Complete Diastereocontrol in Intramolecular 1,3-Dipolar Cycloadditions of 2-Substituted 5-Hexenyl and 5-Heptenyl Nitrones: Application to the Synthesis of the β-Lactam Antibiotic 1/-Methylthienamycin

Michael E. J ung*,1 and Binh T. Vu
Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569

Received December 22, 1995^{*}

Abstract

The diastereoselectivity of intramolecular 1,3-dipolar cycloadditions of 2-substituted 5-hexenyl and 5-heptenyl nitrones to give 6-substituted and 3,6-disubstituted perhydrocyclopenta[c]isoxazoles has been investigated. An alkyl or aryl substituent at C2 completely controls the stereochemistry of thering juncture and, in the case of the 5-heptenyl systems, also the stereochemistry of the 3-methyl group. Thus one stereocenter controls the formation of the other three to give a product with four contiguous stereocenters. The use of an ethylene ketal substituent in these systems allows the reaction to be carried out at much lower temperatures, an example of the gem-dialkoxy effect. This cycloaddition process has been used in an efficient formal total synthesis of the potent β-lactam antibiotic, 1β-methylthienamycin.

Introduction

The development of thienamycin, ${ }^{2}$ a potent broad spectrum β-Iactam antibiotic isolated from Streptomyces catteleya, as a clinical drug candidate was unsuccessful because of its instability at high concentration and susceptibility to renal dehydropeptidasel (DHP-I). Then, in 1984, Shih and co-workers at Merck ${ }^{3}$ reported that the presence of a β-methyl group at the C1 position of the carbapenem skel eton, namely, 1β-methylthienamycin 1, increased the chemical stability of thienamycin, prevented it from being readily metabolized by DHP-I enzyme, while retaining the antibacterial activity of thienamycin.

Since then, several approaches for the stereoselective synthesis of $\mathbf{1}$ have been reported. ${ }^{4}$ Nearly every synthesis proceeds through the key intermediate $\mathbf{2}$ of the original synthesis reported by Shih et al. ${ }^{3}$ Common synthetic approaches to $\mathbf{2}$ involve an aldol-type condensation of 4-acetoxy-2-azetidinone $\mathbf{3}$ with various kinds of

[^0]enolates. ${ }^{5}$ In our recent study of substituent effects on intramolecular dipolar cycloadditions of 3-substituted 5-hexenyl nitrile oxides, we observed good diastereoselectivity when C3 was monosubstituted. ${ }^{6}$ When the nitrile oxide derived from the oximes 4 underwent intramolecular dipolar cycloaddition, it gave mainly the endo diastereomer 5 rather than the exo one $\mathbf{5}^{\prime}$ in agreement with calculated transition structures for these reactions. ${ }^{7}$ The size of the diastereoselectivity is in good agreement with the relative size of the substituents (Ph $>\mathrm{Me}>\mathrm{COOMe}) .{ }^{8}$

We have further investigated the diastereosel ectivity of such 1,3-dipolar cycloadditions when C2 is monosubstituted and have utilized our findings in an efficient synthesis of the key intermediate $\mathbf{2}$ for the synthesis of 1β-methylthienamycin 1. The recent report of Kang and Lee 9 of the synthesis of 2 via the intramolecular 1,3dipolar cycloaddition of a 2-substituted 5-heptenyl nitrone prompts us to report the results of our study, which culminated in a formal total synthesis of 1β-methylthienamycin 1.
(4) (a) Yamamoto, Y.; Tsukada, T.; Shimada, T.; Gyoung, Y. S.; Asao, N. J . Org. Chem. 1995, 60, 143. (b) Yamamoto, Y.; Tsukada, T.; Asao, Naoki, A. Bull. Chem. Soc. J pn. 1995, 68, 2102. (c) Nakai, T.; Shirai, F. Chem. Lett. 1989, 445. (d) I hara, M.; Masanobu, T.; Fukumoto, K.; K ametami, T. J . Chem. Soc., Perkin Trans. 1 1989, 2215. (e) Kawabata, T.; Kimura, Y.; Ito, Y.; Terashima, S.; Sasaki, A.; Sunagawa, M. Tetrahedron Lett. 1988, 44, 1988. (f) Hatanaka, M. Tetrahedron Lett. 1987, 28, 83. (g) Shibasaki, M.; I imori, T. Tetrahedron Lett. 1986, 27, 2149.

Results and Discussion

We examined the cyclizations of the 2-substituted nitrones prepared from the corresponding alcohols 6 by Swern oxidation ${ }^{10}$ followed by condensation with N benzylhydroxylamine ${ }^{11}$ in the presence of anhydrous potassium carbonate. We prepared the alcohols 6a and $\mathbf{6 c}$ by alkylation of the lithium enolate of methyl phenylacetate with 4-bromo-1-butene (or 5-bromo-2-pentene ${ }^{12}$) followed by reduction with lithium aluminum hydride (LAH). Alkylation of dimethyl methylmalonate with 4-bromo-1-butene (or 5-bromo-2-pentene), followed by decarboalkoxylation using Krapcho's procedure ${ }^{13}$ and reduction with LAH, furnished the alcohols $\mathbf{6 b}$ and $\mathbf{6 d}$. Heating the nitrones derived from the alcohols 6a-d in toluene at $\sim 100^{\circ} \mathrm{C}$ for 12 h gave the bicyclic compounds 7a-d in good yields as single diastereomers. ${ }^{14}$ Thus the C2 stereochemistry completely controls the stereochemistry of the other three centers in the cyclization process. This complete diastereocontrol in the formation of four contiguous stereocenters of the bicyclic isoxazolidine led us to use this process as the key step in the synthesis of 2.

We also studied the cyclization of the nitrile oxides generated from the 2-substituted 5-hexenal oximes, but the observed diastereoselectivity was not as good as with the nitrones. Treatment of the oxime 8 with N -chlorosuccinimide and triethylamine in chloroform gave a mixture of diastereomers 9 and 9 (81:19 ratio, favoring the exo isomer) via the nitrile oxide. ${ }^{15}$ Presumably the larger bulk of the nitrone with its N -alkyl substituent causes one of the two diastereomeric transition states to
(5) (a) Maslerz, H.; Menard, M. J. Org. Chem. 1994, 59, 3223. (b) Hirai, K.; I wano, Y.; Mikoshiba, I.; Koyama, H.; Nishi, T. Heterocycles 1994, 38, 277. (c) Uyero, S.; Itani, H. Tetrahedron Lett. 1994, 35, 4377. (d) Choi, W. B.; Churchill, H. R. O.; Lynch, J. E.; Thompson, A. S.; Humprey, G. R.; Volante, R. P.; Reider, P. J.; Shinkai, I. Tetrahedron Lett. 1994, 35, 2275. (e) Miura, T.; Murayama, T.; Yoshida, A.; K obayashi, T. Tetrahedron Lett. 1994, 35, 2271. (f) Ito, Y.; Sasaki, A.; Tamoto, K.; Sunagawa, M.; Tereshima, S. Tetrahedron 1991, 47, 2801. (g) Ueyo, S.; Itani, H. Tetrahedron Lett. 1991, 32, 2143. (h) Noyori, R.; Hsiao, Y.; Kitamura, M. Tetrahedron Lett. 1990, 31, 549. (i) Shirai, F.; Nakai, T. J. Org. Chem. 1987, 52, 5492. (j) Fuentes, L. M.; Shinkai, I.; King, A.; Purick, R.; Reamer, R. A.; Schmitt, S. M.; Cama, L.; Christensen, B. G. J. Org. Chem. 1987, 52, 2563. (k) Deziel, R.; Favreau, D. Tetrahedron Lett. 1986, 27, 5687. (I) Fuentes, L. M.; Shinkai, I.; Salzmann, T. N. J. Am. Chem. Soc. 1986, 108, 4675. (m) Sugimura, Y.; Shibata, T.; Iino, K.; Tanaka, T.; Hashimoto, T.; K ameyama, Y. Tetrahedron Lett. 1985, 26, 4739.
(6) J ung, M. E.; Vu, B. T. Tetrahedron Lett. 1996, 37, 451.
(7) (a) Brown, F. K.; Raimondi, L.; Wu, Y.-D.; Houk, K. N. Tetrahedron Lett. 1992, 33, 4405. (b) Houk, K. N.; Raimondi, L. Private communication.
(8) For example, the conformational free energy differences for these three groups in the axial vs equatorial position on a cyclohexane (A values) are (kcal/mol): $\mathrm{CO}_{2} \mathrm{Me}, 1.3 ; \mathrm{Me}, 1.7 ; \mathrm{Ph}, 2.7$. In addition, we have carried out calculations of the transition structures and energies for these nitrile oxide cycloadditions and they are in good agreement with the experimental results. The calculated ratios of 5:5' are as follows: $\mathrm{CO}_{2} \mathrm{Me}, 77: 23$; $\mathrm{Me}, 84: 16 ; \mathrm{Ph}, 90: 10$. Heitkamp, H. J. Ph.D. Thesis, UCLA, 1995.
(9) Kang, S. H.; Lee, H. S. Tetrahedron Lett. 1995, 36, 6713.
(10) (a) Swern, D.; Omura, K. Tetrahedron 1978, 34, 1651. (b) Swern, D.; Mancuso, A. J . Synthesis 1981, 165.
(11) Both N-benzyl- and N-(p-methoxybenzyl)hydroxylamine were prepared according the literature procedure: J encks, W. P.; Maskill, H. J. Am. Chem. Soc. 1987, 109, 2062.
(12) (E)-5-Bromo-2-pentene was prepared according to the literature procedure: J ulia, M.; J ulia, S.; Tchen, S. Y. Bull. Soc. Chim. Fr. 1961, 1849. It contains $\sim 7 \%$ of the cis isomer which was carried through to 7c and 7d.
(13) Krapcho, A. P.; Weismaster, J . F.; Eldridge, J . M.; J ahngen, E. G. E., J r.; Lovey, A. J.; Stephens, W. P. J. Org. Chem. 1978, 43, 138. (14) The relative stereochemistry of 7b, 7d, and 14a was proven by NOESY experiments. The methyl group (not next to the oxygen, at the 6-position in the 1H-cyclopent[c]isoxazole numbering) was shown to be syn to the ring juncture hydrogens by NOESY, while the structures of $\mathbf{7 a}$ and $\mathbf{7 c}$ were assigned by analogy to $\mathbf{7 b}$ and $\mathbf{7 d}$.

