BENZO[H]-1,6-NAPHTHYRIDINE SYNTHESIS VIA INTRA-

MOLECULAR DIELS-ALDER REACTIONS OF ARYL OXAZOLES: SYNTHETIC APPROACH TO 2-BROMOLEPTOCLINIDINONE ${ }^{1}$

Michael E. Jung* and Susan M. K. Dansereau ${ }^{2}$
Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90024, USA

Abstract

A new route for the synthesis of benzo[h]-1,6-naphthyridines is described. The method involves the intramolecular Diels-Alder cycloaddition of aryl oxazoles with substituted acrylamides to give pyridines and was developed as a route to the antileukemic aromatic alkaloid 2-bromoleptoclinidinone.

In 1987 Bloor and Schmitz published the structure of a novel brominated pentacyclic aromatic alkaloid 2-bromo-leptoclinidinone (1). ${ }^{3}$ This compound, isolated from an ascidian, showed good cytotoxicity vs. PS ($\mathrm{ED}_{50} 0.4 \mu \mathrm{~g} / \mathrm{ml}$). Because of its unusual structure and good biological activity, we began a program in 1988 aimed at the total synthesis of $\mathbf{1}$ and its analogues. However, in 1988, Kobayashi and coworkers isolated a closely related antileukemic alkaloid, ascididemnin, from a marine tunicate and determined its structure to be 2. ${ }^{4}$ The appearance of this new report prompted Schmitz to reexamine the structural assignment and in 1989, a structural revision was published indicating $\mathbf{3}$ as the correct structure for 2-bromoleptoclinidinone. ${ }^{5}$ We wish to report here the full details of our approach to the synthesis of the original structure of 2-bromoleptoclinidinone (1), a route which involves the intramolecular Diels-Alder cycloaddition of aryl oxazoles to give benzo[h]-1,6naphthyridines.

1

$2 \mathrm{X}=\mathrm{H}$
$3 \mathrm{X}=\mathrm{Br}$

A retrosynthetic analysis applied to $\mathbf{1}$ indicates that the required pentacyclic aromatic system could be easily
assembled from the simple aromatic $\mathbf{8}$ by two successive intramolecular Diels-Alder reactions of oxazoles with activated alkenes. Thus conversion of $\mathbf{8}$ into the β-carbomethoxyacrylamide (7) followed by cycloaddition would afford the tricyclic aromatic benzo[h]-1,6-naphthyridine (6). Conversion of the amide to the chloroimine (5) and then to the oxazole enone (4) would set the stage for a final intramolecular Diels-Alder reaction to produce 2-bromoleptoclinidinone (1). Diels-Alder reactions of oxazoles and activated alkenes to give pyridines are well-known, ${ }^{6}$ having first been studied in the 1950s by Kondrat'eva. ${ }^{7}$ The yields in intermolecular cycloadditions are not always high. ${ }^{8}$ The intramolecular version of this process has been used recently by Weinreb and Levin as the key high-yielding step in a synthesis of eupolauramine. ${ }^{9}$ Thus it seemed reasonable that the two related intra-molecular Diels-Alder reactions of aryl oxazoles with activated alkenes, e.g., $\mathbf{7} \rightarrow \mathbf{6}$ and $\mathbf{4} \boldsymbol{\mathbf { 1 }}$, would allow us to efficiently prepare $\mathbf{1}$.

We decided to first examine the synthetic route on the simpler des-bromo system to prepare leptoclinidinone. Therefore the amine (10) was prepared from 2-nitrobenzaldehyde (9) in three steps ${ }^{10}$ and acylated with acryloyl chloride (11) to give the amide (12) in good yield. The first attempts at cyclization of $\mathbf{1 2}$ under standard conditions, ${ }^{9}$ e.g., heating for an extended period in o-dichlorobenzene (o-DCB) in the presence of diazabicyclo-
nonene (DBN), were unsuccessful, returning only starting material and the deacylated amine. A more reactive dienophile was then attached by acylation of the amine (10) with the ester acid chloride (13) ${ }^{11}$ to give the amide (14) in high yield. Again thermolysis of $\mathbf{1 4}$ in the presence of base did not produce any desired product. It is likely that compounds (12) and (14) exist predominately in a conformation which allows an internal hydrogen

$12 \mathrm{R}=\mathrm{H}$
$14 \mathrm{R}=\mathrm{COOMe}$
bond between the amide NH and the oxazole nitrogen, which would cause the intramolecular Diels-Alder reaction to be slower than expected. The proton ortho to the amide in $\mathbf{1 2}$ and $\mathbf{1 4}$ (and in the N-benzoyl analogue 15) resonates at very low field (8.83 to 8.99) compared to the analogous proton in the N-benzyl analogues (16) and (17), which resonates 2 ppm higher (presumably due to a 90° rotation about the aryl- N bond). We therefore decided to investigate the use of these N -alkylamides in the cycloaddition.

δ
$12 \mathrm{R}=\mathrm{CH}=\mathrm{CH}_{2}$
8.86
$14 \mathrm{R}=(E)-\mathrm{CH}=\mathrm{CH}-\mathrm{COOMe} 8.83$
$15 \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}$
8.99
$16 \mathrm{R}=\mathrm{CH}=\mathrm{CH}_{2}$
$17 \mathrm{R}=(E)-\mathrm{CH}=\mathrm{CH}-\mathrm{COOMe} 6.80$

Acylation of the amine (10) with benzoyl chloride afforded in excellent yield the amide (15), which was
reduced to the benzylamine (18). Acylation with acryloyl chloride gave the N-benzylacrylamide (16). In like fashion the ester amide (17) was prepared from $\mathbf{1 8}$ and $\mathbf{1 3}$ in good yield. Although heating the simple acrylamide (16) gave very little cycloadduct, warming of the ester amide (17) in benzene for 18 h with 0.75 eq. of DMAP afforded the desired tricycle (19) in 50% purified yield. Thus this procedure is a useful route to benzo[h]-1,6-naphthyridine systems.

