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JUMPS WITHOUT TEARS:

A NEW SPLITTING TECHNOLOGY FOR BARRIER OPTIONS

ANDREY ITKIN AND PETER CARR

Abstract. The market pricing of OTC FX options displays both stochastic volatility and stochas-
tic skewness in the risk-neutral distribution governing currency returns. To capture this unique
phenomenon Carr and Wu developed a model (SSM) with three dynamical state variables. They
then used Fourier methods to value simple European-style options. However pricing exotic options

requires numerical solution of 3D unsteady PIDE with mixed derivatives which is expensive. In
this paper to achieve this goal we propose a new splitting technique. Being combined with another
method of the authors, which uses pseudo-parabolic PDE instead of PIDE, this reduces the origi-

nal 3D unsteady problem to a set of 1D unsteady PDEs, thus allowing a significant computational
speedup. We demonstrate this technique for single and double barrier options priced using the
SSM.

Key words. barrier options, pricing, stochastic skew, jump-diffusion, finite-difference scheme,

numerical method, the Green function, general stable tempered process.

1. Introduction

Every 6 months, the Bank for International Settlements (BIS) publishes an
overview of OTC derivatives market activity. The report covers OTC derivatives
written on credit, interest rate, currencies, commodities, and equities. Based on
that as of the end of June 2009, the total notional amount outstanding in OTC
derivatives across the above asset classes stood at about 604 trillion US dollars.
Just over one twelfth of this figure is attributable to OTC derivatives on foreign ex-
change (FX), which includes forwards, swaps, and options. The notional in OTC FX
options stands at $11 trillion, which is roughly fifty times the notional in exchange-
traded FX contracts.

If one wishes to understand how FX options are priced, it becomes important
to access OTC FX options data. Unfortunately, these data is not as readily avail-
able as its more liquid exchange-traded counterpart. As a consequence, almost all
academic empirical research on FX options has focussed on the exchange-traded
market. An exception is a paper by Carr and Wu [6] (henceforth CW), who ex-
amine OTC FX options on dollar-yen and on dollar-pound (cable). CW document
an empirical phenomenon that is unique to FX options markets. Specifically, at
every maturity, the sensitivity of implied volatility to moneyness switches signs
over calendar time. This contrasts with the pricing of say equity index options,
for which the sensitivity of implied volatility to moneyness is consistently negative
over (calendar) time. Since practitioners routinely refer to the sensitivity of implied
volatility to moneyness as skew, CW term this time-varying sensitivity ”stochastic
skew”. Using time-changed Lévy processes, they develop a class of option pricing
models which can accommodate stochastic skew. While their models can, in prin-
ciple, be used to price any FX exotic, CW only develop their methodology for plain
vanilla OTC FX options, which are European-style. In the OTC FX arena, there
is a thriving market for barrier options, whose pricing is not covered by CW. The
purpose of this paper is to show that barrier options can be efficiently priced in the
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stochastic skew model of CW. This model has 3 stochastic state variables, which
evolve as a time-homogeneous Markov process. While Monte Carlo can be used
to price barrier options in these models, this paper focusses on the use of finite
difference methods. More specifically, we show that operator splitting can be used
to price a wide variety of barrier options. In particular, we examine the valuation
of down-and-out calls, up-and-out calls, and double barrier calls.

Our goal was to propose a splitting technique that could reduce the SSM model
original 3D unsteady partial integro-differential equation (PIDE) to a set of simple
equations. It turned out that this set contains just 1D unsteady partial differential
equations (PDEs) that could be efficiently solved using well-known finite difference
schemes. Providing second order of accuracy in time and space was the second
important point to meet when building the corresponding numerical methods. Un-
conditional stability of the method was the third important criterion. So in this
paper we present an algorithm, which consists of the following steps:

(1) Split the original 3D unsteady PIDE to 2 independent 2D unsteady PIDEs.
This is an exact result with no splitting error.

(2) Split each 2D unsteady PIDE to 1D unsteady PIDE with no drift and
diffusion and 2D unsteady PDE with mixed derivatives.

(3) Split the 2D unsteady PDE with mixed derivatives to a set of 1D unsteady
PDE using technique of [17].

(4) Using our approach in [18], transform 1D unsteady PIDE with no drift and
diffusion to a pseudo-parabolic PDE which then could be efficiently solved
by using finite difference schemes for 1D unsteady parabolic PDEs.

We implement this algorithm, providing the second order of approximation in
time and all space directions, both at each step of the algorithm and for the entire
algorithm as well. Also, our scheme is unconditionally stable in time.

New results presented in the paper are:

• Proved a theorem on how to exactly split 3D PIDE derived under the SSM
model into two 2D PIDEs.

• Used a new method to compute the integral term with a linear complexity.
The foundation of the method were given in another our paper. And as
applied to real multi-dimensional pricing problem it was never described
before in the literature.

• Proposed a new approach which reduces solution of the above described
3D PIDE to the solution of a set of 1D unsteady PDEs. The algorithm is
of second order of approximation over all space and time coordinates and
unconditionally stable.

• Obtained new numerical results on prices of barrier options under the SSM
model.

The rest of the paper is organized as follows. The next section lays out as-
sumptions and notation of the SSM model and develops a PIDE that governs the
arbitrage-free value of any barrier option under this model. It also discusses bound-
ary conditions for the 3 types of barrier options that we cover. Section 3 validates
that the matrix of second derivatives of the model is semi-positive definite. The
next three sections show how operator splitting can be applied to the resulting
boundary value problems. The penultimate section shows our numerical results,
and the final section concludes.
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2. Pricing barrier options under SSM

We assume frictionless markets and no arbitrage. Carr andWu [6] further assume
that under an equivalent martingale measure Q, the dynamics of the spot exchange
rate and the two activity rates are given by the following system of stochastic
differential equations:

dSt = (rd − rf )St−dt

+ σ
√
V R
t St−dW

R
t +

∫ ∞

0

St−(e
x − 1)

[
µR(dx, dt)− λ

e−|x|ν

|x|1+α

√
V R
t dxdt

]
+ σ

√
V L
t St−dW

L
t +

∫ 0

−∞
St−(e

x − 1)

[
µL(dx, dt)− λ

e−|x|ν

|x|1+α

√
V L
t dxdt

]
dV R

t = κ(1− V R
t )dt+ σV

√
V R
t dZR

t(1)

dV L
t = κ(1− V L

t )dt+ σV

√
V L
t dZL

t

dWR
t dWL

t = 0, dZR
t dZL

t = 0, dWR
t dZL

t = 0, dWL
t dZR

t = 0,

dWR
t dZR

t = ρRdt, dWL
t dZL

t = ρLdt,

for t ∈ [0,Υ], where rd, rf , σ, λ, σV , κ are nonnegative constants, S0, V
R
0 , V L

0 , ν are
positive constants, α < 2 is constant, ρR, ρL ∈ [−1, 1] are constant, and Υ is some
arbitrarily distant time horizon.

Since the spot exchange rate can jump, St− denotes the spot price just prior to

any jump at t. The processes WR,WL, ZL, ZR are all Q standard Brownian mo-
tions. The random measures µR(dx, dt) and µL(dx, dt) are used to count the num-
ber of up jumps and down jumps of size x in the log spot FX rate at time t. The pro-

cesses
∫ t

0

∫∞
0

Ss−(e
x−1)λ e−|x|ν

|x|1+α

√
V R
s dxds and

∫ t

0

∫ 0

−∞ Ss−(e
x−1)λ e−|x|ν

|x|1+α

√
V L
s dxds

respectively compensate the driving jump processes∫ t

0

∫∞
0

St−(e
x − 1)µR(dx, dt) and

∫ t

0

∫ 0

−∞ St−(e
x − 1)µL(dx, dt).

As a result, the last terms in each line of the first equation in (1) are the incre-
ments at t of a Q jump martingale.

When calibrating, we assume that S0, rd, and rf are directly observable. The
parameter α < 2 is pre-specified. This leaves the two state variables V R

t , V L
t and

the 7 free parameters σ, λ, σV , κ, ν, ρ
R, ρL to be identified from the time series of

option prices across multiple maturities and moneyness levels.
The vector process [St, V

R
t , V L

t , t] is Markovian in itself on the state space S >
0, VR > 0, VL > 0, t ∈ [0, T ). Let:

(2) C(S, VR, VL, t) ≡ e−r(T−t)EQ{(ST −K)+|[St, V
R
t , V L

t , t] = [S, VR, VL, t]}

be the smooth function relating the arbitrage-free value of a European call option
at time t to the vector of state variables. This function is governed by the following
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PIDE:

rdC(S,Ω, t) =
∂

∂t
C(S,Ω, t) + (rd − rf )S

∂

∂S
C(S,Ω, t)

(3)

+ κ(1− VR)
∂

∂VR
C(S,Ω, t) + κ(1− VL)

∂

∂VL
C(S,Ω, t)

+
σ2S2(VR + VL)

2

∂2

∂S2
C(S,Ω, t) + σρRσV SVR

∂2

∂S∂VR
C(S,Ω, t)

+ σρLσV SVL
∂2

∂S∂VL
C(S,Ω, t) +

σ2
V VR

2

∂2

∂V 2
R

C(S,Ω, t) +
σ2
V VL

2

∂2

∂V 2
L

C(S,Ω, t)

+
√
VR

∫ ∞

0

[
C(Sex,Ω, t)− C(S,Ω, t)− ∂

∂S
C(S,Ω, t)S(ex − 1)

]
λ
e−|x|ν

|x|1+α
dx

+
√
VL

∫ 0

−∞

[
C(Sex,Ω, t)− C(S,Ω, t)− ∂

∂S
C(S,Ω, t)S(ex − 1)

]
λ
e−|x|ν

|x|1+α
dx,

where Ω is a vector of VR, VL, and the PIDE is defined on the domain S > 0, VR >
0, VL > 0 and t ∈ [0, T ].

The same PIDE and domain holds for European put values. For American and
barrier put and call values, the above PIDE holds on the continuation region (only).

