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Abstract Surface proteins in Gram-positive bacteria are an-
chored to the cell wall by the action of sortase enzymes. The
Staphylococcus aureus sortase A (SrtA) protein anchors proteins
by recognizing a cell wall sorting signal containing the amino
acid sequence LPXTG. To understand how SrtA binds this
sequence, we carried out NMR studies of new peptidyl-
cyanoalkene and peptidyl-sulfhydryl inhibitors that contain the
sorting signal sequence LPAT. These studies combined with
amino acid mutagenesis identified a catalytically important and
conserved binding surface formed by residues A118, T180, and
I182. Compatible with its recently proposed role as a general
base, R197 is also shown to be required for catalysis.
� 2004 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

Gram-positive bacteria infect humans through an array of

surface associated proteins that promote bacterial adhesion to

specific organ tissues, resistance to phagocytic killing, as well

as host cell invasion. Many surface proteins are covalently

anchored to the bacterial cell wall by the action of sortase

enzymes, a family of novel transpeptidases (reviewed in [1–5]).

The sortase A (SrtA) protein from Staphylococcus aureus is the

most extensively characterized sortase enzyme [6] and anchors

surface proteins that contain a C-terminal sorting signal con-

sisting of a conserved LPXTG motif (where X is any amino

acid), a hydrophobic domain and a tail of mostly positively
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charged residues [7,8]. During cell wall anchoring, SrtA cleaves

surface proteins in between the threonine and the glycine of the

LPXTG motif [9]. The carboxyl-group of threonine is then

amide linked to the amine-group of the cell wall precursor lip-

id II [undecaprenyl-pyrophosphate-MurNac(-LL-Ala-DD-iGln-LL-

Lys(NH2-Gly5)-DD-Ala-DD-Ala)-b1-4-GlcNac] [10,11], which is

subsequently incorporated into the peptidoglycan via the

transglycosylation and transpeptidation reactions of bacterial

cell wall synthesis [12]. SrtA and related proteins may be ex-

cellent targets for new broad-spectrum anti-infective agents,

since sortase-like enzymes and the LPXTG signal are univer-

sally conserved in Gram-positive bacteria [5,13,14], and sor-

tase ()) strains of S. aureus [15–17], Listeria monocytogenes

[18,19] and Streptococcus gordonii [20] display defects in their

virulence.

The S. aureus SrtA protein adopts a novel fold with an ac-

tive site that contains two catalytically essential side chains,

H120 and C184 [21]. The sulfhydryl group of C184 nucleo-

philically attacks the carbonyl carbon at the scissile T–G

peptide bond (in the LPXTG motif) to form a thio-acyl bond

with the substrate. Several lines of evidence support a central

role for C184 in catalysis: (i) it is completely conserved in

sortase enzymes [5], (ii) it is essential for catalysis, (iii) methyl

methanethiosulfonate, a compound that preferentially reacts

with thiolate ions abolishes sortase activity [22] and (iv) mass

spectrometry reveals a reaction intermediate with a mass

consistent with a thio-acyl enzyme–substrate complex [23].

H120 also plays an important role in catalysis: like C184, it is

completely conserved and its mutation to alanine eliminates

enzyme activity [24]. Lastly, R233 in the structurally related S.

aureus sortase B (SrtB) enzyme has also been suggested to

participate in catalysis [25] although the catalytic importance

of this amino acid in SrtB or the equivalent residue in SrtA

(R197) is yet to be confirmed experimentally.

