Asymmetric synthesis of (-)-bissetone via a highly enantioselective hetero-Diels-Alder reaction

Jakub Majer ${ }^{\text {a }}$, Janusz Jurczak ${ }^{\text {a,b }}$, Piotr Kwiatkowski ${ }^{\text {a,b,* }}$, Livius Cotarca ${ }^{\text {c }}$, Jean-Claude Caille ${ }^{\mathrm{d}}$
${ }^{\text {a }}$ Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
${ }^{\mathrm{b}}$ Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
${ }^{\text {c }}$ ZaCh—Zambon Chemicals, Via Dovaro 2, 36045 Lonigo VI, Italy
${ }^{\text {d }}$ Ozonora Consulting, 30 rue Bernier, 49000 Angers, France

A R T I C L E I N F O

Article history:

Received 12 February 2013
Received in revised form 27 June 2013
Accepted 15 July 2013
Available online 22 July 2013

Keywords:

Asymmetric synthesis
Bioactive natural products
Enantioselective catalysis
Hetero-Diels-Alder reaction
Tetrahydropyran-4-ones

Abstract

We demonstrate a new approach for the asymmetric synthesis of bissetone. The key reaction is the highly enantioselective hetero-Diels-Alder cycloaddition of triene $\mathbf{3}$ with ethyl glyoxylate catalyzed by readily available BINOL-Ti complexes. The HDA cycloadduct 4 was then transformed in five steps into 0 protected bissetone ($\mathbf{8}$) and its C5-epimer in good yield.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Bissetone is one of the naturally occurring metabolites of 1,5-anhydro-D-fructose having an antimicrobial activity, and is isolated from the very polar extracts of the Gorgonian soft coral Briareum polyanthes. ${ }^{1}$ 1,5-Anhydro-d-fructose is produced with the help of $\alpha-1,4$-glucan lyase by the degradation of glycogen, starch or maltosaccharides. This compound and its derivatives and metabolites like bissetone, haliclonol, palythazine, isopalythazine, 1deoxymannojirimycin, 5-epipentenomycin I, or clavulazine are very interesting molecules due to their pharmaceutical potential (Fig. 1). ${ }^{2}$

Bissetone is a tetrahydro-4H-pyran-4-one functionalized in positions 2 and 5 and containing two stereogenic centers. The structure and relative stereochemistry of bissetone were assigned by X-ray diffraction analysis. ${ }^{1}$ The absolute configuration was confirmed by chemical synthesis from d-glucose by Lichtenthaler. ${ }^{3}$

Bissetone was obtained from d-glucose in eight steps in 37\% overall yield (Scheme 1). ${ }^{3}$ Firstly, D-glucose was transformed into a dihydropyranone intermediate with one stereogenic center. After

[^0]

1,5-Anhydro-D-fructose

(-)-Bissetone

Haliclonol

Fig. 1. '1,5-Anhydro-d-fructose and its metabolites'.
addition of the lithium enolate of acetone to the carbonyl group of the dihydropyranone, the (-)-BzO-protected bissetone was obtained in 64% yield. Alternatively, methylallyl titanium triisopropoxide could be used as an acetone synthon, although required an additional ozonation step.

2. Results and discussion

In this paper, we demonstrate a new approach to the synthesis of bissetone and its stereoisomers. As a key step, our strategy involved the use of an enantioselective hetero-Diels-Alder reaction ${ }^{4}$ for the construction of a six-membered oxo-ring with a stereogenic center in position 2 (Scheme 2). The second stereogenic center at C5

Scheme 1. The synthesis of (-)-bissetone from d-glucose by Lichtenthaler.

Scheme 2. The retrosynthetic analysis of bissetone.
with a tertiary hydroxyl group and carbonyl at C4 would be introduced via Rubottom oxidation of a silyl enol ether moiety. ${ }^{5,6}$ Finally, our synthetic plan envisioned formation of an exo-cyclic carbonyl group (acetone subunit) by ozonation ($\mathrm{R}=\mathrm{Me}$) or Wack-er-Tsuji oxidation $(\mathrm{R}=\mathrm{H})^{7}$ of the corresponding alkene moiety and deprotection of the primary alcohol.

Initially, triene $\mathbf{3}$ for the hetero-Diels-Alder reaction was prepared (Scheme 3). Firstly, diethyl (2-oxopropyl)phosphonate (1) ${ }^{8}$ was alkylated with allyl bromide in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and a catalytic amount of tetrabutylammonium bromide. The subsequent Horner-Wadsworth-Emmons reaction was carried out in the same flask by addition of paraformaldehyde. The reaction yield in this step was moderate (45\%) due to gem-diallylation of 1 . Finally, the TBS-protected triene $\mathbf{3}$ was obtained from ketone $\mathbf{2}$ and tertbutyldimethylsilyl chloride in the presence of 2 equiv of $\mathrm{Bu}^{t} \mathrm{OK}$ in 85\% yield.
in this cycloaddition reaction (Table 1). Optimization of the reaction conditions showed that $5 \mathrm{~mol} \%$ of $\left[(R)-6,6^{\prime} \text {-dibromo-BINOL }\right]_{2} \mathrm{Ti}$ complex in toluene ${ }^{16}$ gave the highest enantioselectivity (up to 98.5% ee, entry 8) and good yield (73%) of the product 4. Importantly, $1 \mathrm{~mol} \%$ of the same catalyst in a more concentrated reaction mixture (0.4 mL of toluene on a 1 mmol scale) led to comparable results (71% yield, 98% ee, entry 9). Using a catalyst with an unsubstituted binaphthol gave product 4 with slightly lower enantioselectivity ($90-93 \%$ ee vs $95-98 \%$ ee, entries $1,2,9$, and 10). The use of (R)-BINOL-Ti catalysts resulted in formation of the (R)-enantiomer of cycloadduct 4 . The observed direction of the asymmetric induction is in agreement with enantioselective HDA reactions of glyoxylates catalyzed by BINOL-Ti complexes reported in the literarure. ${ }^{10 a-e}$

In the synthesis of natural (-)-bissetone, a titanium catalyst based on (S)-6,6'-dibromo-BINOL was applied in the hetero-Diels -Alder reaction. In the next step, the cycloadduct $\mathbf{4}$ was reduced

Scheme 3. The synthesis of triene $\mathbf{3}$ for the HDA reaction.

The enantioselective hetero-Diels-Alder reaction of the triene $\mathbf{3}$ and commercially available ethyl glyoxylate was used as the key step for the construction of the oxo six-membered ring framework (Table 1). The literature describes several catalytic systems useful in HDA reactions of glyoxylates with non-activated ${ }^{9}$ as well as activated 1 -alkoxy 1,3 -dienes ${ }^{10}$ and Danishefsky-type dienes. ${ }^{11}$ Oxo-Diels-Alder reactions of 1,3-dienes with one activating group in position 2 are rare in the literature. ${ }^{12}$ To the best of our knowledge, HDA reactions with 2-silyloxy-3-alkyl dienes of type $\mathbf{3}$ proposed in our retrosynthetic analysis have not been previously reported. Among various catalytic systems, we concentrated our attention on BINOL-titanium complexes, which have been applied successfully in asymmetric catalysis, including hetero-Diels-Alder reactions, by Mikami, ${ }^{10 a-c, 13}$ and Keck. ${ }^{14}$ Recently, we also demonstrated very efficient Friedel-Crafts type reactions of activated heteroarenes with glyoxylates in the presence of BINOL-Ti catalyst. ${ }^{15}$

Titanium complexes generated from binaphthol and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}$ using the Keck ${ }^{14}$ method were found to be very useful asymmetric catalysts
with LiAlH_{4} to the corresponding alcohol 5 in practically quantitative yield and with unchanged optical purity (Scheme 4). ${ }^{17}$ The primary alcohol 5 was protected by either trityl or benzoyl groups (see products $\mathbf{6 a}$ and $\mathbf{6 b}$). We expected that the larger protecting group (i.e., Tr) at this position could increase diastereoselectivity in the oxidation step.