be much more stable than the other while this effect is less pronounced in the less sterically demanding nitrile oxide.

The bicyclic compound 7d has the four contiguous stereocenters needed for the construction of $\mathbf{2}$ but needs to have the bond between C4 and C5 replaced by carbonyl groups and the $\mathrm{N}-\mathrm{O}$ bond reductively cleaved. In order to introduce functionality in the molecule to carry out the eventual oxidative cleavage of the C4-C5 bond, we decided to utilize an ethylene ketal at C4 since it should not change the diastereocontrol observed in formation of 7. Moreover, previous studies in our group indicated that the gem-dial koxy group greatly facilitates cyclization of small-membered rings. ${ }^{16}$ Thus our synthetic approach to $\mathbf{2}$ would involve the formation of the bicyclic compound 14 by intramolecular 1,3-dipolar cycloaddition of the nitrone 19 (Scheme 1). This bicyclic isoxazolidine ketal could then be taken on by either of two routes. In route A, the $\mathrm{N}-\mathrm{O}$ bond of the isoxazole ring would be cleaved first to give the alcohol and amine functional groups. With these two groups protected, the ethylene ketal would then be removed with subsequent ozonolysis of the corresponding silyl enol ether and construction of the β-lactam ring. In route B , the ethylene ketal would be removed first with the alcohol and amine functional groups remaining masked until the cleavage of the silyl enol ether to give the carboxylic acid moiety; reduction and cyclization would then afford the desired β-Iactam.
We began the synthesis of $\mathbf{2}$ with the addition of the dianion generated from 3-chloro-2-methyl-1-propanol to crotonaldehyde to give the diol 10 in $\mathbf{7 4 \%}$ yield, using the procedure of Seebach. ${ }^{17}$ Normant et al. ${ }^{18}$ also re-

[^1]
Scheme 1

ported a similar procedure using Grignard reagents. Both enantiomers of 3-chloro-2-methyl-1-propanol are commercial available or readily prepared from ethyl 3-hy-droxy-2-methylpropionate. ${ }^{17}$ The allylicalcohol of diol 10 was selectively oxidized by activated manganese oxide to the enone 11, and the primary alcohol was protected as the benzoate to give $\mathbf{1 2}$ in $\mathbf{7 4} \%$ yield for the two steps. Ketalization with ethylene glycol and saponification gave the alcohol 13. ${ }^{19}$ Swern oxidation of the alcohol to the aldehyde and heating the aldehyde in toluene at 60-70 ${ }^{\circ} \mathrm{C}$ with N -benzylhydroxylamine and anhydrous potassium carbonate for 10 h gave the desired diastereomer 14a in 84% yield as a single diastereomer (Scheme 2). Thus, as expected, the ketal did not affect the diastereocontrol and only the desired diastereomer was obtained. Moreover, the cyclization could be carried out under much milder conditions than that of 6, presumably due to the gem-dialkoxy effect.

With 14a in hand, we examined route A first (Scheme 3). The isoxazolidine was hydrogenated over Pd on activated carbon in ethanol to give the amino al cohol 15 in 93% yield. Hydrogenation in other solvents, such as ethyl acetate or benzene, failed to give 15. The alcohol was then protected as a bulky silyl ether and the amine protected with the phenylfluorenyl group. ${ }^{20}$ Rapoport reported that the phenylfluorenyl protecting group can be used as a steric pocket that shields the hydrogen on the α-carbon of amino acid derivatives. ${ }^{20}$ In addition, the phenylfluorenyl group is much more stable to solvolysis than the trityl group. ${ }^{21}$ However, several efforts at

[^2]

Scheme 3

selective removal of the ketal protecting group failed. ${ }^{22}$ For this reason, we abandoned this approach to 1β methylthienamycin.

Since the first approach (route A) failed, we decided to keep the amine and al cohol functional groups masked as the isoxazolidine ring until the later steps (route B, see Scheme 4). After several failed attempts to remove the ethylene ketal of 14a under mild conditions such as p -TsOH or pyridinium p-toluenesulfonate (PPTS) in acetone, we were able to obtain 18a in 72% yield by heating 14a with $50 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ in methanol for 4 h . Presumably the presence of the basic nitrogen in 14 requires the formation of a dicationic species in order to remove the ketal to give the ketone 18, and thus strongly acidic conditions are necessary.

In order to allow greater possibilities for deprotection of the amine functionality later in the synthetic scheme, we also prepared the corresponding N-p-methoxybenzyl derivative. Thus reaction of the aldehyde derived by Swern oxidation of $\mathbf{1 3}$ with N-[(4-methoxyphenyl)methyl]hydroxylamine ${ }^{11}$ in toluene with potassium carbonate at $90^{\circ} \mathrm{C}$ for 4 h afforded the desired bicyclic isoxazolidine ketal 14b in 83% yield, again as a single diastereomer. Acidic hydrolysis of $\mathbf{1 4 b}$ under the conditions described above for 14a furnished the ketone 18b in 82% yield. Comparison of the spectroscopic data of our sample of 18b with that kindly provided by Professor Kang showed them to be identical. Since Kang and Lee reported the

[^3] 1895.
(22) In one case, with the amino being protected by the benzoyl group, only 31% of the desired ketone was obtained in $\mathrm{p}-\mathrm{TsOH}$ and aqueous acetone conditions.
(23) Compound $\mathbf{6 b}$ was prepared according to the literature procedure: Beckwith, A. L. J.; Easton, C. J.; Lawrence, T.; Serelis, A. K. Aust. J. Chem. 1983, 36, 345.
(24) Attenburrow, J.; Cameron, A. F. B.; Chapman, J. H.; Evans, R. M.; Hems, B. A.; J ansen, A. B. A.; Walker, T. J . Chem. Soc. 1952, 1094.

Scheme 4

synthesis of 2 in eight steps from 18b, we have thus completed a formal total synthesis of both 2 and the β-Iactam antibiotic 1β-methylthienamycin 1.

