integral to some v.. This could be done because the
integral in the Eq. (87) is well-defined and at vg — oo the integral kernel tends to zero as

. 1 o | 0 3
VILIL{IOOLRC(% VR, VL, T) = v/ VR/\Rﬂ <—% + @) +O(1/vR) (88)

At the interval (v, v« ) we approximate the integral in v using some quadrature formula, for instance, the
well-known Simpson formula (higher-order approximations of even adaptive quadratures could definitely
be used as well). So we partition the interval (v,v«) into an even number of intervals M all of the same
width h = (v« — v)/M. Then operators in the Eq. (87) transform to

M M
Lrp=)Y Lig, Lp=) Lig (89)
i=0 =0
_ Vs — VU o} vir—1 K
Lir = a \/E)‘R 3M {IOg(Vz,R) —log (Vz,R - 61‘) + (IOg ViR ) o
Ve — U 0 vip+1\ 8
Lir= aimALw{IOg(Vi,L) —log (Vi,L + %) + log (zVLT> 9z
1,3

CLZ':]., i:(],]\f7 ai=2, 7;:2,4...M72, ai:4, =

Step 2. Each operator in the Eq. (89) is a sum of M operators which commute with each other. Therefore,
the solution of the Eq. (87) reads

M M
C(z,Vr, Vi, 7) =exp | Y Lig7| C(x, VR, Vi, 0) = [ [ €77 C (2, Vi, V1, 0) (90)
=0 i=1
M M
C(x,Va, Vi, 7) =exp | Y L 17| C(x, Vg, V1, 0) = [[ "+ 7C(x, VR, VL, 0)
=0 i=1

Using a splitting technique (see, for instance, Lanser and Verwer (1999); Yoshida (1990)) we can
represent this equation in the form

C1(z, VR, Vp,,0) = €277 C(z, Vg, V1, 0) (91)
CQ(x> VR7 VL> 0) == e]LQ’RTcl (x> VR7 VL> 0)
CM(x> VR7 VL> 0) = e]LM,RTCM—l(m7 VR, VL7 9)
C(z, Vg, VL, 0) = Crm(z, VR, Vi, 0)

and similarly for the operator L.

Step 3. Each equation in the Eq. (91) is very similar to that corresponding to the case a = 0 (see the
previous section).The only difference is that the operators L; p now contain an extra term Lg; p =

— . ; 1
(log %) %, and the operators L; ;, now contain an extra term Lg;; = (log %) 8%c We

can apply splitting to these operators similar to as we did in the above. Further by analogy with what
was already discussed in the previous sections devoted to Pdde approximations, these terms ¢##6 and
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ebs:.29 could be approximated with the second order of accuracy in 6 by using the Eq. (43). Finally, each
equation in the Eq. (91) reads

C* (@) = CF(x) (92)
s
1+ - 3,i,R
CEl(2) = ———CF 4 (x)
1_7]14371‘1% ZZO, , M, mz_aiG\/VR/\R 3M

1 T
@) = (1-3ipd)  Chw@
CF (@) = O3 (=)

We can choose the number M to guarantee that the value of m; is less than 2 and then use interpolation
solving the above equations at m; = 0,1, 2.
Similar scheme could be constructed for the operator L, which reads

ckl(z) = cF () (93)
m;
41 (o) = L gkt
" - Faarn i=0,.., M,  m;=a0/VLL

ChHl(g) = (1 + 5 @)_m" O+ (z)
C*l(z) = CE (a)

Step 4. To construct an unconditionally stable scheme in z we have to choose approximation for the first
derivative in the Eq. (92). If we rewrite this equation in the form

m;0 vir—1\ 0
|:1 2 <10g Vi,R ) 63?

(17 ! ‘3>W0£“(x)=cﬁ(x)

Vi.R Or

CH () = C*(2) (94)

: -1
i (@) = { mf@%%)%}ﬁ,l(x), i=0,..,M

K2

C*H(z) = Oy (=)

it becomes obvious that the derivative in the second equation in the Eq. (94) should be approximated by
using a backward one-sided second order divided difference. For the derivative in the third equation one
has to use a forward approximation.

