REGIOSPECIFIC SYNTHESIS OF MONO- AND BICYCLIC 6-ALKOXY-2-PYRONES AND THEIR USE IN THE PREPARATION OF SUBSTITUTED AROMATICS, ANTHRAQUINONES, AND TETRACYCLIC INTERMEDIATES FOR 11-DEOXYANTHRACYCLINE SYNTHESIS

Michael E. Jung,* ${ }^{1}$ John A. Lowe, III, ${ }^{2}$ Mark A. Lyster, ${ }^{2,3}$ Manabu Node, ${ }^{4}$
Rudolf W. Pfluger, ${ }^{5}$ and Richard W. Brown
Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90024, U.S.A.

(Received in U.S.A. 2 May 1984)

Abstract

Several mono- and bicyclic 6-methoxy-2-pyrones having substituents at C4 and C5 can be prepared regiospecifically by either of two routes: (1) regiospecific construction of a glutaconic half-aster followed by dehydrative cyclization, and (2) regiospecific Friedel-Crafts acylation of 6-methoxy-2-pyrones at C5. These pyrones undergo clean and regiospecific Diels-Alder cycloadditions with various unsymmetrical dienophiles, e.g., quinones, unsaturated esters, etc, with subsequent loss of carbon dioxide. In this manner several polycyclic aromatic natural products have been prepared such as chrysophanol, helminthosporin, pachybasin, 2-acetylemodin and the purported structure for orientalone. The utility of this approach for the synthesis of the anthracyclines is demonstrated by its use in the preparation of various tetracyclic intermediates for anthracycline synthesis.

Several anthracycline antitumor agents, e.g., adriamycin 1 and daunorubicin 2, are extensively used today in cancer chemotherapy. ${ }^{6}$ Their use in cancer treatment is limited by their severe cumulative cardiotoxicity. ${ }^{6}$ In the past few years, several 11-

deoxyanthracyclines have been isolated, e.g., aclacinomycin A 3 and marcellomycin 4, which possess good tumor-inhibitory properties and more importantly, exhibit much lower cardiotoxicity. ${ }^{7}$ The synthesis of this group of compounds has been an active area of research for some time and five syntheses of aklavinone 5 , the aglycone of aclacinomycin A, have recently been described. ${ }^{8}$ Several years ago we began a program aimed at developing new approaches for the
synthesis of this class of molecules and their analogues. We now report the full details of this work. ${ }^{9}$

RESULTS AND DISCUSSION

General approach

Our general strategy was to develop a convergent approach in which the $\mathrm{C} 5 \mathrm{a}-\mathrm{C} 6$ and $\mathrm{Cl} 1-\mathrm{C} 11 \mathrm{a}$ bonds would be formed in the key molecular construction step. Thus the CD-ring precursor 6 would be any of the readily available mono- or dihydroxynaphthoquinones, all of which are known. The AB-ring synthon 7 could be any of several moleculespyridazine 7a, pyrones 7bc, and dihydrobenzenes 7dall of which could form an aromatic B ring by thermal elimination of the $X=Y$ fragment. Final oxidation of the hydroquinone would then give 8. This approach would be expected to provide mainly the desired 4,6dihydroxyanthraquinone isomer in the reaction with juglone ($6, R=H$) since regioselectivity is well known in Diels-Alder reactions with juglone. ${ }^{10}$ Although 3-methoxy- ${ }^{11 a}$ and 3 -hydroxypyrones ${ }^{1 i b} 7 \mathrm{~b}$ were known to undergo Diels-Alder cycloadditions with high regioselectivity as were dihydroanisole derivatives 7d, ${ }^{1 \text { ic }}$ these were rejected as candidates for 7 because of the probable difficulty associated with preparing the bicyclic systems necessary for 7 . The inability to effect a cycloaddition between benzoquinone and $3,6-$ dimethoxypyridazine ${ }^{12}$ led us to abandon 7a as the AB

component. Therefore we chose to investigate the use of 6-alkoxy-2-pyrones such as 7c as AB ring precursors in a Diels-Alder approach to the anthracyclines. These compounds should be easily prepared by cyclization of substituted glutaconic acids or esters to the desired pyrones, perhaps via the corresponding anhydrides. We decided to examine the monocyclic system 9 as a model for the bicyclic unit 7c.
cycloaddition approach was determined by the DielsAlder reaction of 9 with juglone 13a which, after oxidation and demethylation, gave a 62% overall yield of chrysophanol 14a, identified as its diacetate by m.p. ${ }^{14}$ and NMR spectroscopy. ${ }^{15}$ Although regioselectivity is well known in Diels-Alder reactions of juglone, ${ }^{10}$ the absence of the undesired isomer was significant since regiospecificity of this type is

Monocyclic systems

Acid-catalyzed dimerization of ethyl acetoacetate gave in fair yield (47%) ethyl isodehydroacetate 10 which was hydrolyzed and deacetylated to give 3methylglutaconic acid 11 in 95% yield. Dehydrative cyclization with acetyl chloride or acetic anhydride provided an 85% yield of the crystalline anhydride 12. Since 6-hydroxy-2-pyrone is formally a tautomer of this anhydride, we attempted to carry out Diels-Alder reactions with quinones directly on 12 but these proved completely unsuccessful. Trapping of 12 in the hydroxy-pyrone form was easily effected by reaction with ethereal diazomethane to give the desired 6-methoxy-4-methyl-2-pyrone 9 in 80\% yield. Thus 9 is available from ethyl acetoacetate in about $\mathbf{3 0 \%}$ overall yield.

The pyrone 9 reacted readily with quinones to form several natural products. Diels-Alder addition to naphthoquinone 13c followed by oxidation $\left(\mathrm{Ag}_{2} \mathrm{O}-\mathrm{MgSO}_{4}\right)$ and demethylation (48% $\mathrm{HBr}-\mathrm{HOAc}$) furnished pachybasin $14 \mathrm{c}^{13}$ in 64% overall yield. The regiochemical outcome of this
important for the synthesis of aklavinone. However, reaction of 9 with juglone acetate 13 d followed by oxidation and acetate hydrolysis ($2 \mathrm{M} \quad \mathrm{NaOH}$) furnished a ca 1:1 mixture of the two possible adducts, ziganein methyl ether $14 \mathrm{~d}^{16}$ and chrysophanol methyl ether 14e in low yield (13.5%). Finally, as a model for the pyrromycinone class of the anthracycline antibiotics (eg., cinerubin) which have an additional 1-hydroxyl group, Diels-Alder reaction with naphthazarin 13b and subsequent oxidation and demethylation afforded a 38% overall yield of helminthosporin, $14 \mathrm{~b} .{ }^{17}$ Thus the pyrone 9 , the monocyclic analogue of 7 c , reacts well with quinone dienophiles and, most importantly, completely regiospecifically with juglone.

Bicyclic systems

In order to apply this general method to the synthesis of 11-deoxyanthracyclines, it was now necessary to prepare a bicyclic pyrone such as 7c. We first attempted this by a simple application of the chemistry described above. The preparation of 6 -methoxy-4-methyl-2pyrone 9 was greatly simplified by the fact that due to

$a ; X=O H, Y=H \quad a ; X=O H, Y=H, R=H$ (62\%
b; $X=Y=O H \quad b ; X=Y=O H, R=H$ (38\%)
$c ; X=Y=H \quad c ; X=Y=H, R=H$ (64\%)
d; $X=H, Y=O A C$
$\left.\begin{array}{l}d ; X=H, Y=O H, R=M e \\ e ; X=O H, Y=H, R=M e\end{array}\right\}(13.5 \%)$
Reagents: i, heat $\left(-\mathrm{CO}_{2}\right) ; 1 i, \mathrm{Ag}_{2} \mathrm{O}-\mathrm{MgSO}_{4} ; \mathrm{ili},($ for $14 \mathrm{a}-\mathrm{c})$, 48\% $\mathrm{HBr}-\mathrm{HOAC}$; ifi (for 14 de). 2 M NaOH

12
15
symmetry there was only one hydroxypyrone tautomer 15 of the anhydride 12, thus producing only one possible product upon O-methylation. However, the corresponding anhydride 18-prepared from bis(trimethylsilyl) allenedicarboxylate 16 and 2 [(trimethylsilyl)oxy]butadiene 17^{18} by cycloaddition, hydrolysis, and cyclization-no longer possesses this symmetry element and thus can and does afford two regioisomers upon O-methylation with diazomethane. Unfortunately the undesired isomer 19 is the major isomer of a $2: 1$ mixture, the formation of 20 being unfavorable perhaps due to increased steric hindrance in the O -methylation to produce this isomer.
deethylation which would have furnished the anhydride 24.
Therefore the problem of the production of molecules such as 7c, e.g. 26a,b,c, was reduced to the problem of preparing a specific half-acid half-ester, e.g., 25a,b,c. A fairly direct route to the ketal 25a might begin with the readily available methyl 2,4-dihydroxybenzoate. Catalytic hydrogenation of this ester in basic methanolic solution gave a 30% yield of the diketo ester 27^{20} which was ketalized selectively to give the monoketal 28 in 48% yield. However, we were unable to add a two-carbon fragment to the ketone of 28 , e.g., carboethoxymethylenetriphenylphosphorane or the dianion of mono-t-butyl malonate. ${ }^{21}$ Also the possibility of adding a two-carbon nucleophile to a β halo or β-acetoxy α, β-unsaturated ester corresponding to 28 to give 25 a by addition-elimination was thwarted by our inability to convert the β-keto ester 28 into the necessary β-substituted α, β-unsaturated ester (using

Regiospecific pyrone syntheses
Thus we were forced to develop a new procedure for the synthesis of substituted 6-alkoxy-2-pyrones which would be regiospecific. Two potential approaches seemed promising, namely: (1) the cyclization of a specific glutaconic half-ester under dehydration conditions, and (2) the regiospecific Friedel-Crafts alkylation of a 6-alkoxy-4-alkyl-2-pyrone at only the 5position. Both of these routes for the regiospecific synthesis of substituted 6-alkoxy-2-pyrone proved successful.
(a) Glutaconic half-ester dehydration. The general principal of the first approach, glutaconic half-ester dehydration, was tested on the isomeric mixture of β chloroglutaconic acid monoethyl ester 21, produced in fair yield by treating diethyl acetonedicarboxylate with $\mathrm{PCl}_{5} .{ }^{19}$ When 21 was refluxed in acetic anhydride or acetyl chloride, 4-chloro-6-ethoxy-2-pyrone 23 was produced as the predominant product. Thus, the presumed intermediate 22 (or its double-bond isomer) undergoes loss of H^{+}to give 23 rather than
triphenylphosphine dibromide, phosphorus pentachloride, or isopropenyl acetate and p-toluenesulfonic acid). Thus approaches using 28 were abandoned.

The approach which eventually proved successful involved the preparation of an unsymmetric 1,3disubstituted allene, such as a 3 -alkoxymethyl-1carboalkoxyallene, which could be used as the dienophile in a Diels-Alder approach to the desired glutaconic half-esters 25 . We chose the ketone $\mathbf{2 5 b}$ as our initial target, a poor choice as it turned out. Hydroxyethylation of tert-butyl propargyl ether 29 (available in 92% yield from propargyl alcohol and

isobutylene) afforded in 50% yield the alcohol 30 . Jones oxidation of $\mathbf{3 0}$ produced a 92% yield of the acid 31 which was esterified with diazomethane to give the ester 32 in 86% yield. Conversion of the β, γ-acetylenic ester 32 to the allenic ester 33 was easily effected (77%) by treatment with a small amount of triethylamine. DielsAlder cycloaddition of 33 with the silyloxydiene 17 gave an excellent yield of the cycloadduct 34 which was hydrolyzed directly to the enone 35 in 78% yield. The presence of a singlet at 5.88δ in the ${ }^{1} \mathrm{H}$-NMR of 35 shows clearly that the exocyclic double bond in 34 had moved into conjugation with the ketone and not with the ester as desired. However, it was still possible that this isomer might be taken onto the double bond isomer of 25 b and thence into 26 b . Thus 35 was treated sequentially with trifluoroacetic acid (to hydrolyze the t-butyl ether), Jones reagent (to oxidize the resultant primary alcohol), and finally acetic anhydride (to effect
dehydrative cyclization). This treatment resulted in the loss of most of the material (perhaps via decarboxylation of the vinylogous β-keto acid) and produced none of the desired pyrone 26 b . A compound could be isolated in very poor yield ($\sim 5 \%$) and has been assigned structure 36 based on its spectroscopic data. Thus it was decided to modify this route by masking the ketone functionality as an acetate, an approach which proved quite successful.
The pentynol 30 was oxidized to the acid 31 which was treated with trifluoroacetic acid to remove the t butyl ether and then esterified with diazomethane to give the hydroxy ester 37 in an overall yield of 73.4%. Upon silylation of the alcohol of 37 with tertbutyldimethylsilyl chloride in triethylamine/methylene chloride with catalytic 4-(dimethylamino)pyridine (DMAP), the β, γ-acetylenic ester was completely converted into the allenic ester 38. Cycloaddition of 38

with the silyloxy diene $\mathbf{1 7}$ followed by direct reduction with sodium borohydride in ethanol afforded a mixture of two products with the desired cyclohexanol 40 forming the major component. The cyclobutane 39^{22} could be converted into the desired 40 by extended heating in toluene followed by reduction, thus raising the yield of 40 to over 68%. The ester 40 was converted into the desired glutaconic half-acid half-ester 25 c by initial acetylation (quantitative yield) followed by direct oxidation of the tert-butyldimethylsilyl ether to the acid with Jones reagent and a final treatment with base to move the double bond into the ring. ${ }^{23}$ We were now prepared to effect the key transformation of this approach, namely the regiospecific dehydrative cyclization. Cyclization of the ester acid $\mathbf{2 5 c}$ by the method described above for the preparation of 21, namely, refluxing acetic anhydride for 3 hr , gave a 96% crude yield of the pyrone 26 c which could be recrystallized from ether (89%; m.p. $106-107^{\circ}$). Thus the specific bicyclic 6-methoxy-2-pyrone 26 is a vailable from 30 in over 10% yield. This method of dehydrative cyclization of glutaconic half-esters is a general regiospecific route to substituted 6-alkoxy-2-pyrones.
(b) Friedel-Crafts acylation of 6-alkoxy-2-pyrones. As a second method for the preparation of specific 4,5disubstitated 6-alkoxypyrones, we decided to investigate the Friedel-Crafts acylation of pyrones such as 9. We reasoned that substitution should occur at C5 rather than at C 3 because of the much higher electron density at C5 than at C3 (see ${ }^{13} \mathrm{C}$-NMR data in Table 1). However, it was questionable whether any FriedelCrafts reactions of pyrones would occur since one might expect the pyrone to be transformed completely into a 2,6 -dioxygenated pyrylium salt 41 in the presence of strong electrophiles or Lewis acids and thereby

rendered inert to eletrophilic substitution. ${ }^{24}$ In the event, when the crystalline pyrone 9 was treated with 1.2 eq of acetic anhydride in refluxing trifluoroacetic acid (TFA) for 8 hr , the desired 5 -acetylpyrone 42 was produced in 81% yield. Presumably the protonation of the carbonyl oxygen of the pyrone 9 to give the corresponding hydroxypyrylium salt $\mathbf{4 1}(\mathrm{A}=\mathrm{H})$ is reversible and thus some of the free pyrone is always available for substitution. It was determined that the product has structure 42, namely that substitution had occurred at C 5 , rather than at the alternate electrophilic center C3 to give 43, by both spectroscopic and chemical evidence. In the ${ }^{13} \mathrm{NMR}$ spectra (Table 1), the signal corresponding to C5 in 9 has moved downfield by 29 ppm in 42 while the signal for C 3 has experienced a downfield shift of only about 9 ppm , indicating that substitution had occurred at C 5 . We decided to prepare the opposite 3-acetyl isomer 43 by another route for comparison. As we had shown in the bicyclic pyrone series described earlier, methylation of a glutaconic anhydride provides mainly the less-hindered 6-methoxy-2-pyrone. Thus, it was not surprising that treatment of 3-acetyl-4-methyl-2-pyrone 44, prepared by acetylation of 12 in fair yield, ${ }^{25}$ with diazomethane produced the 3 -acetyl pyrone 43 as the major product, along with a minor byproduct assigned structure 43'. The ${ }^{13} \mathrm{C}$-NMR of $\mathbf{4 3}$ has a signal at about 87 ppm , corresponding to C 5 (Table 1).