Conclusion

Thus we have observed remarkable diastereocontrol in intramolecular 1,3-dipolar cycloadditions of 2-substituted 5-hexenyl and 5-heptenyl nitrones in which only one diastereomer of the 6-substituted and 3,6-disubstituted perhydrocyclopenta[c]isoxazoles is isolated. An alkyl or aryl substituent at C2 completely controls the stereochemistry of both the ring juncture and the 3-substituent, and thus one stereocenter controls the formation of the other three to give a product with four contiguous stereocenters. We have also observed a gem-dialkoxy effect in the cyclization of an analogous ethylene ketal. Finally this cycloaddition process has been used as the key step in an efficient formal total synthesis of the potent β-Iactam antibiotic, 1β-methylthienamycin. Further work in the area of substituent effects-gem dialkyl, dialkoxy, dicarbalkoxy, etc.-is currently underway in our laboratory and will be described in due course.

Experimental Section

General. All reactions were carried out under argon with the exclusion of moisture. Reagents were purchased from Fisher Scientific Co. and Aldrich Chemical Co. and were used without further purification unless otherwise specified. The following solvents and reagents were distilled from the indicated agent under argon: tetrahydrofuran (THF) and diethyl ether from sodium benzophenone ketyl, methylene chloride, benzene, and toluene from calcium hydride, and triethylamine from potassium hydroxide. Flash column chromatography was carried out in the indicated solvent system (in the percentage of volume) on 230-400 mesh silica gel. Analytical thin layer chromatography was done on Merck silica gel $\mathrm{F}_{254} 0.2 \mathrm{~mm}$ precoated plates.

2-Phenyl-5-hexen-1-ol (6a). To the solution of diisopropylamine ($0.721 \mathrm{~mL}, 5.5 \mathrm{mmol}$) in 40 mL of THF at $-78^{\circ} \mathrm{C}$ was added n -butyllithium (5.5 mmol). After 15 min , methyl phenylacetate ($0.719 \mathrm{~mL}, 5.0 \mathrm{mmol}$) was added. Stirring was continued for another 15 min , and then 4-bromo-1-butene ($0.533 \mathrm{~mL}, 5.25 \mathrm{mmol}$) was added dropwise. After 1 h , the reaction was worked up with diethyl ether and saturated brine solution. Flash column chromatography (silica gel, 3-5\% EtOAc-hexane) of the crude residue gave methyl 2-phenyl-5-hexenoate ($547.1 \mathrm{mg}, 54 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $7.29(5 \mathrm{H}, \mathrm{m}), 5.78(2 \mathrm{H}, \mathrm{m}), 5.01(2 \mathrm{H}, \mathrm{m}), 3.65(3 \mathrm{H}, \mathrm{s}), 3.58$ $(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}), 2.19(1 \mathrm{H}, \mathrm{m}), 2.01(2 \mathrm{H}, \mathrm{m}), 1.88(1 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 174.30,138.80,137.4,128.50$, $127.90,127.20,115.30,51.90,50.60,33.40,31.40$; IR (neat) 3065, 2952, 1736, 1641, 1255, 1163.

The solution of methyl 2-phenyl-5-hexenoate $(517.1 \mathrm{mg}$, 2.531 mmol) and LAH ($115.3 \mathrm{mg}, 3.037 \mathrm{mmol}$) in 30 mL of diethyl ether was refluxed for 3 h to give $\mathbf{6 a}$ ($379.2 \mathrm{mg}, 85 \%$) after chromatography (silica gel, 20\% EtOAc-hexane): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.38(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}), 7.30(1 \mathrm{H}$, $\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 7.27(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}), 5.83(1 \mathrm{H}, \mathrm{m}), 5.01$ $(2 \mathrm{H}, \mathrm{m}), 3.79(2 \mathrm{H}, \mathrm{m}), 2.86(1 \mathrm{H}, \mathrm{m}), 2.02(2 \mathrm{H}, \mathrm{m}), 1.85(1 \mathrm{H}$, $\mathrm{m}), 1.75(1 \mathrm{H}, \mathrm{m}), 1.41(1 \mathrm{H}, \mathrm{bt}, \mathrm{J}=5.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{3}, ~$ $125 \mathrm{MHz}) \delta 141.91,138.22,128.58,128.00,126.70,114.67$,
67.36, 47.88, 31.25, 31.03; IR (neat) 3359, 3063, 3029, 2928, 1640, 1057, 1032.

2-Methyl-5-hexen-1-ol (6b): ${ }^{21}{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ $\delta 5.86(1 \mathrm{H}, \mathrm{m}), 5.02(2 \mathrm{H}, \mathrm{m}), 3.55(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.5,5.8 \mathrm{~Hz})$, $3.54(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.5,5.8 \mathrm{~Hz}), 2.14(2 \mathrm{H}, \mathrm{m}), 1.64(1 \mathrm{H}, \mathrm{m})$, $1.56(1 \mathrm{H}, \mathrm{m}), 1.51(1 \mathrm{H}, \mathrm{m}), 1.25(1 \mathrm{H}, \mathrm{m}), 0.97(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7$ Hz).
(E)-2-Phenyl-5-hepten-1-ol (6c). To the solution of diisopropylamine ($0.684 \mathrm{~mL}, 5.216 \mathrm{mmol}$) in 50 mL of THF at -78 ${ }^{\circ} \mathrm{C}$ was added n -butyllithium (5.216 mmol). After 15 min , methyl phenylacetate ($0.625 \mathrm{~mL}, 4.346 \mathrm{mmol}$) was added. Stirring was continued for another 15 min , and then 5 -bromo-2-pentene ${ }^{12}$ ($713.6 \mathrm{mg}, 4.781 \mathrm{mmol}$) was added dropwise. After about 2 h , the reaction was worked up with diethyl ether and a saturated brine solution. Flash column chromatography (silica gel, $3-5 \%$ EtOAc-hexane) of the crude residue gave methyl 2-phenyl-5-heptenoate ($503.1 \mathrm{mg}, 53 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.29(5 \mathrm{H}, \mathrm{m}), 5.39(2 \mathrm{H}, \mathrm{m}), 3.65(3 \mathrm{H}, \mathrm{s})$, $3.56(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}), 2.18-1.80(3 \mathrm{H}, \mathrm{m}), 1.64(3 \mathrm{H}, \mathrm{bd}, \mathrm{J}=$ $3.7 \mathrm{~Hz}), 1.35(1 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 174.41$, 138.95, 129.88, 128.48, 127.88, 126.91, 125.88, 64.65, 51.83, 33.05, 30.21, 17.82.

Methyl 2-phenyl-5-heptenoate ($503.1 \mathrm{mg}, 2.304 \mathrm{mmol}$) was stirred with LAH ($96.2 \mathrm{mg}, 2.535 \mathrm{mmol}$) in 30 mL of diethyl ether overnight at room temperature to give $\mathbf{6 c}$ ($310 \mathrm{mg}, 71 \%$) after chromatography (silica gel, 15\% EtOAc-hexane): ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.39-7.25(5 \mathrm{H}, \mathrm{m}), 5.42(2 \mathrm{H}, \mathrm{m})$, $3.78(2 \mathrm{H}, \mathrm{m}), 2.85(1 \mathrm{H}, \mathrm{m}), 1.93(2 \mathrm{H}, \mathrm{m}), 1.79(1 \mathrm{H}, \mathrm{m}), 1.71$ $(1 \mathrm{H}, \mathrm{m}), 1.67(3 \mathrm{H}, \mathrm{bd}, \mathrm{J}=5.3 \mathrm{~Hz}), 1.37(1 \mathrm{H}, \mathrm{bs}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 142.07,130.65,128.54,128.02,126.63$, $125.20,67.40,47.85,31.71,30.03,17.81$; IR (neat) 3358,3028 , 2921, 1603, 1029.
(E)-2-Methyl-5-hepten-1-ol (6d). To the solution of methyl methylmal onate ($1.464 \mathrm{~g}, 10 \mathrm{mmol}$) in 100 mL of THF was added 60% sodium hydride in mineral oil ($440 \mathrm{mg}, 11 \mathrm{mmol}$). After $15 \mathrm{~min}, 5$-bromo-2-pentene ${ }^{12}$ ($1.6396 \mathrm{~g}, 11 \mathrm{mmol}$) was added. The solution was refluxed for 10 h . A saturated $\mathrm{NH}_{4}{ }^{-}$ Cl solution was then added, and the product was extracted with petroleum ether. The ethereal extracts were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. Column chromatography (silica gel, 5\% EtOAc-hexane) of the crude residue gave dimethyl 2-methyl-2-(5-pentenyl)propanedioate ($1.920 \mathrm{~g}, 90 \%$). The solution of dimethyl 2-methyl-2-(5pentenyl) propanedioate ($1.920 \mathrm{~g}, 8.960 \mathrm{mmol}$), lithium chloride $(1.520 \mathrm{~g}, 35.84 \mathrm{mmol})$, and water ($0.160 \mathrm{~mL}, 8.960 \mathrm{mmol}$) in DMSO (20 mL) was refluxed for 2 h . Water was added, and the monoester was extracted with petroleum ether. The ethereal extracts were washed with saturated brine and dried over MgSO_{4}. Chromatography of the crude residue (silica gel, $5 \% \mathrm{EtOAc}$-hexane) gavemethyl 2-methyl-5-heptenoate (1.1256 g, 80\%).