Further it is convenient to introduce a backward time τ = T − t. In the new
time the Eq. (3) reads

∂

∂τ
C(S,Ω, τ) = −rdC(S,Ω, τ) + (rd − rf )S

∂

∂S
C(S,Ω, τ)

(4)

+ κ(1− VR)
∂

∂VR
C(S,Ω, τ) + κ(1− VL)

∂

∂VL
C(S,Ω, τ)

+
σ2S2(VR + VL)

2

∂2

∂S2
C(S,Ω, τ) + σρRσV SVR

∂2

∂S∂VR
C(S,Ω, τ)

+ σρLσV SVL
∂2

∂S∂VL
C(S,Ω, τ) +

σ2
V VR

2

∂2

∂V 2
R

C(S,Ω, τ) +
σ2
V VL

2

∂2

∂V 2
L

C(S,Ω, τ)

+
√

VR

∫ ∞

0

[
C(Sex,Ω, τ)− C(S,Ω, τ)− ∂

∂S
C(S,Ω, τ)S(ex − 1)

]
λ
e−|x|ν

|x|1+α
dx

+
√

VL

∫ 0

−∞

[
C(Sex,Ω, τ)− C(S,Ω, τ)− ∂

∂S
C(S,Ω, τ)S(ex − 1)

]
λ
e−|x|ν

|x|1+α
dx,

Boundary conditions for the above problem are as follows.

Down and Out Calls. Let L < S be a lower barrier. On the domain S > L, VR >
0, VL > 0 and t ∈ [0, T ], the down-and-out call value function solves the PIDE
Eq. (4). On the domain S < L, VR > 0, VL > 0 and t ∈ [0, T ], C(S, VR, VL, t) = 0.

The terminal condition for the European call value is:

(5) C(S, VR, VL, T ) = (S −K)+, S ∈ R, VR > 0, VL > 0.

We impose a delta boundary condition at extremely high return levels:

(6) lim
S↑∞

∂

∂S
C(S, VR, VL, τ) = erfτ , VR > 0, VL > 0, τ ∈ [0, T ].
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There exist a wide discussion in the literature on how to impose boundary con-
ditions at extreme values of the activities (see, for instance, [31, 20, 11] and discus-
sion at forums at http://www.wilmott.com) 1. The correct boundary conditions
at VR, VL = 0 are determined by the speed of the diffusion term going to zero as we
approach the boundary in a direction normal to the boundary. Suppose we have
the PDE

Cr = a(r)Crr + b(r)Cr − rC,

then, as given in [25], no boundary condition is required at r = 0 if limr→0(b−ar) ≥
0. That seems to be reasonable if the convection at V = 0 in the V direction is
flowing outside (that is true for the described model as could be seen from the
Eq. (4)). To avoid conditions on the coefficients in the Eq. (4) as Vi → 0, i = R,L
one could assume that

dVi,t = κ(1− Vi,t)dt+ σV

√
(Vi,t)1+ϵdZi

t

for any ϵ > 0. Obviously, if ϵ ≪ 1, this will make no practical difference in
the solution, but now, no boundary condition is required at V = 0, and this is
completely mathematically rigorous. To make it clear no boundary condition means
that instead of the boundary condition at Vi → 0, i = R,L we use the Eq. (4) itself
substituting VR = 0 or VL = 0 at the corresponding boundary and taking into
account that all the normal diffusion terms are zero. That was also suggested by
T. Kluge [20] and motivated by the stability result of the numerical scheme. So he
kept the variance boundary at V = 0 and did not impose any artificial boundary
condition. Instead he discretized the PDE at the grid’s boundary points by using
one-sided finite differences (from the right) as this is usually done, for instance,
in upwind schemes. The accurate numerical implementation of the left variance
boundary is required 2. That is because the numerical solution at any internal point
is decisive for errors in the boundary condition approximation since the boundary
V = 0 influence the value at this internal point.

As, Vi → ∞, i = R,L it is common to make the following argument. In this
case the diffusion term will become very large, and the solution will become very
flat. So, CVi ≈ 0 as Vi → ∞, i = R,L. This boundary condition has been used for
Heston-type models for many years. A relatively recent paper [16], which discusses
some methods for the Heston model, outlines the use of this boundary condition.

Up-and-Out Calls. The terminal condition for the European call value is still given
by the Eq. (5). Let H < S be a higher barrier. On the domain H > S, VR > 0, VL >
0 and t ∈ [0, T ], the call value function solves the PIDE Eq. (4). On the domain
H < S, VR > 0, VL > 0 and t ∈ [0, T ], C(S, VR, VL, t) = 0. Boundary conditions at
extreme values of VR and VL are same as for the Down-and-Out call.

Double barrier Calls. The terminal condition for the European call value is still
given by the Eq. (5). On the domain H > S > L, VR > 0, VL > 0 and t ∈ [0, T ], the
call value function solves the PIDE Eq. (4). On the domain S < L, VR > 0, VL > 0
or S < L, VR > 0, VL > 0 and t ∈ [0, T ], C(S, VR, VL, t) = 0. Boundary conditions
at extreme values of VR and VL are same as for the Down-and-Out call.

1We also thank an anonymous referee who provided us with a further detailed analysis
2for instance, if the whole scheme is of the second order in space, then the boundary conditions

have to be approximated with the same accuracy

http://www.wilmott.com
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3. A sufficient condition for the matrix of second derivatives to be semi-
positive-definite

In principle, any convergent numerical scheme could be applied to the above
equation. To guarantee convergence matrix of the second derivatives of the Eq. (4)
has to be symmetric and positive definite. This also provides the matrix diagonal
dominance.

Proposition 3.1. Matrix of second derivatives of the Eq. (3) is semi-definite if
|ρL| < 1 and |ρR| < 1. It is positive definite if VR ̸= 0 and VL ̸= 0, and semi-
definite if VR = 0 or VL = 0.

Proof. Necessary and sufficient conditions for the matrix of coefficients (aij)3×3 to
be positive definite are [15]:

a11a22 − a212 > 0, a11a33 − a213 > 0, a22a33 − a223 > 0,(7)

a11a22a33 − a11a
2
23 − a22a

2
13 − a33a

2
12 + 2a12a13a23 > 0

For Eq. (4) and the vector of independent variables x = (S, VL, VR) the matrix
(aij)3×3 ≡ a(x) is

(8) a(x) =
1

2

∣∣∣∣∣∣
σ2S2(VL + VR) SVRσσV ρR SVLσσV ρL

SVRσσV ρR σ2
V VR 0

SVLσσV ρL 0 σ2
V VL

∣∣∣∣∣∣
so direct substitution shows that if VR ̸= 0 and VL ̸= 0

a11a22 − a212 =
1

4
S2σ2σ2

V VR

[
VL + VR(1− ρ2R)

]
> 0, if|ρR| < 1;(9)

a11a33 − a213 =
1

4
S2σ2σ2

V VL

[
VR + VL(1− ρ2L)

]
> 0, if|ρL| < 1;

a22a33 − a223 =
1

4
VLVRσ

4
V > 0;

a11a22a33 − a11a
2
23 − a22a

2
13 − a33a

2
12 + 2a12a13a23 =

1

8
S2σ2σ4

V VLVR

[
VL(1− ρ2L) + VR(1− ρ2R)

]
> 0, if|ρL| < 1 && |ρR| < 1;

�

As follows from linear algebra any non-degenerate coordinate transformation also
keeps the positive definiteness of the matrix.

4. Our splitting method

To solve the Eq. (4) we utilize splitting. This technique was also known under
some different names, like the method of fractional steps [32, 27, 12]; it is also
cited in the financial literature as Russian splitting. It is also known as locally
one-dimensionally schemes (LOD).

The method of fractional steps reduces the solution of the original N -dimensional
unsteady problem to the solution of N 1D equations per time step. For the dif-
fusion equation after a standard discretization is applied, the matrix of each such
1D equation is tri-diagonal. Marchuk [22] and then Strang [28] extended this idea
for complex physical processes (for instance, diffusion in the chemically reacting
gas, or advection-diffusion problem). In addition to (or instead of) splitting on
spatial coordinates, they also proposed to split the equation into physical proces-
ses different in nature, for instance, convection and diffusion. Such an approach
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becomes especially efficient if characteristic times of evolution (relaxation time) of
such processes are significantly different.

For additional details on how to construct a splitting algortihm in general we
refer the reader to [21].

To use our method of splitting, we first need to rewrite the Eq. (3) using a new
variable x = lnS/Q, where Q is a certain constant. That gives

∂

∂τ
C(x,Ω, τ) = −rdC(x,Ω, τ)

+

[
rd − rf − σ2

2
(VL + VR)− aR

√
VR − aL

√
VL

]
∂

∂x
C(x,Ω, τ)

+ κ(1− VR)
∂

∂VR
C(x,Ω, τ) + κ(1− VL)

∂

∂VL
C(x,Ω, τ)

(10)

+
σ2(VR + VL)

2

∂2

∂x2
C(x,Ω, τ) + σρRσV VR

∂2

∂x∂VR
C(x,Ω, τ)

+ σρLσV VL
∂2

∂x∂VL
C(x,Ω, τ) +

σ2
V VR

2

∂2

∂V 2
R

C(x,Ω, τ) +
σ2
V VL

2

∂2

∂V 2
L

C(x,Ω, τ)

+
√

VR

∫ ∞

0

[
C(x+ y,Ω, τ)− C(x,Ω, τ)− ∂

∂x
C(x,Ω, τ)y

]
λ
e−|y|ν

|y|1+α
dy

+
√

VL

∫ 0

−∞

[
C(x+ y,Ω, τ)− C(x,Ω, τ)− ∂

∂x
C(x,Ω, τ)y

]
λ
e−|y|ν

|y|1+α
dy,

where

aR =

∫ ∞

0

(ey − 1− y)λ
e−|y|ν

|y|1+α
dy

aL =

∫ 0

−∞
(ey − 1− y)λ

e−|y|ν

|y|1+α
dy

4.1. First step of splitting. Now let us represent the Eq. (10) in the form

(11)
∂

∂τ
C(x,Ω, τ) = (LR + LL)C(x,Ω, τ),

where

LRC(x,Ω, τ) =

[
− 1

2
rd +

(
1

2
(rd − rf )−

1

2
σ2VR − aR

√
VR

)
∂

∂x

+ κ(1− VR)
∂

∂VR
+ VR

σ2

2

∂2

∂x2
+ σρRσV VR

∂2

∂x∂VR
+

σ2
V VR

2

∂2

∂V 2
R

]
C(x,Ω, τ)

+
√
VR

∫ ∞

0

[
C(x+ y,Ω, τ)− C(x,Ω, τ)− ∂

∂x
C(x,Ω, τ)y

]
λ
e−|y|ν

|y|1+α
dy(12)



8 A. ITKIN AND P. CARR

LLC(x,Ω, τ) =

[
− 1

2
rd +

(
1

2
(rd − rf )−

1

2
σ2VL − aL

√
VL

)
∂

∂x

+ κ(1− VL)
∂

∂VL
+ VL

σ2

2

∂2

∂x2
+ σρLσV VL

∂2

∂x∂VL
+

σ2
V VL

2

∂2

∂V 2
L

]
C(x,Ω, τ)

+
√
VL

∫ 0

−∞

[
C(x+ y,Ω, τ)− C(x,Ω, τ)− ∂

∂x
C(x,Ω, τ)y

]
λ
e−|y|ν

|y|1+α
dy,

The following result is easily to obtain.