Although residues H120 and C184 in SrtA form the active

site, the surface on the enzyme used to recognize the LPXTG

sorting signal is still not known, since all the structures of this

enzyme class that have been solved to date lack their sorting

signal substrates. Here, we describe the synthesis and inhibi-

tory properties of a novel mechanism-based cyanoalkene in-

hibitor that contains the amino acid sequence of the SrtA

substrate (LPAT). NMR studies of SrtA-cyanoalkene and

SrtA-sulfhydryl inhibitor complexes and targeted mutagenesis
ation of European Biochemical Societies.
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reveal a hydrophobic surface on strands b4 and b7 that binds

the sorting signal. Many residues within the surface are es-

sential for catalysis and are conserved in other sortases that

anchor proteins bearing the LPXTG motif.
Fig. 1. (A) Strategy for synthesis of the peptide cyanoalkene inhibitor
of SrtA. (B) HPLC elution profiles of the inhibitor incubated with SrtA
(top) and the C184A mutant of SrtA (bottom). (C) Progress curves of
cyanoalkene inhibition of SrtA. Ki and ki were calculated form the
curves as described in [27]. SrtA catalyzed the transpeptidation of the
d-QALPETGEE-e substrate with a Km of 4.1� 10�5 and a kcat of
7.6� 10�6 s�1, and are comparable to previously published values [31].
2. Materials and methods

2.1. Reagents
Residues 60–206 of wild-type sortase A (SrtADN59), and a single

amino acid mutant of the protein containing a cysteine to alanine
substitution at position 184 (C184ASrtADN59), were overexpressed from
plasmids pSRTA and pHTT45, respectively [21,24]. The expression,
uniform isotopic labeling (where applicable), and purification have
been previously described [21]. The fluorescent peptide substrate
d-QALPETGEE-e (where d is Dabcyl (4-([4-(dimethylamino)phenyl]-
azo)-benzoyl–) and e is EDANS ([(2-aminoethyl)-amino]naphthlene-
1-sulfonyl–)) was purchased from Synpep (Dublin, CA).

2.2. Site directed mutagenesis of SrtA
Single amino acid mutations of SrtA were produced using the

Quikchange site-directed mutagenesis kit (Stratagene, La Jolla, CA)
with pSRTA as the template. The identity of the SrtA mutants
(A118E, T180K, I182S and R197E) was confirmed by DNA
sequencing.

2.3. Synthesis of the cyanoalkene inhibitor
The cyanoalkene inhibitor (Fig. 1A, 1) was synthesized using solu-

tion phase methodology (Fig. 1A). The leucine–proline–alanine por-
tion of the synthesis was carried out using standard amino acid
coupling reactions (EDCI, 1-[3-(dimethylamino)propyl]-3-ethylcarbo-
diimide hydrochloride; DMAP, 4-(dimethylamino)pyridine) starting
with the protected amino acid Cbz–Leucine–OH. LL-Threonine was
fully protected as the N -Boc-threonine methyl ester with the alcohol
protected as the TBDPS (t-butyldiphenylsilyl) silyl ether (Fig. 1A, 2) in
three steps. The ester was then reduced to the aldehyde using DIBAL-
H (diisobutylaluminum hydride) which was immediately reacted
without purification with diethyl (cyanomethyl)phosphonate (Fig. 1A,
3) to give the desired cyanoalkene functionality (Fig. 1A, 4) in good
yields. Removal of the Boc group with TFA followed by coupling the
amine with the Cbz-protected tripeptide gave the desired tetrapeptide.
Removal of the TBDPS group with HF in acetonitrile gave the cya-
noalkene inhibitor (Fig. 1A, 1). Purification of the inhibitor was done
using silica gel chromatography and its structure was confirmed by 1H
NMR spectroscopy. The details of the production of the peptidyl-
sulfhydryl compound and the NMR studies of its complex with
SrtADN59 will be reported elsewhere.