Similarly we rewrite the Eq. (93) in the form

M (z) = CF(2) (95)

41
ck“() { 20<10g%)§}0f1(x) i=0,., M

l,

CH i e) = Ch ()

and use a forward approximation for the derivative in the second equation in the Eq. (95) and the
backward approximation in the third equation.

The matrix in the rhs of the second equation in the Eq. (95) is upper tridiagonal. The matrix in
the rhs of the third equation in the Eq. (95) is lower tridiagonal at m; = 1 and lower pentadiagonal at
m; = 2. The total complexity of the algorithm as compared with the case a = 0 is: one extra equation at
each step, M steps instead of just one in the case a = 0. Therefore, using the results given in Fig. 77 we
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Solution as a function of v,
Computational time = 0.608318 sec, N = 256, a, = 1.000000, M = 30.000000
12+ k!
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Fig. 7 Difference in solutions of the Eq. (94) obtained at various vx and that at vx =5 at M = 30 and ar = 1.

can expect that at M = 30 this algorithm is about 3 times slower than the FFT. On the other hand it
provides the second order approximation in both space and time, and does not require to re-interpolate
the FFT results to the FD grid which was previously used to find solution for the diffusion part of the
original PIDE.

To verify this we provided two numerical experiments. In the first experiment vy varied while h =
(v« —vR)/M was chosen to be constant. At v« =5 we choose M = 30. The other parameters are same as
in the previous numerical experiments reported in the above. This results are presented in Fig. 7.

The computational time rawly increases by the factor M/2, i.e. for M = 30 it is almost same as for
the corresponding FFT. It is seen that if 2 < 3 small v« provide a good accuracy of computation, while
at 3 < & < 5 an appropriate value of v4 should be more than 300.

In the second experiment we fixed the value v« = 300 and varied M to see at which M one could
expect to get convergency. These results are presented in Fig 8. As it is seen M = 80 seems to be sufficient
to obtain the convergency. The computational time in the case M = 81 is 1.4 sec which is 3.6 times more
than that for the FFT. Thus, in this case our algorithm is almost 4 times slower than the FFT. As it
was already mentioned this could be compensated a) by the second order of accuracy in space and time,
and b) no need for re-interpolation of the FFT results to the FD grid. One more advantage is that we
don’t need to treat the point y = 0 in a special way as it was done, say in Cont and Voltchkova (2003).

Note, that as we use M steps in the splitting scheme, the error in time becomes O(M6?) that could
kill the second order of approximation. Therefore, for instance, in the Eq. (92) it is better to use a third
order approximation in time (see the Eq. (46)). Accordingly the second equation in the Eq. (94) will
become

2p:0 | pr0°] ki pif |
1- + == | O (x) = |1+ | Cily () (96)
3 6 3
h—1
pi = m; (log WL) 9 i—0..M
ViR or

To preserve the third order of approximation in time the third equation in the Eq. (94) should now
be solved at m = 0, 1,2, 3 and then cubic interpolation to the actual value m; will give the final solution.



28 A. Ttkin and P. Carr

Solution as a function of M
Computational time = 0.368299 sec, N = 256, a, = 1.000000, v, = 300.000000
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Fig. 8 Difference in solutions of the Eq. (94) obtained at various M and that at M = 21 at v, = 300 and ar = 1.

This scheme increases the total computational time by about 10%, however the accuracy in time increases
to O(M63).

7 Conclusion

From the numerical point of view our approach has some advantages as compared with the methods re-
viewed in the Introduction. Indeed, first we managed to reduce the original evolutionary integral equation
to the pure differential equation. Second, this equation could be formally solved analytically. Then to
compute the operator exponent we applied a Padé approximation technique and derived finite difference
equations which approximate the original solution with the necessary order of accuracy. These equations
could be solved at the same grid as the diffusion part of the original PIDE, thus eliminating problems
inherent to the FFT methods. Next, despite the original integral term is non-local, the matrix D of the
system of linear equations (which were obtained by the direct application of our method) is the band
matrix in case of the integer ar 1. In other words, it corresponds to a local approximation of the option
price, which is definitely a plus for the numerical algortihm. Also we demonstrated that at @ < 0 the
complexity of our algorithm is much lower (almost 30 times faster than that of the FFT), while the
accuracy is much better (for practical purpose we can use the second or third order FD approximation
whereas getting same approximation within the FFT method will significantly increase the complexity).