Proposition 4.1. Operators Li, i = R,L defined in the Eq. (12) commute.

Proof. As the commutator of these operators can be derived in a closed form, it
can be verified directly that it vanishes. Let us consider first the operators LR and
LL without the term C(x+ y, VR, VL, τ) under the integrals. The coefficients of all
terms of LR are either constants or functions of VR. They also contain only partial
derivatives on x and VR. Suppose first that α < 0, so the integral is well-defined
even without term C(x+ y, VR, VL, τ). Then without this term the last two terms
under the integral can be explicitly integrated. This gives the first term being
proportional to C(x,Ω, τ), and the other - to ∂

∂xC(x,Ω, τ) both with constant

coefficients. Then such LR can be represented as LR(VR,
∂
∂x ,

∂
∂VR

).
Similarly, the coefficients of all terms of LL are either constants or functions of

VL. Therefore, it can be represented as LR(VL,
∂
∂x ,

∂
∂VL

).
It is clear then that these reduced operators commute.
Users of the Wolfram Mathematica package could run the following commands

to validate this statement (see Fig. 1).

Figure 1. Mathematica commands to verify that the differential
operators LR,L commute as well as the integral operators.

In the general case, when α < 2 and the first term under the integral in the
Eq. (12) is taken into account, we can formally expand C(x+ y,Ω, τ) in power
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series on y to obtain

IL =
√
VL

∫ 0

−∞

[
C(x+ y,Ω, τ)− C(x,Ω, τ)− ∂

∂x
C(x,Ω, τ)y

]
λ
e−|y|ν

|y|1+α
dy =

√
VL

∞∑
n=2

an
∂n

∂xnC(x,Ω, τ),

IR =
√
VR

∫ ∞

0

[
C(x+ y,Ω, τ)− C(x,Ω, τ)− ∂

∂x
C(x,Ω, τ)y

]
λ
e−|y|ν

|y|1+α
dy =

√
VR

∞∑
n=2

bn
∂n

∂xnC(x,Ω, τ),

an =

∫ 0

−∞

yn+1

n!
λ
e−|y|ν

|y|1+α
dy, bn =

∫ ∞

0

yn+1

n!
λ
e−|y|ν

|y|1+α
dy.(13)

Again all coefficients of IR are just functions of VR, and all coefficients of IL
are just functions of VL. Therefore, the whole integral in LR commutes with both
the whole integral in LL and the differential part of LL. Similarly, for the whole
integral in LL. Thus, the operators LR and LL commute. �

Thus, according to the analysis of the previous section, this splitting scheme does
not introduce any splitting error 3. In other words, the local error of the method
is determined by the local errors of each step with no additional error coming up
from splitting.

Another important advantage of our splitting scheme is that operators LR and
LL are two-dimensional integro-differential operators while the original problem
Eq. (3) contains a three-dimensional integro-differential operator. Thus, we man-
aged to reduce the dimensionality of the problem.

Note, that alternatively we could extract the part 12

[
−rd + (rd − rf )

∂
∂x

]
C(x,Ω, τ)

from each operator LR and LL and combine them as the third operator L3. In other
words, we could split our original operator L into three operators

(14)
∂

∂τ
C(x,Ω, τ) = (LR + LL + L3)C(x,Ω, τ),

where now in contrast to the Eq. (12) LR and LL don’t have the above part which
moved to the operator L3. It could be again shown that all three operators com-
mute. Therefore this splitting algorithm also does not bring any numerical error.
However, the operator L3 is of the first order. Despite the equation

∂

∂τ
C(x,Ω, τ) = L3C(x,Ω, τ)

can be solved analytically, we expect to face a problem with the boundary con-
ditions. To improve this situation, one can try to add a second order derivative
∂2

∂x2 to the operator L3 and subtract a half of it from the operators LR and LL.
However, it results in losing the diagonal dominance property of the matrices of
second derivatives of the operators LR, LL. On the contrary the matrix of second
derivatives for the Eq. (11) is still diagonally dominant if ρi ̸= 1 because

(15)
1

2
(a11a22 − a212) = σ2S2V 2

i σ
2
V (1− ρ2i ).

3This becomes obvious if one uses the Baker-Campbell-Hausdorff formula (see, for instance,

[21]).
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Based on the above the whole numerical scheme for one time step θ could be
written as

∂

∂τ
Ca(x,Ω, τ) = LRC

a(x,Ω, τ), τ ∈ [0, θ], Ca(x,Ω, 0) = C(x,Ω, 0)(16)

∂

∂τ
C(x,Ω, τ) = LLC(x,Ω, τ), τ ∈ [0, θ], C(x,Ω, 0) = Ca(x,Ω, θ)

As the L operators commute, in principle, we could solve correspondent equations
in an arbitrary order.

Also note that the structure of our boundary conditions allows to naturally split
them as well. So for the first equation in Eq. (16) we use boundary conditions
at x and VR boundaries, as they were defined before. And same is true for the
second equation at boundaries x and VR. Actually, these boundaries conditions
now coincide with what is used in the literature when pricing barrier options under
the Heston model.

4.2. Second step. Strange splitting of jumps. In the previous section the
original 3D unsteady PIDE was reduced to a pair of simpler 2D unsteady PIDEs.
Each of these PIDEs is similar in structure to that obtained from the well-known
Bates jump-diffusion model [2] which is a combination of the Heston model and
jumps. Therefore, there exists a wide literature on how to solve these equations,
and various numerical methods were proposed (see [14]). A general idea is to ei-
ther further split the integral and differential terms, or to treat the integral term
explicitly to avoid inversion of the dense matrix (because the integral operator is
non-local). A good survey of this technique is given in [8], and regarding computa-
tion of the integral term - in [5].

Making an analogy between mathematical finance and physics note that Marchuk’s
idea of splitting on physical processes applied to jump-diffusion models has been
already proposed by Cont and Voltchkova in [9]. Their method is based on splitting
the operator L into two parts:

(17)
∂

∂τ
C(S,Ω, τ) = [D + J ]C(S,Ω, τ),

where D and J stand for the differential and integral parts of L respectively. They
replacedDC(S, VR, VL, τ) with a finite difference approximationD, JC(S, VR, VL, τ)
with a certain finite approximation of the integral J and used the following explicit-
implicit time stepping scheme:

(18)
C(S,Ω, τ)n+1 − C(S,Ω, τ)n

∆τ
= DC(S,Ω, τ)n+1 + JC(S,Ω, τ)n

Cont and Volchkova treat the integral part explicitly in order to avoid inversion
of the non-sparse matrix J . However, this scheme is only conditionally stable; i.e.
it brings limitations on the size of the time steps.

In this paper, we intend to use a different approach proposed by us in [18]. The
idea is to represent a Lévy measure as the Green’s function of some yet unknown dif-
ferential operator A. If we manage to find an explicit form of such an operator then
the original PIDE reduces to a new type of equation - so-called pseudo-parabolic
equation. These equations are known in mathematics (see, for instance, [4]) but
are new for mathematical finance. Let us underline that this could not be done
for an arbitrary Lévy model. However, General tempered stable processes (GTSP)
do allow such a transformation and SSM model considered in this paper is just an
example of the GTSP.



JUMPS WITHOUT TEARS: A NEW SPLITTING TECHNOLOGY FOR BARRIER OPTIONS11

Further, we rely on two important observations: a) the inverse operator A−1

exists, and b) the obtained pseudo parabolic equation could be formally solved
analytically via a matrix exponent. Having that we proposed a numerical method
of how to compute this matrix exponent. We show that we can do this computation
using a finite difference scheme (FD) similar to that used for solving parabolic
PDEs; moreover, the matrix of this FD scheme is banded. We demonstrate this
approach in detail for general tempered stable processes (GTSP) with an integer
damping exponent α.

Alternatively for some class of Lévy processes, known as GTSP/KoBoL/SSM
models, with the real dumping exponent α we show how to transform the corre-
sponding PIDE to a fractional PDE (method 2). Fractional PDEs for the Lévy
processes with finite variation were derived in [3] and later in [7] using a charac-
teristic function technique. Numerical solution of these equations was investigated
by [7] and [23]. In [18] we derive similar equations in all cases, including processes
with infinite variation using a different technique - shift operators. Then to solve
them we apply a new method, namely: having results computed for α ∈ I we then
interpolate them with the second order in α to obtain the solution at any α ∈ R.

We also show that despite it is a common practice to integrate out all Lévy
compensators in the integral term when one considers jumps with finite activity and
finite variation, this breaks the stability of the scheme (at least for the fractional
PDE). Therefore, in order to construct the unconditionally stable scheme one must
keep all the terms under the integrals. To resolve this, in Cartea (2007) the authors
were compelled to change their definition of the fractional derivative.

An important local conclusion at this point is that limitations on the use of
implicit approximation of the integral term could be overcome by application of
our new method. Moreover, this method allows second order approximation in
time and space to be achieved straightforward. Therefore, here we approximate the
integral term implicitly, so unconditional stability of this approximation could be
proved (see [10]).

In order to get the second order approximation, the higher-order operator split-
ting algorithm can be applied. We use the Strang splitting method of the second
order [28] where each time step consists of three sub-steps:

∂C∗(S,Ω, θ)

∂θ
= DC∗(S,Ω, θ), C∗(S,Ω, 0) = Cn(S,Ω), θ ∈ [0, τ/2]

∂C(S,Ω, θ)∗∗

∂θ
= JC∗∗(S,Ω, θ), C∗∗(S,Ω, 0) = C∗(S,Ω, τ/2), θ ∈ [0, τ ]

(19)

∂Cn+1(S,Ω, θ)

∂θ
= DC∗∗(S,Ω, θ), Cn+1(S,Ω, 0) = C∗∗(S,Ω, τ), θ ∈ [0, τ/2]

Usually, for parabolic equations with constant coefficients this composite algo-
rithm is second order accurate in time provided a numerical procedure, which solves
a corresponding equation at each splitting step, is at least second order accurate.
Thus, now instead of 2D unsteady PIDE we obtain one PIDE with no drift and
diffusion (the second equation in the Eq. (19)) and two 2D unsteady PDE (the first
and third equations in the Eq. (19)).