2.4. NMR spectroscopy of the SrtA-cyanoalkene complex
A 15-fold molar excess of the cyanoalkene inhibitor (dissolved in

dimethyl sulfoxide) was added to 15N-SrtADN59 (1.3 ml of a 184 lM
solution) in buffer I (pH 8.0, 50 mM Tris–HCl, 100 mM NaCl and 2.5
mM DTT). The mixture was incubated on a rotating wheel at room
temperature and the complex was purified using reverse phase HPLC
on a C18 column (Waters, Mildford, MA). The purified complex was
then lyophilized and resuspended in buffer G (pH 6.0, 25 mM Na
Acetate, 100 mM NaCl, 0.5 mM DTT and 7% D2O) for NMR spec-
troscopy. NMR experiments were carried out at 306 K on a Bruker
DRX500 spectrometer equipped with a triple resonance cryoprobe
using a sample of purified 15N-SrtADN59-inhibitor complex (�130 lM)
in buffer G. A 15N-1H HSQC spectrum of the complex was acquired
with 2048 complex t2 points and 200 complex t1 points.

2.5. Enzyme assays
Fluorescent measurements of the enzymatic activity of SrtA mutants

were performed in 96-well microtiter plates as previously described
[26]. Reactions contained 50 lM of mutant enzyme in buffer R (50 mM
Tris–HCl, pH 7.5, 150 mM NaCl, 5 mM glycine and 5 mM CaCl2).
The d-QALPETGEE-e substrate was dissolved in dimethyl sulfoxide
and added to the reaction to a final concentration of 25 lM, for a total
reaction volume of 200 ll. Measurements of SrtADN59 activity in the
presence of the cyanoalkene inhibitor were conducted as outlined for
the mutant enzymes except that inhibition reactions contained 5 lM
SrtADN59 and cyanoalkene inhibitor (250, 500, 1000 or 2000 lM) in
buffer R. The inhibition parameters Ki and ki were calculated as pre-
viously described [27]. In the transpeptidation assay 15 lM of sortase
was incubated with 10 lM of d-QALPATGEE-e (buffer: 50 mM Tris–
HCl, pH 7.5, 150 mM NaCl, 5 mM glycine, 5 mM CaCl2, in a 520 ll
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reaction volume). After constant mixing at 37 �C for 16 h, the reaction
was stopped by the addition of 500 ll of 0.1% TFA in water (Buffer A).
The products were then separated using reverse phase HPLC on a C18
column (Waters, Milford, MA) using a gradient of 0–50% of buffer B
(90% CH3CN/10% water/0.1% TFA). The products were detected at
475 nm and verified by mass spectrometry.
3. Results and discussion

With the long term goal of developing anti-infective agents

that disrupt sortase activity, we synthesized a mechanism

based cyanoalkene inhibitor and studied how it interacts with

S. aureus SrtA. The cyanoalkene inhibitor contains the sorting

signal sequence of the SrtA substrate (L–P–A–T–G), but re-

places the scissile T–G amide bond with a cyanoalkene group

(C@C–CN) (Fig. 1A). Thus, the SrtA-inhibitor interaction

allowed us to gain insights into the structural basis of substrate

recognition. It was anticipated that SrtA interactions with the
Fig. 2. Location of the inhibitor binding site on SrtA. (A) The two possible bin
mainly by residues preceding strands b4 (H120, F122) and b8 (D185, D186,
mainly by residues in strands b4 (A118), b7 (I182, C184) and the b3–b4 (A104
reference, a ribbon representation in the same orientation is shown next to
H120, are shown and boxed. (B) 1H–15N HSQC spectrum of the SrtADN59–c
HSQC spectrum of SrtADN59 and the SrtADN59–cyanoalkene complex. Peaks
while dashed lines represent peaks from the spectrum of the complex. Residu
peptide portion of the compound would deliver the cya-

noalkene group to the active site, enabling it to irreversibly

modify the thiol of C184. Wild-type SrtA was incubated with

excess inhibitor and the products were analyzed by reverse

phase HPLC (Fig. 1B) and mass spectrometry. Incubation

results in the formation of a single new species whose mass is

consistent with a single inhibitor molecule covalently bound to

SrtA. In contrast, no modification occurs when the inhibitor is

incubated with SrtA bearing a C184A mutation, indicating

that it specifically modifies the side chain of C184.