The solution of methyl 2-methyl-5-heptenoate (1.0581 g , 6.772 mmol) and LAH ($257 \mathrm{mg}, 6.772 \mathrm{mmol}$) in $\sim 50 \mathrm{~mL}$ of diethyl ether was refluxed for 2 h to give the al cohol $\mathbf{6 d}$ (801.2 $\mathrm{mg}, 92 \%$) after chromatography (silica gel, 15% EtOAchexane): $\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(CDCl} 3,500 \mathrm{MHz}\right) \delta 5.47(2 \mathrm{H}, \mathrm{m}), 3.55(1 \mathrm{H}$, $\mathrm{dd}, \mathrm{J}=10.5,5.8 \mathrm{~Hz}), 3.46(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.5,6.5 \mathrm{~Hz}), 2.08$ $(1 \mathrm{H}, \mathrm{m}), 2.01(1 \mathrm{H}, \mathrm{m}), 1.68(3 \mathrm{H}, \mathrm{bd}, \mathrm{J}=3.5 \mathrm{~Hz}), 1.67(1 \mathrm{H}, \mathrm{m})$, $1.51(1 \mathrm{H}, \mathrm{m}), 1.41(1 \mathrm{H}, \mathrm{bs}), 1.20(1 \mathrm{H}, \mathrm{m}), 0.96(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$) $\delta 131.28,124.85,68.20,35.14$, 32.94, 29.90, 17.88, 16.45; IR (neat) 3341, 2919, 2857, 1657, 1038.
(3,3a $\alpha, 4,5,6 \beta, 6 \mathrm{a} \alpha$)-Hexahydro-6-phenyl-1-(phenylmeth-yl)-1H-cyclopent[c]isoxazole (7a). Oxalyl chloride ($122 \mu \mathrm{~L}$, 1.402 mmol) was added to a solution of dimethyl sulfoxide (199
$\mu \mathrm{L}, 2.805 \mathrm{mmol})$ in 10 mL of methylene chloride at $-78{ }^{\circ} \mathrm{C}$. After 15 min , a solution of $\mathbf{6 a}$ ($100 \mathrm{mg}, 0.561 \mathrm{mmol}$) in 1 mL of methylene chloride was added dropwise. Stirring was continued for 45 min , and the reaction was quenched with triethylamine ($626 \mu \mathrm{~L}, 4.488 \mathrm{mmol}$). The cooling bath was removed, and the reaction flask was allowed to warm to about $-20{ }^{\circ} \mathrm{C}$. Workup involved addition of $1 \mathrm{M} \mathrm{NaHSO}_{4}$ and extraction with petroleum ether. The organic layers were washed with saturated NaCl solution and dried over MgSO_{4}. Evaporation of solvents gave the crude aldehyde ($98 \mathrm{mg}, 98 \%$) which was used without further purification. To a sol ution of the aldehyde ($98 \mathrm{mg}, 0.556 \mathrm{mmol}$) in 10 mL of toluene were added potassium carbonate ($154.7 \mathrm{mg}, 1.112 \mathrm{mmol}$) and N -benzylhydroxylamine ${ }^{11}(82.2 \mathrm{mg}, 0.667 \mathrm{mmol})$. After the solution was heated at $\sim 100^{\circ} \mathrm{C}$ for 12 h , the solids were then filtered out, and the solvent was removed in vacuo to give an oily residue. ${ }^{1} \mathrm{H}$ NMR of the crude oil shows only one diasteremer. Flash column chromatography (silica gel, 5\% EtOAc-hexane) gave 7a ($127.4 \mathrm{mg}, 82 \%$): ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $400 \mathrm{MHz}) \delta 7.23(10 \mathrm{H}, \mathrm{m}), 4.21(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.6,7.6 \mathrm{~Hz}), 3.98$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.2 \mathrm{~Hz}), 3.78(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.2 \mathrm{~Hz}), 3.67(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=8.6,3.6 \mathrm{~Hz}), 3.55(1 \mathrm{H}, \mathrm{bdd}, \mathrm{J}=8.0,8.0 \mathrm{~Hz}), 3.23(1 \mathrm{H}, \mathrm{m})$, $3.08(1 \mathrm{H}, \mathrm{m}), 2.15(2 \mathrm{H}, \mathrm{m}), 1.77-1.59(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 143.51,137.26,128.85,128.20,128.16$, $127.25,127.08,125.97,78.59,72.40,60.36,50.68,47.70,33.85$, 31.47; IR (neat) 3029, 2951, 2566, 1495, 1030; high-resolution MS (EI, m/z) 279.1620, calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}$ 279.1623.
(3,3a $\alpha, 4,5,6,6,6 a \alpha$)-Hexahydro-6-methyl-1-(phenylmeth-yl)-1H-cyclopent[c]isoxazole (7b). Using the aldehyde from $\mathbf{6 b}(61.2 \mathrm{mg}, 0.545 \mathrm{mmol})$, the procedure used for the formation of $\mathbf{7 a}$ from $\mathbf{6 a}$ was followed to give 7b ($61.7 \mathrm{mg}, 52 \%$) after flash column chromatography (silica gel, 10% EtOAc-hexane): ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.44(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz})$, $7.38(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 7.31(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 4.19(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=8.5,7.9 \mathrm{~Hz}), 4.06(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.9 \mathrm{~Hz}), 3.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $12.9 \mathrm{~Hz}), 3.58(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.5,4.5 \mathrm{~Hz}), 3.11(1 \mathrm{H}, \mathrm{m}), 3.01$ $(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.4,4.6 \mathrm{~Hz}), 1.94(3 \mathrm{H}, \mathrm{m}), 1.52(1 \mathrm{H}, \mathrm{m}), 1.23(1 \mathrm{H}$, $\mathrm{m}), 0.89(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 137.45, 129.08, 128.21, 127.20, 78.88, 72.53, 61.00, 47.02, 39.39, 33.19, 30.50, 18.00; IR (neat) 3063, 2953, 2868, 1455, 1030; high-resol ution MS (EI, m/z) 217.1471, calcd for $\mathrm{C}_{14} \mathrm{H}_{19}$ NO 217.1467.
($3 \alpha, 3 a \beta, 4,5,6 \beta, 6 a \alpha$)-Hexahydro-3-methyl-6-phenyl-1-(phenylmethyl)-1H-cyclopent[c]isoxazole (7c). Using the alcohol $6 \mathbf{c c}(77.7 \mathrm{mg}, 0.408 \mathrm{mmol})$, the procedure used for the formation of 7a from 6a was followed to give 7c ($99.5 \mathrm{mg}, 83 \%$) after flash column chromatography (silica gel, 5% EtOAchexane): ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.41-7.10(10 \mathrm{H}, \mathrm{m})$, $4.06(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.8 \mathrm{~Hz}), 3.97(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.8 \mathrm{~Hz}), 3.87(1 \mathrm{H}$, bdq, J = 6.9, 6.1 Hz), $3.54(1 \mathrm{H}$, dd, J $=8.8,2.0 \mathrm{~Hz}$), $3.08(1 \mathrm{H}$, $\mathrm{m}), 2.78(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=3.3,7.8 \mathrm{~Hz}), 2.41(1 \mathrm{H}, \mathrm{m}), 1.96(1 \mathrm{H}, \mathrm{m})$, $1.85(1 \mathrm{H}, \mathrm{m}), 1.66(1 \mathrm{H}, \mathrm{m}), 1.39(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 143.87,137.50,128.90,128.23,128.10$, 127.29, 127.02, 125.92, 80.11, 79.97, 62.06, 56.28, 49.77, 34.15, 28.30, 18.33; IR (neat) 3029, 2931, 2868, 1496, 1454, 1117; high-resolution MS (EI, m/z) 293.1780, calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}$ 293.1780.
($3 \alpha, 3 a / 3,4,5,6 \alpha, 6 a \beta$)-Hexahydro-3,6-dimethyl-1-(phenyl-methyl)-1H-cyclopent[c]isoxazole (7d). Using the alcohol 6 d ($123.5 \mathrm{mg}, 0.963 \mathrm{mmol}$), the procedure used for the formation of 7a from 6a was followed to give 7d (162.8 mg , 73%) after flash column chromatography (silica gel, 5\% EtOAc-hexane): ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.51(2 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=7.5,1.4 \mathrm{~Hz}), 7.25(2 \mathrm{H}, \mathrm{tt}, \mathrm{J}=7.6,1.4 \mathrm{~Hz}), 7.16(1 \mathrm{H}, \mathrm{tt}, \mathrm{J}$ $=7.4,1.3 \mathrm{~Hz}), 4.09(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.1 \mathrm{~Hz}), 3.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.1$ $\mathrm{Hz}), 3.65(1 \mathrm{H}, \mathrm{bdq}, \mathrm{J}=8.5,6.1 \mathrm{~Hz}), 2.91(1 \mathrm{H}, \mathrm{bd}, \mathrm{J}=8.5 \mathrm{~Hz})$, $2.51(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=1.8,8.5 \mathrm{~Hz}), 2.01(1 \mathrm{H}, \mathrm{m}), 1.74(2 \mathrm{H}, \mathrm{m}), 1.47$ $(1 \mathrm{H}, \mathrm{m}), 1.31(1 \mathrm{H}, \mathrm{m}), 1.27(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz}), 0.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 137.42,129.15$, 128.09, 127.11, 80.74, 79.57, 62.41, 55.00, 37.99, 31.74, 27.19, 18.04, 17.76; IR (neat) 2955, 2869, 1455, 1100; high-resolution MS (EI, m/ z) 231.1624, calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}$ 231.1623.