Oxidation of TBS-protected enols $\mathbf{6 a}$ and $\mathbf{6 b}$ containing the allyl substituent with meta-chloroperoxybenzoic acid (m-CPBA) under optimized conditions, followed by desilylation with $\mathrm{Bu}_{4} \mathrm{NF} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, led chemoselectively to the expected products $\mathbf{7 a}$ and $\mathbf{7 b}$ in good yields ($70-90 \%$), but unfortunately with practically no diastereoselectivity ($\sim 1: 1$ mixture of cis/trans) (Scheme 5). ${ }^{6}$ Other commonly used oxidation conditions $\left(\mathrm{OsO}_{4} / \mathrm{NMO}, \mathrm{Na}_{2} \mathrm{WO}_{4} / \mathrm{H}_{2} \mathrm{O}_{2}, t\right.$ BuOOH , Oxone $/ \mathrm{K}_{2} \mathrm{CO}_{3} /$ cyclohexanone) failed in this reaction. We concentrated our efforts on oxidation with m-CPBA in various solvents (AcOEt, toluene, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, THF, MeOH , hexane, cyclohexane, MeCN) and also with base additives (e.g., $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{NaHCO}_{3}, \mathrm{~K}_{2} \mathrm{HPO}_{4}$, $\mathrm{Et}_{3} \mathrm{~N}$). Unfortunately, in many cases, a mixture of products difficult

Table 1
The enantioselective hetero-Diels-Alder reaction

	 3		$\xrightarrow{\substack{(R)-\text {-L1 or L2/ } \\ \mathrm{Ti}(\mathrm{OiPr})_{4}}}$	TBS 4			
Entry	Catalyst	mol \%	Solvent ${ }^{\text {a }}$ (mL/mmol)	Temp (${ }^{\circ} \mathrm{C}$)	Time (h)	Yield (\%)	ee (\%)
1	$\mathbf{L 1 / T i}\left(\mathrm{O}^{\mathbf{i}} \mathrm{Pr}\right)_{4}(1: 1)$	5\%	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (dry) (0.8)	0	4	89	90
2	L2/Ti $\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(1: 1)$	5\%	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (dry) (0.8)	0	4	90	95
3	L2/Ti $\left(\mathrm{O}^{\mathbf{i}} \mathrm{Pr}\right)_{4}(1: 1)$	5\%	Toluene (0.8)	0	4	83	96.5
4	L2/Ti $\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(1: 1)$	5\%	Toluene (0.8)	0	2.5	52	96
5	L2/Ti $\left(\mathrm{O}^{\mathbf{i}} \mathrm{Pr}\right)_{4}(1: 1)$	5\%	Toluene (0.8)	20	5	73	97
6	L2/Ti $\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(1: 1)$	1\%	Toluene (0.16)	0	5	45	94
7	$\mathbf{L 2} / \mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(1: 1)$	1\%	Toluene (0.16)	$0 \rightarrow 20$	20	81	95
8	$\mathbf{L 2} / \mathrm{Ti}\left(\mathrm{O}^{\mathbf{i}} \mathrm{Pr}\right)_{4}(2: 1)$	5\%	Toluene (2.0)	$0 \rightarrow 20$	5	73	98.5
9	$\mathbf{L 2} / \mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(2: 1)$	1\%	Toluene (0.4)	$0 \rightarrow 20$	20	71	98
10	$\mathbf{L 1} / \mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(2: 1)$	2\%	Toluene (1.0)	0	15	80	93

Conditions: triene $\mathbf{3}$ (1.0 mmol), ethyl glyoxylate (1.3 mmol) in toluene or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
${ }^{\text {a }}$ Use of dry toluene is not necessary for high enantioselectivity.

Scheme 4.
for characterizing was observed. Finally, the best results in the terms of yield were obtained with m-CPBA in AcOEt and toluene. The mixture of diastereoisomers of products $\mathbf{7 a}$ and $\mathbf{7 b}$ could be separated by careful chromatography on silica.
trityl group was easily removed from ($2 S, 5 S$)-8a in the presence of $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in dichloromethane to afford (-)-bissetone in 78% yield. Hydrolysis of $\mathbf{8 b}$ under basic conditions was previously described. ${ }^{3}$

Scheme 5. Oxidation of the silyl enol ethers $\mathbf{6 a}$ and $\mathbf{6 b}$.

In the next step, single diastereoisomers of $\mathbf{7 a}$ and $\mathbf{7 b}$ were oxidized under Wacker-Tsuji conditions $\left(\mathrm{O}_{2}, \mathrm{PdCl}_{2}, \mathrm{CuCl}\right)^{7}$ to give O-protected bissetone ($(2 S, 5 S)-\mathbf{8 a} / \mathbf{8 b})$ or the corresponding C5-epimers ($2 S, 5 R$)-8a/8b with $57-85 \%$ yield (Scheme 6). Optionally, mixtures of diastereoisomers 7 could be oxidized and separated.

The structure of diastereoisomers 8a was assigned by NMR experiments and X-ray analysis of trans-8a (Fig. 2). The structure and absolute configuration of $(2 S, 5 S)-\mathbf{8 b}$ were confirmed by comparison to the literature data (NMR and optical rotation). ${ }^{3}$ The

3. Conclusions

A simple and efficient enantioselective approach to bissetone and its stereoisomers has been proposed. O-Protected bissetone 8 and its 5 -epimer were obtained in good overall yield (up to 65% for $\mathrm{R}=\mathrm{Tr}$) in six steps starting from a hetero-Diels-Alder reaction. A highly enantioselective HDA cycloaddition of 2,3-substituted diene and glyoxylate catalyzed by easily available BINOL-Ti was demonstrated. Despite the efficiency of our approach, the most challenging step is still the control of diastereoselectivity in the

Scheme 6. The Wacker-Tsuji oxidation.

Fig. 2. X-ray crystal structure of (\pm)-TrO-protected bissetone (trans-8a).
oxidation of silyl enol ether, and this issue requires more attention in the future. Finally, stereoisomer ($2 S, 5 S$)-7a was oxidized under Wacker-Tsuji conditions and deprotected to afford the (-)-bissetone.

4. Experimental section

4.1. General information

All reported NMR spectra were recorded on a Varian 400, 500 or 600 using CDCl_{3} as solvent and $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}$ as internal standard. Chemical shifts of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR are reported as δ values relative to $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}(\delta=0.00)$ and to the central $\mathrm{CDCl}_{3}(\delta=77.0)$, respectively. Coupling constants (J) in the ${ }^{1} \mathrm{H}$ NMR are in hertz. The following abbreviations are used to indicate the multiplicity: s-singlet; d-doublet; t-triplet; q-quartet; m-multiplet; dm-doublet of multiplets. High-resolution mass spectra (HRMS) were recorded on a Mariner PE Biosystems unit using the ESI technique. IR spectra were taken on an FT-IR Perkin-Elmer Spectrum 2000 using a film $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Optical rotations were measured on a JASCO DIP-1000 digital polarimeter. Analytical TLC was carried out on commercial plates coated with 0.25 mm of Merck Kieselgel 60. Preparative flash silica chromatography was performed using Merck Kieselgel 60 (230-400 mesh).