The inhibitory properties of the new compound were as-

sessed in vitro by monitoring how it altered the SrtA-catalyzed

hydrolysis of an internally quenched fluorescent substrate an-

alogue (d–Q–A–L–P–E–T–G–E–E–e). Typical progress curves

of the reaction in the presence of 250, 500, 1000 and 2000 lM
of the inhibitor are shown in Fig. 1C, and are consistent with

the compound irreversibly modifying SrtA. From the progress

curves at pH 7.5, the Ki of the cyanoalkene inhibitor was
ding surfaces for the LPXTG cell wall sorting. Left, the surface formed
Y187), and residues in helix 1 (P94, N98). Right, the surfaced formed
, E105), b6–b7 (L169, E171) and b7–b8 (V193, W194, R197) loops. For
each surface plot. The side chains of the catalytic residues, C184 and
yanoalkene complex. (C) Overlay of a selected portion of the 1H–15N
from the free protein spectrum are represented with continuous lines
es with an asterisk are significantly perturbed upon inhibitor binding.
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calculated to be 1.0� 10�4 M and the first-order rate constant

of inactivation (ki) is 6.3� 10�4 min�1. The Ki is comparable to

the measured Km of SrtA for the fluorogenic substrate

(4.1� 10�5 M), consistent with their similar structures. Both

natural [28] and synthetic [26,27] SrtA inhibitors have been

described. In addition to the cyanoalkene moiety described in

this study, inhibitors that pair thiol modifying vinyl sulfone

(C@C–SO2Ph; ki ¼ 4� 10�4 min�1) [27], diazomethane

(–CH@N2; ki ¼ 5:8� 10�3 min�1), and chloromethane

(–CH2Cl; ki ¼ 1:2� 10�2 min�1) [26] groups to the sorting

signal peptide have been used. The in vitro ki of the cya-

noalkene compound indicates that it has intermediate reac-

tivity, but the true utility of these different chemical

approaches awaits in vivo studies. The peptide portion of the

cyanoalkene inhibitor is required for inhibition, since com-

pounds in which the leucine is deleted do not inhibit the en-

zyme (unpublished results).

As the cyanoalkene inhibitor contained the sorting signal

(LPAT) recognized by SrtA, it could be used to localize the

substrate-binding site on the protein. Inspection of the SrtA

solution structure reveals two potential binding sites that are

positioned on opposite sides of the active site (Fig. 2A). To

distinguish between these sites, we used NMR spectroscopy to

study how SrtA interacts with the cyanoalkene inhibitor. The
1H–15N HSQC spectrum of the purified SrtADN59–cyanoalkene