2-Phenyl-5-hexen-1-al Oximes 8. Oxalyl chloride ($93 \mu \mathrm{~L}$, 1.066 mmol) was added to a solution of dimethyl sulfoxide (151 $\mu \mathrm{L}, 2.133 \mathrm{mmol}$) in 10 mL of methylene chloride at $-78^{\circ} \mathrm{C}$. After 15 min , a solution of $\mathbf{6 a}(75.2 \mathrm{mg}, 0.427 \mathrm{mmol})$ in 1 mL
of methylene chloride was added dropwise. Stirring was continued for 1 h , and the reaction was quenched with triethylamine ($476 \mu \mathrm{~L}, 3.416 \mathrm{mmol}$). The cooling bath was removed, and the reaction flask was allowed to warm to -20 ${ }^{\circ} \mathrm{C}$. Workup invol ved addition of 1 M NaHSO 4 and extraction with petroleum ether. The organic layers were washed with saturated NaCl solution and dried over MgSO_{4}. Evaporation of solvents gave the crude aldehyde ($\sim 74 \mathrm{mg}$) which was used without further purification. The crude aldehyde was dissol ved in 10 mL of pyridine, and hydroxylamine hydrochloride $(44.5 \mathrm{mg}, 0.641 \mathrm{mmol})$ was added. The reaction mixture was stirred overnight ($\sim 12 \mathrm{~h}$) and then worked up with 1 N HCl and diethyl ether. The ethereal extracts were washed with 1 N HCl and brine, dried over MgSO_{4}, and concentrated to give a oily residue. Flash column chromatography (silica gel, 20\% EtOAc-hexane) of the crude residue gave 8 ($66.2 \mathrm{mg}, 82 \%$) as a mixture of Z and E isomers. E-isomer: ${ }^{1} \mathrm{H} N M R\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 8.47(1 \mathrm{H}, \mathrm{bs}), 7.52(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}), 7.34(2 \mathrm{H}$, $\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}), 7.27(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}), 7.22(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.1$ $\mathrm{Hz}), 5.81(1 \mathrm{H}, \mathrm{m}), 5.03(2 \mathrm{H}, \mathrm{m}), 3.53(1 \mathrm{H}, ~ a p p q, \mathrm{~J}=7.1 \mathrm{~Hz})$, $2.03(4 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 154.05,140.38$, $137.67,128.70,127.76,126.79,115.19,45.50,32.43,31.23$; IR (neat) 3262, 3068, 2930, 1642, 1601.
(3a $, 4,5,6$)-Tetrahydro-6-phenyl-3H-cyclopent[c]isoxazole (9). N-Chlorosuccinimide ($22.1 \mathrm{mg}, 0.165 \mathrm{mmol}$) was added to a solution of $\mathbf{8}(31.3 \mathrm{mg}, 0.165 \mathrm{mmol})$ in chloroform $(3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 3 h , triethylamine ($23 \mu \mathrm{l}, 0.165 \mathrm{mmol}$) was added. The reaction was worked up after 12 h with water and methylene chloride. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layers were washed with water, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. ${ }^{1} \mathrm{H}$ NMR of the crude residue showed a mixture of diastereomers (81:19 ratio). Preparative chromatography (silica gel, 20\%EtOAc-hexane) gave 17.8 mg of 9 and 3.9 mg of 9. Yield: 70%. Compound 9: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ $\delta 7.37(2 \mathrm{H}, \mathrm{bt}, \mathrm{J}=7.4 \mathrm{~Hz}), 7.32(2 \mathrm{H}, \mathrm{bd}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.29(1 \mathrm{H}$, bt, J $=7.2 \mathrm{~Hz}), 4.64(1 \mathrm{H}, \mathrm{m}), 4.04(1 \mathrm{H}, \mathrm{appt}, \mathrm{J}=8.5 \mathrm{~Hz}), 3.95$ $(2 \mathrm{H}, \mathrm{m}), 2.90(1 \mathrm{H}, \mathrm{m}), 2.35(1 \mathrm{H}, \mathrm{m}), 2.22(1 \mathrm{H}, \mathrm{m}), 1.65(1 \mathrm{H}$, $\mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 173.08, 140.52, 128.63, 126.83, 126.71, 74.73, 55.61, 39.45, 38.56, 28.13; IR (neat) 2936, 2870, 1603, 1497, 1269; high-resolution MS (EI, m/ z) 187.1004, calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}$ 187.0997. Compound 9: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $400 \mathrm{MHz}) \delta 7.20-7.15(5 \mathrm{H}, \mathrm{m}), 4.61(1 \mathrm{H}, \mathrm{m}), 4.00-3.90(3 \mathrm{H}$, $\mathrm{m}), 2.70(1 \mathrm{H}, \mathrm{m}), 2.33(1 \mathrm{H}, \mathrm{m}), 2.18(1 \mathrm{H}, \mathrm{m}), 1.76(1 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 173.50,139.98,128.52,127.80$, 126.89, $75.34,54.77,40.46,37.79,29.59$.
(E)-2-Methyl-5-heptene-1,4-diol (10). n-Butyllithium (10 mmol) was added to a solution of 3-chloro-3-methyl-1-propanol ($1.0858 \mathrm{~g}, 10 \mathrm{mmol}$) in 10 mL of THF at $-78^{\circ} \mathrm{C}$ under argon. After 15 min , a solution of lithium naphthalenide (prepared by stirring 173.4 mg of lithium and 3.2 g of naphthalene in 50 mL of THF overnight) was added via cannula. The reaction mixture was then stirred at $-78^{\circ} \mathrm{C}$ for $6-8 \mathrm{~h}$. Crotonal dehyde ($0.830 \mathrm{~mL}, 10 \mathrm{mmol}$) was then added dropwise. After an additional 2 h at $-78^{\circ} \mathrm{C}$, the cooling bath was removed, and the reaction mixture was allowed to warm up to room temperature. After the solution was stirred at room temperature overnight, the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the product was extracted with diethyl ether. The ethereal extracts were washed with brine, dried over MgSO_{4}, and evaporated in vacuo. Flash column chromatography (silica gel, 50-60\% EtOAc-hexane) of the cruderesidue gave 1.0713 g of the diol 10 as a $\sim 1: 1$ mixture of diastereomers. Yield: 74\%. 10: ${ }^{1} \mathrm{H}$ NMR of one diastereomer $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta 5.64(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15.2,6.3 \mathrm{~Hz}), 5.47(1 \mathrm{H}, \mathrm{dm}, \mathrm{J}=15.2$ $\mathrm{Hz}), 4.18(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.0,6.2 \mathrm{~Hz}), 3.5(4 \mathrm{H}, \mathrm{m}), 1.81(1 \mathrm{H}, \mathrm{m})$, $1.67(3 \mathrm{H}, \mathrm{m}), 1.52(2 \mathrm{H}, \mathrm{m}), 0.90(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 133.85,126.42,70.37,67.81,41.66,31.97$, 17.56, 17.12; IR (neat) 3334, 2919, 1675, 1040; high-resolution MS (EI, m/z) $143.1069(\mathrm{M}-\mathrm{H})^{+}$, calcd for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{O}_{2}$ 143.1072.
(E)-7-Hydroxy-6-methyl-2-hepten-4-one (11). The solution of 10 ($867 \mathrm{mg}, 6.011 \mathrm{mmol}$) and activated manganese dioxide ${ }^{24}$ ($5.229 \mathrm{~g}, 60.108 \mathrm{mmol}$) in 60 mL of methylene chl oride was stirred for 48 h at room temperature. The black solids were filtered out and washed with chloroform. The filtrate was then concentrated in vacuo and chromatographed on silica gel (neutralized with triethylamine, 40\% EtOAc-
hexane) to give the enone 11 ($641.2 \mathrm{mg}, 75 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.87(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=15.8,6.9 \mathrm{~Hz}), 6.12(1 \mathrm{H}$, $\mathrm{dq}, \mathrm{J}=15.8,1.6 \mathrm{~Hz}), 3.53(1 \mathrm{H}, \mathrm{m}), 3.42(1 \mathrm{H}, \mathrm{m}), 2.67(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=16.1,6.6 \mathrm{~Hz}), 2.44(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=16.1,6.6 \mathrm{~Hz}), 2.23(1 \mathrm{H}$, m), $2.20(1 \mathrm{H}, \mathrm{bs}), 1.89(3 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.8,1.7 \mathrm{~Hz}), 0.93(3 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 200.71,143.18$, 132.16, 67.82, 44.13, 32.23, 18.25, 16.98; IR (neat) 3433, 2960, 2934, 2875, 1666, 1632, 1443, 1042; high-resolution MS (EI, $\mathrm{m} / \mathrm{z}) 143.1073(\mathrm{M}-\mathrm{H})^{+}$, calcd for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{O}_{2}$ 143.1072.
(E)-7-(Benzoyloxy)-6-methyl-2-hepten-4-one (12). Tо а solution of $\mathbf{1 1}(568 \mathrm{mg}, 3.994 \mathrm{mmol}$) in 5 mL of methylene chloride and 1 mL of dry pyridine was added benzoyl chloride ($1.0 \mathrm{~mL}, 8.615 \mathrm{mmol}$). After being stirred overnight at room temperature, the reaction mixture was worked up by addition of brine and extraction with petroleum ether. Pyridine was removed by washing the ethereal extracts with diluted HCl . Evaporation of ether gave an oily residue which after chromatography on a short column of silica gel (15% EtOAchexane) gave 12 ($973.2 \mathrm{mg}, 98 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $\delta 8.00(2 \mathrm{H}, \mathrm{bd}, \mathrm{J}=7.1 \mathrm{~Hz}), 7.54(1 \mathrm{H}, \mathrm{bt}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.42$ $(2 \mathrm{H}, \mathrm{bt}, \mathrm{J}=7.4 \mathrm{~Hz}), 6.83(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=15.8,6.8 \mathrm{~Hz}), 6.12(1 \mathrm{H}$, $\mathrm{dq}, \mathrm{J}=15.8,1.5 \mathrm{~Hz}), 4.18(2 \mathrm{H}, \mathrm{m}), 2.70(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15.7,5.6$ $\mathrm{Hz}), 2.57(1 \mathrm{H}, \mathrm{m}), 2.45(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15.7,7.6 \mathrm{~Hz}), 1.85(3 \mathrm{H}$, dd, J $=6.8,1.6 \mathrm{~Hz}$), $1.03(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz})$; ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl} 3$, 100 MHz) δ 198.82, 166.38, 142.84, 132.87, 132.05, 130.11, 129.46, 128.28, 69.03, 43.66, 29.22, 18.14, 17.03; IR (neat) 2967, 1790, 1721, 1698, 1674, 1275, 1113; high-resolution MS (EI, m / z) 247.1329 $(\mathrm{M}+\mathrm{H})^{+}$, cal cd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{3}$ 247.1334.
(E)-7-Hydroxy-6-methyl-2-hepten-4-one Ethylene Ketal (13). To the solution of $\mathbf{1 2}(1.0910 \mathrm{~g}, 4.429 \mathrm{mmol})$ in 40 mL were added ethylene glycol ($1 \mathrm{~mL}, 16 \mathrm{mmol}$) and several crystals of $\mathrm{p}-\mathrm{TsOH}$. The reaction was refluxed for 12 h using a Dean-Stark trap. TLC (10% EtOAc-hexane) showed a mixture of $\mathbf{1 2}$ and the product. A saturated NaHCO_{3} solution was added, and the products were extracted with ether. The organic layers were washed with brine, dried over MgSO_{4}, and concentrated. Flash column chromatography (silica gel, 8-10\% EtOAc-hexane) gave 325.1 mg (30\%) of starting material and 429.9 mg (55% yield) of the ketal: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$) $\delta 8.09(2 \mathrm{H}, \mathrm{bd}, \mathrm{J}=7.1 \mathrm{~Hz}), 7.60(1 \mathrm{H}, \mathrm{bt}, \mathrm{J}=7.1 \mathrm{~Hz}), 7.48$ $(2 \mathrm{H}, \mathrm{bt}, \mathrm{J}=7.5 \mathrm{~Hz}), 5.87(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=15.4,6.6 \mathrm{~Hz}), 5.43(1 \mathrm{H}$, dq, J $=15.4,1.6 \mathrm{~Hz}), 4.34(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.7,5.2 \mathrm{~Hz}), 4.17$ $(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.6,6.9 \mathrm{~Hz}), 3.99-3.89(4 \mathrm{H}, \mathrm{m}), 2.23(1 \mathrm{H}, \mathrm{m})$, $1.94(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14.4,6.0 \mathrm{~Hz}), 1.75(3 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.7,1.7 \mathrm{~Hz})$, $1.70(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14.4,6.4 \mathrm{~Hz}), 1.13(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 166.63,132.75,130.81,130.55$, 129.52, 128.30, 126.81, 108.84, 69.94, 64.30, 64.22, 41.46, 28.59, 18.51, 17.31; IR (neat) 2961, 2886, 1717, 1603, 1452, 1280, 1115, 1028; high-resolution MS (EI, m/z) 291.1587 (M $+\mathrm{H})^{+}$, calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{4} 291.1596$.