15

18
$11 \mathrm{R}=\mathrm{H}$
89\%
$16 \mathrm{R}=\mathrm{H}$
13 R = COOMe 89\%
$17 \mathrm{R}=\mathrm{COOMe}$

19
At this time Levin published the results of his study of the effects of europium salts on intramolecular oxazole Diels-Alder reactions. ${ }^{12}$ We therefore heated the amide (17) in o-dichlorobenzene at $75^{\circ} \mathrm{C}$ for 9 h in the presence of 6 mole $\% \mathrm{Eu}(\mathrm{hfc})_{3}$ and obtained the desired tricycle (19) in 87% yield. These reaction conditions worked equally well on the secondary amide. Thus heating the amide (14) in deoxygenated o-dichlorobenzene at reflux for 18 h in the presence of 6 mole $\% \mathrm{Eu}(\text { fod })_{3}$ afforded the desired benzo[$h \mathrm{]}-1,6$-naphthyridine (20) in 85% yield as yellow crystals. This unsubstituted lactam was then easily converted into the desired chloroimine
(21) in 95% yield by refluxing it with $\mathrm{PCl}_{5} / \mathrm{POCl}_{3}$. All that was left to complete the synthesis of leptoclinidinone was to

convert the aryl chloride to an enone and the aryl ester to a 2-oxazolyl unit and carry out the final Diels-Alder cycloaddition.

Concurrent with this work, the preparation of the required bromo compound was under way. The known 4-bromo-2-nitrotoluene ${ }^{13}$ (22) was brominated to give the bromomethyl compound (23) in 50% yield along with 36% recovered starting material. Oxidation to the aldehyde (24) was effected with DMSO and mild base. Condensation of the aldehyde (24) with aminoacetaldehyde diethyl acetal gave the imine (25) in 92% yield. Final oxidative cyclization of $\mathbf{2 5}$ by heating with sulfuric acid and $\mathrm{P}_{2} \mathrm{O}_{5}$ gave the desired oxazole (26) in an up optimized yield of 14%. At this point, the structural revision of 2-bromoleptoclinidinone (3) ${ }^{5}$ appeared and all further work on the incorrect structure (1) was terminated.

We have shown the utility of intramolecular Diels-Alder reactions of aryloxazoles with carbomethoxyacrylamides as a method for the high-yielding preparation of benzo[h]-1,6-naphthyridine systems.

EXPERIMENTAL

${ }^{1} \mathrm{H}$ Nmr were recorded on a Bruker AF-200 spectrometer, operating at 200.132 MHz , a Bruker AM-360 spectro-meter, operating at 360.134 MHz or a AM-500 spectrometer, operating at 500.132 MHz , and are so noted. ${ }^{13} \mathrm{C} \mathrm{Nmr}$ spectra were also recorded on the AF-200, AM-360 and AM-500, operating at $50.323,90.556$ and 125.760 MHz , respectively, and are so noted. Infrared spectra were recorded on a Perkin-Elmer 1310 spectrophotometer or a Perkin-Elmer series 1500 FTIR. Melting points were obtained on a Fischer-Johns melting point apparatus and are uncorrected. High and low resolution mass spectra were recorded on a double focusing instrument (AEI model MS-902). Gas chromatography analysis were performed using a HewlettPackard 5790A series gas chromatograph with a SE-30 crosslinked methyl silicone gum column (12 mx 0.2 mm x 0.33 mm film thickness). Microanalyses were conducted by Spang Microanalytical Laboratory, Eagle Harbor, Michigan. ${ }^{1} \mathrm{H} \mathrm{Nmr}$ and ${ }^{13} \mathrm{C} \mathrm{nmr}$ data are reported in $\mathrm{ppm}(\delta)$ downfield from tetramethylsilane. The following abbreviations are used: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad . Second order spectra in which couplings cannot be obtained by inspection are reported as multiplets and the line spacings are given in Hertz (Hz). Ir data are reported in wave numbers $\left(\mathrm{cm}^{-1}\right)$. The following abbreviations are used to indicate qualitative intensities: vs $=$ very strong, $\mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=\mathrm{weak}, \mathrm{br}=\mathrm{broad}$. All significant bands are reported. Thin layer chromatography was performed using Merck silica gel $60 \mathrm{~F}_{254} 0.2$ mm plates. Visualization was accomplished using ultraviolet light or ceric sulfate (1.5 g) and ammonium molybdate (1.0 g) in 10% aqueous sulfuric acid (100 ml). Flash chromatography was carried out according to
the method of Still, et al. ${ }^{14}$ Solvent systems are reported as either volume:volume mixtures or volume percent mixture. Concentration in vacuo or at reduced pressure refers to removal of solvent by use of a Büchi rotary evaporator with a heated water bath under water aspirator pressure, except for o-dichlorobenzene which was removed under vacuum pump pressure. All inorganic solutions are aqueous and concentrations are indicated in percent weight, except brine (saturated sodium chloride) and saturated ammonium chloride. The following solvents and reagents were distilled from the indicated agent under dry nitrogen: tetrahydrofuran (THF) and ether from sodium benzophenone ketyl; methylene chloride, hexamethylphosphoramide (HMPA) and diisopropylethylamine from calcium hydride, methanol and ethanol from magnesium turnings. Dimethyl sulfoxide (DMSO) was distilled from calcium hydride under reduced pressure and dried over $4 \AA ̊$ molecular sieves. All other reagents were purified by literature procedures.