The enantiomeric excess (ee) of the products was determined by high performance liquid chromatography (HPLC). HPLC analyses were performed on a chromatograph fitted with the diode-array detector (DAD) and Chiralpak AD-H ($250 \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$), AS-H $(250 \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m})$, or Chiracel OD-H $(250 \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m})$ columns eluted with iso-propanol ($1-20 \%$) in hexane.

All solvents and commercially available chemicals were used without additional purification, unless otherwise noted. Ethyl glyoxylate was distilled under vacuum over $\mathrm{P}_{2} \mathrm{O}_{5}$ before use. (R)and (S)-1,1'-bi-2-naphthol, ethyl glyoxylate (50\% solution in toluene), and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(97 \%$ purity) were purchased from Aldrich. (R)and (S)-6,6'-dibromo-1,1'-bi-2-naphthol (L2) were prepared according to the procedures described in the literature. ${ }^{18}$

4.2. Experimental procedures and characterization data

4.2.1. 3-Methylenehex-5-en-2-one (2). A $150-\mathrm{mL}$ round-bottomed flask with a stir bar was charged with (2-oxopropyl)phosphonate ($10.0 \mathrm{~g}, 51 \mathrm{mmol})^{8}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL}), \mathrm{K}_{2} \mathrm{CO}_{3}(28.5 \mathrm{~g}, 4$ equiv), and $5 \mathrm{~mol} \%$ of tetrabutylammonium bromide (0.83 g). After stirring for 0.5 h at room temperature, allyl bromide ($6.9 \mathrm{~g}, 1.1$ equiv) was added in one portion and reaction was continued for 2 days at room temperature in the dark. After this time, paraformaldehyde (1.89 g , 1.2 equiv) was added and reaction mixture was refluxed for 2 h . The reaction mixture was cooled to room temperature and poured into water (200 mL). The volatile product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 20 \mathrm{~mL})$, the combined organic layers were dried over MgSO_{4}, and carefully evaporated in vacuo ($20^{\circ} \mathrm{C}$ water bath). Vacuum distillation at $70-75^{\circ} \mathrm{C} / 80 \mathrm{mmHg}$ with effective cooling (ca. $-5^{\circ} \mathrm{C}$) afforded the title compound ($2.64 \mathrm{~g}, 45 \%$) as a colorless oil. IR (film) 3080, 2925, $1680,1430,1365,1262,1025,918 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.07(\mathrm{~s}, 1 \mathrm{H}), 5.88-5.77(\mathrm{~m}, 2 \mathrm{H}), 5.09-5.03(\mathrm{~m}, 2 \mathrm{H}), 3.02(\mathrm{dm}$, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.2$ (C), $147.4(\mathrm{C}), 135.4(\mathrm{CH}), 125.7\left(\mathrm{CH}_{2}\right), 116.7\left(\mathrm{CH}_{2}\right), 34.6\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{3}\right)$.

