

Tetrahedron Letters 39 (1998) 4615-4618

TETRAHEDRON LETTERS

A DE NOVO SYNTHESIS OF ETHYL 2-DEOXY-L-RIBOSIDES¹

MICHAEL E. JUNG*2 and CHRISTOPHER J. NICHOLS3

Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA, 90095

Received 18 March 1998; revised 7 April 1998; accepted 17 April 1998

Summary: A short (7-step) and efficient synthesis of several derivatives of 2-deoxy-L-ribose 1, e.g., the ethyl ribosides, **2abc**, has been accomplished from achiral precursors. © 1998 Elsevier Science Ltd. All rights reserved.

The use of L-enantiomers of natural and modified nucleosides as antiviral agents in medicine has increased dramatically in recent years.⁴⁻⁸ Several modified nucleosides derived from L-sugars, e. g., L-thymidine (L-T),⁵ L-3'-thiacytidine (L-3-TC),⁶ L-5-fluoro-3'-thiacytidine (L-FTC),^{6a,7} L-2',3'-dideoxycytidine (L-ddC),⁸ and L-5-fluoro-2',3'-dideoxycytidine (L-5-FddC),^{8b,c} have shown good antiviral activity with greatly reduced toxicity compared to other modified D-nucleosides. In addition, L-nucleosides, either normal (L-RNA) or 2'-deoxy (L-DNA), have been suggested to be of value in antisense oligonucleotide therapy as materials to bind pieces of D-m-RNA.⁹ For these reasons, many groups are working on ways to produce modified nucleosides in the unnatural L-configuration, a goal that requires ready access to L-carbohydrates, especially L-ribose and its derivatives. We report herein a short, seven-step synthesis of the α and β -anomers of ethyl 2-deoxy-L-ribofuranoside **2ab** via 2-deoxy L-ribose **1**, from the simple achiral material **6**.

Several syntheses of 2-deoxy-L-ribose 1 using naturally occurring carbohydrate starting materials such as Larabinose or L-ascorbic acid have been published.¹⁰ These syntheses have one thing in common: they all begin with L-sugars. Routes have been developed which start with achiral materials,¹¹ e. g., with 1-(trimethylsilyloxy)butadiene,¹² using a Sharpless asymmetric epoxidation¹³ to provide the stereochemistry. Our retrosynthetic analysis (Scheme 1) proposes that 2-deoxy-L-ribose 1 can be derived from the aldehyde **3** with the two stereocenters as shown. The aldehyde of **3** can then be made by oxidation of the alkene in the protected triol **4**, which can in turn be formed from the opening of the epoxide **5** with an oxygen nucleophile at its unsubstituted terminus. Epoxides of this type are made by a Sharpless epoxidation/kinetic resolution of the readily available alcohol **6**.

^{0040-4039/98/\$19.00 © 1998} Elsevier Science Ltd. All rights reserved. PII: S0040-4039(98)00852-1

Since it had been shown that a regioselective Wacker oxidation¹⁴ could convert an alkene similar to 4 to an aldehyde like 3 in good yield, our first approach began with a synthesis of the acetonide 9. The epoxy alcohol 7 was made from the alcohol 6^{15} in 62% yield and 100% enantiomeric excess (ee) using D-(-)-isopropyl tartrate under Sharpless epoxidation conditions (Scheme 2).¹⁶ The epoxy alcohol 7 was then dissolved in distilled benzyl alcohol in the presence of Ti(OiPr)₄ to give the diol 8 in 60% yield.¹⁷ Treatment of the diol 8 in refluxing acetone with *p*-toluenesulfonic acid and a stoichiometric amount of anhydrous CuSO₄ afforded the acetonide 9 in 75% yield. Oxidation of this alkene under Wacker conditions furnished the desired aldehyde 10, but in only a maximum yield of 38%. Treatment of 10 with aq. HCl gave 5-*O*-benzyl-2-deoxy-L-ribose 11 in 58% yield. Thus this general route is applicable for the synthesis of 2-deoxy-L-ribose derivatives although the overall yield is somewhat low.