The complexity of our solution at o = 1 is almost 4 times higher than that of the FFT. This in part is
compensated by few factors: i) our algorithm provides the second order approximation in both space and
time, and ii) it does not require to re-interpolate the FFT results to the FD grid which was previously
used to find the solution for the diffusion part of the original PIDE.

Using this technique the solution at 2 > « > 1 could be obtained by using extrapolation given the
solution at « = 1,0, —1.
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It is interesting to know what are real values of a. In Bu (2007) the author used to calibrate the
CGMY model to S&P 500 historical call option prices. The market prices were chosen from June 2007 to
December 2008. The strikes were from 1300 to 2000 and collected into two groups: with the increment
of 25 from 1300 to 1700, and with the increment of 100 from 1700 to 2000. The index closed price is
1536.34. Thus found the CGMY parameters were: C = 0.0156,G = 0.0767, M = 7.5500,Y = 1.2996, i.e.
in our notation @« =Y = 1.3. In Carr et al. (2005) the option prices of S&P 500 were also calibrated using
the CGMY model which gave the values of « in the range (-0.39,-0.42). Therefore, our results could be
useful in pricing real options at both positive and negative values of a.

Appendix 1

Here we prove the following Propositions.
Proposition 5 Both integrals in the Eq. (21) are continuous in o at a < 2.
Proof To prove this we use a series representation of the integrals in variable y

e—lylv

0 P
I = \/vL/ [C@+v.9.7) - @7~ 2@ 0y AErrdy =
oo Ox lylt+e

o0 8”
V VL ;anﬁc(xzﬂzT)z
%) o e*‘y"/
In=VVa [ [Clat v 07) - C@. 07— 5 Cla AT dy =
0 Oz ly[1+e
oo o
V VRT;bTLa?C(Z7Q’T)7

0 n+1 —|ylv o ,n+1 —lylv
Yy € Yy €
an = Ay, b= A dy. 97
e L M D

Then at o < 2 coefficients a,, and b,, n > 2 are regular functions of «. So the integrand kernels in the definition of
an, by are continuous functions of « as well as a,, and b,,. K.

Proposition 6 Assume that in the Eq. (27) a € R,a < —1. Then the solution of the Eq. (27) with respect to AT s

ZC?+1VP+1Z.:| ’ pE—(1+a)ZO7

1 a \ P+t 1
e+ 8) s
A'(p+1) Ox Al'(p+1) | ox*

where Cf'H are the generalized binomial coefficients which could be expressed via Gamma function, and fractional
derivatives are understood in the Riemann-Liouville sense (Oldham and Spanier (1974))

Proof Taking Laplace Transform of the expression A7 f(z) we obtain

1 > ot 1 e L
Ls (AT =L —— crHiypti—i 2 = cPtiyprl—igi| o
(AT (@) { pyarrsyl DOl FICH Sl verre S D LS AR BB
1
- - P+1L
ST @)
Now, as
efu|ac|
f(l’):AWIyN)
and
e vzl 14p)
- )\Wlbo =AL(p+1)(v+s)~ ),
we obtain

Ls (AT f(z)) =1 = L6(x)
And thus A f(z) = 6(z) B
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Another proof is based on a different idea.

Proof As it is well known a shift operator in L2 space could be represented as follows

S, = exp (ai) s (98)
ox

so
Guf(z) = f(z + a).
Therefore, the integrals in the Eq. (24) could be formally rewritten as

A " o o—VRlY 9
t = AR—F—— — | d 99
1 (CL‘, )7 1 /0 R|y|1+OCR exp (y8$> Y ( )

0 e~ vLlyl o)
A2C(z,t), Az = Lw )\LWCXP (ya) dy

We can compute these integrals assuming that 9/0z is a constant. This gives

A1 = Agl'(—agR) (VR — %)QR , R(a) <0,R(vg —9/0z) >0 (100)

0\ 4L
AQZ)\LF(—QL) (I/L-i-%) s R(Ol) <0,R(VL+8/8Z‘) >0,
where under a real part of differential operator we will understand the real part of the maximum eigenvalue of finite
difference matrix which approximates this differential operator (see below).

A simple observation shows that

Av= (A7) 7 Ae= (AT
which finalizes the proof. B
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