4.2.2. 2-tert-Butyldimethylsilyloxy-3-methylenehexa-1,5-diene

 (3). To stirred suspension of potassium tert-butoxide (1.02 g , 9.0 mmol) in dry THF (20 mL) cooled to $-78^{\circ} \mathrm{C}$ under argon atmosphere, was added dropwise 3 -methylidenehex-5-en-2-one (2) ($0.50 \mathrm{~g}, 4.5 \mathrm{mmol}$). After 10 min tert-butyldimethylchlorosilane ($1.64 \mathrm{~g}, 10 \mathrm{mmol}$) in toluene (50% solution) was introduced and stirred for 30 min at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was warmed to $-30{ }^{\circ} \mathrm{C}$ and quenched by the addition of 15% aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ $(10 \mathrm{~mL})$. The product was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$, the combined organic layers were dried over MgSO_{4}, evaporated in vacuo,and purified by chromatography (or distillation after scale-up) to afford 856 mg of triene $\mathbf{3}$ as a colorless oil with 85% yield. IR (film) 2957, 2930, 2859, 1589, 1472, 1255, 1159, 1018, 909, 839, $780 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.96-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.56-5.52(\mathrm{~m}, 1 \mathrm{H})$, $5.14-4.99(\mathrm{~m}, 3 \mathrm{H}), 4.54-4.50(\mathrm{~m}, 1 \mathrm{H}), 4.36-4.33(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.95$ $(\mathrm{m}, 2 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.18(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.6$ (C), $142.7(\mathrm{C}), 136.5(\mathrm{CH}), 116.0\left(\mathrm{CH}_{2}\right), 113.8\left(\mathrm{CH}_{2}\right), 92.9\left(\mathrm{CH}_{2}\right), 37.2$ $\left(\mathrm{CH}_{2}\right), 25.8\left(3 \times \mathrm{CH}_{3}\right), 18.3(\mathrm{C}),-4.7\left(2 \times \mathrm{CH}_{3}\right)$.
4.2.3. (-)-(2S)-Ethyl 5-allyl-4-tert-butyldimethylsilyloxy-3,6-dihydro-2H-pyran-2-carboxylate (4). A $5-\mathrm{mL}$ round-bottomed flask was charged with (S)-6,6'-Br ${ }^{\prime}$ BINOL (L2) (45.0 mg , $0.10 \mathrm{mmol})$, toluene ($2.0 \mathrm{~mL}, 0.05 \mathrm{M}$) and capped with a septum. To the stirred solution of the ligand, titanium tetraisopropoxide ($14.7 \mu \mathrm{~L}, 14.2 \mathrm{mg}, 0.050 \mathrm{mmol}, 5.0 \mathrm{~mol} \%$) was added via syringe directly under the solution surface at room temperature (inert atmosphere is not required). The resulting dark red mixture was stirred for 2 h at room temperature and cooled to $0{ }^{\circ} \mathrm{C}$. Ethyl glyoxylate ($0.133 \mathrm{~g}, 1.3 \mathrm{mmol}$; distilled under vacuum over $\mathrm{P}_{2} \mathrm{O}_{5}$ before use) was introduced and, finally, after 5 min , 2-tert-butyl-dimethylsilyloxy-3-methylenehexa-1,5-diene (3) (225 mg, 1.0 mmol) was added at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm slowly to $20^{\circ} \mathrm{C}$ and after stirring for 5 h was directly subjected to flash chromatography using hexane/AcOEt (9:1) as an eluent. Purification afforded 240 mg (73% yield) of cycloadduct 4 as a colorless oil with 98.5% ee (for other reaction conditions, see Table 1). $[\alpha]_{D}^{20}-153.2$ (c 2.0, CHCl_{3}); IR (film) 3408, 2956, 2931, 2858, 1738, 1692, 1472, 1305, 1256, 1220, 1184, 1118, 1030, 903, 840 , $780 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.79-5.59(\mathrm{~m}, 1 \mathrm{H})$, $5.10-4.90(\mathrm{~m}, 2 \mathrm{H}), 4.37-4.18(\mathrm{~m}, 4 \mathrm{H}), 4.11(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.83$ (dd, $J=15.4,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.72$ (dd, $J=15.4,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.25(\mathrm{~m}$, $2 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{sm}, 9 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.9(\mathrm{C}=\mathrm{O}), 139.9(\mathrm{C}), 135.3(\mathrm{CH}), 115.6$ $\left(\mathrm{CH}_{2}\right), 111.3(\mathrm{C}), 73.3(\mathrm{CH}), 66.9\left(\mathrm{CH}_{2}\right), 61.2\left(\mathrm{CH}_{2}\right), 32.5\left(\mathrm{CH}_{2}\right), 30.4$ $\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{3}\right), 18.1(\mathrm{C}), 14.2\left(\mathrm{CH}_{3}\right),-3.6\left(\mathrm{CH}_{3}\right),-4.90\left(\mathrm{CH}_{3}\right)$; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{NaSi}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$: 349.1806; found: 349.1797; HPLC (Chiralpak AS-H, 1% i-PrOH in hexane, $1.0 \mathrm{~mL} / \mathrm{min}$, $\lambda=206 \mathrm{~nm}, t_{\mathrm{R}(S)-4}=4.3 \mathrm{~min}-$ major, $t_{\mathrm{R}(R)-4}=6.1 \mathrm{~min}-$ minor $)$.
4.2.4. (2S)-(5-Allyl-4-tert-butyldimethylsilyloxy-3,6-dihydro-2H-py-ran-2-yl)methanol (5). To a vigorously stirred solution of the cycloadduct $4(1.00 \mathrm{~g}, 3.06 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ cooled to $0^{\circ} \mathrm{C}$, a suspension of $\mathrm{LiAlH}_{4}(0.223 \mathrm{~g}, 6.12 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added dropwise. After 10 min , the reaction mixture was quenched by the addition of acetone (5 mL). Longer reduction time increases amount of impurities. After a few minutes, a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{SO}_{4}(5 \mathrm{~mL})$, solid $\mathrm{Na}_{2} \mathrm{SO}_{4}(0.5 \mathrm{~g})$, and AcOEt (20 mL) were added. The mixture was vigorously stirred to give a transparent organic phase and a gray solid phase, which was extracted with EtOAc ($2 \times 20 \mathrm{~mL}$). Combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure, to give quantitatively crude primary alcohol $5(0.87 \mathrm{~g})$ as a colorless oil. IR (film) 3591, 2931, 2859, 1691, 1377, 1206, 1179, 1063, 997, 867, $840 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.76-5.63$ $(\mathrm{m}, 1 \mathrm{H}), 5.06-4.93(\mathrm{~m}, 2 \mathrm{H}), 4.09(\mathrm{~d}, \mathrm{~J}=0.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.73-3.64(\mathrm{~m}$, 2H), 3.62-3.53 (m, 1H), 2.86 (dd, $J=15.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.70 (dd, $J=15.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.81(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~s}$, 9H), $0.13(2 \times \mathrm{s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.7$ (C), 135.6 $(\mathrm{CH}), 115.5\left(\mathrm{CH}_{2}\right), 111.4(\mathrm{C}), 75.1(\mathrm{CH}), 67.2\left(\mathrm{CH}_{2}\right), 65.4\left(\mathrm{CH}_{2}\right), 31.6$ $\left(\mathrm{CH}_{2}\right), 30.6\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{3}\right), 18.1(\mathrm{C}),-3.6\left(\mathrm{CH}_{3}\right),-3.9\left(\mathrm{CH}_{3}\right)$; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{NaSi}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$: 307.1700 ; found: 307.1699.
4.2.5. (2S)-5-Allyl-4-tert-butyldimethylsilyloxy-2-trityloxymethyl-3,6-dihydro-2H-pyran ($\boldsymbol{6 a}$). To a solution of crude alcohol 5 ($0.87 \mathrm{~g}, \sim 3.06 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$, at room temperature
were added $\mathrm{Et}_{3} \mathrm{~N}(0.62 \mathrm{~g}, 6.12 \mathrm{mmol})$, triphenylmethyl chloride ($0.94 \mathrm{~g}, 3.36 \mathrm{mmol}$), and 4-dimethylaminopyridine (18 mg , $0.15 \mathrm{mmol})$. The reaction mixture was stirred under argon atmosphere for 24 h , and washed with an aqueous solution of $\mathrm{NaHCO}_{3}(5 \%, 20 \mathrm{~mL})$. After extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated in vacuo, and purified by short column chromatography using hexane/AcOEt (98:2) as an eluent. The (2S)-5-allyl-4-tert-butyldimethylsilyloxy-2-trityloxymethyl-3,6-dihydro-2 H -