4.3. Splitting the 2D PDE. Recall that one of the equations obtained in the
previous section by applying the Strang splitting scheme is the first (or the third)
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equation in the Eq. (19)) which in the explicit form reads

∂

∂θ
C∗∗(x, VR, VL, θ) = (F0 + F1 + F2)C

∗∗(x, VR, VL, θ)(20)

C∗∗(S, VR, VL, 0) = C∗(S, VR, VL, τ/2), θ ∈ [0, τ ]

F0 = σρiσV Vi
∂2

∂x∂Vi

F1 = −1

2
rd +

[
1

2
(rd − rf )−

1

2
σ2Vi − a1i

√
Vi

]
∂

∂x
+ Vi

σ2

2

∂2

∂x2

F2 = κ(1− Vi)
∂

∂Vi
+

σ2
V Vi

2

∂2

∂V 2
i

,

a1R =

∫ ∞

0

(ey − 1− y)λ
e−|y|ν

|y|1+α
dy, a1L =

∫ 0

−∞
(ey − 1− y)λ

e−|y|ν

|y|1+α
dy

Here index i ∈ (R,L) is used to mark R and L states and related coefficients.
One can observe that this equation is very similar to the PDE which appears in

stochastic volatility models; for instance, in the familiar Heston model. Therefore,
there is a wide literature on how to solve this PDE using various numerical methods,
and, particularly, finite difference. But in general, all these methods have to solve
a problem of the mixed derivative term F0.

We, however, propose a different approach. We follow Hout and Welfert [17],
who considered the unconditional stability of second-order ADI schemes in the nu-
merical solution of finite difference discretizations of multi-dimensional diffusion
problems containing mixed spatial-derivative terms. They investigated the ADI
scheme proposed by Craig and Sneyd (see references in the paper), the ADI scheme
that is a modified version thereof, and the ADI scheme introduced by Hundsdorfer
and Verwer. Both necessary and sufficient conditions are derived on the parame-
ters of each of these schemes for unconditional stability in the presence of mixed
derivative terms. Their main result is that, under a mild condition on its param-
eter θ, the second-order Hundsdorfer and Verwer scheme is unconditionally stable
when applied to semi-discretized diffusion problems with mixed derivative terms in
arbitrary spatial dimensions k > 2.

Following [17], consider the initial-boundary value problems for two-dimensional
diffusion equations, which after the spatial discretization lead to initial value prob-
lems for huge systems of ordinary differential equations (ODEs)

(21) U ′(t) = F (t, U(t)) t ≥ 0, U(0) = U0,

with given vector-valued function F and initial vector U0. Hout and Welfert con-
sider splitting schemes for the numerical solution of the Eq. (21). They assume
that F is decomposed into the sum

(22) F (t, U) = F0(t, U) + F1(t, U) + ...+ Fk(t, U),

of k + 1 terms Fj , j = 0...k that are easier to handle than F itself. The term
F0 contains all contributions to F stemming from the mixed derivatives in the
diffusion equation, and this term is always treated explicitly in the numerical time
integration. Next, for each j ≥ 1, Fj represents the contribution to F stemming
from the second-order derivative in the j -th spatial direction, and this term is
always treated implicitly.

Further, Hout and Welfert consider two splitting schemes, and one of them
is a modified Craig and Sneyd scheme. This scheme defines an approximation
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Un ≈ U(tn), n = 1, 2, 3... by

Y0 = Un−1 +∆tF (tn−1, Un−1),(23)

Yj = Yj−1 + θ∆t [Fj(tn, Yj)− Fj(tn−1, Un−1)] , j = 1, 2, ..., k

Ŷ0 = Y0 + θ∆t [F0(tn, Yk)− F0(tn−1, Un−1)] ,

Ỹ0 = Ŷ0 +

(
1

2
− θ

)
∆t [F (tn, Yk)− F (tn−1, Un−1)] ,

Ỹj = Ỹj−1 + θ∆t
[
Fj(tn, Ỹj)− Fj(tn, Yk)

]
, j = 1, 2, ..., k

Un = Ỹk

This scheme is of order two in time step for any value of θ, so this parameter
can thus be chosen to meet additional requirements. Further Hout and Welfert
investigate the stability of this scheme using von Neumann analysis. Accordingly,
stability is always considered in the L2-norm and, in order to make the analysis
feasible, all coefficients in the Eq. (23) are assumed to be constant and the boundary
condition to be periodic. Under these assumptions, the matrices A0, A1, ..., Ak

obtained by finite difference discretization of operators Fk
4 are constant and form

Kronecker products of circulant matrices. Hence, they are normal and commute
with each other. This implies that stability can be analyzed by considering the
linear scalar ODE

(24) U ′(t) = (λ0 + λ1 + ...+ λk)U(t)

where λj denotes an eigenvalue of the matrix Aj , 0 ≤ j ≤ k. Then analyzing this
equation Hout and Welfert prove some important theorems to show unconditional
stability of their splitting scheme if θ ≥ 1/3.

An important property of this scheme is that the mixed derivative term in the
first equation of the Eq. (23) is treated explicitly while all further implicit steps
contain only derivative in time and derivative in a one space coordinate. In other
words, the whole 2D unsteady problem is reduced to a set of four 1D unsteady
equations and 2 explicit equations.

For the semi-discretization of the Eq. (23) the authors consider finite differences.
All spatial derivatives are approximated using second-order central differences on a
rectangular grid with constant mesh width ∆xi > 0 in the xi direction (1 ≤ i ≤ k).
Details of this scheme implementation are discussed in a recent paper [29]. Their
experiments show that for the Heston model choice of θ = 1/3 is good. They also
demonstrate that this scheme has a stiff 5 order of convergence in time equal to
two.

It can be easily observed that the first and third equations in the Eq. (19) are of
the Heston type, therefore we will apply the above described scheme to the solution
of these equations.

4.4. From PIDE to pseudo-parabolic PDE and further. This section shortly
describes our method of solving the second equation in the Eq. (19). Readers
interesting in getting more details are referred to [18]. Here we will also modify a
bit the SSM model by using in the jump terms two different activities νR and νL
instead of just one ν, αR and αL instead of one α, and λR and λL instead of one

4An explicit discretization of Fk in our case is discussed below.
5I.e. the order of convergency doesn’t fluctuate significantly with time step change, and is

always very close to 2.
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λ. This increases the number of free parameters of the model and allows its better
calibration to market data.

Actually, for the whole algorithm we have to solve two similar PIDEs. One
appears at the second step of splitting of the operator LR and has the explicit form
(25)
∂C(x,Ω, θ)

∂θ
=
√
VR

∫ ∞

0

[
C(x+y,Ω, θ)−C(x,Ω, θ)− ∂

∂x
C(x,Ω, θ)y

]
λR

e−|y|νR

|y|1+αR
dy

The other one appears at the second step of splitting of the operator LL and has
the explicit form

∂C(x,Ω, θ)

∂θ
=
√
VL

∫ 0

−∞

[
C(x+y,Ω, θ)−C(x,Ω, θ)− ∂

∂x
C(x,Ω, θ)y

]
λL

e−|y|νL

|y|1+αL
dy.

In what follows where it is not confusing we will use the same notation for the
price C(x,Ω, θ).

For the moment, assume that α < 0 and therefore we can integrate out two
last compensating terms under the integrals. These terms could be added to the
diffusion part considered in the previous section. Later we will relax this assumption
and consider the whole integral with α < 2.

Assuming z = x+ y we rewrite the first equation in the Eq. (25) in the form

(26)
∂

∂θ
C(x, θ) =

√
VR

∫ ∞

x

C(z, θ)λR
e−νR|z−x|

|z − x|1+αR
1z−x>0dz

To achieve our goal we have to solve the following problem. We need to find a
differential operator A+

y which Green’s function is the kernel of the integral in the
Eq. (26), i.e.

(27) A+
y

[
λR

e−νR|y|

|y|1+αR
1y>0

]
= δ(y).

Proposition 4.2. Assume that in the Eq. (27) αR ∈ I (αR is integer), and αR < 0.
Then the solution of the Eq. (27) with respect to A+

y is

A+
y =

1

λRp!

(
νR +

∂

∂y

)p+1

≡ 1

λRp!

[
p+1∑
i=0

Cp+1
i νp+1−i

R

∂i

∂yi

]
, p ≡ −(1 + αR) ≥ 0,

where Cp+1
i are the binomial coefficients.

The proof is given in [18].
For the second equation in the Eq. (25) it is possible to elaborate on an analogous

approach. Again assuming z = x+ y we rewrite it in the form

(28)
∂

∂θ
C(x, θ) =

√
VL

∫ x

−∞
C(z, θ)λL

e−νL|z−x|

|z − x|1+αL
1z−x<0dz

Now we need to find a differential operator A−
y which Green’s function is the

kernel of the integral in the Eq. (28), i.e.

(29) A−
y

[
λL

e−νL|y|

|y|1+αL
1y<0

]
= δ(y)

In [18], we prove the following proposition.
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Proposition 4.3. Assume that in the Eq. (29) αL ∈ I, and αL < 0. Then the
solution of the Eq. (29) with respect to A−

y is

A−
y =

1

λLp!

(
νL − ∂

∂y

)p+1

≡ 1

λLp!

[
p+1∑
i=0

(−1)iCp+1
i νp+1−i

L

∂i

∂yi

]
, p ≡ −(1 + αL),

To proceed we need two technical propositions.

Proposition 4.4. Let us denote the kernels as

(30) g+(z − x) ≡ λR
e−νR|z−x|

|z − x|1+αR
1z−x>0.

Then

(31) A−
x g

+(z − x) = δ(z − x).

Proposition 4.5. Let us denote the kernels as

(32) g−(z − x) ≡ λL
e−νL|z−x|

|z − x|1+αL
1z−x<0.

