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Efficient synthesis of vinyl chlorides and/or gem-dichlorides from
ketones by treatment with tungsten hexachloride
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Abstract—Treatment of cyclic ketones, e.g. 4, with tungsten hexachloride (WCl6) provided good yields of vinyl chlorides, e.g. 5,
and/or gem-dichlorides. A trans-diequatorial dichloride 9 was prepared by treatment of the corresponding epoxide 8 with WCl6.
© 2003 Elsevier Ltd. All rights reserved.

For a projected synthesis of several chloride-containing
naturally-occurring terpenoid antitumor agents, e.g. the
lissoclimides 1ab1 and the reticulidins 2ab,2 among oth-
ers,3 we required a good method for the conversion of
a hindered cyclohexanone into the corresponding vinyl
chloride. Because of the severe 1,3-diaxial methyl–
methyl interaction in the trimethyldecalone system, we
wanted to avoid strongly acidic or very vigorous condi-
tions that might cause cationic skeletal rearrangements,
e.g. Wagner–Meerwein or Westphalen, to occur to
relieve the steric strain. We report herein the use of
tungsten hexachloride (WCl6) under mild conditions for
this and several other interesting transformations.4

Racemic methylated Wieland–Miescher ketone 35 was
converted, via the known hydroxy trimethyl ketone6

into the acetoxy ketone 4. Treatment of 4 with commer-
cially available tungsten hexachloride in dichloro-
methane solution under vigorous reflux (bath tempera-
ture 45°C) for 20 min afforded the desired vinyl chlo-
ride 5 in excellent yield.7 The structure of 5 was easily
assigned by NMR spectroscopy, both proton (� 5.6, dd,
J=6.7, 2.3 Hz) and carbon (� 141.2, 121.5).8,9 This is in

contrast to the previously reported claim that ketones
(and aldehydes) do not undergo chlorination with
WCl6.10 As has previously been postulated for the
formation of vinyl halides,11 the intermediacy of the
chloro carbocation A is very likely, which then loses a
proton to afford the vinyl chloride.

Two further noteworthy points are that the acetate
survives these conditions untouched and that no skele-
tal rearrangements occur under these mild conditions.
The structurally analogous diketone 6 (easily prepared
from 3) was treated with WCl6 under similar conditions
to furnish the bis-vinyl chloride 7 also in excellent yield.

Again the proton NMR spectroscopy9 allowed the
assignment of structure and no rearrangement was
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observed. The synthesis of dichlorolissoclimide 1a
requires a trans-diequatorial dichloride which can be
made from the corresponding trans-diaxial dichloride on
heating neat at greater than 200°C,12 which unfortu-
nately destroys all but the most stable functional groups.
In order to allow more functionality in the final dichlo-
ride, we decided to investigate the possibility of convert-
ing the more available �,�-epoxide 8 into the dichloride
9 under mild conditions with tungsten hexachloride.10

Treatment of 8 with WCl6 at 45°C for 10 min gave the
trichloride 9 in 80% yield. Again proton and carbon
NMR spectroscopy9 were used to assign the structure
with the diequatorial dichloride being indicated by the
trans diaxial protons (� 5.68, dd, J=5.0, 2.7 Hz; 4.17,
ddd, J=12.4, 11.8, 4.4 Hz and � 3.69, d, J=11.8 Hz).

Thus, both functional groups reacted well, the ketone
giving the expected vinyl chloride and the epoxide giving
only the more stable trans-diequatorial dichloride. Pre-
sumably the epoxide 8 is opened by tungsten hexachlo-
ride to give the axial chloro alkoxide complexed to
tungsten B which can then undergo loss of the very good
leaving group, namely WCl5O anion (which would give
WCl4O and chloride ion), to generate the chloronium ion
C.13 Opening of this chloronium ion by chloride at C-3
would then generate the trans-diequatorial dichloride 9
as observed.

Not all ketones afford vinyl chlorides under these condi-
tions. Cyclohexanone 10 and adamantanone 11 both
furnished the corresponding gem-dichlorides 1214 and
1315 when treated with tungsten hexachloride under
similar conditions in moderate yields (no attempts were
made to optimize the yields of these reactions).

Although we observed no skeletal rearrangements in any
of the reactions described above, in certain cases rear-
rangement products could be obtained in high yield.
Thus treatment of D-camphor 14 with tungsten hexachlo-
ride for 4 h afforded an 80% yield of the known16

2-chloro-p-cymene 15. Presumably the reaction occurs
via the chloro carbocation D which could lose a proton
as described above to give the known17 strained vinyl
chloride 16 but instead undergoes a rearrangement to
give the tertiary carbocation E (driven by relief of ring
strain) which can then lose a proton to afford the diene
F. Acid-catalyzed isomerization of the exocyclic alkene
into the ring would afford the diene G which then must
suffer an oxidation to give the final aromatic product. We
have no hypothesis for the source of this oxidation.

In a similar manner, norbornanone 17 also furnished a
rearranged product, namely the known dichloride 1818 in
fair yield (again no attempts at optimization were made).
This is a fairly common rearrangement pathway for
norbornyl cations and the exo chloride is the expected
product19 via the rearrangement of the chloro carboca-
tion H.

Simple acyclic ketones give mixtures of products (includ-
ing some vinyl chlorides) as do sterically hindered
cyclopentanones and relatively unhindered cyclic
ketones. These processes are not yet synthetically useful.

In summary, we have shown that hindered cyclohex-
anones give good yields of vinyl chlorides when treated
with tungsten hexachloride while simple ketones afford
gem-dichlorides under similar treatment. Epoxides give
the trans-diequatorial dichlorides in good yield. Bicy-
clo[2.2.1]heptyl ketones afford the products of rearrange-
ment in generally good yields. The further synthetic
utility of this reaction is currently under investigation in
our laboratories.
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