pyran was isolated with 96% yield (1.54 g) and 98% ee. IR (film) 2931, 2859, 1692, 1491, 1449, 1208, 1179, 1072, 840, $780 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52-7.40(\mathrm{~m}, 6 \mathrm{H}), 7.34-7.26(\mathrm{~m}, 6 \mathrm{H})$, $7.26-7.13(\mathrm{~m}, 3 \mathrm{H}), 5.76-5.63(\mathrm{~m}, 1 \mathrm{H}), 5.06-4.92(\mathrm{~m}, 2 \mathrm{H}), 4.08(\mathrm{~s}$, 2H), $3.84-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.28$ (dd, J=9.5, $5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.06 (dd, $J=9.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.83 (dd, $J=15.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.72$ (dd, $J=15.1$, $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-1.96(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.13(2 \times \mathrm{s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.0$ (C), 141.0 (C), 135.8 (CH), 128.7 $(\mathrm{CH}), 127.8(\mathrm{CH}), 126.9(\mathrm{CH}), 115.3\left(\mathrm{CH}_{2}\right), 111.4(\mathrm{C}), 86.4(\mathrm{C}), 74.1$ $(\mathrm{CH}), 67.3\left(\mathrm{CH}_{2}\right), 66.4\left(\mathrm{CH}_{2}\right), 33.3\left(\mathrm{CH}_{2}\right), 30.6\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{3}\right)$, $18.1(\mathrm{C}),-3.5\left(\mathrm{CH}_{3}\right),-3.9\left(\mathrm{CH}_{3}\right)$; HRMS calcd for $\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{O}_{3} \mathrm{NaSi}$ $\left[(\mathrm{M}+\mathrm{Na})^{+}\right]: 549.2795$; found: 549.2804; HPLC: (Chiralpak AD-H, $2 \% i-\mathrm{PrOH}$ in hexane, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=206 \mathrm{~nm}, t_{\mathrm{R}}=3.9 \mathrm{~min}-\mathrm{maj}$ or, $t_{\mathrm{R}}=4.3 \mathrm{~min}$-minor).
4.2.6. (2S)-(5-Allyl-4-tert-butyldimethylsilyloxy-3,6-dihydro-2H-py-ran-2-yl)methyl benzoate ($\mathbf{6 b}$). To a cooled ($0^{\circ} \mathrm{C}$) solution of crude alcohol $5(1.00 \mathrm{~g}, \sim 3.5 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.71 \mathrm{~g}, 7.0 \mathrm{mmol})$, and $4-$ dimethylaminopyridine ($0.042 \mathrm{~g}, 0.35 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL), was added dropwise benzoyl chloride ($0.74 \mathrm{~g}, 5.27 \mathrm{mmol}$). The reaction mixture was allowed to warm slowly to room temperature and after stirring for 1 day was washed with an aqueous solution of $\mathrm{NaHCO}_{3}(5 \%, 30 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated in vacuo, and purified by short column chromatography using hexane/AcOEt (90:10) as an eluent. The (2S)-(5-allyl-4-tert-butyldimethylsilyloxy-3,6-dihydro-2H-pyran-2-yl)methyl benzoate was isolated with 63% yield (858 mg). IR (film) 2932, 2859, 1719, 1692, 1451, 1379, 1211, 1177, 1111, 876, $839 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.10-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.41(\mathrm{~m}, 2 \mathrm{H})$, $5.77-5.64(\mathrm{~m}, 1 \mathrm{H}), 5.10-4.94(\mathrm{~m}, 2 \mathrm{H}), 4.40(\mathrm{dd}, J=11.7,3.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.36 (dd, $J=11.7,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.12 (s, 2H), 4.03-3.92 (m, 1H), 2.85 (dd, $J=15.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.75$ (dd, $J=15.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.22$ (m, $1 \mathrm{H}), 2.10-1.99(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.13(2 \times \mathrm{s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 166.5$ (C), 140.3 (C), 135.5 (CH), 133.0 (CH), 130.0 (C), $129.7(\mathrm{CH}), 128.3(\mathrm{CH}), 115.5\left(\mathrm{CH}_{2}\right), 111.5(\mathrm{C}), 72.7(\mathrm{CH}), 67.3$ $\left(\mathrm{CH}_{2}\right), 66.7\left(\mathrm{CH}_{2}\right), 32.3\left(\mathrm{CH}_{2}\right), 30.6\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{3}\right), 18.1(\mathrm{C}),-3.6$ $\left(\mathrm{CH}_{3}\right),-3.8\left(\mathrm{CH}_{3}\right)$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{NaSi}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$: 411.1962; found: 411.1961.
4.2.7. Rubottom oxidation of $\mathbf{6 a}$. To a suspension of silyl enol ether $\mathbf{6 a}(350 \mathrm{mg}, 0.664 \mathrm{mmol})$ and solid $\mathrm{NaHCO}_{3}(111 \mathrm{mg}, 1.32 \mathrm{mmol})$ in AcOEt (8 mL) at $0{ }^{\circ} \mathrm{C}$ was added dropwise a pre-cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of m-CPBA ($250 \mathrm{mg}, 0.87 \mathrm{mmol}, 60 \%$ of purity) in AcOEt (8 mL). After stirring for 1 h at $0^{\circ} \mathrm{C}$, the excess of m-CPBA was decomposed by addition of a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{SO}_{3}$ $(1 \mathrm{~mL})$. The reaction mixture was washed with an aqueous solution of $\mathrm{NaHCO}_{3}(5 \%, 20 \mathrm{~mL})$ and extracted with $\operatorname{AcOEt}(3 \times 10 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was dissolved in THF (10 mL), cooled to $0{ }^{\circ} \mathrm{C}$ and solution of pre-cooled ($0{ }^{\circ} \mathrm{C}$) $\mathrm{Bu}_{4} \mathrm{NF} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ ($0.314 \mathrm{~g}, 0.99 \mathrm{mmol}$) in THF (10 mL) was added. After stirring for 15 min , an aqueous solution of $\mathrm{NaHCO}_{3}(5 \%, 20 \mathrm{~mL})$ was added and product was extracted with AcOEt ($3 \times 15 \mathrm{~mL}$). Combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated in vacuo, and subjected to column chromatography using hexane/AcOEt (9:1) as an eluent. Purification afforded $\sim 55: 45$ mixture of isomers
trans/cis-7a with 85% yield after two steps (131 mg of the firsteluted trans-7a and 111 mg of second-eluted cis-7a).
4.2.7.1. (2S,5S)-5-Allyl-5-hydroxy-2-(trityloxymethyl)-tetrahy-dropyran-4-one (trans-7a). [$\alpha]_{\mathrm{D}}^{20}-60.1$ (c 1.17, CHCl_{3}); IR (film) 3495, 2926, 2875, 1717, 1491, 1449, 1220, 1146, 1079, 1054, $926 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.37$ (m, 5H), 7.36-7.18 $(\mathrm{m}, 10 \mathrm{H}), 5.84-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.19-5.10(\mathrm{~m}, 2 \mathrm{H}), 4.21-4.12(\mathrm{~m}, 1 \mathrm{H})$, 3.84 (d, $J=11.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.70 (d, $J=11.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.44 (s, 1H), 3.29-3.19 (m, 2H), 2.76-2.61 (m, 3H), 2.43 (dd, J=14.3, 7.3 Hz, 1H); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.7$ (C), 143.4 (C), 131.5 (CH), 128.6 (CH), $127.9(\mathrm{CH}), 127.2(\mathrm{CH}), 119.4\left(\mathrm{CH}_{2}\right), 87.2(\mathrm{C}), 76.7(\mathrm{C}), 76.3(\mathrm{CH})$, $73.0\left(\mathrm{CH}_{2}\right), 64.9\left(\mathrm{CH}_{2}\right), 40.7\left(\mathrm{CH}_{2}\right), 39.2\left(\mathrm{CH}_{2}\right)$; HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Na}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$: 451.1880 ; found: 451.1902 ; HPLC: 98.0% ee (Chiralpak AD-H, $3 \% ~ i-\mathrm{PrOH}$ in hexane, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=206 \mathrm{~nm}$, $t_{\mathrm{R}}=7.9 \mathrm{~min}-$ major, $t_{\mathrm{R}}=12.5 \mathrm{~min}-$ minor $)$.