Scheme 2. (a) D-(-)-DIPT, Ti(OiPr)₄, *i*BuOOH, CH₂Cl₂, 4Å mol. sieves, 62%; (b) BnOH, Ti(OiPr)₄, 96 °C, 60%; (c) (CH₃)₂CO, CuSO₄, TsOH, 75%; (d) PdCl₂ (0.2 eq), CuCl, O₂, DMF/H₂O 7:1, 60 °C, 18 h, 38%; (e) HCl (1 M), THF, 58%.

Because of the low yield in the Wacker oxidation step, several minor variations were attempted. Reaction of benzoic acid with the epoxyalcohol 6 gave the isomeric compounds 12 and 13 which were isolated in 19% and 32% yields, respectively. Formation of the acetonide of the diol of 13 gave the benzoate 14 in 84% yield. In order to try and reproduce exactly the known Wacker oxidation, this benzoate was hydrolyzed to the alcohol 15 in 66% yield and then coupled with *p*-methoxybenzyl chloride to form the ether 16 in 55% yield. However, in our hands, the Wacker oxidation¹⁴ of this alkene gave only a low yield of a compound which appeared to be the aldehyde 17 although its structure was never proven through characterization. This route was therefore abandoned due to the number of low-yielding and irreproducible steps.

Scheme 3. (a) PhCOOH, Ti(OiPr)4, CH₂Cl₂, 18 h, 19% 12, 32% 13; (b) Me₂C(OMe)₂, TsOH, DMF, 84%;(c) MeOH, NaOH, 1 h, 66%; (d) NaH, THF, MPMCl, 55%; (e) PdCl₂, CuCl, DMF/H₂O, O₂, low yield.

A much more successful pathway (Scheme 4) involved first protecting the epoxyalcohol 7 as the benzyl ether **18** before adding the oxygen nucleophile.¹⁸ Payne rearrangement is avoided by addition of sodium hydride to a mixture containing benzyl bromide, tetrabutylammonium iodide catalyst, and the alcohol 7 at -20°C to furnish the epoxy ether **18** in 79% yield. Treatment of the epoxide **18** with sodium benzylate in benzyl alcohol at 78°C furnished the alcohol **19** in 85% yield, with none of the primary alcohol isomer isolated. Protection of the remaining hydroxyl group gave the tris-benzyl ether **20** in 89% yield. Since the Wacker oxidation of similar compounds had proceeded poorly, we decided to use a hydroboration/oxidation and subsequent further oxidation to convert the alkene **20** into the desired aldehyde. Treatment with borane THF and oxidative workup gave the alcohol **21** in 73% yield, along with the isomeric alcohol **22** (as a 4:1 mixture of diastereomers) in a surprisingly high yield of 20%. For example, Brown reported a 94:6 ratio for the hydroboration/oxidation of 1-hexene with borane THF.¹⁹ The structure of the

secondary alcohol 22 was confirmed by oxidation and identification of the resulting structure as the methyl ketone 24. A Swern oxidation of the alcohol 21 gave in 93% yield the aldehyde 23 which is a protected 2-deoxy-L-ribose. Its ¹³C NMR matched that of the benzylated 2-deoxy-D-ribose previously produced.²⁰ Final deprotection of the benzyl ethers of 23 with hydrogen and palladium on carbon gave no isolable products. However, using palladium hydroxide on carbon in ethanol/cyclohexene²¹ and refluxing for 6 h gave a mixture of the three ethyl 2-deoxy-Lribosides **2abc** in a 2:2:1 ratio.^{22,23} We assume that the desired product 2-deoxy-L-ribose 1 was formed by debenzylation and then cyclized to the ethyl L-ribosides 2abc under the reaction conditions.24

Scheme 4. (a) BnBr, Bu₄NI, NaH, THF, -20 °C \rightarrow 21 °C, 3 h, 79%; (b) BnOH, NaH, 78 °C, 16 h, 85%; (c) NaH, BnBr, Bu₄NI, THF, 0 °C \rightarrow 21 °C, 18 h, 89%; (d) i. BH₃ THF, THF, 6 h, ii. NaOH, H₂O₂, 50 °C, 1 h, 73% 21, 20% 22; (e) (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 °C \rightarrow 21 °C, 1 h, 93%; (f) (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 °C \rightarrow 21 °C, 1 h, 74%; (g) Pd(OH)₂/C, EtOH, cyclohexene, 6 h, 59%, ratio of **2a:2b:2c** = 2:2:1.