Then

(33) A+
x g

−(z − x) = δ(z − x).

Again, for the details see [18]. We now apply the operator A−
x to both parts of

the Eq. (26) to obtain

A−
x

∂

∂θ
C(x, θ) =

√
VRA−

x

∫ ∞

x

C(z, θ)g+(z − x)dz(34)

=
√
VR

{∫ ∞

x

C(z, θ)A−
x g

+(z − x)dz +R
}

=
√
VR

{∫ ∞

x

C(z, θ)δ(z − x)dz +R
}

=
1

2

√
VRC(x, θ)−

√
VRR

Here

(35) R =

p∑
i=0

ai

(
∂p−i

∂xp−i
V (x)

)(
∂i

∂xi
g(z − x)

) ∣∣∣
z−x=0

,

and ai are some constant coefficients. As from the definition in the Eq. (30) g(z −
x) ∝ (z− x)p, the only term in the Eq. (35) which does not vanish is that at i = p.
Thus

(36) R = V (x)

(
∂p

∂xp g(z − x)

) ∣∣∣
z−x=0

= V (x)p!1(0) = 0;

With allowance for this expression from the Eq. (34) we obtain the following
pseudo-parabolic equation for C(x, t)

(37) A−
x

∂

∂θ
C(x, θ) =

1

2

√
VRC(x, θ)

Applying the operator A+
x to both parts of the second equation in the Eq. (28)

and doing in the same way as in the previous paragraph we obtain the following
pseudo parabolic equation for C(x, θ)

(38) A+
x

∂

∂θ
C(x, t) = −1

2

√
VLC(x, θ)

We will solve these equations with the same initial and boundary conditions as
were described before.
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4.4.1. Solution of the pseudo parabolic equation. Assuming that the inverse
operatorA−1 exists (see discussion later) we can represent, for instance, the Eq. (37)
in the form

(39)
∂

∂θ
C(x, θ) = BC(x, θ), B ≡ 1

2

√
VR(A−

x )
−1,

This equation can be formally solved analytically to give

(40) C(x, θ) = eBθC(x, 0),

Below we consider numerical methods which allow one to compute this operator
exponent with a prescribed accuracy. First, we consider a straightforward approach
when α ∈ I. Then for α ∈ R we use interpolation; i.e. having the results computed
for α ∈ I we interpolate them with the second order spline in α space to obtain the
solution at any α ∈ R.

To make sure this is consistent we prove the following proposition.

Proposition 4.6. Both integrals in the Eq. (12) are continuous in α at α < 2.

Proof. To prove this we use a series representation of the integrals derived in the
Eq. (13). Then at α < 2 coefficients an and bn, n ≥ 2 are regular functions of α.
So the integrand kernels in the definition of an, bn are continuous functions of α as
well as an and bn. �

Next suppose that the whole time space is uniformly divided into N steps, so the
time step θ = T/N is known. Assuming that the solution at time step k, 0 ≤ k < N
is known and we go backward in time, we could rewrite the Eq. (40) in the form

(41) Ck+1(x) = eBθCk(x),

where Ck(x) ≡ C(x, kθ). To get representation of the rhs of the Eq. (41) with given
order of approximation in θ, we can substitute the whole exponential operator with
its Padé approximation of the corresponding order m.

First, consider the case m = 1. A symmetric Padé approximation of the order
(1, 1) for the exponential operator is

(42) eBθ =
1 + Bθ/2
1− Bθ/2

Substituting this into the Eq. (41) and affecting both parts of the equation by
the operator 1− Bθ/2 gives

(43)

(
1− 1

2
Bθ
)
Ck+1(x) =

(
1 +

1

2
Bθ
)
Ck(x).

This is a discrete equation which approximates the original solution given in the
Eq. (41) with the second order in θ. One can easily recognize in this scheme the
famous Crank-Nicolson scheme.

We do not want to invert the operator A−
x in order to compute the operator B

because B is an integral operator. Therefore, we will apply the operator A−
x to the

both sides of the Eq. (43). The resulting equation is a pure differential equation
and reads

(44)

(
A−

x −
√
VR

4
θ

)
Ck+1(x) =

(
A−

x +

√
VR

4
θ

)
Ck(x).

Let us work with the operator A−
x (for the operator A+

x all corresponding results
can be obtained in a similar way). The operator A−

x contains derivatives in x up to
the order p+1. If one uses a finite difference representation of these derivatives the
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resulting matrix in the rhs of the Eq. (44) is a band matrix. The number of diagonals
in the matrix depends on the value of p = −(1 + αR) > 0. For central difference
approximation of derivatives of order d in x with the order of approximation q the
matrix will have at least l = odd(d+ q, d+ q − 1) [13] 6. Therefore, if we consider
a second order approximation in x, i.e. q = 2 in our case the number of diagonals
is l = p+ 3 = 2− αR.

As the rhs matrix D ≡ A−
x −

√
VRθ/4 is a banded matrix, the solution of the cor-

responding system of linear equations in the Eq. (44) could be efficiently obtained
using a modern technique (for instance, using a ScaLAPACK package7). The com-
putational cost for the LU factorization of an N-by-N matrix with lower bandwidth
P and upper bandwidth Q is 2NPQ (this is an upper bound) and storage-wise
- N(P + Q). So in our case of the symmetric matrix the cost is (1 − αR)

2N/2
performance-wise and N(1− αR) storage-wise. This means that the complexity of
our algorithm is still O(N) while the constant (1− αR)

2/2 could be large.
A typical example could be if we solve our PDE using an x-grid with 300

nodes, so N = 300. Suppose αR = −10. Then the complexity of the algo-
rithm is 60N = 18000. Compare this with the FFT algorithm complexity which is
(34/9)2N log2(2N) ≈ 20900 8, one can see that our algorithm is of the same speed
as the FFT.

The case m = 2 could be achieved either using symmetric (2,2) or diagonal (1,2)
Padé approximations of the operator exponent. The (1,2) Padé approximation
reads

(45) eBθ =
1 + Bθ/3

1− 2Bθ/3 + B2θ2/6
,

and the corresponding finite difference scheme for the solution of the Eq. (41) is

(46)

[
(A−

x )
2 − 1

3

√
VRθA−

x +
1

24
VRθ

2

]
Ck+1(x) = A−

x

[
A−

x +
1

6

√
VRθ

]
Ck(x).

which is of the third order in θ. The (2,2) Padé approximation is

(47) eBθ =
1 + Bθ/2 + B2θ2/12

1− Bθ/2 + B2θ2/12
,

and the corresponding finite difference scheme for the solution of the Eq. (41) is
(48)[
(A−

x )
2 − 1

4

√
VRθA−

x +
1

48
VRθ

2

]
Ck+1(x) =

[
(A−

x )
2 +

1

4

√
VRθA−

x +
1

48
VRθ

2

]
Ck(x),

which is of the fourth order in θ.
Matrix of the operator (A−

x )
2 has 2l−1 diagonals, where l is the number of diag-

onals of the matrix A−
x . Thus, the finite difference equations Eq. (46) and Eq. (48)

still have banded matrices and could be efficiently solved using the appropriate
technique.

6For instance, approximation of the second derivative (d = 2) with the second order (q = 2)
gives odd(4,3) = 3.

7see http://www.netlib.org/scalapack/scalapack_home.html
8 We use 2N instead of N because in order to avoid undesirable wrap-round errors a common

technique is to embed a discretization Toeplitz matrix into a circulant matrix. This requires to

double the initial vector of unknowns

http://www.netlib.org/scalapack/scalapack_home.html
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4.4.2. Stability analysis. For the derived finite difference schemes this could be
provided using the standard von-Neumann method. Suppose that operator A−

x

has eigenvalues ζ which belong to continuous spectrum. Any finite difference ap-
proximation of the operator A−

x → FD(A−
x ) - transforms this continuous spectrum

into some discrete spectrum, so we denote the eigenvalues of the discrete operator
FD(A−

x ) as ζi, i = 1, N , where N is the total size of the finite difference grid.
Now let us consider, for example, the Crank-Nicolson scheme given in the Eq. (44).

It is stable if in some norm ∥ · ∥

(49)

∥∥∥∥∥
(
A−

x −
√
VR

4
θ

)−1(
A−

x +

√
VR

4
θ

)∥∥∥∥∥ < 1.

It is easy to see that this inequality holds when all eigenvalues of the operator
A−

x are negative. However, based on the definition of this operator given in the
Proposition 4.3, it is clear that the central finite difference approximation of the
first derivative does not give rise to a full negative spectrum of eigenvalues of the
operator FD(A−

x ). So below we define a different approximation.

Case αR < 0. In this case we will use a one-sided forward approximation of the

first derivative which is a part of the operator
(
νR − ∂

∂x

)αR

. Define h = (xmax −
xmin)/N to be the grid step in the x-direction, N is the total number of steps, xmin

and xmax are the left and right boundaries of the grid. Also define cki = Ck(xi). To
make our method to be of the second order in x we use the numerical approximation

(50)
∂Ck(x)

∂x
=

−Ck
i+2 + 4Ck

i+1 − 3Ck
i

2h
+O(h2)

The matrix of this discrete difference operator has the form

(51) Mf =
1

2h


−3 4 −1 0 ...0
0 −3 4 −1 ...0
0 0 −3 4 ...0
.. .. .. .. ..
0 0... 0 0 −3


All eigenvalues of Mf are equal to −3/(2h).
To get a power of the matrix M we use its spectral decomposition, i.e. we

represent it in the form M = EDE′, where D is a diagonal matrix of eigenvalues
di, i = 1, N of the matrix M , and E is a matrix of eigenvectors of the matrix
M . Then Mp+1 = EDp+1E′, where the matrix Dp+1 is a diagonal matrix with
elements dp+1

i , i = 1, N . Therefore, the eigenvalues of the matrix
(
νR − ∂

∂x

)αR

are [νR + 3/(2h)]
αR . And, consequently, the eigenvalues of the operator B in this

representation are

(52) ζB =
√

VRλRΓ(−αR) {[νR + 3/(2h)]
αR − ναR

R } .

As αR < 0 and νR > 0 it follows that ζB < 0. Rewriting the Eq. (43) in the form

(53) Ck+1(x) =

(
1− 1

2
Bθ
)−1(

1 +
1

2
Bθ
)
Ck(x),

and taking into account that ζB < 0 we arrive at the following result

(54)

∥∥∥∥∥
(
1− 1

2
Bθ
)−1(

1 +
1

2
Bθ
)∥∥∥∥∥ < 1.
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Thus, our numerical method is unconditionally stable.