Thus, Friedel-Crafts acylations of 6-alkoxy-2pyrones cannot only be carried out but proceed regiospecifically giving only substitution at C5. The anhydride 12 can therefore be converted regiospecifically into either the 5-acetyl 42 or 3-acetyl isomer 43 by first treating with diazomethane and then acetic anhydride or the reverse set of steps.

With the desired 4,5-disubstituted 6-alkoxy-2pyrone 42 in hand, we decided to test its reactivity in Diels-Alder additions. Cycloaddition of 42 with methyl propiolate produced an 84% yield of a $2: 1$ mixture of methyl 3-acetyl-2-methoxy-4-methylbenzoate 45, in which the two aromatic protons exhibited typical ortho coupling ($\mathrm{J}=7 \mathrm{~Hz}$), and the isomeric methyl 4-acetyl-3-methoxy-5-methylbenzoate 46 (aromatic protons accidentally equivalent). This reaction provides

Table. $1 .{ }^{13} \mathrm{C}$-NMR Data : Chemical shift, multiplicity, and assignment

9		42		43		59		56b	
$\left.\begin{array}{l} 164.28 \mathrm{~s} \\ 160.84 \mathrm{~s} \end{array}\right\}$	C2, C4, C6	$\begin{aligned} & 165.93 \mathrm{~s} \\ & 165.01 \mathrm{~s} \end{aligned}$		$\begin{aligned} & 197.87 \mathrm{~s} \\ & 165.26 \mathrm{~s} \end{aligned}$	COCH_{3}	$\begin{aligned} & 169.26 \mathrm{~s} \\ & 164.52 \mathrm{~s} \end{aligned}$	C2, C4, C6,	$\begin{aligned} & 169.47 \mathrm{~s} \\ & 167.32 \mathrm{~s} \end{aligned}$	
103.12 d		160.54 s		164.67 s	C2, C4, C6	160.44 s	$\mathrm{CO}_{2} \mathrm{Me}$	165.51 s	$\begin{aligned} & \mathrm{C}_{2} \mathrm{C4}, \mathrm{C} 6, \\ & \mathrm{CO}_{2} \mathrm{Me}, \mathrm{COCH}_{3} \end{aligned}$
	C3	154.43 s		159.21 s		155.54 s		160.04 s	
83.74 d	C5	112.90 s	C5	113.30 s	C3	104.42 d	C3	150.04 s	$\mathrm{CO}_{2} \mathrm{Me}, \mathrm{COCH}_{3}$
55.96 q	OCH_{3}	111.88 d	C3	87.61 d	C5	83.21 d	C5	. 114.34 d	C3
22.03 q	$\mathrm{CH}_{3}{ }^{\text {a }}$	$\begin{aligned} & 52.33 \mathrm{q} \\ & 21.25 \mathrm{q} \\ & 19.67 \mathrm{q} \end{aligned}$	$\begin{aligned} & \mathrm{OCH}_{3} \\ & \mathrm{COH}_{3} \\ & \mathrm{CH}_{3} \end{aligned}$	$\begin{aligned} & 55.97 \mathrm{q} \\ & 31.10 \mathrm{q} \\ & 22.09 \mathrm{q} \end{aligned}$	$\begin{aligned} & \mathrm{OCH}_{3} \\ & \mathrm{COCH}_{3} \\ & \mathrm{CH}_{3} \end{aligned}$	$\begin{aligned} & 56.08 \mathrm{q} \\ & 52.51 \mathrm{q} \\ & 40.83 \mathrm{t} \end{aligned}$	$\begin{aligned} & \mathrm{OCH}_{3} \\ & \mathrm{OCH}_{3} \\ & \mathrm{CH}_{2} \end{aligned}$	$\begin{array}{r} 111.41 \mathrm{~s} \\ 52.37 \mathrm{q} \\ 52.29 \mathrm{q} \\ 40.18 \mathrm{t} \\ 20.14 \mathrm{q} \end{array}$	C5
									OMe
									OMe
									$\begin{aligned} & \mathrm{CH}_{2} \\ & \mathrm{COCH}_{3} \end{aligned}$

chemical evidence for the correct assignment of structure for the 5 -acetyl pyrone 42 since the 3 -acetyl isomer 43 cannot give rise to these products 45 and 46. Other Diels-Alder reactions of 42 with other dienophiles were also successful: dimethyl acetylenedicarboxylate produced the phthalate 47 (93%) while ethyl β-nitroacrylate gave predominantly the benzoate $48(55 \%)$ after treatment with DBU. ${ }^{26}$

We also have carried out the cycloaddition of 42 with various quinones as a model for the eventual preparation of the desired anthracyclines. Reaction of 42 with 5,7-dihydroxynaphthoquinone ${ }^{27} 49$ followed by oxidation and hydrolysis produced in fair yield the natural product 2 -acetylemodin 50 shown to be identical with an authentic sample. ${ }^{28}$ Reaction of 42 with methoxyquinone followed by oxidation gave in 60% yield a single product to which we have assigned structure $51 .{ }^{29}$ Monodemethylation ($\mathrm{BBr}_{3},-78^{\circ}, 10$ min) afforded a monomethyl ether assigned structure 52. This same compound is also produced by methylation $\left(\mathrm{CH}_{2} \mathrm{~N}_{2}, \quad \mathrm{Et}_{2} \mathrm{O}\right)$ of the dihydroxy compound 53 produced by complete demethylation of $51\left(\mathrm{BBr}_{3}, 0^{\circ} \mathrm{C}, 1.5 \mathrm{hr}\right)$. In order to assure that our structural assignment for the monomethyl ether 52 was correct, we synthesized the opposite monomethyl ether 54 by treating the adduct 51 with aqueous potassium hydroxide. Compounds 52 and 54 were completely different. Structure 52 has been assigned to the natural product orientalone based on spectroscopic studies. ${ }^{30}$

However, the proton NMR for compound 52 ($\delta \mathbf{7 . 8 9}$, $1 \mathrm{H}, \mathrm{s} ; 6.27,1 \mathrm{H}, \mathrm{s}$) does not match that reported for orientalone ($\delta 7.65,1 \mathrm{H}, \mathrm{s} ; 6.2,1 \mathrm{H}, \mathrm{s}$). Unfortunately, it was impossible to obtain natural orientalone or its spectra for comparison purposes. ${ }^{31}$

In order to test the generality of this Friedel-Crafts acylation of pyrones and to prepare more functionalized pyrones suitable for use in anthracycline synthesis, we decided to prepare 2-pyrones with functionalized substituents at both C 4 and $\mathrm{C} 5 . \mathrm{Kishi}^{8 b}$ has shown that methyl 1,8-dihydroxy-2-formyl-anthraquinone-3acetate 55 can be readily converted into aklavinone 5 . Therefore an easy preparation of methyl 5 -formyl-6-methoxy-2-pyrone-4-acetate 56a coupled with its use in our Diels-Alder approach to the anthracyclines (i.e., its cycloaddition with juglone or 2-bromojuglone) would afford a new route to 55 and thence 5 . The 5-acetyl-2-pyrone-4-acetate 56b was chosen as the model to test this general process. The known triacid $57^{19 b, 32}$ was converted into methyl 6-methoxy-2-pyrone-4-acetate 59 in 57% yield by cyclization to the acid anhydride 58 and methylation of both functions in the same step with diazomethane. This 6-alkoxy-2-pyrone 59 was also acetylated cleanly and regiospecifically at C5 with acetic anhydride in refluxing TFA giving 56b in 62\% yield. The assignment of structure 56 b to this product was against based on an analysis of the ${ }^{13} \mathrm{C}$ NMR spectra for 59 and 56b (Table 1): The signal corresponding to $\mathbf{C} 5$ in 59 has moved downfield by 28 ppm in 56 b while the signal for C 3 has experienced a downfield shift of only 10 ppm , indicating that acetylation had occurred at C5. An application of this route to the preparation of the formylated compound 56 a is currently under investigation.

Preparation of tetracyclic intermediates for 11deoxyanthracycline synthesis

The facile regiospecific preparation of 26 c by the glutaconic half-ester dehydrative cyclization allowed

68

us to apply our Diels-Alder approach to the synthesis of tetracyclic material for anthracycline synthesis. Refluxing a solution of 26 c with juglone 13a in xylene for 5 days followed by oxidation with silver oxide afforded a 63% yield of the desired tetracyclic acetate 60 as light yellow crystals (m.p. 164-165 ${ }^{\circ}$). In addition, we isolated a second compound assigned structure 61 in 17% yield. This compound presumably arises by loss of CO_{2} from the initial Diels-Alder adduct 62 to give the diene 63 which then can either suffer bis-enolization to give the hydroanthraquinone (leading to 60) or undergo a second cycloaddition with another molecule of juglone 13a to give the $2: 1$ adduct 61 . The acetate 60 could be hydrolyzed to the alcohol 64 in essentially quantitative yield. Surprisingly treatment of the $2: 1$ adduct 61 with aqueous carbonate also gave the same alcohol 64 along with some juglone. We were able to isolate a 72% yield of the alcohol 64 from 61 by this route, thus raising the yield of the alcohol 64 from 26 c and 13 to 75%. The alcohol could also be produced directly without isolation of the acetate by different treatment of the oxidation reaction mixture with base. In this manner, we obtained 48% of the pure crystalline alcohol 64 (m.p. 203-204 ${ }^{\circ}$) along with 7% of the olefin 65. The formation of 64 from 61 probably involves an initial base-catalyzed enolization of one of the cyclohexenedione units to a hydroquinone to give 66 followed by a facile retro-Diels-Alder process, probably via zwitterionic intermediates such as 67 to give juglone 13a and the hydroquinone 68. Air oxidation of 68 and hydrolysis of the acetate (clearly possible at any stage of this process) would then give 64 , The overall structure of the adducts 60 and 64 was established by the conversion of 60 to the ketone 69 in three steps (methylation, hydrolysis, and Jones oxidation) in a 57% overall yield. This same ketone was also prepared in three steps from the tetracycle 70, made by the route of Gesson, ${ }^{33}$ and the two samples were shown to be identical.

It is important to point out that the Diels-Alder reaction between 26c and 13a is regiospecific, namely 60 is the only Diels-Alder regioisomer produced in this reaction. By very careful and repeated chromatography, it was possible to isolate all of the products formed in the Diels-Alder reaction and thus to verify spectroscopically that no regioisomeric materials were produced in this reaction, indicating that the cycloaddition is regiospecific. We were unable to determine the structure of all of the byproducts but could show that they were not regioisomeric DielsAlder adducts.

CONCLUSION

We have developed two methods for the regiospecific synthesis of 4,5-disubstituted 6-alkoxy-2-pyrones from readily available starting materials. We have demonstrated that the utility of these compounds as diene components in the Diels-Alder reaction and have prepared regiospecifically many substituted aromatics and anthraquinones, including several natural products. We have also been able to construct tetracyclic intermediates for anthracycline synthesis, again in a regiospecific manner. Further work in this area is continuing in our laboratory.

EXPERIMENTAL

General: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ were taken on a Varian T-60 or Bruker WP-200 spectrometer and are so indicated. ${ }^{13} \mathrm{C}$-NMR were taken on a Varian CFT-20, Jeol FX90Q, or Bruker WP-200 spectrometer. All chemical shifts are reported in ppm downfield from internal TMS. IR spectra were recorded on a Perkin-Elmer model 710B or model 137 infrared spectrophotometer as a liquid film or in a soln cell with polystyrene as a standard ; the abbreviations br, sh, w, refer to broad, shoulder. and weak, respectively. MS were recorded on an AEI-MS9 or an AEI-MS25 spectrometer. Data reported are the m / e values for the most abundant peaks and are not a complete tabulation. Silica gel for chromatography was E. Merck silica gel 60 ($70-230$ mesh) and for flash chromatography was EM silica gel 9385 ($230-400$ mesh). HPLC was performed on a Waters Prep 500 instrument using silica gel cartridges with EtOAc/hexane mixtures as eluent. Alumina for chromatography was EM neutral alumina 1077 (activity I) adjusted to the correct activity with water. All reagents and solvents were purified and distilled according to standard methods unless otherwise specified.

Ethyl isodehydroacetate, 10

Ethyl acetoacetate ($133 \mathrm{~g}, 1.02 \mathrm{~mol}$) was added dropwise with stirring to ice-cooled conc $\mathrm{H}_{2} \mathrm{SO}_{4}(100 \mathrm{ml}, 1.88 \mathrm{~mol})$ over 1.75 hr at such a rate that the temp was maintained between 10° and 15°. The organge soln was allowed to stand at 25° for 69 hr , poured into 200 g of ice, and extracted with ether. The ether layer was washed with $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ aq, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated in vacuo to give an orange liquid. Distillation afforded $47 \mathrm{~g}(47 \%)$ of a yellow liquid, b.p. $85-95^{\circ}$ (0.02 mm). Reported ${ }^{34}$ b.p. $185-192^{\circ}(35 \mathrm{~mm})$.
$200 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 6.01(1 \mathrm{H}, \mathrm{bs}), 4.39(1 \mathrm{H}, \mathrm{q}, \mathrm{J}$ $=7 \mathrm{~Hz}), 239(3 \mathrm{H}, \mathrm{s}), 2.23(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=1 \mathrm{~Hz}), 1.37(3 \mathrm{H}, \mathrm{h} \mathrm{J}=7$ Hz). IR (neat) 2955, 1730 (br), 1630, 1550, 1440, 1400, 1305, $1270,1150,1085,965,860,780 \mathrm{~cm}^{-1}$.

3-Methylglutaconic acid, 11

A mixture of $10(25.8 \mathrm{~g}, 0.141 \mathrm{~mol})$ and $\mathrm{NaOH}(26.3 \mathrm{~g}, 0.657$ mol) in 250 ml of water was heated to 70° for 1 hr . The mixture was cooled, extracted with ether, acidified with conc HCl , and reextracted with ether. The second organic extract was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated in vacuo to give 18.0 g (95%) of 11 as an off-white solid, m.p. 101-105 ${ }^{\circ}$. Reported ${ }^{35}$ m.p. 115-116 .

5,6-Dihydro-4-methyl-2H-pyran-2,6-dione, 12

A mixture of $11(2.37 \mathrm{~g}, 0.0164 \mathrm{~mol})$ and $\mathrm{Ac}_{2} \mathrm{O}(3.0 \mathrm{ml}, 0.032$ mol) was heated at 70° for 30 min . the soln was cooled and evaporated in vacuo. The resultingoil was distilled (Kugetrohr) to give $1.76 \mathrm{~g}(85 \%)$ of 12 as a white, crystalline solid, b.p. 90° (0.07 mm), m.p. $79-83^{\circ}$. Reported ${ }^{36}$ b.p. $210^{\circ}(45 \mathrm{~mm}$), m.p. 90°.
$60 \mathrm{MHz}^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 6.07(1 \mathrm{H}, \mathrm{m}), 3.43(2 \mathrm{H}, \mathrm{m}), 2.08$ (3H, m). IR (CHCl_{3}) 3050, 1810, 1750, 1670, 1430, 1380, 1270 , $1150,1110,1000,955,845 \mathrm{~cm}^{-1}$.