complex is displayed in Fig. 2B, revealing that the modified

protein remains folded, as judged by the existence of a set of

well resolved 1H–15N cross-peaks. Unfortunately, the chemical

shifts of the complex could not be assigned because limiting

amounts of inhibitor and the slow rate of modification pre-

vented the production of large quantities of the complex

(the concentration of the SrtADN59–cyanoalkene complex was

�130 lM). However, the general effects of inhibitor binding

could be deduced by comparing the 1H–15N HSQC spectrum

of the complex with the corresponding spectrum of the un-

modified SrtADN59 protein for which complete resonances as-

signments are known [29]. An overlay of the two spectra

reveals that the majority of backbone amide groups exhibit
Fig. 3. Chemical shift perturbation of SrtA resonances upon inhibitor
complex formation. Chemical shift changes (Dd) of the backbone 15N
and 1H resonances for residues in the SrtA complexes compared to free
SrtA were calculated according to Dd ¼ ½ðdHNÞ2 þ ðdN=6:49Þ2�1=2 from
[32]. (A) Ribbon representation of SrtA depicting the residues that are
significantly perturbed upon modification by the peptidyl-cyanoalkene
inhibitor. The chemical shift change for a particular residue was cal-
culated by comparing its peak in the free protein spectrum to the
closest peak (in terms of 1H and 15N chemical shift) in the spectrum of
the complex. Hence, it is important to note that a residue whose peak
shifts significantly upon inhibitor binding may not necessarily be de-
picted in this figure if there are peaks in the spectrum of the complex
that are close to its original position in the free protein spectrum.
(B) Chemical shift changes (Dd) in the SrtA–sulfhydryl complex
compared to free SrtA. The dotted line at 0.3 ppm indicates the level of
significance. (C) Ribbon representation of SrtA depicting the residues
that are significantly perturbed when the enzyme is modified with the
peptidyl-sulfhydryl inhibitor. Almost complete (97%) assignments
were obtained for the spectrum of the SrtA-sulfhydryl complex. In
figures (A) and (C), residues whose amide resonances undergo large
chemical shift changes (Dd > 0:2 in A and Dd > 0:3 in B) are depicted
as spheres. The sidechains of the catalytic residues, C184 and H120 as
well as the residues that were mutated (A118, T180, I182 and R197) are
shown in (A). The same residues are shown in (C) except that the
sidechains of H120, A118 and I182 are replaced by grey spheres to
indicate that their amide resonances exhibited significant (Dd > 0:3)
chemical shift perturbation upon peptidyl-sulfhydryl inhibitor binding.

c

similar 1H–15N chemical shifts (Fig. 2C). However, several
1H–15N correlations in the spectra of the SrtADN59–cyanoalk-

ene complex are either severely broadened or are at sufficiently

distinct chemical shifts as to prevent their assignment by

comparison to the spectra of the unmodified SrtADN59 protein

(for example S109, H120 and T183 in Fig. 2C). Mapping those

residues that exhibit the largest chemical shift changes onto the

structure of SrtA enables the localization of the inhibitor-

binding site, since it is expected that the magnetic environment

of the residues that form the binding site will be significantly



Fig. 4. Characterization of the SrtA mutants. (A) Progress curves of d-
QALPATGEE-e hydrolysis by SrtA mutants. Reaction mixtures con-
tained 50 lMof each enzyme and 25 lMd-QALPATGEE-e in 200 ll of
buffer R. (B) Transpeptidation assay. In the absence of enzyme only the
free d-QALPATGEE-e peptide is observed (bottom trace), but upon
incubation with wild-type SrtA the transpeptidation product is pro-
duced, d-QALPATG (middle trace). The A118E, I182S, and R197E
mutant proteins are completely inactive (data not shown), and the
T180Kmutant shows only modest activity as compared to the wild type
protein (top trace).
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altered upon contact with the inhibitor. Fig. 3A shows that the

most significantly perturbed residues cluster mainly to two

regions: (i) residues immediately proximal to the catalytic

H120 and C184, and (ii) residues located within and around

the loop connecting strands b3 and b4. It is important to note

that the 1H–15N resonances of residues in strands b4 and b7
are located in a crowded region of the HSQC spectrum,

making it difficult to deduce the effects of inhibitor binding

simply by spectral comparison. The NMR data are therefore

most compatible with the covalently bound inhibitor posi-

tioned such that its threonine is proximal to C184 and its

leucine-proline-alanine portion is in contact with residues in

strands b4 and b7, and the loops that surround this site (the

b3–b4 and b6–b7 loops).

To further define the binding surface, a peptidyl-sulhydryl

compound was used to modify SrtADN59 and this complex was

studied by NMR. This compound also contains the amino acid

sequence LPAT, but replaces the terminal carboxyl group with

–CH2–SH. Upon incubation with SrtADN59 it forms a disulfide

bond to the thiol of C184 and thus mimics the thio-acyl in-

termediate. The NMR spectra of the SrtADN59–sulfhydryl

complex are well dispersed, enabling the assignment of 97% of

the 1H, 13C and 15N chemical shifts of the backbone atoms of

SrtADN59 in the complex, using conventional triple resonance

techniques (data not shown). Fig. 3B displays a histogram plot

of the 15N and 1H chemical shifts of each residue in the

SrtADN59–sulfhydryl complex compared to free SrtADN59. This

data shows that peptide binding causes large and localized

chemical shift changes in SrtADN59. Mapping these changes

onto the structure reveals an extensive binding surface in-

volving residues positioned immediately adjacent to C184 in

strands b3, b4 and b8, as well as residues within the b6–b7 loop
(Fig. 3C). The interaction surface for the sulfhydryl compound