Case αL < 0. In this case we will use a one-sided backward approximation of the

first derivative in the operator
(
νL + ∂

∂x

)αL

which reads

(55)
∂Ck(x)

∂x
=

3Ck
i − 4Ck

i−1 + Ck
i−2

2h
+O(h2)

The matrix of this discrete difference operator has the form

(56) Mb =
1

2h


3 0 0 0 ...0
−4 3 0 0 ...0
1 −4 3 0 ...0
.. .. .. .. ..
0 0... 1 −4 3


All eigenvalues of Mb are equal to 3/(2h). Proceeding as above, we can show

that the eigenvalues of the operator B read

(57) ζB =
√
VLλLΓ(−αL) {[νL + 3/(2h)]

αL − ναL

L } .

As αL < 0 and νL > 0 it follows that ζB < 0, and the numerical method in this
case is unconditionally stable.

In [18], we also consider two special cases α = 0, 1 and show how to extend the
proposed method to these values of α. For 1 < α < 2, instead of interpolation
we suggest to use extrapolation. That is because our method, as it was described,
is not applicable at α = 2. Therefore, we can not use interpolation in this case,
and this is a shortcoming of the method. In [18], we also provide a comparison
of our method with the FFT method used to compute the jump integral in many
papers. Andersen and Andreasen [1] were apparently the first who suggest to use
the method for this purpose, while a detailed description of the method is given in
[33]).

From the numerical point of view the proposed approach has an advantage as
compared with the above FFT methods. Indeed, first we managed to reduce the
original evolutionary integral equation to a pure differential equation. Second, this
equation could be formally solved analytically. To compute the operator exponent
we applied a Padé approximation technique. This eventually allowed us to derive
finite difference equations which approximate the original solution with the nec-
essary order. These equations could be solved at the same grid as the diffusion
part of the original PIDE, thus eliminating problems inherent to the FFT meth-
ods (interpolation of the FFT solution to the original grid). In addition, despite
the original integral term is non-local, the rhs matrix D of the system of linear
equations, obtained by applying our approach, is a band matrix in case of integer
αR,L; i.e. it corresponds to a local approximation of the option price. Also, as it is
shown in [18], at α ≤ 0 the complexity of our algorithm is much lower (almost 30
times faster than that of the FFT), while the accuracy is much better (for practical
purposes we can use second or third order FD approximation, while getting same
approximation within the FFT method significantly increases the complexity).

The complexity of the solution at α = 1 is higher than that of the FFT. This
in part is compensated by few factors: our algorithm provides the second order
approximation in both space and time, and it does not require to re-interpolate
the FFT results to the FD grid which was previously used to find solution for the
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diffusion part of the original PIDE. Also, it doesn’t require a special treatment of
the point x = 0 at α > 0, as this was done in [9].

4.5. Boundary conditions. To recap, in the previous sections we transformed
the solution of the original PIDE Eq. (10) to the following problems.

Method.

(1) Solve the equation

(58)
∂

∂τ
C(x, VR, VL, τ) = LRC(x, VR, VL, τ),

where the operator LR is defined in Eq. (12). To do that
(a) Solve the Eq. (20) using the scheme Eq. (23). Thus, we solve the

following equations:

Y0 = Un−1 +∆tF (tn−1, Un−1),(59)

Yj = Yj−1 + θ∆t [Fj(tn, Yj)− Fj(tn−1, Un−1)] , j = 1, 2

Ŷ0 = Y0 + θ∆t [F0(tn, Yk)− F0(tn−1, Un−1)] ,

Ỹ0 = Ŷ0 +

(
1

2
− θ

)
∆t [F (tn, Yk)− F (tn−1, Un−1)] ,

Ỹj = Ỹj−1 + θ∆t
[
Fj(tn, Ỹj)− Fj(tn, Yk)

]
, j = 1, 2

Un = Ỹk,

where

F0 = σρRσV VR
∂2

∂x∂VR
(60)

F1 = −1

2
rd +

[
1

2
(rd − rf )−

1

2
σ2VR − a1R

√
VR

]
∂

∂x
+ VR

σ2

2

∂2

∂x2

F2 = κ(1− VR)
∂

∂VR
+

σ2
V VR

2

∂2

∂V 2
R

,

a1R =

∫ ∞

0

(ey − 1− y)λ
e−|y|νR

|y|1+α dy

=


λΓ(−α)

[
(νR − 1)α + (α− νR)ν

α−1
R

]
, α < 2, R(νR) > 1

λ
[
− 1
νR + log

(
νR

νR − 1

)]
, α = 0

λ
[
1 + (νR − 1) log

(
νR − 1
νR

)]
, α = 1

F ≡ F0 + F1 + F2

We use this representation if αR < 0. Otherwise we assume a1R = 0.
The initial data for this step are taken from the previous time level,
or from the terminal condition at the first level.

(b) Solve the second equation in Eq. (19) using the method of the previous
section. In case αR < 1 we use a reduced integral (the second and third
terms under the integral are integrated out to produce a1R term in
the previous step). Then we have to solve 3 one-dimensional unsteady
equations of the type Eq. (43) or Eq. (46) for integer values of α closest
to real αR, and use these results to interpolate to the real value of αR.
Each solution for an integer α < 1 requires just one sweep, and for
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α = 1 - multiple such steps. The initial data are taken from the
previous step in time.
In case αR > 0 we keep all terms under the integral (so a1R = 0)
and compute the price for 3 closest integer values of α. We then use
interpolation if real αR ≤ 1, or extrapolation if 1 < αR < 2.
As the initial data use the solution of the step 1a.

(c) Repeat step 1a and as the initial data use the solution of the step 1b.
(2) Solve the equation

(61)
∂

∂τ
C(x, VR, VL, τ) = LLC(x, VR, VL, τ),

where the operator LL is defined in Eq. (12). To do that
(a) Solve the Eq. (20) using the scheme Eq. (23). Thus, we solve the

Eq. (59) where

F0 = σρLσV VL
∂2

∂x∂VL
(62)

F1 = −1

2
rd +

[
1

2
(rd − rf )−

1

2
σ2VL − a1R

√
VL

]
∂

∂x
+ VL

σ2

2

∂2

∂x2

F2 = κ(1− VL)
∂

∂VL
+

σ2
V VL

2

∂2

∂V 2
L

,

a1L =

∫ 0

−∞
(ey − 1− y)λ

e−|y|/νl

|y|1+α
dy

=


λΓ(−α)

[
(νL + 1)α − (α+ νL)ν

α−1
R

]
, α < 2, R(νL) > 0

λ
[
1
νL + log

(
νL

νL + 1

)]
, α = 0

λ
[
−1 + (νL + 1) log

(
νL + 1
νL

)]
, α = 1

F ≡ F0 + F1 + F2

We use this representation if αL < 0. Otherwise we assume a1L = 0.
The initial data for this step is the solution of the step 1c.

(b) Solve the second equation in Eq. (19) using the method of the previous
section. In case αL < 1 we use a reduced integral (the second and third
terms under the integral are integrated out to produce a1L term in the
previous step). Then we have to solve 3 one-dimensional unsteady
equations of the type Eq. (43) or Eq. (46) for integer values of α
closest to real αL, and use these results to interpolate to the real value
of αL. Each solution for an integer α < 1 requires just one sweep, and
for α = 1 - multiple such steps. The initial data are taken from the
previous step in time.
In case αL > 0 we keep all terms under the integral (so a1L = 0)
and compute the price for 3 closest integer values of α. We then use
interpolation if real αL ≤ 1, or extrapolation if 1 < αL < 2.
As the initial data use the solution of the previous step 2a.

(c) Repeat step 2a and as the initial data use the solution of the step 2b.

�
As is easy to see, all the equations we have to solve are either explicit, or 1D

implicit equations in space. This determines the boundary conditions we need to
impose at every step of our splitting method. In more detail, this is

(1) First equation in Eq. (59): no boundary conditions are required.
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(2) Second equation in Eq. (59) at j = 1: This equation is in a log-return space.
Therefore, we impose same boundary conditions that were discussed at the
end of section 2.

(3) Second equation in Eq. (59) at j = 2: This equation is in VR space. At
VR → ∞ according to the analysis of section 2 we use the boundary condi-
tion ∂

∂VR
= 0 which means F2 = 0. At VR → 0 the ratio of the convection to

diffusion term in F2 is positive, therefore as the boundary condition we have
to us the equation itself. In other words, at VR = 0 we obtain F2 = κ ∂

∂VR
,

and therefore the second equation in Eq. (59) becomes hyperbolic. There-
fore we have to address two issues. First, we need to approximate the first
derivatives (at VR → ∞ and at VR = 0) with the second order of approxi-
mation to preserve the second order of the whole scheme. Second we have
to chose a correct approximation (downward or upward) to preserve the
stability of the scheme. It can be verified that as κ > 0 and we solve the
PDE backward in time one must use a forward approximation of the first
derivative at VR = 0 and backward approximation at VR → ∞. If then
she uses a 3-points approximation of the first derivative, the matrix of the
rhs remains three-diagonal while at the first and the last row it has three
elements instead of two. However, a slight modification of the LU solver
can still be applied.

(4) Third equation in Eq. (59): no boundary conditions are required.
(5) Fourth equation in Eq. (59) at j = 1: This equation is in a log-return space.

Therefore we impose same boundary conditions that were discussed at the
end of section 2.

(6) Fourth equation in Eq. (59) at j = 2: This equation is in VR space. So se
can impose the same boundary conditions that were discussed in item 3.

(7) Step 1b: This is a pure jump equation transformed to a PDE according to
our method. Thus, this PDE is defined in the log-return space. Therefore,
we impose same boundary conditions that were discussed at the end of
section 2.

For the next set of steps of the above described method the boundary conditions
are imposed by analogy.

5. Finite-difference scheme

To solve one-dimensional unsteady equations given in the previous section we
need a reliable finite difference scheme. We have already mentioned some crucial
requirements that our method should obey, namely: this scheme has to be at least
of the second order of approximation in time and space, be fast, stable with respect
to the discontinuities in the initial data at S = K (payoff) and at the barrier(s).
In general in our numerical experiments we used the same approach as in [29] with
some changes that are described below.