6-Methoxy-4-methyl-2H-pyran-2-one, 9

A soln of diazomethane, prepared from N -nitroso- N methylurea ($5.0 \mathrm{~g}, 0.050 \mathrm{~mol}$), in 50 ml of ether was added dropwise over 20 min to an ice-cooled soln of $12(1.26 \mathrm{~g}, 0.010$ mol) in 20 ml of ether. The mixture was allowed to stand at 25° for 12 hr and evaporated in vacuo. The residue was chromatographed on 100 g of silica gel, using ether: benzene ($5: 95$) as eluant, to yield $1.12 \mathrm{~g}(80 \%)$ of 9 , a pale yellow solid, m.p. 44-48 ${ }^{\circ}$. Recrystallization gave a slightly off-white solid, m.p. 54-55
$200 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.72(1 \mathrm{H}, \mathrm{m}), 5.33(1 \mathrm{H}, \mathrm{m})$, $3.93(3 \mathrm{H}, \mathrm{s}), 2.17(3 \mathrm{H}, \mathrm{bs}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 164.28(\mathrm{~s})$, 160.84 (s), 160.76 (s), 103.12 (d), 83.74 (d), 55.96 (q), 22.03 (q). IR (CHCl_{3}) 2975,1720 (br), $1630,1530(\mathrm{br}), 1435,1370,1345,1255$, $1160,1035,1015,950,855,825 \mathrm{~cm}^{-1}$. Mass spectrum $m / e 141$ (6.0). $140\left(\mathrm{M}^{+}, 62.6\right), 112\left(\mathrm{M}^{+}-\mathrm{CO}, 79.7\right), 109(25.2), 97(100)$,

69(19.9), $53(44.7$), 44 (45.1). (Found :C, 59.89;H, 5.64. Calc for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{3}: \mathrm{C}, 59,99 ; \mathrm{H}, 5.75 \%$).

Juglone, 13a

To a suspension of 1,5 -dihydroxynaphthatene $(5.0 \mathrm{~g}, 31.2$ mmol) in 100 ml water was added a soln of sodium dichromate ($24 \mathrm{~g}, 80.4 \mathrm{mmol}$) and 34 g conc $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 240 ml water. The purple mixture was heated at 50° for 30 min , cooled to 20° and filtered. The dried ppt was extracted with hexane, and the hexane reduced in volume to induce crystal formation. The solid collected gave 200 mg (3.5%) of 13a as orange crystals, m.p. 151-153 ${ }^{\circ}$. Reported ${ }^{37}$ m.p. 154°.
$60 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ (benzene-d ${ }_{6}$) $\delta 11.9(1 \mathrm{H}, \mathrm{s}), 7.5-7.8(3 \mathrm{H}$, m), $6.9(2 \mathrm{H}, \mathrm{s})$.

Naphthazarin, 13b

An intimately ground mixture of hydroquinone $(22.0 \mathrm{~g}$, $0.200 \mathrm{~mol})$ and maleic anhydride $(20.0 \mathrm{~g}, 0.200 \mathrm{~mol})$ was added to a molten mixture of $200 \mathrm{~g} \mathrm{AlCl}_{3}$ and 40 g NcCl at 180°. The purple mixture was heated to 210° for 50 min and shaken out into a mortar to cool. The residue was pulverized and boiled in water while adding conc HCl until a brown color was produced. The cooled mixture was filtered and the ppt continuously extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The resulting red soln was evaporated in vacuo to leave a residue which was recrystallized from heptane to give $5.0 \mathrm{~g}(13 \%)$ of fine metallic green-black needles, m.p. $220-225^{\circ}$ (dec). Reported ${ }^{35}$ m.p. 225-230 ${ }^{\circ}$.
$60 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.08(4 \mathrm{H}, \mathrm{s}), 12.43$ ($2 \mathrm{H}, \mathrm{s}$). IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 1615,1565,1450,1335,1220,1140,1100 \mathrm{~cm}^{-1}$.

Chrysophanol (1,8-dihydroxy-3-methylanthraquinone), 14a

A soln of $9(20 \mathrm{mg}, 0.144 \mathrm{mmol})$ and $13 \mathrm{~m}(50 \mathrm{mg}, 0.288 \mathrm{mmol})$ in 2 ml xylene was refluxed for 5 days, cooled, and treated with 125 mg silver oxide and 200 mg anhyd MgSO_{4} with stirring at room temp for 12 hr . The mixture was filtered, evaporated in vacuo, and the residue chromatographed on preparative thick layer silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to develop the plate to give 24 mg (62%) of 8 -hydroxy-1-methoxy-3-methylanthraquinone as a yellow solid, m.p. 187-189 ${ }^{\circ}$.
$60 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.6-7.8(3 \mathrm{H}, \mathrm{m}), 7.1-7.3(2 \mathrm{H}$, $\mathrm{m}), 4.01(3 \mathrm{H}, \mathrm{s}), 2.48(3 \mathrm{H}, \mathrm{s})$. IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$) $2950,1660,1630$, $1600,1450,1370,1300,1220,1210,1050,910,860 \mathrm{~cm}^{-1}$. Mass spectrum (m / e) 269 (18.5), $268\left(\mathrm{M}^{+}, 100\right), 251$ (17.4), 250 ($\left.\mathrm{M}^{+}-\mathrm{CO}, 5.04\right), 239(25.2), 238$ (12.0), 223 (17.6), 222 (60.7), 194(10.8), 181 (12.7), $165(11.6), 153(10.7), 152(11.6), 139(10.3)$, 15 (10.8).
A soln of 8-hydroxy-1-methoxy-3-methylanthraquinone ($24 \mathrm{mg}, 0.089 \mathrm{mmol}$) and $1.5 \mathrm{ml} 48 \%$ HBr in 4 ml glacial AcOH was refluxed for 5 hr . The cooled soln was diluted with water, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the organic phase washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated in vacuo to give $23 \mathrm{mg}(100 \%$, overall yield $62 \%)$ of 14 a as a yellow orange solid, m.p. 176-179 ${ }^{\circ}$. Reported ${ }^{13}$ m.p. 193-194 ${ }^{\circ}$. This solid was dissolved in $5 \mathrm{ml} \mathrm{Ac}_{2} \mathrm{O}$ and one drop conc $\mathrm{H}_{2} \mathrm{SO}_{4}$ stirred at room temp for 30 min and poured into water. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, which was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated in dacuo to give 30 mg (100%) of yellow solid, which was recrystallized from glacial AcOH to give fine yellow needles m.p. 207-208 ${ }^{\circ}$. Reported ${ }^{14}$ m.p. $207-208^{\circ}$.
$60 \mathrm{MHz}^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.2(1 \mathrm{H}, \mathrm{m}), 8.01(2 \mathrm{H}, \mathrm{m}), 7.7$ $(1 \mathrm{H}, \mathrm{m}), 7.37(1 \mathrm{H}, \mathrm{m}), 7.20(1 \mathrm{H}, \mathrm{m}), 249(3 \mathrm{H}, \mathrm{s}), 243(6 \mathrm{H}, \mathrm{s})$. Reported ${ }^{151}{ }^{1} \mathrm{H}$-NMR $\left(\mathrm{CDCl}_{3}\right)$ 8.2, 8.0, 7.7, 7.37, 7.20, 2.50, 2.45.

Helminthosporin (1,4,8-trihydroxy-6-methylanthraquinone), 14b

A soln of $9(20 \mathrm{mg}, 0.144 \mathrm{mmol})$ and 13 h ($55 \mathrm{mg}, 0.288 \mathrm{mmol}$) in 2 ml mesitylene was refluxed for 74 hr , cooled, and treated with 125 mg silver oxide and 200 mg anhyd MgSO_{4} with stirring at room temp for 12 hr . The mixture was filtered and evaporated in racuo, and the residue chromatographed on preparative thick layer silica gel using $\mathrm{CH}_{\mathbf{2}} \mathrm{Cl}_{2}$ to develop the
plate to give 18 mg (44%) of 1,4 -dihydroxy- 8 -methoxy-6methylanthraquinone as fine red needles, m.p. $255-258^{\circ}$ (with sublimation).
$60 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) 7.81(1 \mathrm{H}, \mathrm{m}), 7.25(2 \mathrm{H}, \mathrm{s}), 7.15$ $(1 \mathrm{H}, \mathrm{m}), 4.05(3 \mathrm{H}, \mathrm{s}), 2.51(3 \mathrm{H}, \mathrm{s}) . \operatorname{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3050,1625,1595$, 1575 (sh), $1450,1300,1220,1195,1060,875,840 \mathrm{~cm}^{-1}$. Mass spectrum $(m / e) 285(18.4), 284\left(\mathrm{M}^{+}, 100\right), 266\left(\mathrm{M}^{+}-\mathrm{CO}, 66.2\right)$, 238 (26.3).
A soln of 1,4-dihydroxy-8-methoxy-6-methylanthraquinone (17 mg 0.06 mmol) and $1.5 \mathrm{ml} 48 \% \mathrm{HBr}$ in 4 ml glacial AcOH was refluxed for 4 hr . The cooled mixture was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washod with water, dried over NaSO_{4}, filtered, and evaporated in vacuo to give $14 \mathrm{mg}(87 \%$, overall yiek $38 \%)$ of 14b as a red solid, which was recrystallized from pyridine to give flat maroon needles, m.p. 226-227 ${ }^{\circ}$. Reported ${ }^{17}$ m.p. 226$227^{\circ} . \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }(\log \mathrm{g}): 230(4.64), 254(4.31), 490(4.08)$. Reported ${ }^{17} \mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log 8): 230(4.64), 254(4.30), 490$ (4.09).

Pachybasin (1-hydroxy-3-methylanthraquinone), 14c

A soln of 9 ($20 \mathrm{mg}, 0.144 \mathrm{mmol}$) and $13 \mathrm{c}(46 \mathrm{mg}, 0.288 \mathrm{mmol})$ in 5 ml xylene was refluxed for 72 h , cooled and treated with 120 mg silver oxide and 200 mg MgSO 4 , with stirring at room temp for 12 h . The mixture was filtered and evaporated in vacuo, and the residue chromatographed on preparative thick layer silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to develop the plate to give $24 \mathrm{mg}(66 \%)$ of 1 -methoxy-3-methylanthraquinone as a yellow solid.
$60 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.2(2 \mathrm{H}, \mathrm{m}), 7.7(3 \mathrm{H}, \mathrm{m}), 7.1$ $(1 \mathrm{H}, \mathrm{m}), 4.02(3 \mathrm{H}, \mathrm{s}), 2.45(3 \mathrm{H}, \mathrm{bs})$. Reported ${ }^{39}{ }^{1} \mathrm{H}-\mathrm{NMR} \delta 8.2$, 7.75, 7.12, 4.02, 2.45. IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$) 2900, 1670, 1600, 1460, 1420, $1330,1300,1260,1180,1140,1080,1010,960,900,860 \mathrm{~cm}^{-1}$. Reported ${ }^{39}$ IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: identical to that given above.
A soln of 1 -methoxy-3-methylanthraquinone ($24 \mathrm{mg}, 0.095$ mmol) and $1.5 \mathrm{ml} 48 \% \mathrm{HBr}$ in 3 ml glacial AcOH was refluxed for 3.5 hr . The cooled mixture was diluted with water, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the organic phase washed with water, dried over NaSO_{4} filtered, and evaporated in vacuo. The residue was chromatographed on preparative thick layer silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to develop the plate to give 22 mg (97%, overall yield 64%) of 14 c as a yellow solid, which was recrystallized from acetic acid to give orange-yellow needles, m.p. 174-175 ${ }^{\circ}$. Reported ${ }^{13}$ m.p. 174.5-175 ${ }^{\circ}$. IR (nujol) 3000, $1670,1640,1590,1320,1290,1270,1220,1130,990,860 \mathrm{~cm}^{-1}$. Reported ${ }^{13}$ IR (nujol) $1670,1640,1590 \mathrm{~cm}^{-1}$.

Ziganein methyl ether (5-hydroxy-1-methoxy-3-

 methylanthraquinone), 14d, and Chrysophanol methyl ether (8-hydroxy-1-methoxy-3-merhylanthraquinone), 14eA soln of 9 ($17 \mathrm{mg}, 0.122 \mathrm{mmol}$) and 13 d ($55 \mathrm{mg}, 0.244 \mathrm{mmol}$) in 2 ml xylene was refluxed for 125 hr , cooled, and treated with 125 mg silver oxide and 200 mg anhyd MgSO_{4} with stirring at room temp for 12 hr . The mixture was filtered and evaporated in vacuo, and the residue chromatographed on preparative thick layer silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to develop the plate to give 9 $\mathrm{mg}(24 \%)$ of a low melting solid. This material was dissolved in 10 ml 2 N NaOH aq and heated at 100° for 1.75 hr . The soln was cooled and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, which was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated in vacuo to give $4.5 \mathrm{mg}(58 \%$, overall yield 13.5%) of an orange-yellow solid, m.p. 175-187 ${ }^{\circ}$. Reported ${ }^{16}$ m.p. for 14d : 197-199. IR (CC1 ${ }_{4}$)2950, 1650,1630 , $1600,1450,1370,1290,1260,1220,1210,1100,1050,910 \mathrm{~cm}^{-1}$. Reported ${ }^{16}$ IR (KBr) $1656,1631 \mathrm{~cm}^{-1}$.
$60 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 12.7(1 \mathrm{H}, \mathrm{bs}), 7.6-7.8(3 \mathrm{H}, \mathrm{m})$, 7.1-7.3(2H,m), 4.01 and $4.03(3 \mathrm{H}, \mathrm{m}), 2.48(3 \mathrm{H}, \mathrm{bs})$. Reported ${ }^{16}$ ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 12.42,7.00-8.40,4.03,2.49$.

Bistrimethylsilyl 1,3-Allenedicarboxylate, ${ }^{40} 16$

1,3-Allenedicarboxylic acid ${ }^{19 b, c}(1.59 \mathrm{~g} .12 .4 \mathrm{mmol})$ was added to a 25 ml round bottom flask with a stir bar and the flask was flushed with N_{2} and sealed with a rubber septum. The flask was cooled to -45° and then an equimolar mixture of trimethylsilyl chloride and hexamethyldisilazane ($2.3 \mathrm{~g}, 8.5$ mmol trimethylsilyl chioride, 8.5 mmol hexamethyldisilazane)
was added with stirring over a period of 3 min . The mixture was stirred at -45° for 30 min , warmed to -20° and 8 ml of dry pentane was added. After warming to 25° the mixture was stirred for 1 hr and then filtered under N_{2} and the filtrate was concentrated under aspirator vacuum. Distillation (bulb to bulb, $140^{\circ}, 0.8 \mathrm{~mm}$) gave $2.87 \mathrm{~g}(85 \%)$ of 16 as a colorless liquid.
$60 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.95(2 \mathrm{H}, \mathrm{s}), 0.32(18 \mathrm{H}, \mathrm{s})$.

4-Carbotrimethylsilyloxy-5-(carbotrimethylsilyloxy)

 methylene-1-trimethylsilyloxy-1-cyclohexeneCompound $16(0.235 \mathrm{~g}, 0.86 \mathrm{mmol})$ and $17^{18}(0.388 \mathrm{~g}, 1.6$ mmol) were dissolved in 10 ml of dry benzene and the soln was refluxed for 17 hr . After cooling to 25° the volatile components were removed under high vacuum and the product was distilled (bulb to bulb, $200^{\circ}, 0.25 \mathrm{~mm}$) to give $0.255 \mathrm{~g}(72 \%)$ of 4 carbotrimethylsyliloxy - 5 - (carbotrimethylsilyloxy) methylene-1-trimethylsilyloxy-1-cyclohexene as a colorless liquid.
$60 \mathrm{MHz}^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.82(1 \mathrm{H}, \mathrm{m}), 4.97(1 \mathrm{H}, \mathrm{m}), 3.25$ ($2 \mathrm{H}, \mathrm{m}$), 2.0-2.5 (3H, m), $0.23(27 \mathrm{H}, \mathrm{m})$. IR (neat) 2970, 2880, $1730-1700,1650,1240,850 \mathrm{~cm}^{-1}$. Mass spectrum $(m / e) 414$ $\left(\mathrm{M}^{+}\right), 324\left(\mathrm{M}^{+}\right.$-TMSOH).