Thus we have realized a short synthesis of a mixture of ethyl 2-deoxy-L-ribosides 2abc in seven steps and in 12% overall yield from the readily available diol 6. The key step involves the addition of sodium benzylate to the terminal end of the epoxide 18 in 79% yield. Further work on the synthesis and use of L-carbohydrates is underway. Acknowledgement. We thank the National Institutes of Health (GM47228) and the Universitywide AIDS Research Program (LA-97-157) for generous support.

References and Notes

- Presented at the 2nd Asian Federation of Medicinal Chemistry Conference (AIMECS 97), Seoul, Korea, 8/97. 1)
- 2) American Chemical Society Arthur C. Cope Scholar, 1995.
- a) Natural Sciences and Engineering Research Council (NSERC) of Canada Scholar, 1992-96. b) Departmental 3) Awardee for Excellence during the First Year of Graduate Study, UCLA, 1993. c) Gregory Award Recipient for Excellence in Research, UCLA, 1995.
- a) Okabe, M.; Sun, R.-C.; Tam, S. Y.-K.; Todaro, L. J.; Coffen, D. L. J. Org. Chem. 1988, 53, 4780. b) 4) Schinazi, R. F.; Gosselin, G.; Faraj, A.; Korba, B. E.; Liotta, D. C.; Chu, C. K.; Mathé, C.; Imbach, J.-L.; Sommadossi, J.-P. Antimicrob. Agents Chemother. 1994, 38, 2172. c) Gosselin, G.; Mathé, C.; Bergogne, M.-C.; Aubertin, A.-M.; Kirn, A.; Schinazi, R. F.; Sommadossi, J.-P.; Imbach, J.-L. C. R. Acad. Sci. Paris Sci. Vie 1994, 317, 85. d) Chu, C. K.; Ma, T.; Shanmuganathan, K.; Wang, C.; Xiang, Y.; Pai, S. B.; Yao, G.-Q.; Sommadossi, J.-P.; Cheng, Y.-C. Antimicrob. Agents Chemother. 1995, 39, 979. e) Chamberlain, S. D.; Chan, J. H.; Tidwell, J. H.; Peckham, G. E.; Harvey, R. J.; Dornsife, R. E.; Frick, L. W.; Townson, S. D.; Chan, J. H.; Tidwell, J. H.; Peckham, G. E.; Harvey, R. J.; Dornsife, R. E.; Frick, L. W.; Townson, L. B.; Drach, J. C.; Koszalka, G. W., 213th national ACS meeting, CARB 22, San Francisco, April 1997, and references in all of the above.
- 5) Spadari, S.; Maga, G.; Focher, F.; Ciarrocchi, G.; Manservigi, R.; Arcamone, F.; Capobianco, M.; Carcuro, A.; Colonna, F.; Iotti, S.; Garbesi, A. J. Med. Chem. 1992, 35, 4214. a) Chang, C.-N.; Doong, S.-L.; Zhou, J. H.; Beach, J. W.; Jeong, L. S.; Chu, C. K.; Tsai, C.-h.; Cheng, Y.-
- 6) c. J. Biol. Chem. 1992, 267, 13938. b) Chang, C.-N.; Skalski, V.; Zhou, J. H.; Cheng, Y-.c. J. Biol. Chem.