5.1. Order of approximation. Aside from a detailed discussion just mention
that we would prefer to work with a high order compact (HOC) scheme which
provides a fourth order accuracy in space O(h4), h is the space step. This would
provide us with a necessary relative accuracy to compute option values with an
error up to 0.5 cents (rawly for a 500$ stock this is a relative error of 10−5) while
still preserving a finite difference grid from using very small steps in space. On the
other hand a high order approximation in time would be also very desirable. As
shown in [30] the HOC scheme for the heat equation with smooth initial conditions
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attains clear fourth-order convergence but fails if non-smooth payoff conditions are
used. Therefore it is impossible to resolve this problem using just the HOC scheme
in space as some authors claimed.

For homogeneous parabolic partial differential equations with non-smooth ini-
tial data (like we have) a family of higher order accurate smoothing schemes has
recently been developed (see a literature survey in [19]). Convergence results and
numerical experiments show that these schemes can be more robust than the well
known Rannacher smoothing schemes [26] with respect to spurious oscillations gen-
erated through high frequency components in non-smooth initial or boundary data.
Usually these schemes are constructed based on Pade approximation of the evolu-
tionary operator. Unfortunately, to the best of our knowledge these schemes mostly
operate with a second order discretization in space. Using a HOC scheme in space
together with the Pade scheme brings some extra complexity that we would prefer
to eliminate because of the speeding requirement. The other problem is that the
Pade scheme to be efficient should be parallelized which results in necessity to work
with a complex arithmetic. Fortunately, CUBLAS library does support complex
arithmetic for CUDA, therefore working with the HOC-PADE schemes could be a
possible challenge for the future.

5.2. Grid. As mentioned in [29] and many others papers it is useful to apply non-
uniform meshes in all spatial directions such that relatively many mesh points lie in
the neighborhood of S = K and v = 0. This, first, greatly improves the accuracy of
the scheme as compared to the uniform meshes. Indeed, the Eq. (4) is very sensitive
to localization errors when S is in the vicinity of K, since the first derivative of
the payoff doesn’t exist at this point. Therefore, to increase accuracy it would be
reasonable to use an adaptive mesh with high concentration of the mesh points
around S = K, while a rarefied mesh could be used far away from this area. For
the barrier options the situation is even more complicated [31]. Here we consider
only continuously sampled barriers, so it is sufficient to place the barriers on the
boundaries of the grid and enforce a boundary condition of zero option value. The
gradient of the option price is discontinuous at the barriers because we never solve
the pricing equation there. Therefore it is reasonable to concentrate the grid cells
in the vicinity of the barriers as well 9. Also at v = 0 the Eqs. (58, 61) become
convection dominated so it reasonable to concentrate meshes at this point as well
as at the initial level of v.

We build a non-uniform grid using a coordinate transformation. Let us choose
a ”factorize” coordinate transformation in sense that we transform coordinate x =
logS independently of the other coordinates. In other words we use a map x ↔
X,VR ↔ vr, VL ↔ vl, t ↔ τ of the form

(63) x = x(X), vr = VR(vr), vl = VL(vl), τ = T − t.

We use a transformation that has been proposed in [31] with the idea of concen-
trating finite difference grid points near critical points such as barrier prices and
strike. We define the Jacobian of this transformation

(64) J(X) =
dx(X)

dX
,

9For the discretely sampling barriers this could result in some problems, see discussion in [31]
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Figure 2. New grid obtained from the uniform grid in x with the
transformation Eq. (65)

.

as

J(X) = A

[
k=3∑
k=1

Jk(z)
−2

]−1/2

(65)

Jk(X) =
[
α2
k + (x(X)−Bk)

2
]1/2

Parameters Bk correspond to the critical points, i.e. in our case B1 = L ≡
logL,B2 = H ≡ logH,B3 = K ≡ logK. Parameters A and αk, k = 1, 2, 3 are
adjustable. Setting αk ≪ H−L yields a highly nonuniform grid while αk ≫ H−L
yields a uniform grid.

For the transformation given by the Eq. (65) near the strike and barriers the
global Jacobian J(X) is dominated by the behavior of the local Jk(X), but the
influence of nearby critical points ensures that the transitions between them are
smooth. In general the global Jacobian must be integrated numerically to yield the
transformation x(X). Any standard ODE integrator (for instance, Matlab ode45)
could be used for that using the initial condition x(0) = L. To obey the second
boundary condition x(Xmax) = H one can vary the adjustable parameter A. Since
x(Xmax) is monotonically increasing with A the numerical iterations are guaranteed
to converge.

In Fig. 2 we present a map of the new grid obtained from the original uniform
x grid by using the transformation Eq. (65). The new grid in x contains 41 nodes
distributed from log(L) to log(H). Value of parameters used in this example are:
H = 110, L = 90,K = 100, αH = αL = (logH−logL)/30, αK = (logH−logK)/10.
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Figure 3. d lnJ(X)/dX as a function of S(X). Parameters for
this test are given after the Fig. 2 while the barriers moved to
H = 130, L = 50.

Note that for the transformation Eq. (65)

d lnJ(x)

dx
=

dJ

dx
= A

{
3∑

k=1

x−Bk[
α2
k + (x−Bk)

2
]2
}[

3∑
k=1

1

α2
k + (x−Bk)

2

]−3/2

≈ A

[
1

(x− logH)3
+

1

(x− logK)3
+

1

(x− logL)3

]
·(66) [

1

(x− logH)2
+

1

(x− logK)2
+

1

(x− logL)2

]−3/2

.

This function is bounded and changes within the range (−A,A) as can be seen
in Fig. 3. Thus |d ln J(x)/dx| is bounded.

To preserve monotonicity of the grid as well as monotonicity of the grid steps
hi, i = 1, N , after A and the Jacobian are computed we make smoothing of the
grid running a robust local regression with a moving average which uses weighted
linear least squares and a second degree polynomial model. So the new grid steps
are hhi, i = 1, N). We then re-normalize the grid steps to have the grid fitted
the original boundaries, i.e. we compute C = (

∑
i hi)/(

∑
i hhi) and then reassign

hi = C · hhi, i = 1, N . The span for the moving average is equal to 10.
Further for the variables vr and vl we use same type of the transformation as in

the Eq. (65). Here as the critical points Bk we choose B1 = 0 and B2 = Vi0, i =
R,L, where the later is the initial level of the activity.

In Fig. 4 we present a map of the new grid obtained from the original uniform
x−VR grid by using the transformation Eq. (65). The new grid contains 101 nodes
in X distributed from L to H, and 61 nodes in vR distributed from 0 to Vmax. Value
of parameters used in this example are: H = 110, L = 90,K = 100, αH = αL =
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Figure 4. New grid obtained from the uniform grid in x, vr with
the transformation Eq. (65)
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(logH − logL)/60, αK = (logH − logK)/20, α0 = αv0 = Vmax/20, Vmax = 1.5 is a
maximum value of VR and VL on the grid, and VR0 = 0.3.

6. Numerical experiments

First, to make comparison with the results given in [29] we used their case 4, i.e.
we priced double barrier call option with the initial data given in Tab. 1.

S K L H T rd rf
100 100 80 150 0.25 0.0507 0.0469

Table 1. Option parameters used in our numerical experiments

For down-and-out call options the grid described in the previous section worked
well. However, for double barrier call options at t = 0 there exists a discontinuity
in the option price at the upper barrier. At t > 0 this discontinuity decays in the
direction of the lower barrier (downward), while the price field close to the upper
barrier is still characterized by high gradients which exist for some characteristic
time of decay. Therefore compressing grid cells close to this barrier produces high
gradients in the numerical solution as well. That is not a problem if one uses a
fully implicit 2d finite difference scheme for approximation of the Eq. (20). However,
under the splitting approach of [29] which includes some explicit steps this could
require a very small initial step in time in order to avoid negative prices in the
solution.

To address this we used just a minor compression of the grid close to the upper
barrier, i.e. αH = 1, while still compressed the grid at S = K by choosing αK = 5.
We also used α0 = αV 0 = 10. The number of steps in x directions was 50, and
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Figure 5. Price of a double barrier call option obtained within
the Heston model with no jumps. Initial data are given in Tab. 1.

in Vi, i = L,R direction was 25. As the upper bound of the grid in Vi, i = L,R
direction we used Vmax = 0.9.

Also at the first 3 steps in time instead of using the ADI scheme of [29] we applied
a fully implicit approximation of 2D Eq. (20) and solved it in time using the Euler
scheme (thus, using Rannacherś approach to smooth initial discontinuities).10

Certainly, as gradients of the flow decrease with time, the time step could be
increased. Therefore we also applied a smooth increase of the time step based on
the analysis of the price gradient field over the whole region. We used the initial
time step to be τ = 0.001 yrs, and the maximum time step τmax = 0.008 yrs.

For the chosen ADI scheme matrices of all first and second derivatives could
be pre-computed. Following the analysis in [20, 29], in a special case when the
flow is inwind, i.e. directed from the upper boundary to the internal area ( this
occurs when the condition 0.5σ2

V +κ(Θ−Vi) < 0 is true [20]), we used an one-sided
approximation of the first derivative in V in order to avoid spurious oscillations
observed in the numerical solution when the ration κ/σV ≫ 1.

In our first test we used the described scheme to price a double barrier call
option within the Heston model with no jumps. We compared the results with
analogous results kindly provided by Prof. K. Hout. Our results are given in Fig. 5
and with a high accuracy are identical to that of K. Hout. This is clear because
we used the same ADI approach so the difference was basically in how we built
the non -uniform grid. Also we experimented with another ADI scheme proposed
by Hundsdorfer and Verwer (which as well is described in detail in [29]) with the

recommended values of parameters θ = 1/2+
√
3/6, µ = 1/2, and did found a very

good agreement with the solution obtained using the Hout and Welfert scheme.
The total number of steps in time was 250 which in our example took 91 sec at 3.2
Ghz PC to calculate the solution.

10A more sophisticated approach described in [19] could also be applied here.
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As we basically use same discretization on a uniform grid as in the reference
above 11 we didn’t make special tests to investigate the order of convergency of the
scheme. Details on this subject could be obtained from [20, 29].