2-[2-(N-Acryloylamino)phenyl]oxazole (12). To a solution of the amine ${ }^{10}(\mathbf{1 0})(170 \mathrm{mg}, 1.06 \mathrm{mmol})$ in ether $(10 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$ was added diisopropylethylamine ($155 \mathrm{mg}, 1.2 \mathrm{~mol}$). After 15 min , acryloyl chloride (11) $(100 \mathrm{mg}, 1.1 \mathrm{mmol})$ was added dropwise. After stirring 1.5 h at $-78^{\circ} \mathrm{C}$, the solution was warmed to room temperature. A white precipitate formed and after 2 h the reaction mixture was filtered through Celite. A pale yellow solid was obtained upon evaporation of the solvent. Purification of crude $\mathbf{1 2}$ by flash chromatography using 25% ether in hexanes as the eluent afforded $141 \mathrm{mg}(62 \%)$ of $\mathbf{1 2}$ as white needles, $\mathrm{mp} 101-103^{\circ} \mathrm{C} .360$ $\mathrm{MHz}{ }^{1} \mathrm{H} \operatorname{Nmr}\left(\mathrm{CDCl}_{3}\right) \delta: 8.86(1 \mathrm{H}, \mathrm{dd}, J=0.8,8.4 \mathrm{~Hz}), 7.97(1 \mathrm{H}, \mathrm{dd}, J=1.5,7.9 \mathrm{~Hz}), 7.69(1 \mathrm{H}, \mathrm{d}, J=1.0$ $\mathrm{Hz}), 7.43(1 \mathrm{H}, \mathrm{m}), 7.26(1 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}), 7.12(1 \mathrm{H}, \mathrm{m}), 6.47(2 \mathrm{H}, \mathrm{m}), 5.79(1 \mathrm{H}, \mathrm{dd}, J=1.6,9.8 \mathrm{~Hz}) .90 \mathrm{MHz}$ ${ }^{13} \mathrm{C} \mathrm{Nmr}\left(\mathrm{CDCl}_{3}\right) \delta: 164.18,160.69,137.63,137.50,132.50,131.40,127.07,126.88,126.85,122.88,120.17$, 113.33. Ir (CDCl_{3}): 3235 (m), 3110 (m), 3000 (m), 1675 (s), 1590 (vs), 1430 (s) cm^{-1}. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 67.28; H, 4.70. Found: C, 67.09; H, 4.61.

Methyl \boldsymbol{E})-4-[(2-[2-oxazolyl]phenyl)amino]-4-oxo-2-butenoate (14). To the oxazole (10) (1.41 g, 8.81 $\mathrm{mmol})$ in ether $(100 \mathrm{ml})$ at room temperature was added diisopropylethylamine $(2.27 \mathrm{~g}, 17.6 \mathrm{mmol})$. The solution was cooled to $-78^{\circ} \mathrm{C}$ and acid chloride ${ }^{11} \mathbf{1 3}(1.45 \mathrm{~g}, 9.69 \mathrm{mmol})$ was added dropwise. The reaction was warmed to room temperature after 30 min and stirred for 18 h . Water (100 ml) was added, the organic layer was separated and the aqueous phase was extracted with methylene chloride ($3 \times 75 \mathrm{ml}$). The combined organic layers were dried over MgSO_{4}, filtered and absorbed onto silica gel (9 g). Flash chromatography using 25% ether in hexanes as the eluent afforded $1.88 \mathrm{~g}(78 \%)$ of compound 14 as a pale yellow solid, $\mathrm{mp} 152-153^{\circ}$ C. $200 \mathrm{MHz}{ }^{1} \mathrm{H} \mathrm{Nmr}\left(\mathrm{CDCl}_{3}\right) \delta: 12.25(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 8.83(1 \mathrm{H}, \mathrm{dd}, J=0.9,8.6 \mathrm{~Hz}), 8.00(1 \mathrm{H}, \mathrm{dd}, J=1.5,7.9$
$\mathrm{Hz}), 7.73(1 \mathrm{H}, \mathrm{s}), 7.46(1 \mathrm{H}, \mathrm{ddd}, J=1.5,7.7,8.6 \mathrm{~Hz}), 7.32(1 \mathrm{H}, \mathrm{s}), 7.19(1 \mathrm{H}, \mathrm{d}, J=15.3 \mathrm{~Hz}), 7.18(1 \mathrm{H}, \mathrm{ddd}, J=$ $0.9,7.7,7.9 \mathrm{~Hz}), 6.98(1 \mathrm{H}, \mathrm{d}, J=15.3 \mathrm{~Hz}), 3.85(3 \mathrm{H}, \mathrm{s}) .50 \mathrm{MHz}{ }^{13} \mathrm{C} \mathrm{Nmr}\left(\mathrm{CDCl}_{3}\right) \delta: 166.02,162.16,160.68$, $138.01,137.90,137.12,131.62,130.44,127.35,127.05,123.73,120.50,113.75,52.25 . \operatorname{Ir}\left(\mathrm{CDCl}_{3}\right): 1720(\mathrm{~s})$, 1680 (s), 1610 (s), 1595 (s), 1310 (vs) cm ${ }^{-1}$. HRms (m / z): 272.0775, calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4} 272.0798$.