4.2.7.2. (2S,5R)-5-Allyl-5-hydroxy-2-(trityloxymethyl)-tetrahy-dropyran-4-one (cis-7a). Isomer with lower R_{f} value in 7:3 hexane/ AcOEt compared to trans-7a; $[\alpha]_{D}^{20}+14.1$ (c 1.24, CHCl_{3}); IR (film) $3549,2925,2877,1721,1491,1449,1223,1150,1078,999,925 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.43(\mathrm{~m}, 5 \mathrm{H}), 7.38-7.11(\mathrm{~m}, 10 \mathrm{H})$, $5.78-5.66(\mathrm{~m}, 1 \mathrm{H}), 5.22-5.09(\mathrm{~m}, 2 \mathrm{H}), 4.09(\mathrm{~d}, \mathrm{~J}=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83$ (s, 1H), 3.80-3.72 (m, 1H), 3.32 (dd, J=10.6, $3.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.22 (dd, $J=9.9,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.58$ (dd, $J=14.3,6.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.47 (dd, J=14.1, $2.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.6$ (C), 143.7 (C), $131.0(\mathrm{CH}), 128.6(\mathrm{CH}), 127.9(\mathrm{CH}), 127.2(\mathrm{CH}), 119.2\left(\mathrm{CH}_{2}\right)$, 86.7 (C), $78.7(\mathrm{CH}), 78.1(\mathrm{C}), 75.4\left(\mathrm{CH}_{2}\right), 65.6\left(\mathrm{CH}_{2}\right), 42.1\left(\mathrm{CH}_{2}\right), 41.1$ $\left(\mathrm{CH}_{2}\right)$; HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Na}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]: 451.1880$; found: 451.1899; HPLC: 98.0% ee (Chiralpak AD-H, $3 \% i$-PrOH in hexane, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=206 \mathrm{~nm}, t_{\mathrm{R}}=21.6 \mathrm{~min}-$ major, $t_{\mathrm{R}}=24.3 \mathrm{~min}$-minor $)$.
4.2.8. Rubottom oxidation of $\mathbf{6 b}$. To a suspension of silyl enol ether $\mathbf{6 b}$ ($370 \mathrm{mg}, 0.952 \mathrm{mmol}$) and solid $\mathrm{NaHCO}_{3}(160 \mathrm{mg}, 1.90 \mathrm{mmol})$ in AcOEt (10 mL) at $0{ }^{\circ} \mathrm{C}$ was added dropwise a pre-cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of m-CPBA ($356 \mathrm{mg}, 1.24 \mathrm{mmol}, 60 \%$ of purity) in AcOEt $(10 \mathrm{~mL})$. After stirring for 1 h at $0^{\circ} \mathrm{C}$, the excess of m-CPBA was decomposed by addition of a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{SO}_{3}$ $(1 \mathrm{~mL})$. The reaction mixture was washed with an aqueous solution of $\mathrm{NaHCO}_{3}(5 \%, 20 \mathrm{~mL})$ and extracted with AcOEt ($3 \times 10 \mathrm{~mL}$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was dissolved in THF (10 mL), cooled to $0{ }^{\circ} \mathrm{C}$ and solution of pre-cooled ($0{ }^{\circ} \mathrm{C}$) $\mathrm{Bu}_{4} \mathrm{NF} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ ($0.450 \mathrm{~g}, 1.43 \mathrm{mmol}$) in THF (10 mL) was added. After stirring for 15 min , an aqueous solution of $\mathrm{NaHCO}_{3}(5 \%, 20 \mathrm{~mL})$ was added and product was extracted with $\operatorname{AcOEt}(3 \times 15 \mathrm{~mL})$. Combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated in vacuo, and subjected to column chromatography using hexane/AcOEt (9:1) as an eluent. Purification afforded $\sim 1: 1$ mixture of isomers trans/cis7b with 90% yield after two steps (128 mg of the first-eluted trans$7 \mathbf{b}$ and 122 mg of second-eluted cis-7b).
4.2.8.1. ((2S,5S)-5-Allyl-5-hydroxy-4-oxo-tetrahydro-2H-pyran-2-yl)methyl benzoate (trans-7b). $[\alpha]_{\mathrm{D}}{ }^{0}-87.4\left(c 1.14, \mathrm{CHCl}_{3}\right)$; IR (film) 3497, 2959, 2863, 1721, 1452, 1177, 1148, 1111, 1044, $926 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 1 \mathrm{H})$, $7.45-7.35(\mathrm{~m}, 2 \mathrm{H}), 5.72-5.57(\mathrm{~m}, 1 \mathrm{H}), 5.15-5.01(\mathrm{~m}, 2 \mathrm{H}), 4.47-4.30$ $(\mathrm{m}, 2 \mathrm{H}), 4.04(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 1 \mathrm{H}), 3.31$ (d, $J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.77-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.60-2.44(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.4$ (C), 166.1 (C), 133.4 (CH), 130.8 (CH), 129.7 $(\mathrm{CH}), 129.5(\mathrm{C}), 128.5(\mathrm{CH}), 119.4(\mathrm{CH}), 77.9(\mathrm{C}), 77.1(\mathrm{CH}), 75.2\left(\mathrm{CH}_{2}\right)$, $65.9\left(\mathrm{CH}_{2}\right), 41.6\left(\mathrm{CH}_{2}\right), 41.1\left(\mathrm{CH}_{2}\right)$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{Na}$ $\left[(\mathrm{M}+\mathrm{Na})^{+}\right]: 313.1047$; found: 313.1054.
4.2.8.2. ((2S,5R)-5-Allyl-5-hydroxy-4-oxo-tetrahydro-2H-pyran-2-yl)methyl benzoate (cis-7b). Isomer with lower R_{f} value in 7:3
hexane/AcOEt compared to trans-7b; $[\alpha]_{D}^{20}+30.5\left(c\right.$ 1.20, $\left.\mathrm{CHCl}_{3}\right)$; IR (film) 3553, 2957, 1723, 1602, 1452, 1316, 1178, 1151, 1113, 1071, $926 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05-7.98(\mathrm{~m}, 2 \mathrm{H})$, $7.62-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 2 \mathrm{H}), 5.84-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.23-5.13$ (m, 2H), 4.54 (dd, J=11.9, $6.3 \mathrm{~Hz}, 1 \mathrm{H}$), $4.47-4.40(\mathrm{~m}, 1 \mathrm{H}), 4.38$ (dd, $J=11.9,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78$ (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.46 (s, 1H), 2.87-2.74 (m, 2H), 2.70 (dd, J=14.3, $7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.45 (dd, $J=14.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.0$ (C), 166.1 (C), 133.3 (CH), 131.2 (CH), 129.7 (CH), 129.4 (C), 128.5 (CH), 119.7 $\left(\mathrm{CH}_{2}\right), 76.7(\mathrm{C}), 74.9(\mathrm{CH}), 72.9\left(\mathrm{CH}_{2}\right), 65.4\left(\mathrm{CH}_{2}\right), 40.2\left(\mathrm{CH}_{2}\right), 39.1$ $\left(\mathrm{CH}_{2}\right)$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{Na}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]: 313.1047$; found: 313.1050.
4.2.9. Wacker-Tsuji oxidation: (2S,5S)-5-hydroxy-5-(2-oxopropyl)-2-(trityloxymethyl)-tetrahydropyran-4-one (trans-8a). A $25-\mathrm{mL}$ round-bottomed flask was charged with ($2 S, 5 S$)-trans-7a (122 mg , $0.284 \mathrm{mmol}), \mathrm{PdCl}_{2}(5.1 \mathrm{mg}, 0.029 \mathrm{mmol}), \mathrm{CuCl}(29 \mathrm{mg}, 0.29 \mathrm{mmol})$ in a $7: 1$ mixture of DMF (5 mL) and $\mathrm{H}_{2} \mathrm{O}(0.72 \mathrm{~mL})$. The resulting dark-brown solution was stirred at room temperature under an oxygen atmosphere (1 atm). After 12 h , an aqueous solution of $\mathrm{NaHCO}_{3}(5 \%, 5 \mathrm{~mL})$ was added and extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and next with AcOEt $(2 \times 10 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated in vacuo, and purified by column chromatography using hexane/AcOEt (8:2) as an eluent. The product trans-8a was isolated as a white solid with yield in the range of $62-85 \%$. $(2 S, 5 S)-8 \mathbf{a}:[\alpha]_{D}^{20}-20.2$ (c 1.2, CHCl_{3}); IR (film) 3458, 3058, 2872, 1724, 1679, 1490, 1449, 1359, 1215, 1153, 1125, $1078,747,705 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45-7.35(\mathrm{~m}, 6 \mathrm{H})$, $7.33-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 3 \mathrm{H}), 4.19(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{~d}, \mathrm{~J}=11.