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Functional group selectivity in reactions of epoxides
with tungsten hexachloride
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Abstract—The reactivity of several cyclohexene oxides bearing various functional groups toward the reagent tungsten hexachloride
is reported. In general, the conversion of the epoxide to the trans dichloride occurs relatively rapidly. Several groups proved stable—
esters, sulfides, sulfones, hindered silyl ethers—while others were unstable—alcohols, unhindered silyl ethers, ketones. The diaxial
dichloride is usually formed although the diequatorial dichloride could also be prepared.
� 2007 Elsevier Ltd. All rights reserved.
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Recently we reported the reaction of the optically active
terpenoid keto epoxide 1 (derived from the methylated
Wieland–Miescher ketone) with tungsten hexachloride
(WCl6) to generate the diequatorial dichloride from
the epoxide and the vinyl chloride from the ketone,
affording the trichloro product 2 in 80% yield (Scheme
1).1 This was the first example of the use of this reagent
with a cyclic epoxide where the diaxial and diequatorial
stereochemistry of the product could be assessed.
Several reactions of tungsten hexachloride with alcohols,
ketals, and epoxides had already been reported.2 We
also described the conversion of ketones, for example,
3 and 5, with tungsten hexachloride into either vinyl
chlorides, for example, 4, or geminal dichlorides, for
example, 6 (Scheme 2), depending on the steric environ-
ment with hindered ketones giving vinyl chlorides and
less hindered ones giving geminal dichlorides.1 In order
to try to use this novel transformation of an epoxide into
a diequatorial dichloride in the later stages of a pro-
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jected total synthesis of the class of naturally occurring
terpenoid antitumor agents exemplified by the two diols,
dichlorolissoclimide 7,3 and haterumaimide E 84

(Scheme 3), we needed to test the stability of several
functional groups toward this reagent to see which, if
any, could be present in the epoxide without reacting.
We report herein the use of tungsten hexachloride
under mild conditions to convert epoxides into trans
vicinal dichlorides, and point out the stability or lack
thereof of several common functional groups in this
process.

We decided to use 4-substituted cyclohexene oxide
derivatives as the test cases. The anti epoxy ester 95

was prepared by the opening of the corresponding iodo-
lactone with ethoxide. Treatment of 9 with tungsten
hexachloride in dichloromethane at 21 �C for 4.5 h
afforded the diaxial dichloride6 10a as the sole product
in 58% isolated yield (Scheme 4). None of the
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corresponding diequatorial dichloride 10e was formed
in this reaction.7 Thus an ester functionality directly at-
tached to the cyclic epoxide system is relatively stable
to the conditions for dichloride formation. When a mix-
ture of the two diastereomeric epoxy esters correspond-
ing to 9 was used (prepared by epoxidation of ethyl
4-cyclohexenecarboxylate), the same result was obtained,
namely the diaxial dichloride 10a was formed selectively.
Since the diastereomeric mixture gave the same pro-
ducts, we thereafter used the more easily prepared
mixtures. Treatment of the diastereomeric mixture of
epoxy acetates 118 with tungsten hexachloride in dichloro-
methane afforded the two products, the diaxial dichlo-
ride 12a and the diequatorial dichloride 12e, depending
on the reaction conditions (Scheme 5). Use of low tem-
peratures or short reaction times afforded the diaxial
dichloride 12a as the sole product, while higher temper-
ature or longer reaction times afforded a roughly 4:3
mixture of 12a and 12e. Presumably the diaxial dichlo-
ride 12a is the kinetic product formed by the mechanism
proposed in Scheme 6. Attack of the epoxide oxygen of
A on tungsten hexachloride would afford the epoxonium
ion B which could be opened at either carbon to gener-
ate a mixture of chlorides C and D. Cyclization via
attack of the chloride lone pair would generate the
chloronium ion E and oxotungsten tetrachloride and
chloride ion. Final opening of this ion with chloride
via the kinetically favored path, path a, would then give
mostly the diaxial product F. But this isomer could
equilibrate with the diequatorial product G via the chlo-
ronium chloride with opening via path b.9 Theoretical
calculations show that the diaxial dichloride isomer is
somewhat more stable than the diequatorial one.10
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Treatment of the diastereomeric mixture of epoxy sulf-
ones 13 with 3 equiv of tungsten hexachloride at 45 �C
for 2 h gave a quantitative yield of the diaxial dichloride
14a with only a trace of the diequatorial isomer 14e
being formed (Scheme 7). Ambient temperature could
also be used at a small loss of yield (48 h, 94%). In a sim-
ilar manner, treatment of the diastereomeric epoxy sul-
fides 15 afforded exclusively the diaxial dichloride 16a
in 83% yield (Scheme 8). The corresponding sulfoxide
17 afforded a mixture of the corresponding diaxial di-
chloro sulfoxide 18a as well as the diaxial dichloro sul-
fide 16a in a 1.5:1 ratio in modest yield.11 The
production of the sulfide 16a presumably resulted from
the known deoxygenation of sulfoxides to sulfides with
tungsten hexachloride.12 Thus esters, sulfones, and
sulfides all proved stable to the reaction with tungsten
hexachloride, while sulfoxides were somewhat suscepti-
ble to reduction under the reaction conditions and gave
mixtures of the dichloro sulfoxides and sulfides. How-
ever, some other functional groups proved unstable.
For example, the diastereomeric mixture of epoxy
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alcohols 19, when treated with tungsten hexachloride at
21 �C for 24 h, afforded in 34% yield a 1:1 mixture of
the trichlorides, 20a and 20e, namely the diaxial and
diequatorial dichlorides in which the hydroxyl group had
also been converted into the chloride, a known trans-
formation2c (Scheme 9).11 When the reaction was heated
for 45 min, trichloride 20e, having the diequatorial
dichloride unit, was the sole product isolated in 26%
yield. In addition the tertiary chloride 22 was isolated
in variable yield (presumably formed via addition of
the generated HCl to the exocyclic methylene 21 in
which the chloride attacks the tertiary carbocation pre-
ferentially from the axial direction). Finally the steric
bulk of silyl ethers was crucial in their reactions with this
reagent. Thus the epoxy t-butyldimethylsilyl (TBDMS)
ether 23 was unstable and gave a mixture of the same
trichlorides 20a and 20e in poor yield (Scheme 10). The
silyl ether was either hydrolyzed to the alcohol which
was converted to the chloride or converted directly to the
chloride by the tungsten hexachloride. An attempt to
buffer the reaction using the hindered base, 2,6-di-tert-
butyl-4-methylpyridine, was unsuccessful. But the more
hindered epoxy t-butyldiphenylsilyl (TBDPS) ether 24
gave a modest 40% yield of the expected diaxial dichlo-
ride 25a when treated with tungsten hexachloride in the
presence of 1.5 equiv of the hindered base, 2,6-di-tert-
butyl-pyridine.11,13 None of the corresponding diequa-
torial dichloride 25e was formed in this reaction. Thus
alcohols and unhindered silyl ethers are too unstable
to these conditions to survive while more hindered silyl
ethers can be used successfully in the presence of a hin-
dered base.
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In conclusion, we have shown that a series of cyclohex-
ene oxides are converted into the corresponding trans
vicinal dichlorides on treatment with tungsten hexachlo-
ride and that several common functional groups survive
this treatment unchanged (esters, sulfides, sulfones,
hindered silyl ethers), while others react (ketones, sulf-
oxides, alcohols, less hindered silyl ethers). Further stu-
dies on the use of this reaction in the synthesis of the
naturally-occurring antitumor diterpenes are underway
in our laboratory.
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