2-[2-(N-Benzoylamino)phenyl]oxazole (15). To the oxazole (10) (1.17 g, 7.3 mmol) in THF (20 ml) at room temperature was added diisopropylethylamine ($2.23 \mathrm{~g}, 17.2 \mathrm{mmol}$). The solution was cooled to $-78^{\circ} \mathrm{C}$ and benzoyl chloride ($1.13 \mathrm{~g}, 8.0 \mathrm{mmol}$) was added slowly. The reaction was warmed to room temperature after 20 min and stirred for 18 h . Water (100 ml) was added, the reaction mixture was extracted with ethyl acetate (3 x 25 ml) and the organic layers were dried over MgSO_{4}. Evaporation of the solvent under reduced pressure afforded $1.85 \mathrm{~g}(96 \%)$ of the amide 15 as fine yellow crystals. The amide was used without further purification in subsequent transfor-mations. A small portion was purified for high resolution mass spectroscopy by flash chromatography using 30% ether in hexanes as the eluent to give a white solid, mp $150-152^{\circ} \mathrm{C} .200 \mathrm{MHz}{ }^{1} \mathrm{H}$ $\mathrm{Nmr}\left(\mathrm{CDCl}_{3}\right) \delta: 12.53(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 8.99(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 8.16(1 \mathrm{H}, \mathrm{dd}, J=1.8,5.3 \mathrm{~Hz}), 8.14(1 \mathrm{H}, \mathrm{s}), 8.04$ $(1 \mathrm{H}, \mathrm{m}), 7.70(1 \mathrm{H}, \mathrm{s}), 7.53(5 \mathrm{H}, \mathrm{m}), 7.16(1 \mathrm{H}, \mathrm{m}) .50 \mathrm{MHz}{ }^{13} \mathrm{C} \mathrm{Nmr}\left(\mathrm{CDCl}_{3}\right)$ 8: 166.06, 161.04, 138.01, 137.83, 135.20, 131.79, 131.67, 128.68, 127.73, 127.29, 127.17, 123.00, 120.42, 113.76. Ir (CDCl_{3}): 1678 (w), 1619 (m), 1592 (s), 1542 (s), 1500 (m), 1314 (s) cm ${ }^{-1}$. HRms (m / z): 264.0880, calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$ 264.0900.

2-[2-(N-Benzylamino)phenyl]oxazole (18). The amide (15) ($1.72 \mathrm{~g}, 6.5 \mathrm{mmol}$) in THF (100 ml) was added dropwise to a mixture of lithium aluminum hydride ($990 \mathrm{mg}, 26 \mathrm{mmol}$) in THF (100 ml) at room temperature. After stirring for 5 h , the reaction mixture was quenched by the addition of water $(1 \mathrm{ml})$, then 15% aqueous sodium hydroxide (1 ml), followed by water (3 ml). The organic layer was separated and the aqueous phase was extracted with ethyl acetate. The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. Purification of crude $\mathbf{1 8}$ by flash chromatography using 20% ether in hexanes as the eluent afforded $758 \mathrm{mg}(47 \%)$ of the amine as a colorless oil. $200 \mathrm{MHz}{ }^{1} \mathrm{H} \mathrm{Nmr}\left(\mathrm{CDCl}_{3}\right) \delta: 8.55(1 \mathrm{H}, \mathrm{br}, \mathrm{NH})$, $7.90(1 \mathrm{H}, \mathrm{m}), 7.61(1 \mathrm{H}, \mathrm{s}), 7.46-7.17(7 \mathrm{H}, \mathrm{m}), 6.83(2 \mathrm{H}, \mathrm{m}), 4.53(2 \mathrm{H}, \mathrm{d}, J=5.7 \mathrm{~Hz}) .50 \mathrm{MHz}{ }^{13} \mathrm{C} \mathrm{Nmr}$ $\left(\mathrm{CDCl}_{3}\right) \delta: 162.02,146.78,139.30,136.57,131.50,128.55,127.68,127.05,126.96,126.91,115.34,111.26$, 109.32, 47.07. Ir (CDCl_{3}): 3300 (s$), 3000(\mathrm{~m}), 1605(\mathrm{~s}), 1585(\mathrm{~s}), 1325(\mathrm{~m}) \mathrm{cm}^{-1} . \mathrm{HRms}(\mathrm{m} / \mathrm{z}): 250.1099$, calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O} 250.1107$.