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.79-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.37$ (d, $J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.27$ (dd, $J=9.9$, $4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.24-3.16$ (m, 2H), 3.12 (d, $J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.78$ (m, $J=13.3,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=13.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 207.9$ (C), 206.3 (C), 143.6 (C), 128.6 (CH), $127.9(\mathrm{CH}), 127.2(\mathrm{CH}), 86.8(\mathrm{C}), 79.6(\mathrm{CH}), 76.4\left(\mathrm{CH}_{2}\right), 65.6\left(\mathrm{CH}_{2}\right)$, $50.1\left(\mathrm{CH}_{2}\right), 42.3\left(\mathrm{CH}_{2}\right), 31.3\left(\mathrm{CH}_{3}\right)$; HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Na}$ [(M+Na) ${ }^{+}$]: 467.1829; found: 467.1852; HPLC: 98.0\% ee (Chiralpak $\mathrm{AD}-\mathrm{H}, 5 \% i$-PrOH in hexane, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=206 \mathrm{~nm}$, $t_{\mathrm{R}}=18.2 \mathrm{~min}-$ major, $t_{\mathrm{R}}=22.2 \mathrm{~min}-$ minor $)$.
4.2.9.1. (2S,5R)-5-Hydroxy-5-(2-oxopropyl)-2-(trityloxymethyl)-tetrahydropyran-4-one (cis-8a). Prepared according to the analogous procedure for trans-8a. The product cis-8a was isolated with 65% yield. IR (film) 3425, 3058, 2925, 1719, 1491, 1448, 1412, 1362, 1221, 1177, 1093, 1076, 765, $706 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48-7.42(\mathrm{~m}, 6 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 3 \mathrm{H}), 4.83(\mathrm{~s}$, $1 \mathrm{H}), 4.03(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, 1 H), 3.36 (dd, $J=9.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.20 (dd, $J=9.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.09-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{~d}, \mathrm{~J}=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.30$ ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.5$ (C), 206.6 (C), 143.6 (C), 128.6 (CH), 127.9 (CH), 127.1 (CH), 86.8 (C), 78.4 (CH), 77.4 (C), 75.3 $\left(\mathrm{CH}_{2}\right), 65.6\left(\mathrm{CH}_{2}\right), 43.5\left(\mathrm{CH}_{2}\right), 41.7\left(\mathrm{CH}_{2}\right), 31.5\left(\mathrm{CH}_{3}\right)$; HPLC: 98.0% ee (Chiralpak AD-H, $5 \% ~ i-\mathrm{PrOH}$ in hexane, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=206 \mathrm{~nm}$, $t_{\mathrm{R}}=25.3 \mathrm{~min}$-minor, $t_{\mathrm{R}}=28.5 \mathrm{~min}$-major); LRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Na}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]: 467.2$; found: 467.2.
4.2.9.2. ((2S,5S)-5-Hydroxy-5-(2-oxopropyl)-4-oxo-tetrahydro-2H-pyran-2-yl)methyl benzoate (trans-8b). Prepared according to the analogous procedure for trans-8a. The product ($25,5 S$)- $\mathbf{8 b}$ was isolated with 57% yield. $[\alpha]_{\mathrm{D}}^{20}-31.1\left(c 0.9, \mathrm{CHCl}_{3}\right)\left[\right.$ lit., ${ }^{3 \mathrm{~b}}[\alpha]_{\mathrm{D}}^{20}-31.6$ (c 1.2, CHCl_{3})]; IR (film) 3456, 2859, 1722, 1451, 1361, 1274, 1157, 1112, $1071,713 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10-8.00(\mathrm{~m}, 2 \mathrm{H})$, $7.61-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 2 \mathrm{H}), 4.47(\mathrm{dd}, J=11.8,3.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.42 (dd, $J=11.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~s}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.02-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H})$, 3.12 (d, $J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=13.3,2.8 \mathrm{~Hz}$, 1H), 2.19 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.8$ (C), 206.3 (C),
166.00 (C), 133.3 (CH), 129.6 (CH), 129.5 (C), 128.5 (CH), 78.0 (CH), $76.8(\mathrm{C}), 76.2\left(\mathrm{CH}_{2}\right), 65.8\left(\mathrm{CH}_{2}\right), 50.0\left(\mathrm{CH}_{2}\right), 41.8\left(\mathrm{CH}_{2}\right), 31.4\left(\mathrm{CH}_{3}\right)$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{6} \mathrm{Na}\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$]: 329.0996; found: 329.1002.
4.2.9.3. ((2S,5R)-5-Hydroxy-5-(2-oxopropyl)-4-oxo-tetrahydro$2 H$-pyran-2-yl)methyl benzoate (cis-8b). Prepared according to the analogous procedure for trans-8a. The product ($2 S, 5 R$)-8b was isolated with 60% yield. IR (film) $3441,2958,1719,1451,1362,1275,1177$, $1113,1071,713 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, 2H), 7.58 (t, J=7.4 Hz, 1H), 7.45 (t, J=7.8 Hz, 2H), 4.99-4.86 (m, 1H), 4.48 (dd, $J=11.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.42$ (dd, $J=11.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08$ (dd, $J=11.2,4.9 \mathrm{~Hz}, 2 \mathrm{H}$), 3.53 (d, $J=12.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.17 (dd, $J=13.4,10.5 \mathrm{~Hz}$, 1 H), 2.90 (d, $J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.52$ (dd, $J=13.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.44 (d, $J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.5(\mathrm{C})$, 205.8 (C), 166.2 (C), 133.2 (CH), 129.7 (CH), 129.5 (C), 128.4 (CH), 77.4 (C), $76.8(\mathrm{CH}), 75.3\left(\mathrm{CH}_{2}\right), 65.9\left(\mathrm{CH}_{2}\right), 43.3\left(\mathrm{CH}_{2}\right), 40.8\left(\mathrm{CH}_{2}\right), 31.5$ $\left(\mathrm{CH}_{3}\right)$; LRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{6} \mathrm{Na}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$: 329.3; found: 329.1.
4.2.10. (-)-Bissetone. To a solution of (2S,5S)-8a (100 mg, $0.225 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ was added solid $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(122 \mathrm{mg}$, $0.45 \mathrm{mmol})$. The mixture was stirred at room temperature, monitored by TLC and after 0.5 h was directly subjected to flash chromatography using hexane/AcOEt ($4: 1) \rightarrow$ AcOEt as an eluent. Purification afforded 36 mg of a colorless oil (78% yield). $[\alpha]_{D}^{20}-52.1$ (c 0.5, CHCl_{3}) $\left[\mathrm{lit} .{ }^{3 \mathrm{~b}}[\alpha]_{\mathrm{D}}^{20}-69.4\right.$ (c 1.0, EtOH)]; ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) $\delta 4.19$ (br s, 1 H), 4.04 (d, $J=11.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.80 (dd, $J=11.8$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dm}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=11.8,5.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.28 (d, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.26$ (d, $J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.87 (dd, $J=13.3,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}, J=13.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H})$ 1.7 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}$); ${ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 207.6(\mathrm{C}=0), 206.3(\mathrm{C}=\mathrm{O})$, $80.6(\mathrm{CH}), 77.2(\mathrm{C}), 76.2\left(\mathrm{CH}_{2}\right), 64.9\left(\mathrm{CH}_{2}\right), 49.8\left(\mathrm{CH}_{2}\right), 41.1\left(\mathrm{CH}_{2}\right), 31.5$ $\left(\mathrm{CH}_{3}\right)$; LRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{Na}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$: 225.1; found: 225.0.

