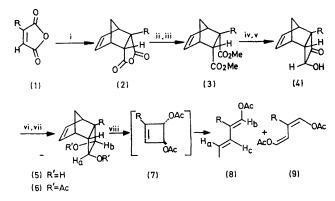
J.C.S. Снем. Сомм., 1974

Stereoselective Synthesis of Substituted Functionalized Butadienes

By MICHAEL E. JUNG[†]

(Department of Chemistry, Columbia University, New York, New York 10027)

Summary The synthesis and pyrolysis of tricyclo[4,2,1,0^{2,5}]nonene derivatives provides a stereoselective route to functionalized butadienes.


SINCE compound (8; R = Me) was required for a natural product synthesis, and existing methods for the preparation of 1,4-diacetoxybuta-1,3-dienes¹ could not be applied to compounds with a 2-alkyl group, an alternative general method was developed, based on the thermal conrotatory electrocyclic isomerization of *trans*-3,4-diacetoxy-1-methyl-cyclobutene (7), which was synthesised as outlined in the Scheme.

The known endo-adduct (2),² prepared in 95% yield via the Diels-Alder reaction between cyclopentadiene and the anhydride (1; R = Me) was converted into the diester (3)³ in 87% yield by the addition of NaOMe (1 mol. equiv.) followed by Me₂SO₄. The acyloin reaction⁴ of (3; R = Me) furnished (90% yield) after acidic hydrolysis, the ketol (4; R = Me)[‡] [δ : 4·51 (1H, d, J 9 Hz, CHOH) and 1·40 (3H, s, Me); i.r. 2·97 and 5·64 µm]. Reduction with NaBH₄ gave the trans-diol (5; R = Me) which on treatment with Ac₂O yielded the trans-diacetate (6; R = Me) [δ : 5·13 (1H, dd, J 8 and 8 Hz, H_a), 4·72 (1H, dd, J 8 and 2 Hz, H_b) and 1·42 (3H, s, Me); i.r. 5·72 µm]. Pyrolysis of this

[†] Present address: University of California, Los Angeles, California 90024.

[‡] Satisfactory spectral data have been obtained for all new compounds reported.

compound (460° at 25 mmHg) with trapping at -80 °C afforded in fair yield a 2.5:1 mixture of the trans, trans- (8; R = Me) and the *cis,cis*-isomers (9; R = Me), which could

SCHEME. Reagents: i, C_5H_6 ; ii, NaOMe, MeOH; iii, Me₂SO₄; iv, Na, Me₃SiCl, PhMe; v, H₃O⁺; vi, NaBH₄, EtOH; vii, Ac₂O, C₅H₅N; viii, 460°, 25 mmHg.

be separated by column chromatography on silica gel. The structure of (8; R = Me) was inferred from its n.m.r. [δ : 7.30 (1H, d, J 13 Hz, Ha) 6.97 br (1H, s, Hb) 6.42 (1H, d, J 13 Hz, H_c), 2.12 (6H, s, OAc), and 1.77 (3H, J 1.5 Hz, Me], i.r. (5.68 and 6.14 μ m), u.v. [λ_{max} 250 nm, (ϵ 20,000)] and mass spectra. The diene (9) exhibited a similar n.m.r. spectrum, except that the coupling constant of the olefinic protons was 7 Hz, indicating a cis double bond.

Compound (8; R = Me) is a mildly reactive diene in Diels-Alder reactions affording the adducts (10 and 11; R = Me) respectively with maleic anhydride and quinone. This method of diene synthesis should be generally applicable.⁵

The author thanks Professor Gilbert Stork for encouragement and the National Science Foundation for partial support.

(Received, 16th July 1974; Com. 875.)

¹C. F. Kohll and R. van Helden, *Rec. Trav. chim.*, 1967, **86**, 193; Shell International Research, Netherlands P. Appl., 6,509,342; H. H. Inhoffen, J. Heimann-Trosien, H. Muxfeldt, and H. Kramer, *Chem. Ber.*, 1957, **90**, 187; H. Schmid and E. Grob, *Helv. Chim. Acta*, 1949, **32**, 77; W. Reppe, O. Schlichting, K. Klager, and T. Toepel, *Annalen*, 1948, **560**, 1; R. Crigeee, W. Horauf, and W. D. Schellenberg, *Chem. Ber.*, 1953, **86**, 126.

² O. Diels and K. Alder, Annalen, 1928, 460, 98

³ I. N. Nazarov, V. F. Kucherov, and V. G. Bukharov, *Izvest. Akad. Nauk S.S.S.R., Otdel. Khim. Nauk.*, 1957, 91. ⁴ For reaction conditions, see J. J. Bloomfield, *Tetrahedron Letters*, 1968, 587.

⁵ The preparation of substituted maleic anhydrides [e.g. (6)] from alkyl halides (W. R. Vaughn and K. S. Anderson, J. Amer. Chem. Soc., 1955, 77, 6702), should allow for the preparation of a large number of butadienes.