2-[2-(Phenylmethyl[acryloyl]amino)phenyl]oxazole (16). To a solution of the amine (18) (34 mg, 0.13
mmol) and diisopropylethylamine ($42 \mathrm{mg}, 0.32 \mathrm{mmol}$) in ether (5 ml) at $-78^{\circ} \mathrm{C}$ was added acryloyl chloride (11) ($15 \mathrm{mg}, 0.16 \mathrm{mmol}$) dropwise. After stirring for one hour at $-78^{\circ} \mathrm{C}$ the reaction mixture was stirred for 18 h at room temperature. The reaction was quenched by the addition of water. The organic layer was separated and the aqueous phase extracted with methylene chloride ($3 \times 15 \mathrm{ml}$). The combined organic layers were washed with brine ($3 \times 15 \mathrm{ml}$), dried over MgSO_{4} and concentrated in vacuo. Purification of the crude residue by flash chromatography using 50% ether in hexanes afforded 35 mg (89%) of $\mathbf{1 6}$ as a colorless viscous oil. $200 \mathrm{MHz}{ }^{1} \mathrm{H} \mathrm{Nmr}\left(\mathrm{CDCl}_{3}\right) \delta: 8.13(1 \mathrm{H}, \mathrm{dd}, J=1.8,7.7 \mathrm{~Hz}), 7.70(1 \mathrm{H}, \mathrm{s}), 7.46(1 \mathrm{H}, \mathrm{ddd}, J=1.3,7.7,9.0 \mathrm{~Hz})$, $7.35(1 \mathrm{H}, \mathrm{ddd}, J=1.8,7.8,9.0 \mathrm{~Hz}), 7.24(1 \mathrm{H}, \mathrm{s}), 7.20(5 \mathrm{H}, \mathrm{m}), 6.87(1 \mathrm{H}, \mathrm{dd}, J=1.3,7.8 \mathrm{~Hz}), 6.37(1 \mathrm{H}, \mathrm{dd}, J=$ $2.0,16.7 \mathrm{~Hz}), 5.93(1 \mathrm{H}, \mathrm{dd}, J=10.2,16.7 \mathrm{~Hz}), 5.63(1 \mathrm{H}, \mathrm{d}, J=14.4 \mathrm{~Hz}), 5.45(1 \mathrm{H}, \mathrm{dd}, J=2.0,10.2 \mathrm{~Hz}), 4.12$ $(1 \mathrm{H}, \mathrm{d}, J=14.4 \mathrm{~Hz}) .90 \mathrm{MHz}{ }^{13} \mathrm{C} \mathrm{Nmr}\left(\mathrm{CDCl}_{3}\right) \delta: 165.60,159.12,139.21,138.88,136.90,131.31,130.84$, $129.98,129.13,128.63,128.56,128.28,128.15,127.82,127.26,125.79,52.64 . \operatorname{Ir}\left(\mathrm{CDCl}_{3}\right): 2980(\mathrm{~s}), 1640(\mathrm{~s})$, 1600 (s), 1410 (s), 1250 (br), 1200 (br) cm^{-1}. HRms (m / z): 304.1201, calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$ 304.1213.

Methyl (\boldsymbol{E})-4-[phenylmethyl-(2-[2-oxazolyl]phenyl)amino]-4-oxo-2-butenoate (17). To a solution of the oxazole (18) ($800 \mathrm{mg}, 3.2 \mathrm{mmol}$) in ether $(50 \mathrm{ml})$ at room temperature was added triethylamine $(810 \mathrm{mg}, 8.0$ mmol). The solution was cooled to $-78^{\circ} \mathrm{C}$ and acid chloride $13(522 \mathrm{mg}, 3.52 \mathrm{mmol})$ was added dropwise. The solution was warmed to room temperature after 30 min and stirred for 18 h . Water $(75 \mathrm{ml})$ was added, the organic layer separated and the aqueous phase extracted with methylene chloride ($3 \times 50 \mathrm{ml}$). The combined organic layers were dried over MgSO_{4}, filtered and absorbed onto silica gel (4g). Flash chromatography using 50% ether in hexanes afforded $1.06 \mathrm{~g}(89 \%)$ of $\mathbf{1 7}$ as a poorly melting white solid. $200 \mathrm{MHz}{ }^{1} \mathrm{H} \mathrm{Nmr}\left(\mathrm{CDCl}_{3}\right)$ ס: $8.05(1 \mathrm{H}, \mathrm{dd}, J=1.6,7.8 \mathrm{~Hz}), 7.62(1 \mathrm{H}, \mathrm{d}, J=0.6 \mathrm{~Hz}), 7.41(1 \mathrm{H}, \mathrm{m}), 7.28(1 \mathrm{H}, \mathrm{m}), 7.11(6 \mathrm{H}, \mathrm{m}), 6.81(1 \mathrm{H}$, $\mathrm{d}, J=15.3 \mathrm{~Hz}), 6.80(1 \mathrm{H}, \mathrm{m}), 665(1 \mathrm{H}, \mathrm{d}, J=15.3 \mathrm{~Hz}), 5.45(1 \mathrm{H}, \mathrm{d}, J=14.2 \mathrm{~Hz}), 4.12(1 \mathrm{H}, \mathrm{d}, J=14.2 \mathrm{~Hz}), 3$ $58(3 \mathrm{H}, \mathrm{s}) .90 \mathrm{MHz}{ }^{13} \mathrm{C} \mathrm{Nmr}\left(\mathrm{CDCl}_{3} /\right.$ acetone- $\left.\mathrm{d}_{6}\right) \delta: 164.67,163.00,157.80,144.63,143.24,141.72,139.64$, $136.48,136.21,135.45,135.00,134.32,134.22,1333.88,133.30,132.52,130.83,51.95,50.77$. Ir ($\left.\mathrm{CDCl}_{3}\right)$: $3000(\mathrm{~m}), 1725(\mathrm{~s}), 1650(\mathrm{vs}), 1625(\mathrm{~m}), 1165(\mathrm{br}) \mathrm{cm}^{-1}$. HRms (m/z): 362.1297, calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$ 362.1267.