7,8-Dihydro-3,6-dimethoxy-1H-2-benzopyran-1-one, 19, and 7,8-Dihydro-1,6-dimethoxy-3H-2-benzopyran-3-one, 20

Compound $16(1.67 \mathrm{~g}, 6.1 \mathrm{mmol})$ and $17^{18}(1.8 \mathrm{~g}, 12.7 \mathrm{mmol})$ were dissolved in 7 ml of dry benzene and the soln was refluxed under N_{2} for 20 hr . After cooling to 25° the volatile components were removed under high vacuum. The residue was then dissolved in 10 ml anhyd diethyl ether and 1.1 ml (27.5 mmol) of MeOH was added. After the soln was stirred for 0.5 hr at 25° the sample was concentrated under aspirator vacuum. The residue was then dissolved in 10 ml (108 mmol) of $\mathrm{Ac}_{2} \mathrm{O}$ and the soln was refluxed under N_{2} for 15 min . After cooling to 25° the sample was concentrated under high vacuum. The black residue contajning the anhydride 18 was then dissolved in $10 \mathrm{ml} \mathrm{CH} \mathrm{Cl}_{2}$ and treated with an ethereal soln of diazomethane (generated from N -methyl- N nitrosourea) at 25° for 1.5 hr . At this point a solid which formed was filtered off to give 0.1 g of a material which gave no NMR spectrum. The filtrate was concentrated to give 0.86 g of a red oil. The sample was then chromatographed on 150 g of silica gel eluting with 1 liter $3: 7$ benzene- CHCl_{3} and 3 liters of $5: 95$ benzene- CHCl_{3} and collecting 25 ml fractions. This gave 0.3 g (24%) of a red oil, from fractions $101-115$, which was determined to be a slightly impure sample of a 2:1 mixture of pyrones 19 and 20 through spectral analysis.
$200 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.35(0.33 \mathrm{H}, \mathrm{s}), 5.15(0.67 \mathrm{H}, \mathrm{s})$, $5.11(1 \mathrm{H}, \mathrm{s}), 3.89(1 \mathrm{H}, \mathrm{s}), 3.79(2 \mathrm{H}, \mathrm{s}), 3.66(3 \mathrm{H}, \mathrm{s}), 2.60(2 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $=8 \mathrm{~Hz}), 2.34(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}$). IR (neat) $2960,1700-1760$, $1440,1380,1240 \mathrm{~cm}^{-1}$. Mass spectrum (m/e) $208\left(\mathrm{M}^{+}\right), 194$ $\left(\mathrm{M}^{+}-\mathrm{CH}_{2}\right), 180\left(\mathrm{M}^{+}-\mathrm{CO}\right)$.

3-Chloroglutaconic acid monoethyl ester, 21

Diethyl acetone-1,3-dicarboxylate ($10 \mathrm{~g}, 49.5 \mathrm{mmol}$) was added dropwise to $15 \mathrm{~g}(72 \mathrm{mmol}) \mathrm{PCl}_{5}$ and the mixture heated to 60° until the foaming subsided. Then more PCl_{5} was added until no more foaming occurred upon addition (required about $2 \mathrm{~g}, 9.6 \mathrm{mmol}$). Then the red mixture was poured onto 100 g of crushed ice and was extracted with $3 \times 125 \mathrm{ml}$ of ether. The ether washes were combined and washed with $1 \times 125 \mathrm{ml}$ $10 \% \mathrm{NaHCO}_{3} \mathrm{aq}$ and the NaHCO_{3} wash was back-washed with $2 \times 100 \mathrm{ml}$ of ether and then acidified with cold $10 \% \mathrm{HCl}$. The acidified aqueous soln was washed with $6 \times 125 \mathrm{ml}$ of ether and the washes were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give $3.2 \mathrm{~g}(33.6 \%)$ of 21 as an orangeliquid. The product appeared to be a mixture of all four possible double bond isomers.
$60 \mathrm{MHz}^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 10.67(1 \mathrm{H}, \mathrm{bs}), 6.03-6.37(1 \mathrm{H}$, $\mathrm{m}), 4.17(2 \mathrm{H}, \mathrm{bq}, \mathrm{J}=6 \mathrm{~Hz}), 3.97-4.17(1.3 \mathrm{H}, \mathrm{m}), 3.43-3.70$ $(0.7 \mathrm{H}, \mathrm{m}), 1.27(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6 \mathrm{~Hz})$. IR (neat) $2400-3600(\mathrm{br}), 3000$, $1700-1740,1640 \mathrm{~cm}^{-1}$. Mass spectrum (m/e) 194, $192\left(\mathrm{M}^{+}\right)$, $157\left(\mathrm{M}^{+}-\mathrm{Cl}\right), 150,148\left(\mathrm{M}^{+}-\mathrm{CO}_{2}\right)$. (Found: C, $43.39 ; \mathrm{H}$, 4.80. Calc for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{ClO}_{4}: \mathrm{C}, 43.56 ; \mathrm{H}, 4.72 \%$).

4-Chloro-6-ethoxy-2H-pyran-2-one, 23
3-Chloroglutaconic acid monoethyl ester $21(0.552 \mathrm{~g}, 2.87$ $\mathrm{mmol})$ was dissolved in acetyl chloride ($0.82 \mathrm{ml}, 11.5 \mathrm{mmol}$) and the mixture was heated for 27 hr at $55-70^{\circ}$. The volatile components were removed under vacuum and the sample was chromatographed on 20 g of silica gel eluting with CHCl_{3} (collecting 5 ml fractions) to give $0.253 \mathrm{~g} \mathrm{(50.5} \mathrm{\%)} \mathrm{of} 23$ as a colorless liquid in fractions 5-15. Upon standing in the freezer $\left(-25^{\circ}\right)$ the product solidified as a white solid, m.p. 48-52 .
$60 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.78(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2 \mathrm{~Hz}), 5.37$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2 \mathrm{~Hz}), 4.18(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}), 1.33(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz})$. IR (neat) $3000,2900,1745,1610,1515,1455,1395,1370,1320$, $1240,1110,1040,1005,985,945,870,810 \mathrm{~cm}^{-1}$. Mass spectrum (m / e) $176,174\left(\mathrm{M}^{+}\right), 148,146\left(\mathrm{M}^{+}-\mathrm{CO}\right), 139$ ($\mathrm{M}^{+}-\mathrm{Cl}$), 120, 118.

Methyl 4,4-ethylenedioxycyclohexan-2-one-1-carboxylate, 28 Compound 27^{20} ($5 \mathrm{~g}, 29.4 \mathrm{mmol}$), ethylene glycol (1.65 ml ,
 0.26 mmol) were dissolved in 100 ml of dry benzene in a 200 ml round bottom flask equipped with a Dean-Stark trap and condenser with a drying tube. The soln was refluxed for 2.5 hr , cooled to 25°, washed with $10 \% \mathrm{NaHCO}_{3}$ aq and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under aspirator vacuum and the product distilled (b.p. $120-130^{\circ}, 0.8-0.9 \mathrm{~mm}$) to give 3 g (48%) of 28 as a colorless liquid. ${ }^{41}$
$60 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 12.0(1 \mathrm{H}, \mathrm{s}), 3.9(4 \mathrm{H}, \mathrm{bs}), 3.65$ (3H, s), $1.48-2.76(6 \mathrm{H}, \mathrm{m})$. IR (neat) $3400,2910,2880,1740$, $1720,1660,1615,1440,1300,1260,1220,1110,1070,950 \mathrm{~cm}^{-1}$. Mass spectrum (m/e) $214\left(\mathrm{M}^{+}\right), 172,157,144$.
t-Butyl 2-propynyl ether, 29
To a mixture of propargyl alcohol ($16 \mathrm{~g}, 286 \mathrm{mmol}$) and isobutylene ($24 \mathrm{~g}, 430 \mathrm{mmol}$) in a pressure bottle cooled to -78° was added 0.5 ml conc $\mathrm{H}_{2} \mathrm{SO}_{4}$. The bottle was sealed, allowed to warm to room temp, and allowed to stir at room temp for 15 hr . The bottle was cooled to -20° and opened. Stirring at room temp for several hours removed all the unreacted isobutylenc. Ether was added and the ethereal soln washed with sat NaHCO_{3} aq and brine, dried over MgSO_{4}, filtered, and evaporated in vacuo. Distillation gave 29.4 g (92%), b.p. $58-59^{\circ}(92 \mathrm{~mm})$. Reported ${ }^{42}$ b.p. $116-117^{\circ}$
$60 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.97(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}), 2.18$ $(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}), 1.19(9 \mathrm{H}, \mathrm{s})$.

5-t-Butoxy-3-pentyn-1-ol, 30

To 1.2 liters liquid ammonia at -78° in a 3 -liter three-neck flask equipped with a dry ice condenser and stirrer was added $14.1 \mathrm{~g}(0.61 \mathrm{~mol})$ of Na and a catalytic amount of $\mathrm{FeCl}_{3} \cdot \mathrm{SH}_{2} \mathrm{O}$. After stirring under reflux for 1.5 hr , t-butyl 2-propynyl ether $29(60 \mathrm{~g}, 0.56 \mathrm{~mol})$ was added at -78°. After stirring under reflux for 2.5 hr , ethylene oxide ($35.6 \mathrm{~g}, 0.81 \mathrm{~mol}$) was added at -78° and the mixture was stirred under reflux for 10 hr . Then the ammonia was gradually evaporated at room temp for 8 hr . The residue was taken up in 200 ml water and 80 g of ammonium chloride was added. The mixture was extracted with ether, the ether extracts were washed with brine, dried, filtered, and evaporated in vacuo. Distillation of the oily residue gave $42 \mathrm{~g}(50 \%)$ of 30 , b.p. $84^{\circ}(0.6 \mathrm{~mm})$.
$200 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 4.08(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=2 \mathrm{~Hz}), 3.71$ $(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}) .2 .50(2 \mathrm{H}, \mathrm{tt}, \mathrm{J}=2$ and 7 Hz$), 1.23(9 \mathrm{H}, \mathrm{s})$. IR (neat) $3300,2980,2940,2300$ (w), 1395, 1370, $1200,1060 \mathrm{~cm}^{-1}$ Mass spectrum (m/e) $141\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right), 123\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{OH}\right)$, $89,83\left(\mathrm{M}^{+}-\mathrm{OtBu}\right)$. High resolution mass spectrum (m / e) 141.0912, calc for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{O}_{2}$ 141.0916.

5-t-Butoxy-3-pent ynoic acid, 31

Compound $30(1.04 \mathrm{~g}, 6.6 \mathrm{mmol})$ in 25 ml acetone was treated with excess Jones reagent. After stirring for 30 min at 25°, unreacted Jones reagent was destroyed by the addition of isopropanol. The mixture was then filtered and the filtrate concentrated in vacuo. The residue was then taken up in ether and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent then gave 1.03 $\mathrm{g}(92 \%)$ of 31 as a yellow liquid.
$200 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 9.7(1 \mathrm{H}, \mathrm{bs}), 4.18(2 \mathrm{H}, \mathrm{t} \mathrm{J}=2$ Hz), $3.42(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=2 \mathrm{~Hz}), 1.27(9 \mathrm{H}, \mathrm{s})$. IR (neat) $3600-2500$, $2950,2250(\mathrm{w}), 1720,1400,1370,1230,1190,1060,1030 \mathrm{~cm}^{-1}$.

Methyl 5-t-butoxy-3-pent ynoate, 32

A soln of $31(0.5 \mathrm{~g}, 2.9 \mathrm{mmol})$ in 100 ml of ether was treated with a soln of diazomethane (generated from N -methyl-Nnitrosourea) in ether until the yellow color of the diazomethane persisted. Acetic acid was then added dropwise to destroy excess diazomethane and the reaction was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the volatile components in vacuo, $0.46 \mathrm{~g}(86 \%)$ of 32 was obtained as an orange liquid.
$\left.60 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta \mathbf{3 . 9 3 (2 H , ~ \mathrm { t }} \mathrm{J}=2 \mathrm{~Hz}\right), 3.58(3 \mathrm{H}$, s), 3.13 ($2 \mathrm{H}, \mathrm{t}, \mathrm{J}=2 \mathrm{~Hz}$), 1.03 ($9 \mathrm{H}, \mathrm{s}$). IR (neat) 2900, 2250 (w), $1730,1430,1380,1360,1250,1180,1060,1020 \mathrm{~cm}^{-1}$

Methyl 5-t-Butoxy-2,3-pentadienoate, 33

A soln of $32(0.914 \mathrm{~g}, 4.9 \mathrm{mmol})$ in $10 \mathrm{ml} \mathrm{CHCl}_{3}$ was treated with 4 drops of $\mathrm{Et}_{3} \mathrm{~N}$ and the soln stirred at 25° for 1 hr . After concentration in dacuo at 25° the product was distilled (bulb to bulb, $\left.80^{\circ}, 0.02 \mathrm{~mm}\right)$ to give $0.745 \mathrm{~g}(77 \%)$ of 33 as a colorless liquid.
$60 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.65-5.87(2 \mathrm{H}, \mathrm{m}), 3.98-4.28$ ($2 \mathrm{H}, \mathrm{m}$), 3.73 ($3 \mathrm{H}, \mathrm{s}$), 1.23 ($9 \mathrm{H}, \mathrm{s}$). IR (neat) $2970,1955,1720$, $1435,1360,1260,1190,1160,1060,1020 \mathrm{~cm}^{-1}$. Mass spectrum $(\mathrm{m} / \mathrm{e}) 184\left(\mathrm{M}^{+}\right), 183,169\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right), 128\left(\mathrm{M}^{+}\right.$-isobutylene), $111\left(\mathrm{M}^{+}-\mathrm{OtBu}\right), 98$.

4-Carbomethoxy-3-(2-t-butoxyethyl)-2-cyclohexen-1-one, 35
Compound 33 ($2.75 \mathrm{~g}, 14.9 \mathrm{mmol}$) and $17^{18}(3.45 \mathrm{~g} .24 .3$ mmol) were dissolved in 50 ml of dry toluene and the soln was refluxed for 40 hr under N_{2}. The reaction was cooled to 25° and then concentrated in vacuo to give 4.4 g of a yellow oil which was taken up in 50 ml of MeOH containing 5 drops of AcOH and stirred at 25° for 2 hr . Again the sample was concentrated in vacuo and the residue was taken up in 50 ml CHCl 3 containing 3 drops of $\mathrm{Et}_{3} \mathrm{~N}$ and stirred at 25° for 1 hr . After removal of the solvent, the sample was chromatographed on 350 g silica gel eluting with CHCl_{3} to give $2.97 \mathrm{~g}(78 \%)$ of 35 as a light yellow oil. Distillation of a small sample (bulb to bulb, $140^{\circ}, 0.5 \mathrm{~mm}$) gave a colorless liquid.
$200 \mathrm{MHz}^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.88(1 \mathrm{H}, \mathrm{s}), 3.62(3 \mathrm{H}, \mathrm{s}), 3.58-$ $3.60(1 \mathrm{H}, \mathrm{m}), 3.39(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.39(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz})$, $2.05-2.40(4 \mathrm{H}, \mathrm{m}), 1.05(9 \mathrm{H}, \mathrm{s})$. IR (neat) 2970, 1730, 1680 , $1640,1430,1360,1250,1200,1080 \mathrm{~cm}^{-1}$. Mass spectrum (m / e) $254\left(\mathrm{M}^{+}\right), 198\left(\mathrm{M}^{+}\right.$-isobutylene), $197\left(\mathrm{M}^{+}\right.$-tBu), 181 ($\left.\mathrm{M}^{+}-\mathrm{OtBu}\right), 180,168,109$.