The solution of the ketal ($415.6 \mathrm{mg}, 1.432 \mathrm{mmol}$) and 5 mL of $5 \% \mathrm{NaOH}$ in 20 mL of MeOH was stirred at room temperature for 2 h . Workup involved removal of methanol by evaporation in vacuo, addition of water, and extraction with diethyl ether. The ethereal extracts were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. Flash column chromatography (silica gel, 25-30\% EtOAc-hexane) of the residue gave the al cohol $\mathbf{1 3}(240 \mathrm{mg}, 91 \%)$: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 5.80(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=15.4,6.6 \mathrm{~Hz}), 5.37(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=$ $15.4,1.6 \mathrm{~Hz}), 3.99-3.84(4 \mathrm{H}, \mathrm{m}), 3.51(1 \mathrm{H}, \mathrm{bm})$, $3.38(1 \mathrm{H}, \mathrm{bm})$, $2.87(1 \mathrm{H}, \mathrm{m}), 1.89(1 \mathrm{H}, \mathrm{m}), 1.74(2 \mathrm{H}, \mathrm{m}), 1.70(3 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $6.6,1.7 \mathrm{~Hz}), 0.92(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz})$; ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCI}{ }_{3}, 100$ MHz) $\delta 130.38,126.94,108.82,68.43,64.37,63.90,42.87$, $31.13,18.88,17.20$; IR (neat) 3426, 2954, 2886, 11675, 1451, 1201, 1036; high-resolution MS (EI, m/z) 187.1327 (M + H) ${ }^{+}$, calcd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{O}_{3}$ 187.1334.
(3 $\alpha, 3 \mathrm{a} \beta, 5,6 \alpha, 6 \mathrm{a} \beta$)-Hexahydro-3,6-dimethyl-1-(phenyl-methyl)-4H-cyclopent[c]isoxazol-4-one Ethylene Ketal (14a). Oxalyl chloride ($112 \mu \mathrm{~L}, 1.28 \mathrm{mmol}$) was added to a solution of dimethyl sulfoxide ($182 \mu \mathrm{~L}, 2.56 \mathrm{mmol}$) in 6 mL of methylene chloride at $-78^{\circ} \mathrm{C}$. After 15 min , a solution of the alcohol $\mathbf{1 3}$ ($95.3 \mathrm{mg}, 0.512 \mathrm{mmol}$) in 1 mL of methylene chloride was added dropwise. After the solution was stirred at -78 ${ }^{\circ} \mathrm{C}$ for 1 h , triethylamine ($571 \mu \mathrm{~L}, 4.096 \mathrm{mmol}$) was added, and the cooling bath was removed. The reaction was worked up at $-20{ }^{\circ} \mathrm{C}$ with addition of water, and the product was
extracted with diethyl ether. The ethereal extracts were washed with brine, dried over MgSO_{4}, and concentrated to give 94 mg of the crude aldehyde. The aldehyde was dissolved in 10 mL of toluene, and N -benzylhydroxylamine ($75.6 \mathrm{mg}, 0.614$ mmol) and anhydrous potassium carbonate ($141.5 \mathrm{mg}, 1.024$ mmol) were added. The reaction mixture was heated at 60$70^{\circ} \mathrm{C}$ for 10 h . The solids were then filtered out, and toluene was removed in vacuo. Flash column chromatography (silica gel, $10 \% \mathrm{EtOAc}$-hexane) of the crude residue gave 14a (124.5 $\mathrm{mg}, 84 \%)$: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.44(2 \mathrm{H}, \mathrm{bd}, \mathrm{J}=7.4$ $\mathrm{Hz}), 7.36(2 \mathrm{H}, \mathrm{bt}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.30(1 \mathrm{H}, \mathrm{bt}, \mathrm{J}=7.3 \mathrm{~Hz}), 4.16$ $(1 \mathrm{H}, \mathrm{m}), 4.11(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.2 \mathrm{~Hz}), 3.98-3.80(5 \mathrm{H}, \mathrm{m}), 3.07$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 2.52(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=1.2,8.3 \mathrm{~Hz}), 2.38(1 \mathrm{H}$, dd, J = 13.5, 8.1 Hz), $1.81(1 \mathrm{H}, \mathrm{m}), 1.54(1 \mathrm{H}, \mathrm{bd}, \mathrm{J}=13.5 \mathrm{~Hz})$, $1.33(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz}), 0.92(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 137.14,129.15,128.18,127.26,117.06$, 78.89, 75.19, 64.49, 63.98, 62.21, 40.96, 34.51, 19.06, 18.82 (1 carbon not resolved); IR (neat) 2973, 2932, 2874, 1740, 1455, 1341, 1119, 1032; high-resolution MS (EI , m/ z) 289.1667, calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{3}$.
($3 \alpha, 3 a \beta, 5,6 \alpha, 6 a \beta)$-Hexahydro-1-N-(4-methoxybenzyl)-3,6-dimethyl-4H-cyclopent[c]isoxazol-4-one Ethylene Ketal (14b). The alcohol $\mathbf{1 3}$ ($92.3 \mathrm{mg}, 0.495 \mathrm{mmol}$) was oxidized to give 88.5 mg of the corresponding aldehyde using the procedure described for 14a. The aldehyde ($88.5 \mathrm{mg}, 0.480$ mmol) was dissolved in toluene (5 mL), and N -(4-methoxyphenyl)methylhydroxylamine ${ }^{11}(88.2 \mathrm{mg}, 0.576 \mathrm{mmol})$ and potassium carbonate ($132.7 \mathrm{mg}, 0.960 \mathrm{mmol}$) were added. The reaction mixture was heated at $90-100^{\circ} \mathrm{C}$ for 4 h . The solids were then filtered out, and toluene was evaporated in vacuo. Column chromatography (25% EtOAc-hexane) of the crude residue gave 14b ($127.6 \mathrm{mg}, 83 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ $\delta 7.30(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 6.85(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 4.10(1 \mathrm{H}$, m), $4.06(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.9 \mathrm{~Hz}), 3.92(1 \mathrm{H}, \mathrm{m}), 3.85(2 \mathrm{H}, \mathrm{m}), 3.79$ $(3 \mathrm{H}, \mathrm{s}), 3.77(2 \mathrm{H}, \mathrm{m}), 3.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 2.46(1 \mathrm{H}, \mathrm{dt}$, J $=1.2,8.3 \mathrm{~Hz}), 2.32(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.5,8.1 \mathrm{~Hz}), 1.73(1 \mathrm{H}, \mathrm{m})$, $1.45(1 \mathrm{H}, \mathrm{bd}, \mathrm{J}=13.5 \mathrm{~Hz}), 1.28(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz}), 0.86(3 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 158.87,130.45$, 129.10, 117.07, 113.57, 78.71, 75.14, 64.49, 63.98, 62.21, 61.70, 55.19, 40.92, 34.57, 19.03, 18.85; IR (neat) 2969, 2876, 1514, 1341, 1250, 1117, 1034; high-resolution MS (EI, m/ z) 319.1785, calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{4}$ 319.1784.