Having ensured that the finite difference scheme provides the correct results in
the test cases, we ran a series of tests in which the solution of the SSM model for
double barrier call option with the initial parameters given in Tab. 1 was studied.
We describe the results of three tests. For each test we computed the solution first
with no jumps, and then with jumps. Also as our model is 3D and unsteady we
present numerical results of every test in three figures. The first figure is represent-
ing the option price in coordinates (x, VR) while the third coordinate VL is fixed.
We then present 6 different plots corresponding to the different values of VL, where
VL runs from 0 to Vmax. Namely, we use VL-grid nodes 4, 8, 12, 16, 20, 24, while the
total number of the grid nodes in this direction is 25. The second figure displays the
results in coordinates (x, VL) while VR is the running coordinate, and the VR-grid
nodes are 4, 8, 12, 16, 20, 24 out of total 25 nodes. The third figure contains 6
plots in coordinates (VR, VL), and X is the running coordinate. We display plots
related to the X grid nodes 2, 10, 20, 30, 40, 49 out of the total 50 nodes.

Test 1. The initial parameters of the SSM model used in this test are given in
Tab. 2.

σ σV ρR ρL κ Θ VR0

1 0.5 -0.1 -0.1 2.5 0.06 0.5
νR νL αR αL λR λL VL0

2.5 2.5 -0.1 -0.1 3 3 0.5

Table 2. Model parameters used in Test 1.

This test uses fully symmetric parameters for positive and negative jumps. The
results of calculation with no jumps in coordinates VL, VR are given in Fig. (6) 12,
and with jumps - in Fig. (7-9). Also Tab. 3 displays call option prices V (S, VR, VL)
at several selected points.

The total time of calculation is 0.74*250 = 185 sec in case of no jumps, and
8.6*250 = 2150 sec with jumps. This is because in our splitting procedure we make
one ”no-jumps” step for the ”R” equation and one ”no-jumps” step for the ”L”
equation. Thus, the total time is twice as big as in our previous example with the
Heston model. In case of jumps our splitting algorithm uses 4 ”no-jumps” sweeps
as well as two ”jumps” sweeps, and in addition it uses a quadratic interpolation
in α. Therefore, at every time step we solve the pure jump equation for three
different values of α, and then interpolate as that was described in the previous
sections. This means that the pure calculation time of one sweep for the pure
jump equation is (8.6 - 2*0.74)/2/3 = 1.18 sec. This is almost 3 times more than
it is necessary to solve a no-jump equation (a convective-diffusion equation). To
understand this let us remind that the matrix of the rhs part obtained by applying

11But a different transformation, therefore our non-uniform grid differs from that of K. Hout,
but not much.

12For the sake of brevity we omit the results in the other pairs of coordinates since they are

of less interest
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S VR VL C (no jumps) C(jumps)
90.39 0.24 0.24 1.887 2.329
100.39 0.24 0.24 3.512 4.014
110.64 0.24 0.24 4.495 4.793
120.31 0.24 0.24 4.552 4.416
132.01 0.24 0.24 3.453 2.962
90.39 0.103 0.24 2.263 3.477
100.39 0.103 0.24 4.516 6.536
110.64 0.103 0.24 6.231 8.491
120.31 0.103 0.24 6.699 8.304
132.01 0.103 0.24 5.348 5.833
90.39 0.24 0.103 2.268 2.891
100.39 0.24 0.103 4.532 5.070
110.64 0.24 0.103 6.262 6.165
120.31 0.24 0.103 6.739 5.721
132.01 0.24 0.103 5.385 3.836
90.39 0.103 0.103 2.083 3.756
100.39 0.103 0.103 5.089 7.820
110.64 0.103 0.103 8.528 11.140
120.31 0.103 0.103 10.593 11.495
132.01 0.103 0.103 9.540 8.321

Table 3. Call option prices at several selected points obtained in Test 1.

the finite difference approximation to the pure jump equation is banded but not tri-
diagonal. This increase in the number of bands results in a corresponding overhead
of the computational time.

At the same time performance of the algorithm could be significantly improved
by using parallel calculations. Indeed, calculations of the option prices at different
α are independent and could be done in parallel. For instance, one can make use of
a new Matlab parallel toolbox and run Matlab at a multicore box, or in any other
suitable way. If we do that the total computational time in case of jumps drops
down to 3.84 sec per time step (i.e. almost 2.2 times faster), and the total time
becomes 560 sec.

The results of the symmetric test with no jumps at every plain VR = const or VL

= const look pretty similar to what is known from modeling prices of barrier options
within the Heston model. In coordinates VL, VR at x = const the plots seem to be
less trivial. In these coordinates the option price surfaces close to the lower and
upper barriers have a different shape and significantly different values. Accounting
for symmetric jumps just slightly changes the shape of the option price surfaces
in coordinates x, VL and x, VR at given jumps activities. However, in coordinates
VR, VL even such jumps change the surface shape close the lower barrier.

Test 2. The initial parameters of the SSM model used in this test are given in
Tab. 4.

This test uses αR = αL = 0, and therefore corresponds to a well-known Variance
Gamma model of D. Madan and E. Seneta [24]. This is the jump model with infinite
activity but finite variation. We also consider asymmetric jump parameters νR and
νL as well as asymmetric correlations ρR and ρL. The results of calculation with
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σ σV ρR ρL κ Θ VR0

1 0.5 -0.7 0.1 2.5 0.06 0.5
νR νL αR αL λR λL VL0

2.5 3.5 0 0 3 3 0.5

Table 4. Model parameters used in Test 2.

no jumps in coordinates VR, VL are given in Fig. (10) (again the results in other
pairs of coordinates are omitted for brevity), and with jumps - in Fig. (11-13).

The total time of calculations is 188 sec with no jumps, 575 sec with jumps and
no parallel calculations, and 382 sec using parallel calculations. This is because at
α = 0 we use a special algorithm which is faster than a general one (see Section
4.4).

The results show that the asymmetric in ν jumps at α = 0 change both the level
of prices (the ”no-jumps” case versus that with jumps) and the shape of the surface
in coordinates VR, VL (compare Fig. (10) and Fig. (13)).

Test 3. The initial parameters of the SSM model used in this test are given in
Tab. 5.

σ σV ρR ρL κ Θ VR0

1 0.5 -0.7 0.1 2.5 0.06 0.5
νR νL αR αL λR λL VL0

2.5 3.5 -0.7 0 3 3 0.5

Table 5. Model parameters used in Test 3.

In Test 3 negative jumps again are modeled using the VG model, whereas positive
jumps follows the CGMY model with αR = −0.7. All other parameters are same
as in Test 2. The results of calculation with no jumps in coordinates VR, VL are
given in Fig. (14), and with jumps - in Fig. (15-17).

It is interesting to see that asymmetric αi, i = R,L produce a qualitatively new
effect. It consists in the appearance of a big dome close to ATM at moderate values
of V in addition to a standard arc which is also close to ATM at small values of V .

The total time of calculations is 190 sec with no jumps, 950 sec with jumps and
no parallel calculations, and 444 sec using parallel calculations.

7. Conclusion

In this paper we considered a problem of pricing barrier options within the
SSM model proposed by Carr and Wu. They derived a 3D unsteady PIDE which
describes evolution of the option price in time and 3D space. The 3D space here
is the underlying spot price S, the activity of the positive jumps VR, and that of
the negative jumps VR. This equation makes it difficult to solve it numerically in
the case of exotic options because of high dimensionality and a presence of jumps.
Monte Carlo is one of the approaches, however it is slow.

Instead, we proposed a numerical algorithm which significantly uses splitting of
the original equation in a set of one-dimensional unsteady equations of the Black-
Scholes type. We also showed how each integral in the above PIDE can be replaced
with another one-dimensional unsteady equation using the results presented in our



JUMPS WITHOUT TEARS: A NEW SPLITTING TECHNOLOGY FOR BARRIER OPTIONS31

paper [18]. We also constructed our scheme to be of the second order of approxi-
mation in time and all spatial coordinates. In a series of tests presented at the end
of the paper we prove a computational efficiency of the proposed algorithm.

Another advantage of the scheme is that for all non-jump and jump sweeps
we use the same non-uniform grid, in contrast to the well-known FFT method of
computations of the jump integral. The latter approach first uses one grid to solve
the convective-diffusion part of the PIDE, and then uses another grid to compute
the jump part. Thus, to proceed after the second sweep it needs to re-interpolate
the obtained results to the original finite-difference grid used at the first step.

In all calculations we used Matlab 2009b and represented banded matrices as
sparse. It is known, however, that it takes some time from Matlab to analyze
a structure of the sparse matrix in order to apply an efficient LU factorization
algorithm. Thus, performance of our scheme could be further improved, because
we know in advance the exact banded structure of the matrices.

We also want to underline that, as follows from [18], at α > 0 our algorithm
becomes less efficient because at α = 1 we need to do multiple steps to integrate a
pure jump equation. This results in the increase of computational time for one jump
sweep, approximately by factor 60 (from 3.8 sec (parallel case) to 228 sec). There-
fore, this is our goal for the future to improve this result, perhaps by considering
various alternative approaches in this particular case.
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Figure 6. Test 1 with no jumps. Call option price in VR, VL

coordinates, X runs from plot 1 to 6.
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Figure 7. Test 1 with jumps. Call option price in X,VR coordi-
nates, VL runs from plot 1 to 6.
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Figure 8. Test 1 with jumps. Call option price in X,VL coordi-
nates, VR runs from plot 1 to 6.
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Figure 9. Test 1 with jumps. Call option price in VR, VL coordi-
nates, X runs from plot 1 to 6.
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Figure 10. Test 2 with no jumps. Call option price in VR, VL

coordinates, X runs from plot 1 to 6.
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Figure 11. Test 2 with jumps. Call option price in X,VR coor-
dinates, VL runs from plot 1 to 6.
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Figure 12. Test 2 with jumps. Call option price in X,VL coor-
dinates, VR runs from plot 1 to 6.
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Figure 13. Test 2 with jumps. Call option price in VR, VL coor-
dinates, X runs from plot 1 to 6.
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Figure 14. Test 3 with no jumps. Call option price in VR, VL

coordinates, X runs from plot 1 to 6.
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Figure 15. Test 3 with jumps. Call option price in X,VR coor-
dinates, VL runs from plot 1 to 6.
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Figure 16. Test 3 with jumps. Call option price in X,VL coor-
dinates, VR runs from plot 1 to 6.
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Figure 17. Test 3 with jumps. Call option price in VR, VL coor-
dinates, X runs from plot 1 to 6.
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