Methyl 5-oxo-6-phenylmethylbenzo[$\boldsymbol{h}]$-1,6-naphthyridine-4-carboxylate (19). The oxazole (17) (40 mg, 0.11 mmol) and 4-dimethylaminopyridine ($10 \mathrm{mg}, 0.08 \mathrm{mmol}$) were heated to reflux in benzene (11 ml) for 3 days. Benzene was removed under reduced pressure. Purification of the crude residue by flash chromatography using 50% ether in hexanes afforded $17 \mathrm{mg}(50 \%)$ of Diels-Alder adduct (19) as white needles, $\mathrm{mp} 160^{\circ} \mathrm{C} .360$
$\mathrm{MHz}{ }^{1} \mathrm{H} \mathrm{Nmr}\left(\mathrm{CDCl}_{3}\right) \delta: 9.04(1 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 8.91(1 \mathrm{H}, \mathrm{dd}, J=1.5,8.0 \mathrm{~Hz}), 7.50(1 \mathrm{H}, \mathrm{m}), 7.43(1 \mathrm{H}, \mathrm{d}, J$ $=4.6 \mathrm{~Hz}), 7.35(1 \mathrm{H}, \mathrm{m}), 7.25(6 \mathrm{H}, \mathrm{m}), 5.61(2 \mathrm{H}, \mathrm{s}), 4.03(3 \mathrm{H}, \mathrm{s}) .90 \mathrm{MHz}{ }^{13} \mathrm{C} \mathrm{Nmr}^{\left(\mathrm{CDCl}_{3}\right)} \delta: 168.82,160.25$, $153.69,151.00,143.15,138.30,135.69,131.69,128.71,127.23,122.34,125.51,122.99,120.45,120.17$, 116.61, 115.38, 53.10, 46.24. Ir (CDCl_{3}): $1730(\mathrm{~m}), 1650(\mathrm{~s}), 1260(\mathrm{~s}) \mathrm{cm}^{-1} . \mathrm{HRms}(\mathrm{m} / \mathrm{z}): 344.1137$, calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$ 344.1162. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 73.24; H, 4.68. Found: C, 73.03; H, 4.79.

Methyl ($\mathbf{6 H}$)-5-oxobenzo[$\boldsymbol{h}]$-1,6-naphthyridine-4-carboxylate (20). The oxazole (14) ($1.02 \mathrm{~g}, 3.74 \mathrm{mmol}$) was heated to reflux in o-dichlorobenzene $(125 \mathrm{ml})$ with $\mathrm{Eu}(\mathrm{fod})_{3}(233 \mathrm{mg}, 0.22 \mathrm{mmol})$ for 18 h . The solvent was removed under reduced pressure. Purification of the crude residue by flash chromatography using 50% ether in hexanes afforded $682 \mathrm{mg}(85 \%)$ of Diels Alder adduct (20) as yellow crystals, mp 217-220 ${ }^{\circ}$ C. 200 $\mathrm{MHz}{ }^{1} \mathrm{H} \operatorname{Nmr}\left(\mathrm{CDCl}_{3}\right) \delta: 11.44(1 \mathrm{H}, \mathrm{br}), 8.65(1 \mathrm{H}, \mathrm{d}, J=4.7 \mathrm{~Hz}), 8.22(1 \mathrm{H}, \mathrm{dd}, J=1.2,7.9 \mathrm{~Hz}), 7.15(1 \mathrm{H}, \mathrm{m})$, $7.12(1 \mathrm{H}, \mathrm{d}, J=4.7 \mathrm{~Hz}), 7.00(1 \mathrm{H}, \mathrm{m}), 6.86(1 \mathrm{H}, \mathrm{m}), 3.45(3 \mathrm{H}, \mathrm{s}) .90 \mathrm{MHz}{ }^{13} \mathrm{C} \mathrm{Nmr}$ (methanol- $\left.\mathrm{d}_{4} / \mathrm{DMSO}-\mathrm{d}_{6}\right)$ $\delta: 169.77,161.32,155.48,153.11,144.13,139.27,132.97,125.96,124.07,121.75,120.18,118.39,117.24$, 53.67. Ir $\left(\mathrm{CDCl}_{3}\right): 1730(\mathrm{~m}), 1670(\mathrm{vs}), 1280(\mathrm{~m}) \mathrm{cm}^{-1}$. HRms (m / z): 254.0689, calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}$ 254.0692. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 66.14; H, 3.96. Found: C, $65.85 ; \mathrm{H}, 3.97$.

Methyl 5-chlorobenzo[\boldsymbol{h}]-1,6-naphthyridine-4-carboxylate (21). The lactam (20) (51 mg, 0.20 mmol) and phosphorous pentachloride ($58 \mathrm{mg}, 0.28 \mathrm{mmol}$) were heated to reflux in phosphorous oxychloride $(0.35 \mathrm{ml}$, 3.75 mmol) for 4 h . Excess phosphorous oxychloride was removed under reduced pressure and then the reaction was quenched by the careful addition of 10% aqueous ammonium hydroxide. The reaction mixture was extracted with ethyl acetate ($3 \times 20 \mathrm{ml}$). The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. Purification of the crude residue by flash chromatography using 20% ethyl acetate in methylene chloride afforded 52 mg (95%) of chloro imidate (21) as a white powder, $\mathrm{mp} 134^{\circ} \mathrm{C} .200 \mathrm{MHz}{ }^{1} \mathrm{H}$ $\mathrm{Nmr}\left(\mathrm{CDCl}_{3}\right) \delta: 9.18(1 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}), 9.05(1 \mathrm{H}, \mathrm{dd}, J=1.5,8.0 \mathrm{~Hz}), 8.07(1 \mathrm{H}, \mathrm{dd}, J=1.1,8.2 \mathrm{~Hz}), 7.85$ $(1 \mathrm{H}, \mathrm{m}), 7.75(1 \mathrm{H}, \mathrm{m}), 7.60(1 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}), 4.07(3 \mathrm{H}, \mathrm{s}) .50 \mathrm{MHz}{ }^{13} \mathrm{C} \mathrm{Nmr}\left(\mathrm{CDCl}_{3}\right) \delta: 168.13,153.09$, $150.74,146.75,144.88,140.33,131.53,128.38,128.27,124.60,124.50,121.71,116.06,53.56$. Ir $\left(\mathrm{CDCl}_{3}\right)$: 2950 (m), 1730 (vs), 1575 (vs), 1290 (vs), 1165 (s) cm^{-1}. HRms (m / z): 272.0358, calcd for $\mathrm{C}_{14} \mathrm{H}_{9}{ }^{35} \mathrm{ClN}_{2} \mathrm{O}_{2}$ 272.0354. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}$: C, 61.66; H, 3.33. Found: C, 61.77; H, 3.39.