7,8-Dihydro-1-methoxy-3H-2-benzopyran-3,6(4H)-dione, 36

Compound 35 ($1.02 \mathrm{~g}, 4.02 \mathrm{mmol}$) was dissolved in 8 ml anhyd trifluoroacetic acid at 25° for 20 min . The triffuoroacetic acid was then removed quickly under vacuum and the residue was taken up in MeOH and 1 g NaHCO 3 was added. After stirring at 25° for 0.5 hr the solvent was removed and the residue was stirred with 50 ml of CHCl_{3} for 1 hr . The reaction was then filtered and the filtrate concentrated under vacuum to give an orange liquid. This liquid was taken up in acetone and treated with excess Jones reagent at 25° for 30 min . After excess Jones reagent was destroyed with isopropanol, the sample was filtered and the filtrate was taken up in CHCl_{3}. The CHCl_{3} soln was washed with $10 \% \mathrm{NaHCO}_{3}$ aq and the NaHCO_{3}-wash was acidified with conc HCl and washed with $5 \times 25 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-washes were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give 0.141 g of an orange liquid. This liquid was dissolved in $15 \mathrm{ml} \mathrm{Ac}_{2} \mathrm{O}$ and the soln was refluxed for 1.5 hr . After cooling to 25° the $\mathrm{Ac}_{2} \mathrm{O}$ was removed under vacuum and the residue was chromatographed on 8 g silica gel. Elution with CHCl_{3} gave $44 \mathrm{mg}(5 \%)$ of an orange liquid, one spoton $\operatorname{TLC}\left(R_{f}=0.7, \mathrm{CHCl}_{3}\right)$ for which structure 36 is proposed.
$60 \mathrm{MHz}^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.95-6.05(1 \mathrm{H}, \mathrm{m}), 3.6-4.0(2 \mathrm{H}$, $\mathrm{m}), 3.8(3 \mathrm{H}, \mathrm{s}), 2.0-2.6(4 \mathrm{H}, \mathrm{m})$. IR (neat) $2970,1700-1750,1600$, $1440 \mathrm{~cm}^{-1}$. Mass spectrum (m / e) $194\left(\mathrm{M}^{+}\right.$).

Methyl 5-hydroxy-3-pent ynoate, 37

To a soln of $30(10 \mathrm{~g}, 65.8 \mathrm{mmol})$ in acetone (400 ml) was added excess Jones reagent (67 ml) with stirring at 0°. After stirring at 0° for 30 min , the mixture was stirred at room temp for 2 hr . Unreacted Jones reagent was then destroyed by the addition of isopropanol. The mixture was filtered and the filtrate concentrated under vacuum. The residue was then taken up in ether and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent gave the crude acid $31(10 \mathrm{~g}$ 。 yellow liquid, crude yield 89.2%).
The crude acid 31 was dissolved in 30 ml anhyd trifluoroacetic acid (TFA) and stirred at room temp for 3 hr . The TFA was removed from the reaction mixture by high vacuum pump. The residue was dissolved in ether and a small excesss of diazomethane in ether was added. After 1 hr , the solvent was evaporated in vacuo to give the crude oily ester which was purified by column chromatography on silica gel to separate the hydroxy ester $37(6.2 \mathrm{~g}, 73.4 \%$ overall yield) as a colorless oil.
$200 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 4.67(1 \mathrm{H}$, s). 4.26 $(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=2 \mathrm{~Hz}), 3.73(3 \mathrm{H}, \mathrm{s}), 3.33(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=2 \mathrm{~Hz}) . \mathrm{IR}$ (neat) $3400,2950,1740,1010 \mathrm{~cm}^{-1}$. Mass spectrum (m / e) $128\left(\mathrm{M}^{+}\right.$, 2.7), $127\left(\mathrm{M}^{+}-\mathrm{H}, \quad 13.7\right), \quad 100\left(\mathrm{M}^{+}-\mathrm{CO}, 42.6\right), \quad 98$ $\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{O}, 100\right), 97\left(\mathrm{M}^{+}-\mathrm{OMe}, 43.2\right), 96\left(\mathrm{M}^{+}-\mathrm{MeOH}\right.$, $36.7), 68\left(\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{Me}-\mathrm{H}\right), 59\left(\mathrm{CO}_{2} \mathrm{Me}^{+}, 70.9\right), 52\left(\mathrm{C}_{4} \mathrm{H}_{4}^{+}\right.$, 99.0). High resolution mass spectrum (m / e) 128.0471 , calc for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{3}$ 128.0473; 100.0525 , calc for $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2} 100.0524$: 98.0359, calc for $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{2} 98.0368$. (Found: C, $55.91 ; \mathrm{H}, 6.04$. Calc for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{3}: \mathrm{C}, 56.25 ; \mathrm{H}, 6.25 \%$).
Methyl 5-t-Butyldimethylsilyloxy-2,3-pentadienoate, 38
The mixture of 37 ($3.1 \mathrm{~g}, 24.2 \mathrm{mmol}$), t -butyldimethylsilyl chloride ($4 \mathrm{~g}, 26.6 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(4.9 \mathrm{~g}, 48.4 \mathrm{mmol})$, and 4 dimethylaminopyridine ($118 \mathrm{mg}, 0.97 \mathrm{mmol}$) in 50 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred at room temp under N_{2}. After stirring overnight, the mixture was diluted with ether, then washed with brine and sat $\mathrm{NH}_{4} \mathrm{Cl}$ aq. Usual work-up gave a crude oil (5.12 g , crude yield 88.3%). Purification by chromatography over a silica gel column afforded $4.87 \mathrm{~g}(84 \%)$ of 38 as a colorless oil which is unstable to heating.
$200 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.7(2 \mathrm{H}, \mathrm{m}), 4.15(2 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $=4.5 \mathrm{~Hz}), 3.72(3 \mathrm{H}, \mathrm{s}), 0.9(9 \mathrm{H}, \mathrm{s}), 0.08(6 \mathrm{H}, \mathrm{s})$. IR (neat) 1960 , $1725,1250,1080,830 \mathrm{~cm}^{-1}$. Mass spectrum (m / e) 227 $\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 1.6\right), 186\left(\mathrm{M}^{+}-\right.$isobutylene, 13.6), $185\left(\mathrm{M}^{+}-\mathrm{tBu}\right.$, $100), 89\left(\mathrm{Me}_{2} \mathrm{SiHOCH}+4,43.8\right)$. High resolution mass spectrum (m / e) 227.1084, calc for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{Si} 227.1103$; 185.0625, calc for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{Si} 185.0634$.

Methyl 2-(2-t-butyldimethylsilyloxyethylidene)-4-hydroxy-1-cyclohexanecarboxylate, 40, and Methyl 2-t-butyldimethylsilyloxymethyl-3-trimethylsilyloxy-3-vinyl- $\Delta^{1, a}$ cyclobutaneacetate, 39
To a soln of $38(4.87 \mathrm{~g}, 20.1 \mathrm{mmol})$ in dry toluene (25 ml) was added $17(8.57 \mathrm{~g}, 60.35 \mathrm{mmol})$ and the soln refluxed for 24 hr under $\mathrm{N}_{\mathbf{2}}$. The mixture was then concentrated under high vacuum to give a residue. To a soln of the residue in MeOH (30 ml) was added $\mathrm{NaBH}_{4}(2.3 \mathrm{~g})$ at $0^{\circ} \mathrm{C}$. After stirring for 3 hr , dil HCl was added and the soln extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Usual workup of the extracts gave a mixture of products which were separated by column chromatography on silica gel to afford the alcohol 40 ($3.924 \mathrm{~g}, 62.2 \%$) and the cyclobutane derivative 39 ($734 \mathrm{mg}, 9,5 \%$) both as oils.

Compound $40: 200 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.57(1 \mathrm{H}, \mathrm{m})$, $4.25(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}), 3.48-3.8(1 \mathrm{H}, \mathrm{m}), 3.7(3 \mathrm{H}, \mathrm{s}), 1.4-2.6(6 \mathrm{H}$, $\mathrm{m}), 0.88(9 \mathrm{H}, \mathrm{s}), 0.06(6 \mathrm{H}, \mathrm{s})$. IR (neat) $3400,2960,2940,2860$, $1720,1260,1100 \mathrm{~cm}^{-1}$. Mass spectrum $(\mathrm{m} / \mathrm{e}) 299\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right)$, 1.1), $257\left(\mathrm{M}^{+}-\mathrm{tBu}, 63.2\right), 197\left(\mathrm{M}^{+}-\mathrm{tBuMe} \mathrm{SiOH}^{2}-\mathrm{H}, 29.2\right)$, $89\left(\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{OSi}^{+}, 70.3\right), 75\left(\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{OSi}^{+}, 100\right)$. High resolution mass spectrum (m / e) 299.1671 , calc for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{Si} 299.1678$; 257.1211, calc for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{Si} 257.1209$.

Compound 39: $200 \mathrm{MHz}^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.7-6.3$ (2 H . $\mathrm{m}), 5.16(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2,16 \mathrm{~Hz}), 5.07(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2,12 \mathrm{~Hz}), 3.9$ $(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}), 3.7(3 \mathrm{H}, \mathrm{s}), 2.8-3.4(3 \mathrm{H}, \mathrm{m}), 0.9(9 \mathrm{H}, \mathrm{s}), 0.13$ $(9 \mathrm{H}, \mathrm{s}), 0.06(6 \mathrm{H}, \mathrm{s})$. IR (neat) $1720,1690,1250,840 \mathrm{~cm}^{-1}$. Mass spectrum (m / e) $384\left(\mathrm{M}^{+}, 0.1\right.$), $369\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 1.3\right), 327$
$\left(\mathrm{M}^{+}-\mathrm{tBu}, 20.4\right), 193\left(\mathrm{M}^{+}\right.$-OTBS- $\left.\mathrm{CO}_{2} \mathrm{Me}, 69.5\right), 185$ (51.1), $89\left(\mathrm{C}_{3} \mathrm{H}, \mathrm{OSi}^{+}, 1003,75\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{OSi}^{+}, 83.3\right)\right.$. High resolution mass spectrum (m / e) 384.2160 , calc for $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Si}_{2} 384.2152 ; 327.1460$, calc for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{Si}_{2}$ 327.1448.

Conversion of 39 into 40 . A soln of derivative $39(500 \mathrm{mg})$ in dry toluene (10 ml) was heated at 130° for 6 days in a sealed tube. The reaction mixture was evaporated in vacuo to give a residue. The residue was treated by the same procedure as described above, namely sodium borohydride reduction, to afford the alcohol $\mathbf{4 0}$ ($261 \mathrm{mg}, 63.8 \%$).

Methyl 4-acetoxy-2-(2-t-butyldimethylsilyloxyethylidenc)-

 1-cyclohexane-carboxylate, acetate of 40To a soln of $49(148 \mathrm{mg})$ in pyridine $(1.5 \mathrm{ml})$ was added $\mathrm{Ac}_{2} \mathrm{O}$ $(1.5 \mathrm{ml})$. After stirring for 6 hr at room temp, MeOH was added to the mixture and the solvent was then evaporated in oacuo. The residue was chromatographed on silica gel to give the acetate of $40(164 \mathrm{mg}, 97.7 \%)$ as an oil.
$200 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.56(1 \mathrm{H}, \mathrm{bt} \mathrm{J}=6 \mathrm{~Hz}), 4.66$ $(1 \mathrm{H}, \mathrm{m}) 4.22(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}), 3.65(3 \mathrm{H}, \mathrm{s}), 3.5-3.7(1 \mathrm{H}, \mathrm{m}), 2.0$ $(3 \mathrm{H}, \mathrm{s}), 1.2-2.6(6 \mathrm{H}, \mathrm{m}), 0.88(9 \mathrm{H}, \mathrm{s}), 0.04(6 \mathrm{H}, \mathrm{s})$. IR $\left(\mathrm{CHCl}_{3}\right)$ $1705,1260,850 \mathrm{~cm}^{-1}$. Mass spectrum (m/e) $341\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right.$, 1.2), $299\left(\mathrm{M}^{+}-\mathrm{tBu}, 58.7\right.$), $239\left(\mathrm{M}^{+}\right.$-tBu-AcOH, 38), 117 $\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{Si}^{+}, 100\right.$). High resolution mass spectrum (m / e) 341.1779, calc for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{Si} 341.1785$; 299.1281, calc for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{Si} 299.1314 ; 239.1126$, calc for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{Si}$ 239.1104.

5-Acetoxy-2-carbomethoxycyclohex-1-eneacetic acid, 25c

To soln of $40(1.95 \mathrm{~g})$ in acetone (100 ml) was added Jones reagent (15 ml) at 0°. After stirring for 1 hr at 0° and 0.5 hr at room temp, the mixture was filtered and the filtrate was concentrated in vacuo. The concentrate was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the extract treated as usual to give a residue (1.6 g). To a soln of the residue in dry THF (20 ml) was added $\mathrm{Et}_{3} \mathrm{~N}$ (6 ml), and the mixture was refluxed for 6 hr . After evaporation of the solvent, the residue was washed successively with HCl and brine. Normal workup gave the crude product which was chromatographed to afford the acidic residue (840 mg o overall yield 60%) as an oil. The acidic residue was observed by NMR spectroscopy to contain a small amount ($<10 \%$) of the double bond isomer in addition to the acid 25 c .
$200 \mathrm{MHz}^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.03(1 \mathrm{H}, \mathrm{bt}, \mathrm{J}=6 \mathrm{~Hz}), 3.76$ $(3 \mathrm{H}, \mathrm{s}), 3.48(2 \mathrm{H}, \mathrm{s}), 2.5(4 \mathrm{H}, \mathrm{m}), 2.06(3 \mathrm{H}, \mathrm{s}), 1.6-2.2(2 \mathrm{H}, \mathrm{m})$. IR (CHCl_{3}) $3500-2400,1730-1710,1650,1255,1028 \mathrm{~cm}^{-1}$ Mass spectrum $(\mathrm{m} / e) 238\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 1.2\right), 196\left(\mathrm{M}^{+}-\mathrm{AcOH}, 20.2\right)$, $178\left(\mathrm{M}^{+}-\mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}, 38.8\right), 164\left(\mathrm{M}^{+}-\mathrm{AcOH}-\mathrm{MeOH}\right.$, $100), 152\left(\mathrm{M}^{+}-\mathrm{AcOH}-\mathrm{CO}_{2}, 75.4\right)$. High resolution mass spectrum (m / e) 238.0847, calc for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} 238.0841$; 196.0735, calc for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} 194.0735 ; 178.0602$, calc for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{3}$ 178.0630. (Found: C, $56.00 ; \mathrm{H}, 6.38$. Calc for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{6}$: C, $56.25 ; \mathrm{H}, 6.29 \%$).

6-Acetoxy-1-methoxy-5,6,7,8-tetrahydro-3H-2-benzopyran-

3-оne, 26c

The acid $25 \mathrm{c}(132 \mathrm{mg}, 0.51 \mathrm{mmol})$ in $\mathrm{Ac}_{2} \mathrm{O}(3 \mathrm{ml})$ was refluxed for 3 hr under N_{2}. After cooling to room temp, the solvent was removed under high vacuum to give a crystalline product which was chromatographed on silica gel eluting with 4: $1 \mathrm{CHCl}_{3}$: ligroine to afford the pyrone $26 \mathrm{c}(118 \mathrm{mg}, 96 \%)$ as crystals. Recrystallization from ether gave $109 \mathrm{mg}(89 \%)$ of colorless crystals, m.p. 106-107 ${ }^{\circ}$.
$200 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.1(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=5 \mathrm{~Hz}), 5.05$ $(1 \mathrm{H}, \mathrm{s}), 2.8(3 \mathrm{H}, \mathrm{s}), 2.4-2.8(4 \mathrm{H}, \mathrm{m}), 2.0(3 \mathrm{H}, \mathrm{s}), 1.7-2.2(2 \mathrm{H}, \mathrm{m})$. IR (nujol) $1725,1650,1580,1235 \mathrm{~cm}^{-1}$. Mass spectrum (m / e) 238 $\left(\mathrm{M}^{+}, 44.1\right), 178\left(\mathrm{M}^{+}-\mathrm{AcOH}, 87.7\right), 150\left(\mathrm{M}^{+}-\mathrm{AOOH}-\mathrm{CO}\right.$, 100). High resolution mass spectrum (m / e) 238.0840, calc for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} 238.0841$. (Found: C, $60.40 ; \mathrm{H}, 5.84$. Calc for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{5}: \mathrm{C}, 60.48 ; \mathrm{H}, 5.93 \%$).