(\pm)-(2S,3R,4S)-3-Amino-2-((R)-1-hydroxyethyl)-4-methylcyclopentanone Ethylene Ketal (15). The isoxazole 14a ($280.8 \mathrm{mg}, 0.970 \mathrm{mmol}$) was hydrogenated for 12 h in absolute ethyl alcohol (10 mL) over Pd-C under a balloon of hydrogen gas. The black solids were then filtered out and washed with ethyl acetate. Evaporation of solvents in vacuo gave the amino al cohol $\mathbf{1 5}$ ($182.2 \mathrm{mg}, 93 \%$) which is sufficiently pure to be used without further purification: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 4.14$ ($1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=8.1,6.2 \mathrm{~Hz}$), $4.00-3.87(4 \mathrm{H}, \mathrm{m}), 3.12(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $=8.5,4.9 \mathrm{~Hz}), 2.99(3 \mathrm{H}, \mathrm{bs}), 2.18(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.3,8.3 \mathrm{~Hz})$, $2.10(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.2,7.7 \mathrm{~Hz}), 1.82(1 \mathrm{H}, \mathrm{m}), 1.33(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $=13.2,8.9), 1.28(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.2 \mathrm{~Hz}), 1.08(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 116.45,64.38,64.29,63.86$, 59.04, 52.98, 43.04, 41.34, 22.01, 19.30.
(\pm)-(2S,3R,4S)-2-[(R)-1-((tert-Butyldimethylsilyl)oxy)-ethyl]-3-[(9-(9-phenylfluorenyl)amino]-4-methylcyclopentanone Ethylene Ketal (16). To a solution of $\mathbf{1 5}$ (182.2 $\mathrm{mg}, 0.905 \mathrm{mmol}$) in 10 mL of methylene chloride were added triethylamine ($139 \mu \mathrm{~L}, 0.996 \mathrm{mmol}$), tert-butyldimethylsilyl chloride ($150.7 \mathrm{mg}, 0.996 \mathrm{mmol}$), and DMAP ($4.9 \mathrm{mg}, 0.04$ mmol). The reaction mixture was stirred at room temperature for 24 h ; then phenylfluorenyl bromide ${ }^{20}(312 \mathrm{mg}, 1.0 \mathrm{mmol})$, triethylamine ($139 \mu \mathrm{~L}, 0.996 \mathrm{mmol}$), and $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(331.2 \mathrm{mg}$, 1.0 mmol) were added. The reaction mixture was stirred for another 24 h . The reaction was worked up with water and diethyl ether. The organic layers were washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and brine, dried over MgSO_{4}, and evaporated in vacuo to give an oil. Flash column chromatography of the crude residue gave the protected amino alcohol $\mathbf{1 6}(210.9 \mathrm{mg}$, $42 \%):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.71(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz})$, $7.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.50-7.12(11 \mathrm{H}, \mathrm{m}), 4.22(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}$ $=6.1,6.2 \mathrm{~Hz}), 3.82-3.71(3 \mathrm{H}, \mathrm{m}), 3.69(1 \mathrm{H}, \mathrm{bs}), 3.55(1 \mathrm{H}, \mathrm{m})$, $2.52(1 \mathrm{H}, \mathrm{m}), 2.13(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.9,9.9 \mathrm{~Hz}), 1.74(1 \mathrm{H}, \mathrm{m})$, $1.46(1 \mathrm{H}, \mathrm{bt}, \mathrm{J}=5.8 \mathrm{~Hz}), 1.13(1 \mathrm{H}, \mathrm{m}), 1.12(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.2$
$\mathrm{Hz}), 0.81(9 \mathrm{H}, \mathrm{s}), 0.56(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}), 0.08(3 \mathrm{H}, \mathrm{s}), 0.07$ (3H, s); ${ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}, 100 \mathrm{MHz}$) $\delta 150.83,146.10,140.80$, $140.14,127.85,127.80,127.74,127.29,127.27,126.68,126.53$, 126.23, 125.98, 119.62, 119.55, 116.47, 73.02, 68.00, 64.12, 63.07, 62.46, 52.88, 41.68, 35.97, 25.95, 24.67, 19.22, 18.00, $-3.98,-4.33$; high-resolution MS (EI, m/ z) 555.3165, calcd for $\mathrm{C}_{35} \mathrm{H}_{45} \mathrm{NO}_{3} 555.3165$.
($3 \alpha, 3 a \beta, 5,6 \alpha, 6 a \beta$)-Hexahydro-3,6-dimethyl-1-(phenyl-methyl)-4H-cyclopent[c]isoxazol-4-one (18a). The ketal 14a ($190 \mathrm{mg}, 0.6565 \mathrm{mmol}$) was dissolved in 5 mL of methanol, and 2 mL of 50% sulfuric acid was added. The solution was heated at reflux for 4 h and then neutralized with dilute sodium hydroxide. The product was extracted with diethyl ether, washed with saturated solutions of NaHCO_{3} and NaCl , and dried over anhydrous MgSO_{4}. The solvents were then removed in vacuo. Flash column chromatography (15\% EtOAC-hexane) of the residue gave the ketone $\mathbf{1 8 a}$ (116.8 mg , $72 \%)$: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.39(5 \mathrm{H}, \mathrm{m}), 4.07(3 \mathrm{H}$, $\mathrm{m}), 3.27(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}), 2.89(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=18.2,8.0 \mathrm{~Hz})$, $2.79(1 \mathrm{H}, \mathrm{bdd}, \mathrm{J}=7.4,5.8 \mathrm{~Hz}), 2.11(1 \mathrm{H}, \mathrm{m}), 1.98(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $18.2 \mathrm{~Hz}), 1.41(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.13 \mathrm{~Hz}), 1.02(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 217.81,136.90,128.71,128.24$, 127.35, 76.49, 76.05, 61.79, 60.95, 44.06, 30.86, 20.03 (2 C's); IR (neat) 2973, 2930, 2872, 1740, 1456, 1380, 1103; highresolution MS (EI, m/z) 245.1408, calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{2}$ 245.1416.
($3 \alpha, 3 \mathrm{a} \beta, 5,6 \alpha, 6 \mathrm{a} \beta$)-Hexahydro-3,6-dimethyl-1-[(4-meth-oxyphenyl)methyl]-4H-cyclopent[c]isoxazol-4-one (18b). To a solution of $\mathbf{1 4 b}$ ($100 \mathrm{mg}, 0.313 \mathrm{mmol}$) in 4 mL of MeOH were added water (1 mL) and several drops of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$. The reaction mixture was heated at reflux for 5 h . It
was then neutralized with a saturated NaHCO_{3} solution, and the product was extracted with diethyl ether. The ethereal extracts were washed with saturated solutions of NaHCO_{3} and NaCl , dried over MgSO_{4}, and concentrated. Column chromatography of the crude residue gave the ketone $\mathbf{1 8 b}(70.6 \mathrm{mg}$, $82 \%)$: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.29(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz})$, $6.86(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 4.00(1 \mathrm{H}, \mathrm{m}), 3.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.3$ $\mathrm{Hz}), 3.98(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.5 \mathrm{~Hz}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $7.5 \mathrm{~Hz}), 2.82(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=18.2,8.0 \mathrm{~Hz}), 2.73(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=$ $7.5,6.5,1.5 \mathrm{~Hz}), 2.03(1 \mathrm{H}, \mathrm{m}), 1.94(1 \mathrm{H}, \mathrm{bd}, \mathrm{J}=18.2 \mathrm{~Hz}), 1.36$ $(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.2 \mathrm{~Hz}), 0.96(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}) \delta 217.97,158.98,130.11,128.94,113.72,76.43$, $76.05,61.90,60.58,55.22,44.13,30.99,20.13,20.10$; IR (neat) 2961, 2872, 1740, 1613, 1514, 1250, 1034; high-resolution MS (EI, m/z) 275.1520, calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{3}$ 275.1521.