1992, 267, 22414. c) Beach, J. W.; Jeong, L. S.; Alves, A. J.; Pohl, D.; Kim, H. O.; Chang, C.-N.; Coong, S.-L.; Schinazi, R. F.; Cheng, Y.-C.; Chu, C. K. J. Org. Chem. **1992**, 57, 2217. d) Coates, J. A. V.; Cammack, N.; Jenkinson, H. J.; Mutton, I. M.; Pearson, B. A.; Storer, R.; Cameron, J. M.; Penn, C. R. Antimicrob. Agents Chemother. **1992**, 36, 202. e) Schinazi, R. F.; Chu, C. K.; Peck, A.; McMillan, A.; Mathis, R.; Cannon, D.; Jeong, L-.S.; Beach, J. W.; Choi, W.-B.; Yeola, S.; Liotta, D. C. Antimicrob. Agents Chemother. 1992, 36, 672.

- a) Hoong, L. K.; Strange, L. E.; Liotta, D. C.; Koszalka, G. W.; Burns, C. L.; Schinazi, R. F. J. Org. Chem. 1992, 57, 5563. b) Furman, P. A.; Davis, M.; Liotta, D. C.; Paff, M.; Frick, L. W.; Nelson, D. J.; Dornsife, R. E.; Wurster, J. A.; Wilson, L. J.; Fyfe, J. A.; Tuttle, J. V.; Miller, W. H.; Conderay, L.; Averett, D. R.; 7) Schinazi, R. F.; Painter, G. R. Antimicrob. Agents Chemother. 1992, 36, 2686.
- a) Mansuri, M. M.; Farina, V.; Starrett, Jr., J. E.; Benigni, D. A.; Brankovan, V.; Martin, J. C. Bioorg. & Med. Chem. Lett. 1991, 1, 65. b) Lin, T.-S.; Luo, M.-Z.; Liu, M.-C.; Pai, B.; Dutschman, G. E.; Cheng, 8) Y.-C. J. Med. Chem. 1994, 37, 798. c) Gosselin, G.; Schinazi, R. F.; Sommadossi, J.-P.; Mathé, C.; Bergogne, M.-C.; Aubertin, A.-M.; Kirn, A.; Imbach, J.-L. Antimicrob. Agents Chemother. 1994, 38, 1292.
- For leading references, see: a) L-DNA: Damha, M. J.; Giannaris, P. A.; Marfey, P. Biochemistry 1994, 33, 9) 7877. Hashimoto, Y.; Iwanami, N.; Fujimori, S.; Shudo, K. J. Am. Chem. Soc. 1993, 115, 9883. Fujimori, S.; Shudo, K.; Hashimoto, Y. J. Am. Chem. Soc. 1990, 112, 7436. b) L-RNA: Ashley, G. W. J. Am. Chem. Soc. 1992, 114, 9731.
- 10) a) Meisenheimer, J.; Jung, H. Chem. Ber. 1927, 60, 1462. b) Deriaz, R. E.; Overend, W. G.; Stacey, M.; Teece, E. G.; Wiggins, L. F. J. Chem. Soc. 1949, 1879. c) Holy, A. Collect. Czech. Chem. Commun. 1972, 37, 4072. d) Holy, A. Collect. Czech. Chem. Commun. 1973, 38, 423. e) Holy, A.; Sorm, F. Collect. Czech. Chem. Commun. 1969, 34, 3383. f) Gakhokidze, R. A.; Sidamonidze, N. N. J. Org. Chem. USSR 1987, 23, 1017. g) Jung, M. E.; Xu, Y. Tetrahedron Lett. 1997, 38, 4199. h) Kim, K. S.; Ahn, Y. H.; Hurh, E. Y.; Lee, E. J. J. Korean Chem. Soc. 1994, 38, 783.
- 11) a) Visser, G. M.; van Westrenen, J.; van Boeckel, C. A. A.; van Boom, J. H., Recl. Trav. Chim. Pays-Bas **1986**, 105, 528. b) Abe, Y.; Takizawa, T.; Kunieda, T. Chem. Pharm. Bull. **1980**, 28, 1324. c) Matteson, D. S.; Peterson, M. L. J. Org. Chem. **1987**, 52, 5116. d) Wulff, G.; Hansen, A. Carbohydr. Res. **1987**, 164, 123.