Acknowledgements

Authors thank Zambon for the generous support.

Supplementary data

Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra, HPLC chromatograms, and crystallographic data. Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.tet.2013.07.048.

References and notes

1. Cardellina, J. H., II; Hendrickson, R. L.; Manfredi, K. P.; Strobel, S. A.; Clardy, J. Tetrahedron Lett. 1987, 28, 727-730.
2. Fiskesund, R.; Abeyama, K.; Yoshinaga, K.; Abe, J.; Yuan, Y.; Yu, S. Planta Med. 2010, 76, 1635-1641.
3. (a) Brehm, M.; Dauben, W. G.; Köhler, P.; Lichtenthaler, F. W. Angew. Chem., Int. Ed. Engl. 1987, 26, 1271-1273; (b) Brehm, M.; Göckel, V. H.; Jarglis, P.; Lichtenthaler, F. W. Tetrahedron: Asymmetry 2008, 19, 358-373.
4. For reviews, see: (a) Pellissier, H. Tetrahedron 2009, 65, 2839-2877; (b) Jørgensen, K. A. Angew. Chem., Int. Ed. 2000, 39, 3558-3588.
5. (a) Rubottom, G. M.; Vazquez, M. A.; Pellagrina, D. R. Tetrahedron Lett. 1974, 15, 4319-4322; (b) Hassner, A.; Reuss, R. H.; Pinnick, H. W. J. Org. Chem. 1975, 40, 3427-3429; (c) Brook, A. G.; Macrae, D. M. J. Organomet. Chem. 1974, 77, C19-C21.
6. Selected examples of applications to natural product synthesis: (a) Larson, E. R.; Danishefsky, S. J. Am. Chem. Soc. 1982, 104, 6458-6460; (b) Danishefsky, S. J.; Larson, E.; Askin, D.; Kato, N. J. Am. Chem. Soc. 1985, 107, 1246-1255; (c) Hrib, N. J. Tetrahedron Lett. 1987, 28, 19-22; (d) Taber, D. F.; Christos, T. E.; Rheingold, A. L.; Guzei, I. A. J. Am. Chem. Soc. 1999, 121, 5589-5590; (e) Thompson, C. F.; Jamison, T. F.; Jacobsen, E. N. J. Am. Chem. Soc. 2000, 122, 10482-10483; (f) Ghosh, K. A.; Li, J. Org. Lett. 2009, 11, 4164-4167.
7. (a) Smidt, J.; Hafner, W.; Jira, R.; Sedlmeier, J.; Sieber, R.; Ruttinger, R.; Kojer, H. Angew. Chem. 1959, 71, 176-182; (b) Clement, W. H.; Selwitz, C. M. J. Org. Chem. 1964, 29, 241-243; (c) Tsuji, J.; Nagashima, H.; Nemoto, H. Org. Synth. 1984, 62, 9-13.
8. Commercially available or obtained from chloroacetone and triethyl phosphite in the presence of stoichiometric amount of KI; 75\% yield Kitamura, M.; Tokunaga, M.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 2931-2932.
9. (a) Johannsen, M.; Jørgensen, K. A. J. Org. Chem. 1995, 60, 5757-5762; (b) Graven, A.; Johannsen, M.; Jørgensen, K. A. Chem. Commun. 1996, 2373-2374; (c) Oi, S.; Terada, E.; Ohuchi, K.; Kato, T.; Tachibana, Y.; Inoue, Y. J. Org. Chem. 1999, 64, 8660-8667; (d) Kwiatkowski, P.; Asztemborska, M.; Caille, J.-C.; Jurczak, J. Adv. Synth. Catal. 2003, 345, 506-509.
10. (a) Terada, M.; Mikami, K.; Nakai, T. Tetrahedron Lett. 1991, 32, 935-938; (b) Mikami, K.; Motoyama, Y.; Terada, M. J. Am. Chem. Soc. 1994, 116, 2812-2820; (c) Motoyama, Y.; Terada, M.; Mikami, K. Synlett 1995, 967-968; (d) Christmann, M.; Bhatt, U.; Quitschalle, M.; Claus, E.; Kalesse, M. Angew. Chem., Int. Ed. 2000, 39, 4364-4366; (e) Quitschalle, M.; Christmann, M.; Bhatt, U.; Kalesse, M. Tetrahedron Lett. 2001, 42, 1263-1265; (f) Kwiatkowski, P.; Asztemborska, M.; Jurczak, J. Synlett 2004, 1755-1758; (g) Kwiatkowski, P.; Asztemborska, M.; Jurczak, J. Tetrahedron: Asymmetry 2004, 15, 3189-3194; (h) Berkessel, A.; Vogl, N. Eur. J. Org. Chem. 2006, 5029-5035.
11. (a) Motoyama, Y.; Mikami, K. J. Chem. Soc., Chem. Commun. 1994, 1563-1564; (b) Ghosh, A. K.; Mathivanan, P.; Cappiello, J.; Krishnan, K. Tetrahedron: Asymmetry 1996, 7, 2165-2168; (c) Matsukawa, S.; Mikami, K. Tetrahedron: Asymmetry 1997, 8, 815-816; (d) Qian, C.; Wang, L. Tetrahedron Lett. 2000, 41, 2203-2206; (e) Motoyama, Y.; Koga, Y.; Nishiyama, H. Tetrahedron 2001, 57, 853-860; (f) Tonoi, T.; Mikami, K. Tetrahedron Lett. 2005, 46, 6355-6358.
12. (a) Momiyama, N.; Tabuse, H.; Terada, M. J. Am. Chem. Soc. 2009, 131, 12882-12883; (b) Li, L.-S.; Wu, Y.; Hu, Y.-J.; Xia, L.-J.; Wu, Y.-L. Tetrahedron: Asymmetry 1998, 9, 2271-2277; (c) Hu, Y.-J.; Huang, X.-D.; Yao, Z.-J.; Wu, Y.-L. J. Org. Chem. 1998, 63, 2456-2461.
13. (a) Mikami, K.; Terada, M.; Nakai, T. J. Am. Chem. Soc. 1989, 111, 1940-1941; (b) Mikami, K.; Terada, M.; Nakai, T. J. Am. Chem. Soc. 1990, 112, 3949-3954.
14. (a) Keck, G. E.; Tarbet, K. H.; Geraci, L. S. J. Am. Chem. Soc. 1993, 115, 8467-8468; (b) Keck, G. E.; Krishnamurthy, D.; Grier, M. C. J. Org. Chem. 1993, 58 6543-6544; (c) Keck, G. E.; Li, X.; Krishnamurthy, D. J. Org. Chem. 1995, 60, 5998-5999.
15. (a) Majer, J.; Kwiatkowski, P.; Jurczak, J. Org. Lett. 2011, 13, 5944-5947; (b) Majer, J.; Kwiatkowski, P.; Jurczak, J. Org. Lett. 2009, 11, 4636-4639; (c) Majer, J.; Kwiatkowski, P.; Jurczak, J. Org. Lett. 2008, 10, 2955-2958.
16. Use of dry toluene is not necessary for high enantioselectivity.
17. A typical reduction time in diethyl ether is ca. 10 min . After longer reaction time more impurities was observed.
18. Sogah, G. D. Y.; Cram, D. J. J. Am. Chem. Soc. 1979, 101, 3035-3042.

[^0]: * Corresponding author. E-mail address: pkwiat@chem.uw.edu.pl (P. Kwiatkowski).