Acknowledgment. We thank the National Institutes of Health (GM-31349) and the Agricultural Research Division of American Cyanamid Co. for financial support. We also thank Professor Kang for providing us with a sample and the spectroscopic data of $\mathbf{1 8 b}$.

Supporting Information Available: Copies of NMR spectra (42 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.
J O952254M

[^0]: ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, May 15, 1996.
 (1) American Chemical Society Arthur C. Cope Scholar, 1995.
 (2) (a) Merck \& Co., Inc., U.S. Patent 3950357 (April 12, 1976). (b) Albers-Schönberg, G.; Arison, B. H.; Hensens, O. D.; Hirshfield, J.; Hoogsteen, K.; Kaczka, E. A.; Rhodes, R. E.; Kahan, J. S.; Kahan, F. M.; Ratcliffe, R. W.; Walton, E.; Ruswinkle, L. J.; Morin, R. B.; Christensen, B. G. J. Am. Chem. Soc. 1978, 100, 6491 and references cited therein.
 (3) (a) Shih, D. H.; Baker, F.; Cama, L.; Christensen, B. G. Hetereocycles 1984, 21, 29. (b) Shih, D. H.; Fayter, J. A.; Cama, L.; Christensen, B. G. Tetrahedron Lett. 1985, 26, 583. (c) Shih, D. H.; Cama, L.; Christensen, B. G. Tetrahedron Lett. 1985, 26, 587.

[^1]: (15) (a) Grundmann, C.; Grunanger, P. TheNitrileOxides; SpringerVerlag: New York, 1971. (b) Caramella, P.; Grunanger, P. In 1,3Dipolar Cycloaddition; Padwa, A., Ed.; J ohn Wiley \& Sons, Inc.: New York, 1984; pp 291-392. (c) Curran, D. P. In Advances in Cycloaddition; J AI Press: Greewich, CT, 1988; Vol. 1, p 150. (d) The structures of compounds 9 and 9 were assigned by analogy to similar compounds reported in the literature: Hassner, A.; Murthy, K. S. K.; Padwa, A.; Chiacchio, U.; Dean, D. C.; Schoffstall, A. M. J . Org. Chem. 1989, 54, 5277. Kim, H. R.; Kim, H. J .; Duffy, J . L.; Olmstead, M. M.; RuhlandtSenge, K.; Kurth, M. J. Tetrahedron Lett. 1991, 32, 4259.
 (16) (a) J ung, M. E.; Trifunovich, I. D.; Lensen, N. Tetrehedron Lett. 1992, 33, 6719. (b) J ung, M. E.; Vu, B. T. Unpublished results.
 (17) Seebach, D.; Y us, M.; von Carmen, N. Hedv. Chim. Acta 1984, 67, 289.
 (18) Normant, J . F.; Alexakis, A.; Cahiez, G. Tetrahedron Lett. 1978, 19, 3013.

[^2]: (19) The al cohol $\mathbf{1 3}$ contains $\sim 6-7 \%$ of the cis isomer resulting from isomerization of the double bond during ketalization, which was carried on to 14.
 (20) (a) Rapoport, H.; Christie, B. D. J. Org. Chem. 1985, 50, 1239. (b) Rapoport, H.; Lubell, W. D. J. Am. Chem. Soc. 1987, 109, 236.

[^3]: (21) Shorter, J.; Bolton, R.; Chapman, N. B. J. Chem. Soc. 1964,