5-Acetyl-6-methoxy-4-methyl-2H-pyran-2-one, 42

A soln of $9(0.455 \mathrm{~g}, 3.18 \mathrm{mmol})$ and $\mathrm{Ac}_{\mathbf{2}} \mathbf{O}(0.35 \mathrm{ml}, 3.72$
mmol) in 4 ml of trifluoroacetic acid was refluxed under a N_{2} for 8 hr . The dark soln was cooled and evaporated in pacuo to yield a brown solid. Sublimation (45° at 0.02 mm) afforded $0.469 \mathrm{~g}(81 \%)$ of 42 as a white crystalline solid, m.p. $62-64^{\circ}$.
$200 \mathrm{MHz}^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 6.02(1 \mathrm{H}$, bs) $3.88(3 \mathrm{H}, 8), 2.40$ $(3 \mathrm{H}, \mathrm{s}), 2.22(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=0.4 \mathrm{~Hz}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 165.93(\mathrm{~s})$, 165.01 (s), 160.54 (s), 154.53 (s), 112.90 (8), 111.88 (d), 52.33 (q), 21.25 (q), 19.67 (q). IR (CHCl_{3}) 2970, 2930, 1735 (ah), 1710 (br), $1625,1540,1440,1395,1375,1305,1290$ (br), 1150, 1085, 965 , $865,850 \mathrm{~cm}^{-1}$. Mass spectrum (m / e) $182\left(\mathrm{M}^{+}, 25.9\right.$) 154 $\left(\mathrm{M}^{+}-\mathrm{CO}, 43.2\right), 151\left(\mathrm{M}^{+}-\mathrm{OMe}, 20.0\right), 139\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{CO}\right.$, 21.0), 123 (22.4), 122 (23.6), 109 (12.7), 53 (14.7), 52 (11.0), 43 (100). (Found: C, $59.37 ; \mathrm{H}, 5.42$. Calc for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4}: \mathrm{C}, 59.34$; H, 5.53.

3-Acetyl-6-hydroxy-4-methyl-2H-pyran-2-one, 44

A mixture of $\mathrm{Ac}_{2} \mathrm{O}(0.20 \mathrm{ml}, 2.2 \mathrm{mmol})$ and 0.5 ml of pyridine was added dropwise to $12(0.238 \mathrm{~g}, 1.89 \mathrm{mmol})$. The reaction was moderated by cooling in a water bath. When the reaction had subsided, it was allowed to stand at 25° for 1 hr . After decomposition with 1 ml of HCl and 5 g of ice, the mixture was cooled and filtered. The dark residue was washed with cold, dil HCl and suspended in water. Solid $\mathrm{NaHCO} \mathrm{O}_{3}$ was added carefully until soln was complete and charcoal was added. After filtration, the filtrate was acidified with an excess of conc HCl with cooling in an ice bath. The ppt was fittered and washed with dil HCl to give $0.129 \mathrm{~g}(41 \%)$ of a white crystalline solid, m.p. 135-137 ${ }^{\circ}$. Reported ${ }^{23}$ m.p. 131-132 ${ }^{\circ}$.
$60 \mathrm{MHz}^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.81(1 \mathrm{H}, \mathrm{bs}), 2.60(3 \mathrm{H}, \mathrm{s}), 2.39$ (3H, bs). IR (CHCl_{3}) $1750,1650,1600,1550,1400,1380,1130$, $980 \mathrm{~cm}^{-1}$.
3-Acetyl-6-methoxy-4-methyl-2H-pyran-2-one, 43, and 5-1-Methox yethylidene)-4-methyl-2H-pyran-2,6(5H)-dione, 43^{\prime}

A soln of diazomethane, prepared from N -nitroso- N methylurea ($0.20 \mathrm{~g}, 2.0 \mathrm{mmol}$) in 10 ml of ether was added to a suspension of $44(0.215 \mathrm{~g}, 1.28 \mathrm{mmol})$ in 20 ml of ether at 0° over 5 min . The resulting soln was stirred for 15 min at 0° and then evaporated in vacuo. Sublimination (75° at 0.02 mm) of the residue yielded $0.195 \mathrm{~g}(84 \%)$ of a white solid, m.p. $58-65^{\circ}$. Based on ${ }^{1} \mathrm{H}$-NMR integration, this solid is an inseparable 3:1 mixture of $\mathbf{4 3}$ and a compound tentatively assigned structure 43'.

Compound 43: $200 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \boldsymbol{\delta} 5.41(1 \mathrm{H}, \mathrm{s})$, $4.01(3 \mathrm{H}, \mathrm{s}), 2.54(3 \mathrm{H}, \mathrm{s}), 2.40(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 197.87 (s), 165.26 (s), 164.67 (s), 159.21 (s), 113.30 (s), 87.61 (d), 55.97 (q), 31.10 (q), 22.09 (q). IR of mixture $\left(\mathrm{CHCl}_{3}\right) 1745,1650$, 1595, 1555, 1400, 1380, $1130,975 \mathrm{~cm}^{-1}$. (Found: C, $59.23 ; \mathrm{H}$, 5.45. Calc for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4}: \mathrm{C}, 59.34 ; \mathrm{H}, 5.49 \%$).

Compound $43^{\prime}: 200 \mathrm{MHz}{ }^{\text {t }} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.69(1 \mathrm{H}, \mathrm{m})$, $4.16(3 \mathrm{H}, \mathrm{s}), 2.45$ ($3 \mathrm{H}, \mathrm{s}$), 2.32 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}=0.4 \mathrm{~Hz}$).

Methyl 3-acetyl-2-methoxy-4-methylbenzoate, 45, and Methyl 4-acetyl-3-methoxy-5-methylbenzoate, 46
A mixture of $42(0.0471 \mathrm{~g}, 0.259 \mathrm{mmol})$ and methyl propiolate ($0.50 \mathrm{~g}, 6.0 \mathrm{mmol}$) was heated in a sealed tube at 150° for 72 hr . The soln was then cooled and concentrated in vacuo. The residue was chromatographed on preparative thick layer silica gel with benzene as eluent to give $0.0484 \mathrm{~g}(84 \%)$ of a pale yellow oil. The oil was determined to be an approximately $2: 1$ mixture of 45 and 46 by integration of the ${ }^{1} \mathrm{H}$-NMR spectrum.

Compoind $45: 200 \mathrm{MHz}^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.81(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=7 \mathrm{~Hz}), 7.09(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}), 3.93(3 \mathrm{H}, \mathrm{s}), 3.88(3 \mathrm{H}, \mathrm{s}), 2.50$ $(3 \mathrm{H}, \mathrm{s}), 2.32(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 170.14$ (s), 167.65 (s), 138.78 (s), 136.37 (s), 134.59 (s), 131.27 (d), 128.64 (d), 128.09 (s), 52.16 (q), 51.93 (q), 19.76 (q), 19.56(q). IR of mixture (neat) 2940, 1715 (br), 1595, 1435, 1260 (br), 1155, 1115, 1075, 1030, 800, 760 cm^{-1}. Mass spectrum (m/e) $222\left(\mathrm{M}^{+}, 29.1\right), 207\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right.$, 38.4), $191\left(\mathrm{M}^{+}-\mathrm{OMe}, 100.0\right), 190\left(\mathrm{M}^{+}-\mathrm{MeOH}, 51.0\right), 175$ (13.6), $163(27.1), 162(37.9), 159(10.5), 133(12.6), 132(12.0), 131$ (15.7), 105 (14.8), 104 (14.5), 103 (20.2), 91 (12.2), 77 (21.2), 51 (17.4), 44 (31.6), 43 (21.2). (Found : C, 64.89 ; H, 4.35. Calc for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}: \mathrm{C}, 64.86 ; \mathrm{H}, 6.35 \%$).

Compound 46: $200 \mathrm{MHz}^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.71$ (2H, bs), 3.93 (3H, s), 3.91 ($3 \mathrm{H}, \mathrm{s}$), 2.34 ($6 \mathrm{H}, \mathrm{s}$).

Dimethyl 4-acety-3-methoxy-5-methylphthalate, 47

A soln of $42(0.048 \mathrm{~g}, 0.26 \mathrm{mmol})$ and dimethyl acetylenedicarboxylate ($1.0 \mathrm{ml}, 8.1 \mathrm{mmol}$) in 1 ml dry toluene was heated in a soaled tube at 140° for 60 hr . The mixture was cooled and evaporatod in vacuo. The oily residue was chromatographed on 20 g of silica gel using first benzene and then $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluents to give $0.069 \mathrm{~g}(93 \%)$ of 47 as an oil.
$200 \mathrm{MHz}^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.70(1 \mathrm{H}, \mathrm{s}), 3.93(6 \mathrm{H}, \mathrm{s}), 3.89$ $(3 \mathrm{H}, \mathrm{s}), 2.34(3 \mathrm{H}, \mathrm{s}), 2.26(3 \mathrm{H}, \mathrm{s}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 169.28(\mathrm{~s})$, 169.09 (s), 165.76 (s), 138.71 (s), 135.99 (s), 133.69 (s), 132.51 (s), 129.10 (d), 128.26 (s), $52.88(\mathrm{q}), 52.59(\mathrm{q}), 52.33(\mathrm{q}), 19.49(\mathrm{q})$, 16.65 (q). IR (neat) 2930, 1715 (br), 1625, 1600, 1440, 1260 (br), $1170,1115,1035,840,800 \mathrm{~cm}^{-1}$. Mass spectrum (m / e) 191 $\left(\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{Me}-\mathrm{OCH}_{2}, 22.8\right), 185(11.0), 171$ (100.0), 157 (37.4), 143 (30.3), 129 (11.1), 127 (21.5), 115 (36.0), 113 (38.6), 69 (37.3), 59 (52.6), 53 (29.8), 47 (15.3), 44 (11.2), 43 (44.3). Found: $\mathrm{C}, 60.03 ; \mathrm{H}, 5.73$; Calc for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{6}: \mathrm{C}, 60.00 ; \mathrm{H}, 5.75 \%$).

Ethyl 3-nitropropenoate

Dinitrogen tetroxide ($10 \mathrm{ml}, 0.175 \mathrm{~mol}$) was added via syringe to mixture of ethyl acrylate ($45 \mathrm{ml}, 0.41 \mathrm{~mol}$) and I_{2} $(31.0 \mathrm{~g}, 0.122 \mathrm{~mol})$ in 400 ml of anhyd ether cooled to 0°. The mixture was stirred for 1 hr , allowed to warm to 25°, and stirred for 4 hr . The soln was washed with sat $\mathrm{Na}_{2} \mathrm{SO}_{2} \mathrm{O}_{3}$ aq soln, sat NaHCO_{3} aq, sat NaCl aq, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in pacuo. The crude ethyl 2-iodo-3nitropropionate was dissolved in 400 ml of anhyd ether, treated with powdered anhyd $\mathrm{NaOAc}(30 \mathrm{~g}, 0.37 \mathrm{~mol}$), and refluxed for 3 hr . The cooled soln was decanted, washed with sat $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aq, sat NaHCO_{3} aq, sat NaCl aq, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered through neutral alumina, and evaporated in dacuo. Recrystallization from pentane gave $6.6 \mathrm{~g}(19 \%)$ of a yellow solid, m.p. 25.5-26.5 ${ }^{\circ}$. Reported ${ }^{43}$ m.p. 26-26.5 ${ }^{\circ}$.
$60 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.77(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14 \mathrm{~Hz}), 7.13$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14 \mathrm{~Hz}), 4.37(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}), 1.34(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz})$. IR (neat) 3075, 2950, 1720 (br), 1640, 1530 (br), 1465, 1360, 1275 (br), 1170, 1095, 1025, 945, 855, 760, $670 \mathrm{~cm}^{-1}$.

Ethyl 4-acetyl-3-methoxy-5-methylbenzoate, 48

A soln of $42(0.0461 \mathrm{~g}, 0.253 \mathrm{mmol})$ and ethyl $3-$ nitropropenoate $(0.148 \mathrm{~g}, 1.02 \mathrm{mmol})$ in 1 ml ofdry toluene was heated in a sealed tube at 135° for 48 hr . The mixture was cooled and evaporated in vacuo. To a soln of the crude adduct in 10 ml of anhyd tetrahydrofuran, cooled to 0°, was added dropwise a soln of 1,8 -diazabicyclo[5.4.0]undec- 7 -ene (0.200 $\mathrm{g}, 1.32 \mathrm{mmol}$) in 5 ml of anhyd tetrahydrofuran. After stirring for 6 hr , the mixture was poured into water, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in pacuo. The residue was chromatographed on preparative thick layer silica gel using benzene as eluent to yield $0.033 \mathrm{~g}(55 \%)$ of 48 as an oil which solidified on standing.
$90 \mathrm{MHz}^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.68(2 \mathrm{H}, \mathrm{bs}), 4.35(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=5$ $\mathrm{Hz}), 3.89(3 \mathrm{H}, \mathrm{s}), 2.30(6 \mathrm{H}, \mathrm{s}), 1.37(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 169.82(\mathrm{~s}), 166.16(\mathrm{~s}), 137.89(\mathrm{~s}), 135.21(\mathrm{~s}), 131.04(\mathrm{~s})$, 128.57 (d), 128.35 (s), 61.13 (t), 52.09 (q), 19.55 (q), 14.31 (q) [2 carbons are not resolved]. IR (CHCl_{3}) 2955, 2920, 1715, 1435, $1310,1270,1125,1080 \mathrm{~cm}^{-1}$. Mass spectrum (m/e) 236 (M M^{+}, 14.4), $205\left(\mathrm{M}^{+}-\mathrm{OMe}, 19.7\right.$), 204 ($\mathrm{M}^{+}-\mathrm{MeOH}, 25.6$), 191 ($\mathrm{M}^{+}-\mathrm{OEt}, 30.8$), 105 (14.4), 91 (28.5), 77 (11.0), 43 (33.3), 28 (100.0). (Found: $\mathrm{C}, 65.91 ; \mathrm{H}, 6.88$. Calc for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4}: \mathrm{C}$, 66.09 ; H, 6.83\%).

5,7-Dihydroxyraphthoquinone, 4927

Freshly recrystallized lead tetraacetate ($6.5 \mathrm{~g}, 0.0147 \mathrm{~mol}$) was added over 10 min to a soln of $13 \mathrm{~b}(2.5 \mathrm{~g}, 0.13 \mathrm{~mol})$ in 40 ml of glacial AcOH. The dark mixture was stirred for 2 hr and filtered. The dark purple crystals were added to a mixture of $\mathrm{Ac}_{2} \mathrm{O}(15 \mathrm{ml}, 0.15 \mathrm{~mol})$ and 15 drops of conc $\mathrm{H}_{2} \mathrm{SO}_{4}$ and stirred for 8 hr . The mixture was poured onto ice and filtered to give a residue which was recrystallized from EtOH (charcoal) to obtain $2.87 \mathrm{~g}(65 \%)$ of an orange solid, m.p. $160-161^{\circ}$. Reported ${ }^{270}$ m.p. 160°
$60 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.36(2 \mathrm{H}, \mathrm{s}), 6.59(1 \mathrm{H}, \mathrm{s}), 2.40$ (6H, s), $2.32(3 \mathrm{H}, \mathrm{s})$. IR $\left(\mathrm{CHCl}_{3}\right) \mathbf{1 7 7 5}, 1666,1370,1180,1130$, $1010 \mathrm{~cm}^{-1}$.