is essential the same as seen for the cyanoalkene compound

(Fig. 3A and C), but it is more extensive because near complete

backbone assignments were obtained for the SrtADN59–sulf-

hydryl complex.

Reasoning that surface exposed residues highlighted by the

NMR data would contact the sorting signal, we tested the en-

zymatic importance of residues within and around the interac-

tion surface. Four single amino acid mutations were introduced

into residues within strands b4 (A118E), b7 (T180K, I182S) and

b8 (R197E) (Fig. 3A). All of the mutant proteins remain folded

(as judged by NMR spectroscopy), however the A118E, I182S

and R197E mutants are completely inactive, as judged by two

different assays, namely, the in vitro hydrolysis assay (Fig. 4A)

and an HPLC assay that measures transpeptidation (Fig. 4B).

Since the surface exposed hydrophobic side chains of A118 and

I182 are positioned directly adjacent to C184, it appears likely

that they are involved in sorting signal binding. How R197

participates in catalysis is less clear, but the lack of activity

observed for the R197E mutant is compatible with this residue

functioning to deprotonate the incoming nucleophile (water in

this assay), as proposed in a model based on recent crystallo-

graphic work [25]. It is tempting to speculate that the least

disruptive T180K mutation is due to this residue being posi-

tioned at the edge of the signal-binding site.

The localization of the sorting signal binding site on SrtA

provides insights into the specificities of other sortase enzymes.

A comparison of S. aureus SrtA protein with sortase homologs

(from S. suis, L. monocytogenes and S. pyogenes) that process

the same sorting signal reveals that nearly all of the critical
amino acid side chains identified in this study are conserved in

sortases known to process LPXTG; A118 and T180 are com-

pletely conserved, and I182 is semi-conserved. Interestingly, at

least two of the catalytically important residues identified in

this study are not conserved in SrtB (which processes the se-

quence NPQTN), suggesting that they contribute to substrate

binding specificity (A118 and I182 in SrtA are Y128 and S221

in SrtB, respectively).

Following the submission of this paper, the LPETG binding

site on a C184A mutant of SrtADN59 (C184ASrtADN59) was

determined by crystallography. In the crystal structure, the

threonine at the C-terminal end of the peptide rests near C184

and the N-terminal end contacts strand b7 and residues within

the b6/b7 loop[30]. These results are compatible with our

NMR data, which has revealed that the primary interaction

surface in solution is the b6/b7 loop and the underlying b-
sheet (Fig. 3C). A detailed analysis of the structure is not

possible, since the coordinates are on hold for one year.
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However, the crystal structure suggests that the A118E and

I182S mutants are inactive because they disrupt contacts to

the threonine in the sorting signal, while the T180K mutant

may be defective in binding to the leucine and proline residues

in the signal. The role of R197 is unclear, but the R197E

mutation may inactivate sortase because it eliminates stabi-

lizing contacts to oxyanion intermediates and/or guanidino

mediated proton transfer events required for catalysis. Sortase

may recognize the sorting signal through an induced fit

mechanism involving changes in the conformational dynamics

of the protein, since the three sortase molecules present in the

asymmetric unit of the crystal differ in the conformation of

the b6/b7 loop and this region is disordered in the NMR

structure. Moreover, since only one of the three proteins in

the asymmetric unit interacts with the peptide because of

crystal packing effects, it will be interesting to see if the mode

of binding visualized in the crystal structure predominates in

the solution state.
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