- 12) a) Makin, S. M.; Raifel'd, Y. E.; Zil'berg, L. L.; Arshava, B. M. J. Org. Chem. USSR 1984, 20, 189. b) Makin, S. M.; Kruglikova, R. I.; Shavrygina, O. A.; Chernyshev, A. I.; Popova, T. P.; Nguyen, F. T. J. Org. Chem. USSR 1982, 18, 250. c) Makin, S. M.; Kruglikova, R. I.; Popova, T. P.; Chernyshev, A. I. J. Org. Chem. USSR 1982, 18, 834. d) For another use of this starting material in the synthesis of modified nucleosides with antiviral activity, see: Jung, M. E.; Gardiner, J. M. J. Org. Chem. 1991, 56, 2614; Jung, M. E.; Castro, C.; Gardiner, J. M. Tetrahedron Lett. 1991, 32, 5717; Jung, M. E.; Gardiner, J. M. Tetrahedron Lett. 1992, 33, 3841.
- 13) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5976.
- 14) Kang, S.-K.; Jung, K.-Y.; Chung, J.-U.; Namkoong, E.-Y.; Kim, T.-H. J. Org. Chem. 1995, 60, 4678.
- 15) Prepared from ethyl formate by addition of vinylmagnesium bromide. Ramsden, H. E.; Leebrick, L. R.;
- Rosenberg, S. D.; Miller, E. H.; Walburn, J. J.; Balint, A. E.; Cserr, R. J. Org. Chem. 1957, 22, 1602. 16) a) Hatakeyama, S.; Sakurai, K.; Takano, S. J. Chem. Soc., Chem. Commun. 1985, 1759. b) Schreiber, S. L.; Schreiber, T. S.; Smith, D. B. J. Am. Chem. Soc. 1987, 109, 1525. c) Babine, R. E. Tetrahedron Lett. 1986, 27, 5971. d) Jäger, V.; Schröter, D.; Koppenhoffer, B. Tetrahedron 1991, 47, 2195.
- 17) Caron, M.; Sharpless, K. B. J. Org. Chem. 1985, 50, 1557.
- Jin, J.; Weinreb, S. M. J. Am. Chem. Soc. 1997, 119, 2050.
 Brown, H. C.; Knights, E. F.; Scouten, C. G. J. Am. Chem. Soc. 1974, 96, 7765.
 Park, H. M.; Piatak, D. M.; Peterson, J. R.; Clark, A. M. Can. J. Chem. 1992, 70, 1662.
- 21) Tino, J. A.; Clark, J. M.; Field, A. K.; Jacobs, G. A.; Lis, K. A.; Michalik, T. L.; McGeever-Rubin, B.; Slusarchyk, W. A.; Spergel, S. H.; Sundeen, J. E.; Tuomari, A. V.; Weaver, E. R.; Young, M. G.; Zahler, R. I. Med. Chem. 1993, 36, 1221.
- 22) The identity of the stereoisomers was determined by comparison of their ¹H and ¹³C NMR data with that for the known methyl 2-deoxy-2-methyl-D-ribopyranoside (Crotti, P., Di Bussolo, V.; Favero, L.; Macchia, F.; Pineschi, M. Tetrahedron: Asymmetry 1996, 7, 779) and furanosides (Arshava, B. M.; Raifel'd, Y. E.; Makin, S. M. J. Org. Chem. USSR 1990, 26, 666 (Zh. Org. Khim. 1990, 26, 778). The structure of the pyranoside is assigned as the β -anomer since treatment of 2-deoxy-D-ribose with methanol and acid is known to form the β anomer in preference to the α in a 9:1 ratio (Jandu, K. S.; Selwood, D. L. J. Org. Chem. 1995, 60, 5170).
- 23) Another run under similar conditions with only 2 h at reflux resulted in the same products **2abc** in a 2:1:1 ratio.
- 24) Treatment of the aldehyde 23 under the same conditions using water in place of ethanol resulted in a low yield of a compound whose NMR matched that of natural 2-deoxy-D-ribose and therefore was presumably 1. However, it could not be isolated in good yield by this route.