A hot soln of $\mathrm{SnCl}_{2}(2.4 \mathrm{~g}, 0.013 \mathrm{~mol})$ in 5 ml of conc HCl was added to a soln of $\mathrm{NaOH}(7.5 \mathrm{~g}, 0.198 \mathrm{~mol})$ in 15 ml of water. The resulting soln was cooled, Celite added, and the soln filtered. The filtrate was added to $2,5,8$-triacetoxynaphthoquinonefrom above $(0.50 \mathrm{~g}, 1.5 \mathrm{mmol})$ and refluxed for 5 hr . The cooled mixture was poured slowiy into a mixture of 25 ml of conc HCl and cooled in a Dry-lice acetone slush bath, maintaining the temp below 0°. The soln was extracted rapidly with cold ether, washed with cold phosphate buffer soln (pH 7), sat NaCl aq containing a small amount of sodium dithionate, poured onto silver oxide ($\mathbf{3 . 0} \mathrm{g}, 0.013 \mathrm{~mol}$) and $\mathrm{Na}_{2} \mathrm{SO}_{4}(10 \mathrm{~g}$, 0.070 mol) and stirred for 1 hr under a $\mathrm{N}_{2} \mathrm{~atm}$. The orange soln was filtered and evaporated in vacuo to yiedd $0.25 \mathrm{~g}(88 \%)$ of 49 as an orange solid, m.p. 162-165 ${ }^{\circ}$. Reported ${ }^{276}$ m.p. $165-170^{\circ}$ (dec).
$60 \mathrm{MHz}^{1} \mathrm{H}-\mathrm{NMR}\left(\right.$ acetone-d $\left.{ }_{6}\right) \delta 7.08(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2 \mathrm{~Hz}), 6.98$ ($2 \mathrm{H}, \mathrm{s}$), $6.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2 \mathrm{~Hz}$).

2-Acetyl-3-methyl-1,6,8-trihydroxyanthraquinone 2(acetylemodin), 50

A soln of $49(0.214 \mathrm{~g}, 1.13 \mathrm{mmol})$ and $42(0.103 \mathrm{~g}, 0.566 \mathrm{mmol})$ in 4 ml of dry o-xylene was heated in a sealed tube at 140° for 5 days. The black mixture was cooled and stirred with a mixture of silver oxide $(1.0 \mathrm{~g}, 4.43 \mathrm{mmol})$ and $\mathrm{MgSO}_{4}(2.0 \mathrm{~g}, 0.17 \mathrm{~mol})$ in 25 ml of dry benzene for 16 hr . The mixture was filtered through Celite and evaporatod in vacuo. The residue was dissolved in a mixture of conc $\mathrm{HBr}(1.5 \mathrm{ml}, 0.013 \mathrm{~mol})$ and 3.5 mil of glacial AcOH and refluxed for 3.5 hr . The cooled soln was diluted with water, extracted with $\mathrm{CH}_{\mathbf{2}} \mathrm{Cl}_{\mathbf{2}}$, washed with sat NaCl aq, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. The crude product was chromatographed on preparative thick layer silica gel containing 2\% oxalic acid with EtOAc: MeOH (19: 1) as eluent to give 0.063 g of 42 and $0.015 \mathrm{~g}(22 \%$, based on recovered starting material) of 50 as an orange solid, m.p. 289$290^{\circ}$, reported ${ }^{28}$ m.p. 295-296 ${ }^{\circ}$, identical with an authentic sample ${ }^{28}$ by $200 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ and TLC.
$200 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 7.53(1 \mathrm{H}, \mathrm{s}), 7.10(1 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=2 \mathrm{~Hz}), 6.56(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2 \mathrm{~Hz}), 2.31(3 \mathrm{H}, \mathrm{s})$.

Methoxybenzoquinone

A mixture of 2 -methoxyhydroquinone ($0.357 \mathrm{~g}, 2.55 \mathrm{mmol}$) and silver carbonate on Celite ($2.9 \mathrm{~g}, 5.0 \mathrm{mmol}$) in 40 ml of dry benzene was refluxed under a $\mathrm{N}_{2} \mathrm{~atm}$ for 1 hr . The cooled soln was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in pacuo to afford 0.35 $\mathrm{g}(100 \%)$ of methoxybenzoquinone as a bright yellow solid, m.p. $141-143^{\circ}$. Reported ${ }^{44}$ m.p. 142°.
$60 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 6.79(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=2 \mathrm{~Hz}), 6.03$ ($1 \mathrm{H}, \mathrm{bs}$), 3.88 (3H, s). IR (CDCl ${ }_{3}$) 2990, 1680, 1655 (br), 1595 , $1460,1375,1355,1220$ (br), 1175, 1105, 1000, $870 \mathrm{~cm}^{-1}$.

6-Acetyl-3,5-dimethoxy-7-methylnaphthoquinone, 51

A soln of $42(0.135 \mathrm{~g}, 0.740 \mathrm{mmol})$ and methoxybenzoquinone ($0.380 \mathrm{~g}, 2.75 \mathrm{mmol}$) in 4 ml of dry 0 -xylene was heated in a sealed tube at 160° for 7 days. The black mixture was cooled and stirred with a mixture of silver oxide ($1.0 \mathrm{~g}, 4.3 \mathrm{mmol}$) and $\mathrm{MgSO}_{4}(20 \mathrm{~g}, 0.017 \mathrm{mmol}$) in 25 ml ofdry benzene for 16 hr . The mixture was filtered through Celite and evaporated in oacuo. The crude solid was chromatographed on 100 g of silica gel using an EtOAc: hexane gradient as eluent to give $0.122 \mathrm{~g}(60 \%)$ of 51 as a yellow solid, m.p. 182-184 .
$200 \mathrm{MHz}^{1} \mathrm{H}$-NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.89(1 \mathrm{H}, \mathrm{s}), 6.13(1 \mathrm{H}, \mathrm{s}), 3.97$ $(3 \mathrm{H}, \mathrm{s}), 3.90(3 \mathrm{H}, \mathrm{s}), 2.66(3 \mathrm{H}, \mathrm{s}), 2.41(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 184.34$ (s), 180.79 (s), 169.25 (s), 161.19 (s), 141.16 (s), 140.99 (d), 138.36 (s), 133.48 (8), 126.83 (s$), 126.39$ (s), 108.26 (d), 56.52 (q) $52.45(\mathrm{q}), 20.07$ (q) $19.11(\mathrm{q}) . \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 2915,1725,1675,1643$, $1618,1585,1435,1333,1278,1160,1102,1080,1020,855 \mathrm{~cm}^{-1}$. Mass spectrum (m / e) 275 (15.2), $274\left(\mathrm{M}^{+}, 100\right), 259$ $\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 55.7\right.$), $243\left(\mathrm{M}^{+}-\mathrm{MeO}, 40.3\right), 242\left(\mathrm{M}^{+}-\mathrm{MeOH}\right.$, 17.3), 214 (33.0, 175 (11.1). Found: C, 65.54 ; H, 5.03. Calc for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5}: \mathrm{C}, 65.69$; $\mathrm{H}, 5.14$.

6-Acetyl-5-hydroxy-3-methoxy-7-methylnaphthoquinone, 52
Method A : $\mathrm{BBr}_{3}(0.50 \mathrm{ml}, 5.3 \mathrm{mmol})$ was added slowly via syringe to a soln of adduct $51(0.067 \mathrm{~g}, 0.24 \mathrm{mmol})$ in 20 ml of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cooled to -78°. After stirring at this temp for 10 min , the mixture was diluted with 25 ml of water. The organic layer was separated, and the aqueous layer was extracted with ether. The combined organic extracts were washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated in vacuo. The residue was recrystallized from benzene-petroleum ether to afford $0.057 \mathrm{~g}(89 \%)$ of 52 as yellow-orange crystals, m.p. 191$192^{\circ}$.
Method B: A soln of diazomethane, prepared from N-nitroso- N -methylurea $(0.10 \mathrm{~g}, 1.0 \mathrm{mmol})$, in 5 ml of ether was added to a soln of $53(0.041 \mathrm{~g}, 1.68 \mathrm{mmol})$ in 5 ml of MeOH and 5 ml of ether at 0°. After stirring for 10 min at 0°, the soln was evaporated in vacuo. Sublimation of the residue at $140^{\circ}(0.01$ $\mathrm{mm})$ gave $0.028 \mathrm{~g}(64 \%)$ of 52 as a yellow-orange solid, m.p. $191-192^{\circ} .200 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 12.06(1 \mathrm{H}, \mathrm{bs}), 7.89$ $(1 \mathrm{H}, \mathrm{s}), 6.27(1 \mathrm{H}, \mathrm{s}), 3.98(3 \mathrm{H}, \mathrm{s}), 2.66(3 \mathrm{H}, \mathrm{s}), 2.40(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}-$ NMR (CDCl_{3}) $\delta 184.08$ (s), 180.65 (s), 168.21 (s), 160.94 (s), 141.87 (s), 141.04 (d), 138.51 (s), 133.75 (s), 128.17 (s), 127.09 (s), 108.33 (d), 56.46 (q), 20.61 (q), 19.18 (q). IR (CHCl_{3}) 3425, 2920, $1710,1660,1630,1585,1375,1340,1265,1160,1100,1070,880$ cm^{-1}. Mass spectrum (m/e) $260\left(\mathrm{M}^{+}, 67.8\right), 245\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right.$, 100.0), 229 ($\mathbf{M}^{+}-\mathrm{MeO}, 24.1$), 228 ($\mathrm{M}^{+}-\mathrm{MeOH}, 13.4$), 203 (18.0), 202 (12.8), 161 (30.5).

6-Acetyl-3,5-dihydroxy-7-methylnaphthoquinone, 53

$\mathrm{BBr}_{3}(0.50 \mathrm{ml}, 5.2 \mathrm{mmol})$ was added via syringe to an icecooled soln of adduct $51(0.103 \mathrm{~g}, 0.376 \mathrm{mmol})$ in 15 ml of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The resulting dark soln was stirred at 0° for 1.5 hr , allowed to warm to 25°, and poured into 50 ml of water. The organic layer was separated, the aqueous layer was extracted with ether and then extracted with $5 \% \mathrm{KOH}$ aq. The basic soln was acidified with conc HCl and extracted with ether. The organic extracts were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated in vacuo. The residue was recrystallized from EtOAc-hexanes to afford $0.063 \mathrm{~g}(68 \%)$ of 53 as a yellow solid, m.p. 206-209 ${ }^{\circ}$ (dec).
$200 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\right.$ acetone-d $\left._{6}\right) \delta 7.84(1 \mathrm{H}, \mathrm{s}), 6.18(1 \mathrm{H}, \mathrm{s})$, 2.70 (3H, s), 2.47 (3H, s). IR (KBr) 3100 (br), 1708, 1630 (br), $1575,1335,1190,860 \mathrm{~cm}^{-1}$. Mass spectrum (m/e) $246\left(\mathrm{M}^{+}\right.$, 100.0), 201 (12.6), $200(72.7), 172$ (14.8), 115 (11.8), 77 (11.5), 51 (11.0).

6-Acetyl-3-hydroxy-5-methoxy-7-methylnaphthoquinone, 54

A mixture of adduct $51(0.028 \mathrm{~g}, 0.102 \mathrm{mmol})$ and KOH $(0.040 \mathrm{~g}, 1.02 \mathrm{mmol})$ in 40 ml of water was stirred at 25° under a \mathbf{N}_{2} atm for 24 hr until the adduct had dissolved. The soln was washed with ether and acidified with dil HCl aq. The acidic soln was extracted with CHCl_{3}, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated in vacuo. The residue was sublimed at 130° (0.02 mm) to give $0.027 \mathrm{~g}(100 \%)$ of 54 as a yellow solid, m.p. 173-177 ${ }^{\circ}$ (dec).
$200 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.91(1 \mathrm{H}, \mathrm{s}), 6.31(1 \mathrm{H}, \mathrm{s}), 3.98$ $(3 \mathrm{H}, \mathrm{s}), 2.68(3 \mathrm{H}, \mathrm{s}), 2.41(3 \mathrm{H}, \mathrm{s}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 184.48(\mathrm{~s})$, 182.42 (s), 168.99 (s), 157.01 (s), 142.53 (s), 140.88 (d), 138.80 (s), 134.48 (s), 127.06 (s), 126.95 (s), 108.94 (d), 52.52 (q), 20.32 (q), 19.13 (q). IR (CHCl_{3}) 3330, 2925, 1720, 1655, 1582, 1380, 1340, $1270,1205,1160,1075 \mathrm{~cm}^{-1}$. Mass spectrum (m / e) 261 (15.5), $260\left(\mathrm{M}^{+}, 100.0\right), 245\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 16.3\right), 229\left(\mathrm{M}^{+}-\mathrm{MeO}, 37.5\right)$, 228 ($\mathrm{M}^{+}-\mathrm{MeOH}, 17.7$), 201 (13.9), 200 (66.3), 83 (10.2), 69 (11.2).

Diethyl 3-chloroglutaconate

Diethyl 3-oxoglutarate ($47.0 \mathrm{~g}, 0.232 \mathrm{~mol}$) was added dropwise with stirring over 10 min to $\mathrm{PCl}_{5}(85.0 \mathrm{~g}, 0.408 \mathrm{~mol})$ and then heated to 65° for 10 min . More $\mathrm{PCl}_{5}(5.0 \mathrm{~g}, 0.024 \mathrm{~mol})$ was added and heating continued for an additional 20 min . The red soln was poured onto 300 g of ice and stirred for 30 min. The mixture was extracted with ether, dried with $\mathrm{Na}_{2} \mathrm{SO}_{2}$, and concentrated in oacuo to give an orange oil. The oil was diluted with 150 ml of abs EtOH containing 15 ml of conc $\mathrm{H}_{2} \mathrm{SO}_{4}$. The resulting soln was heated to boiling, and,
while periodically adding more EtOH, 700 ml of EtOH was distilled. The soln was cooled, poured into 250 ml of water, saturated with solid NaCl , and extracted with ether. The combined extracts were washed with $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ aq, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give a yellow oil. Distillation yielded $34.3 \mathrm{~g}(67 \%)$ of a clear liquid, b.p. 95-105 (1 mm). Reported ${ }^{45}$ b.p. $134-139^{\circ}$ (9.5 mm).
$60 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 6.27$ and $6.20(1 \mathrm{H}, \mathrm{s}), 4.22(4 \mathrm{H}$, $\mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}), 4.08$ and $3.45(2 \mathrm{H}, \mathrm{s}), 1.58(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}) \mathrm{IR}$ (neat) 2950, 1720 (br), 1630, 1360, 1305, 1170 (br), $1025 \mathrm{~cm}^{-1}$.

Ethyl 4-carboethoxymethyl-6-methyl-2-oxo-2H-pyran-4 carboxylate

Freshly distilled ethyl acetoacetate ($17.0 \mathrm{~g}, 0.131 \mathrm{~mol}$) was added dropwise over 10 min to a suspension of sodium hydride ($2.5 \mathrm{~g}, 0.104 \mathrm{~mol}$) in 500 ml of dry benzene under a $\mathrm{N}_{2} \mathrm{~atm}$, and the resulting mixture refluxed for 30 min . After cooling to 50°, diethyl 3-chloroglutaconate $(22.0 \mathrm{~g}, 0.100 \mathrm{~mol})$ was added dropwise over 10 min . The yellow soln was refluxed for 2 hr , cooled, and decomposed with 50 ml of $2 \mathrm{NH}_{2} \mathrm{SO}_{4}$. The organic layer was separated and the aqueous layer extracted with benzene. The combined extracts were washed with water, dried with MgSO_{4}, filtered, and concentrated in vacwo to afford a yellow oil which was distilled to give $21.4 \mathrm{~g}(75 \%)$ of the pyrone as a pale yellow liquid, b.p. $145-155^{\circ}(0.01 \mathrm{~mm})$. Reported ${ }^{32}$ b.p. $172-174^{\circ}$ (1 mm).
$60 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 6.09(1 \mathrm{H}, \mathrm{s}), 4.31(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7$ $\mathrm{Hz}), 4.17(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}), 3.70(2 \mathrm{H}, \mathrm{s}), 2.49(3 \mathrm{H}, \mathrm{s}), 1.38(3 \mathrm{H}, \mathrm{t}$, $\mathrm{J}=7 \mathrm{~Hz}), 1.26(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}$). IR (neat) 2950,1725 (br), 1625, $1540,1400,1305,1265,1180,1085,1030,980,865 \mathrm{~cm}^{-1}$

3-Carboxymethylglutaconic acid, 57

A mixture of $35(14.8 \mathrm{~g}, 0.052 \mathrm{~mol})$ and $\mathrm{NaOH}(10.3 \mathrm{~g}, 0.258$ mol) in 100 ml of water was heated at 70° for 1 hr . The soln was cooled to 25°, extracted with ether, and acidified with conc HCl . The acidified soln was extracted with ether, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated in vacuo. The resulting solid was taken up in acetone, filtered while hot, and evaporated in vacuo. Recrystallization from CHCl_{3} yielded $6.59 \mathrm{~g}(68 \%)$ of 57 as an off-white solid, m.p. 131-132.5 ${ }^{\circ}$. Reported ${ }^{32}$ m.p. 136$137^{\circ}$
$60 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\right.$ acetone-d $\left._{6}\right) \delta 6.01(1 \mathrm{H}, \mathrm{s}), 4.80(3 \mathrm{H}, \mathrm{bs})$, $3.85(2 \mathrm{H}, \mathrm{s}), 3.32(2 \mathrm{H}, \mathrm{bs})$.