4-Bromo-1-bromomethyl-2-nitrobenzene (23). To a solution of 4-bromo-2-nitrotoluene ${ }^{13}$ (22) ($3.91 \mathrm{~g}, 18.11$ mmol) in carbon tetrachloride (280 ml) was added N-bromosuccinimide ($3.22 \mathrm{~g}, 18.11 \mathrm{mmol}$). The reaction was initiated by an ultraviolet sunlamp. After stirring 48 h , the reaction mixture was filtered and concentrated
in vacuo. The crude reaction mixture was purified by chromatography using 10% methylene chloride in hexanes as the eluent. This afforded $2.70 \mathrm{~g}(50 \%)$ of 23 as pale yellow crystals, $\mathrm{mp} 76^{\circ} \mathrm{C}$, and $1.41 \mathrm{~g}(36 \%)$ of recovered starting material (22). Compound (23): $200 \mathrm{MHz}{ }^{1} \mathrm{H} \mathrm{Nmr}_{\left(\mathrm{CDCl}_{3}\right)} \delta: 8.31(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 7.85$ $(1 \mathrm{H}, \mathrm{dd}, J=2.0,8.3 \mathrm{~Hz}), 7.57(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 4.90(2 \mathrm{H}, \mathrm{s}) . \operatorname{Ir}(\mathrm{neat}): 3091(\mathrm{w}), 1534(\mathrm{vs}), 1345(\mathrm{~s}) \mathrm{cm}^{-1}$. HRms (m / z): 292.8693, calcd for $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{2}{ }^{79} \mathrm{Br} 292.8686$.

4-Bromo-2-nitrobenzaldehyde (24). To a solution of 23 ($296 \mathrm{mg}, 1.00 \mathrm{mmol}$) in dry DMSO (50 ml) was added anhydrous sodium bicarbonate ($504 \mathrm{mg}, 6.00 \mathrm{mmol}$). The reaction mixture was heated at $80^{\circ} \mathrm{C}$ for 12 h . Water (100 ml) was added to the reaction and the mixture was extracted with methylene chloride ($3 \times 75 \mathrm{ml}$). The combined organic layers were dried over MgSO_{4}, filtered and concentrated. Flash chromatography using 25% methylene chloride in hexanes as the eluent afforded $145 \mathrm{mg}(68 \%)$ of aldehyde (24) as a pale yellow solid, mp 96-98 ${ }^{\circ}$ C. $200 \mathrm{MHz}{ }^{1} \mathrm{H} \operatorname{Nmr}\left(\mathrm{CDCl}_{3}\right) \delta: 10.51(1 \mathrm{H}, \mathrm{s}), 8.39(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 8.04(1 \mathrm{H}, \mathrm{dd}, J=$ $1.5,8.2 \mathrm{~Hz}$), $7.97\left(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}\right.$). Ir (neat): $3104(\mathrm{w}), 1716(\mathrm{~s}), 1534(\mathrm{vs}), 1347(\mathrm{~s}) \mathrm{cm}^{-1} . \mathrm{HRms}(\mathrm{m} / \mathrm{z})$: 230.9631, calcd for $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{3}{ }^{81} \mathrm{Br} 230.9354$.
(4-Bromo-2-nitrobenzalamino)acetaldehyde diethyl acetal (25). 4-Bromo-2-nitrobenzaldehyde (24) (80 mg, 0.37 mmol) and aminoacetaldehyde diethyl acetal ($50 \mathrm{mg}, 0.37 \mathrm{mmol}$) were heated to $110-120^{\circ} \mathrm{C}$ in o dichlorobenzene (2 ml) in the presence of $4 \AA$ molecular sieves for 24 h . Evaporation of o-dichlorobenzene afforded the benzalaminoacetaldehyde (25) in a 92% yield as a dark yellow oil. $200 \mathrm{MHz}{ }^{1} \mathrm{H} \mathrm{Nmr}\left(\mathrm{CDCl}_{3}\right) \delta$: $8.64(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 8.15(1 \mathrm{H}, \mathrm{d}, J=1.9 \mathrm{~Hz}), 7.96(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.78(1 \mathrm{H}, \mathrm{dd}, J=1.9,8.4 \mathrm{~Hz}), 4.83(1 \mathrm{H}, \mathrm{dd}, J$ $=2.3,5.3 \mathrm{~Hz}), 3.84(2 \mathrm{H}, \mathrm{dd}, J=1.0,5.3 \mathrm{~Hz}), 3.70(2 \mathrm{H}, \mathrm{dq}, J=2.3,7.0 \mathrm{~Hz}), 3.60(2 \mathrm{H}, \mathrm{dq}, J=2.3,7.0 \mathrm{~Hz}), 1.22$ $(6 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}) .50 \mathrm{MHz}{ }^{13} \mathrm{C} \mathrm{Nmr}\left(\mathrm{CDCl}_{3}\right) \delta: 158.11,149.09,136.41,131.05,129.81,127.17,124.36$, 101.40, 64.14, 62.28, 15.29. Ir (neat): 2965 (m), 1639 (w), 1535 (vs), 1349 (s), 1128 (s), 1093 (s), 1064 (s) cm^{-} 1. HRms (m / z): 299.0051, calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{79} \mathrm{Br}\left(\mathrm{M}^{+}-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ 299.0032.

2-(4-Bromo-2-nitrophenyl)oxazole (26). Sulfuric acid (4.8 ml) in a 3-neck flask fitted with a mechanical stirrer and a thermometer was cooled in an ice-salt bath. To this was added the benzalaminoacetaldehyde (25) $(958 \mathrm{mg}, 2.75 \mathrm{mmol})$ at such a rate that the reaction temperature did not exceed $5^{\circ} \mathrm{C}$. After stirring 5 min , the cold acid solution was added to phosphorous pentoxide $(1.46 \mathrm{~g}, 10.31 \mathrm{mmol})$ and sulfuric acid $(0.5 \mathrm{ml})$ at 180° C. The hot molten mixture was stirred vigorously with a mechanical stirrer for 20 min then poured into crushed ice (100 ml). The aqueous solution was extracted with ethyl acetate ($2 \times 100 \mathrm{ml}$) and then methylene chloride $(1 \times 100 \mathrm{ml})$. The combined organic layers were dried, filtered and concentrated in vacuo. Purification by flash
chromatography using 50% ether in hexanes afforded 105 mg (14\%) of the oxazole (26). $200 \mathrm{MHz}^{1} \mathrm{H} \mathrm{Nmr}$ $\left(\mathrm{CDCl}_{3}\right)$ 8: $7.89(2 \mathrm{H}, \mathrm{m}), 7.78(1 \mathrm{H}, \mathrm{m}), 7.75(1 \mathrm{H}, \mathrm{s}), 7.29(1 \mathrm{H}, \mathrm{s})$. Ir (neat): $3125(\mathrm{w}), 1550(\mathrm{vs}), 1375(\mathrm{~s}), 925$ (m), 844 (m), 769 (m)
cm^{-1}. HRms (m / z): 269.9455, calcd for $\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{81} \mathrm{Br} 269.9463$.

ACKNOWLEDGEMENT

We thank the National Institutes of Health (GM-31349) and the University of California Cancer Research Coordinating Committee for financial support.

REFERENCES AND NOTES

1. Taken in part from the Ph. D. dissertation of Susan M. Kaas, UCLA, 1989.
2. Current address: Proctor and Gamble Pharmaceuticals, Cincinnati, OH.
3. S. J. Bloor and F. J. Schmitz, J. Am. Chem. Soc., 1987, 109, 6134.
4. J. Kobayashi, J. Cheng, H. Nakamura, Y. Ohizumi, Y. Hirata, T. Sasaki, T. Ohta, and S. Nozoe, Tetrahedron Lett.,1988, 29, 1177.
5. F. S. de Guzman and F. J. Schmitz, Tetrahedron Lett., 1989, 30, 1069.
6. For reviews of Diels - Alder reactions of oxazoles, see: a) M. Y. Karpeiskii and V. L. Florent'ev, Russ. Chem. Rev. (Engl. Transl.) 1969, 38, 540. b) I. J. Turchi and M. J. S. Dewar, Chem. Rev., 1975, 75, 389. c) R. Lakhan and B. Ternai in "Advances in Heterocyclic Chemistry"; A. R. Katritzky and A. J. Boulton, Eds.; Academic Press: New York, 1974; vol. 17. d) I. J. Turchi, Ind. Eng. Chem. Prod. Res. Dev., 1981, 20, 58. e) B. E. Maryanoff, Ch. 5 in Oxazoles I. J. Turchi, Ed., Vol. 45 in "The Chemistry of Heterocyclic Compounds," A. Weissberger and E. C. Taylor, Eds.; Wiley-Interscience, 1986, pp 1005-1009.
7. G. Y. Kondrat'eva, Khim. Nauka. Prom., 1957, 2, 666. G. Y. Kondrat'eva, Izv. Akad. Nauk. SSSR, Ser. Khim., 1959, 488.
8. A. P. Kozikowski and N. M. Hasan, J. Org. Chem., 1977, 42, 2039.
9. J. I. Levin and S. M. Weinreb, J. Org. Chem., 1984, 49, 4325; J. Am. Chem. Soc., 1983, 105, 1397.
10. W. E. Cass, J. Am. Chem. Soc., 1942, 64, 785.
11. a) S. M. Spatz and H. Stone, J. Org. Chem., 1958, 23, 1559. b) K. A. Walker, M. R. Boots, J. F. Stubbins, M. E. Rogers, and C. W. Davis, J. Med. Chem., 1983, 26, 174.
12. J. I. Levin,Tetrahedron Lett., 1989, 30, 2355.
13. a) H. Wichelhaus, B. Lepsius, W. Marckwald, C. A. v. Martius, F. Mylius, and A. Stock, Ber., 1918, 51, 19. b) T. Kosuge, H. Ishida, A. Inaba, and H. Nukaya, Chem. Pharm. Bull., 1985, 33, 1414.
14. W. C. Still, M. Kahn, and A. Mitra, J. Org. Chem., 1978, 43, 2923.