Methyl 6-methoxy-2-oxo-2H-pyran-4-acetate, 59

A soln of $57(0.50 \mathrm{~g}, 2.66 \mathrm{mmol})$ and $\mathrm{Ac}_{2} \mathrm{O}(0.50 \mathrm{ml}, 5.4 \mathrm{mmol})$ in 20 ml of anhyd tetrahydrofuran was refluxed for 30 min under a $\mathrm{N}_{2} \mathrm{~atm}$. The soln was cooled to 0° and a soln of diazomethane, prepared from N -nitroso- N -methylurea (5.0 g . 0.050 mol), in 50 ml of ether was added over 10 min . After stirring at 0° for 30 min , the soln was evaporated in vacuo. Flash chromatography of the residue using ether: benzene (1:9) as eluent yielded $0.301 \mathrm{~g}(57 \%)$ of 59 as a clear oil.
$200 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.80(1 \mathrm{H}, \mathrm{bs}), 5.40(1 \mathrm{H}$, bs $)$, $3.93(3 \mathrm{H}, \mathrm{s}), 3.74(3 \mathrm{H}, \mathrm{s}), 3.43(2 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 169.26 (s), 164.52 (s), 160.44 (s), 155.54 (s), 104.42 (d), 83.21 (d), 56.08 (q), 52.51 (q), 40.83 (t). IR (CHCl_{3}) 2925, 1710 (br), 1625, 1525 (br), $1440,1330,1260,1160,1010,848 \mathrm{~cm}^{-1}$. Mass spectrum (m / e) $198\left(\mathrm{M}^{+}, 55.8\right), 170\left(\mathrm{M}^{+}-\mathrm{CO}, 100.0\right), 167$ $\mathbf{M}^{+}-\mathrm{MeO}, 28.3$), $155(17.3), 139\left(\mathrm{M}^{+}-\mathrm{CO}_{2} \mathbf{M e}, 20.7\right), 138$ (23.7), 135(18.9), 127 (16.3), 123 (27.9), 112(19.1), 111 (28.7), 95 (12.5), 79 (13.2), $69(12.6), 68(11.7), 59(59.3), 55(11.6), 53(13.2)$, 52 (21.4), 51 (16.9), 44 (16.8), 43 (11.1), 41 (10.3).

Methyl 5-acetyl-6-methoxy-2-oxo-2H-pyran-4-acetate, 56b
A soln of $59(0.250 \mathrm{~g}, 1.26 \mathrm{mmol})$ and $\mathrm{Ac}_{2} \mathrm{O}(0.20 \mathrm{ml}, 2.2$ mmol) in 4 ml of dry trifluoroacetic acid was refluxed for 4 hr under \mathbf{N}_{2}. The dark soln was cooled and evaporated in vacuo. Flash chromatography of the residue using EtOAc: hexanes (1:1) as eluent gave $0.178 \mathrm{~g}(62 \%)$ of a yellow oil
$200 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 6.09(1 \mathrm{H}, \mathrm{s}), 3.83(3 \mathrm{H}, \mathrm{s}), 3.71$ $(3 \mathrm{H}, \mathrm{s}), 3.70(2 \mathrm{H}, \mathrm{s}), 2.50(3 \mathrm{H}, \mathrm{s}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 169.47(\mathrm{~s})$, 167.32 (s), 165.51 (s), 160.04 (s), 150.04 (s), 114.34 (d), 111.41 (s), 52.37 (q), 52.29 (q), 40.18 (t), 20.14 (q). IR (neat) 2950,1780 (sh), 1725 (br), 1620, 1540, 1435, 1260, 1175 (br), $865,735 \mathrm{~cm}^{-1}$.

Mass spectrum (m/e) $240\left(\mathrm{M}^{+}, 13.4\right), 209\left(\mathrm{M}^{+}-\mathrm{MeO}, 18.3\right)$, $208\left(\mathrm{M}^{+}-\mathrm{MeOH}, 14.4\right), 180(23.0), 152$ (14.1), 59 (13.5), 43 (100.0).

8-Acetyloxy-1-hydroxy-11-methoxy-7,8,9,10
tetrahydronaphthacene-5,12-dione, 60, and the bis-adduct, 61
A soln of the pyrone $26 \mathrm{c}(127 \mathrm{mg}, 0.53 \mathrm{mmol})$ and juglone 13a ($139 \mathrm{mg}, 0.8 \mathrm{mmol}$) in 5 ml of xylene was refluxed for 5.5 days, cooled, and treated with 550 mg silver oxide and 550 mg anhyd MgSO_{4} with stirring at 25° for 12 hr . The mixture was filtered, evaporated in vacuo, and the residue chromatographed on silica gel eluting with CHCl_{3} : ligroine ($1: 1$) to give $124 \mathrm{mg}(63.2 \%)$ of 60 as a yellow solid and $48 \mathrm{mg}(16.6 \%)$ of 61. Recrystallization of 60 from diethyl ether gave yellow crystals, m.p. 164-165

Compound 60: $200 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 13.0(1 \mathrm{H}, \mathrm{s})$, $7.88(1 \mathrm{H}, \mathrm{s}), 7.78(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8,1 \mathrm{~Hz}), 7.65(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8,8 \mathrm{~Hz})$, $7.29(1 \mathrm{H}$, dd, $\mathrm{J}=8,1 \mathrm{~Hz}), 5.26(1 \mathrm{H}$, quintet, $\mathrm{J}=5 \mathrm{~Hz}), 3.94(3 \mathrm{H}$, s), $3.24(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5,8 \mathrm{~Hz}), 3.1-3.0(3 \mathrm{H}, \mathrm{m}), 2.06(3 \mathrm{H}, \mathrm{s}), 2.2$ $2.0(2 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 188.5,182.3,170.5,162.6$, $159.2,143.3,138.9,136.0,132.8,124.6$ (2 peaks), 123.0, 122.6, $118.8,116.9,68.0,63.1,35.1,26.5,23.4,20.8$. IR (Nujol) 1735, $1675,1635,1585,1255 \mathrm{~cm}^{-1}$. Mass spectrum (m / e) $366\left(\mathrm{M}^{+}\right.$, 4.6), 306 (M^{+}- $\mathrm{AcOH}, 100$), $291\left(\mathrm{M}^{+} \mathrm{AcOH}-\mathrm{CH}_{3}, 65.6\right.$). High resolution mass spectrum (m / e) 366.1100 , calc for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{6} 366.1103 ; 306.0885$, calc for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{4} 306.0892$. (Found: C, $68.54 ; \mathrm{H}, 5.10$. Calc for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{6}$: C, $68.83 ; \mathrm{H}$, 4.96%).

Compound $61: 60 \mathrm{MHz}^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 11.9-11.5(2 \mathrm{H}$, $\mathrm{m}), 7.75-7.15(6 \mathrm{H}, \mathrm{m}), 3.88(3 \mathrm{H}, \mathrm{s}), 3.9-3.3(9 \mathrm{H}, \mathrm{m}), 1.75(3 \mathrm{H}, \mathrm{s})$, 1.8-1.5(3H, m). IR $\left(\mathrm{CHCl}_{3}\right) 1735,1695,1655,1600,1573,1450$, $1260 \mathrm{~cm}^{-1}$. Mass spectrum (m / e) $482\left(\mathrm{M}^{+}-\mathrm{AcOH}, 0.8\right), 368$ (dihydro 60, 39.6), 308 (dihydro 60-AcOH, 100), 276 (dihydro 60-AcOH-CO, 61.2), 174 (1,4,5-trihydroxynaphthalene ${ }^{+}$, 76.2). (Found : $\mathrm{C}, 68,46 ; \mathrm{H}, 4.86$. Calc for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{O}_{9}: \mathrm{C}, 68.63$; H, 4.83%).

1,8-Dihydroxy-11-methoxy-7,8,9,10-tetrahydronaphthacene-5,12-dione, 64

Method A : To a soln of $60(34 \mathrm{mg}, 0.093 \mathrm{mmol})$ in 1 ml of CHCl_{3} was added $50 \mathrm{mg} \mathrm{Na}_{2} \mathrm{CO}_{3}$ in 5 mal of aqueous MeOH and the soln was stirred at 25° for 6 hr . Normal workup gave a residue which was chromatographed on silica gel eluting with CHCl_{3} to give 30 mg (100%) of 64. Recrystallization from benzene/diethyl ether gave slightly yellow crystals, m.p. 203$204^{\circ} .60 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 13.0(1 \mathrm{H}, \mathrm{s}), 7.77(1 \mathrm{H}, \mathrm{bd}, \mathrm{J}$ $=8 \mathrm{~Hz}), 7.70(1 \mathrm{H}, \mathrm{bt}, \mathrm{J}=8 \mathrm{~Hz}), 7.24(1 \mathrm{H}, \mathrm{bd}, \mathrm{J}=8 \mathrm{~Hz}), 7.23$ $(1 \mathrm{H}, \mathrm{s}), 4.27(1 \mathrm{H}, \mathrm{bm}), 3.92(3 \mathrm{H}, \mathrm{s}), 2.9-3.2(4 \mathrm{H}, \mathrm{m}), 1.9-2.2(2 \mathrm{H}$, m), $1.8(1 \mathrm{H}, \mathrm{bs})$. IR $\left(\mathrm{CHCl}_{3}\right) 1665,1630,1590,1465,1365,1295$, $1270 \mathrm{~cm}^{-1}$. Mass spectrum (m/e) $325(\mathrm{M}+1,19), 324\left(\mathrm{M}^{+}\right.$, 100), $309\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 44.6\right), 307\left(\mathrm{M}^{+}-\mathrm{OH}, 22.4\right), 306$ $\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 72.9\right), 291\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{3}, 50.6\right)$.

Method B : A mixture of the pyrone $26 \mathrm{c}(356 \mathrm{mg}, 1.49 \mathrm{mmol})$ and juglone 13a ($384 \mathrm{mg}, 2.20 \mathrm{mmol}$) was reacted under the identical conditions given above for the Diels-Alder reaction and silver oxide oxidation to give a residue. To a solution of this residue in 30 ml of $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$: water ($10: 3: 2$) was added 1.6 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$. After stirring for 1 day at 25° and refluxing for 1 hr , the mixture was acidified with dil HCl and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Normal workup gave a crude mixture which was chromatographed on silica gel eluting first with CHCl_{3} : ligroine (2:1) to give $34 \mathrm{mg}(7.4 \%$) of 65 as an oil. Further elution with CHCl_{3} gave $230 \mathrm{mg}(47.5 \%)$ of 64 as yellow crystals. Compound $65: 60 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $11.4(1 \mathrm{H}, \mathrm{s}), 7.1-7.8(4 \mathrm{H}, \mathrm{m}), 6.58(1 \mathrm{H}, \mathrm{bd}, \mathrm{J}=9 \mathrm{~Hz}), 6.27(1 \mathrm{H}$, $\mathrm{dt}, \mathrm{J}=8,4 \mathrm{~Hz}), 3.89(3 \mathrm{H}, \mathrm{s}), 2.99(2 \mathrm{H}, \mathrm{bt}, \mathrm{J}=8 \mathrm{~Hz}), 2.3-2.6(2 \mathrm{H}$, bm). IR (CHCl_{3}) $1665,1635,1580,1450,1345,1310,1285,1255$ cm^{-1}. Mass spectrum (m / e) $306\left(\mathrm{M}^{+}\right.$). (Found: $\mathrm{C}, 73.60 ; \mathrm{H}$, 4.89. Calc for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{4}$: $\mathrm{C}, 74.50 ; \mathrm{H}, 4.61 \%$).

Method C : the bis-adduct 61 ($14 \mathrm{mg}, 0.026 \mathrm{mmol}$) dissolved in 2.5 ml of methanol containing 20 mg of sodium carbonate was stirred at 25° for 7 hr . Normal workup gave a residue which was chromatographed on silica gel eluting with chloroform to give $6 \mathrm{mg}(72 \%)$ of the alcohol 64 as yellow
crystals. A trace of the acetate 60 was also isolated from the column.

9,10-Dihydro-1,11-dimethoxynaphthacene-5,8(7H),12-trione, 69

Method A : To a soln of the acetate $60(23 \mathrm{mg}, 0.06 \mathrm{mmol})$ in ml of dry CHCl_{3} were added silver oxide $(29 \mathrm{mg})$ and $\mathrm{MeI}(0.4$ ml) and stirred at room temp. Three additional portions of silver oxide (20 mg) and MeI (0.4 ml) were added during the reaction. After stirring for 3 days, the mixture was filtered, and the inorganic part was washed with hot CHCl_{3}. The CHCl_{3} filtrates were evaporated in vacuo to give a crude product which was chromatographed on silica gel column eluting with CHCl_{3} : ligroine ($1: 1$) to give $22 \mathrm{mg}(92 \%)$ of the 1,11 dimethoxy 8 -acetate. $60 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.2-7.85$ ($4 \mathrm{H}, \mathrm{m}$), $5.26(1 \mathrm{H}$, quintet, $\mathrm{J}=5 \mathrm{~Hz}), 4.03(3 \mathrm{H}, \mathrm{s}), 3.96(3 \mathrm{H}, \mathrm{s})$, 2.9-3.2 (4H, m), $2.05(3 \mathrm{H}, \mathrm{s}), 1.95-2.15(2 \mathrm{H}, \mathrm{m})$.

To a soln of the dimethoxyacetate ($20 \mathrm{mg}, 0.052 \mathrm{mmol}$) in 5.5 ml of MeOH: CHCl_{3} : water ($4: 1: 0.5$) was added $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (45 mg) and the soln stirred at room temp for 12 hr . After acidification with dil HCl , the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Usual workup of the extracts afforded $20 \mathrm{mg}(100 \%)$ of the dimethoxy alcohol. $60 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.2-$ $7.85(4 \mathrm{H}, \mathrm{m}), 4.2(1 \mathrm{H}, \mathrm{bm}), 4.03(3 \mathrm{H}, \mathrm{s}), 3.95(3 \mathrm{H}, \mathrm{s}), 2.9-3.2(4 \mathrm{H}$, m), 1.9-2.2 (3H, m). IR (CHCl ${ }_{3}$) 3300, 1665, 1630, 1585, 1455, $1355,1285,1255 \mathrm{~cm}^{-1}$.

To a soln of the crude alcohol (20 mg) in acetone (5 ml) was added cooled Jones reagent (8 drops) at 0°. After stirring for 20 \min, isopropanol was added to the mixture which was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Usual workup of the extracts gave a residue (22 mg) which was chromatographed on silica gel eluting with CHCl_{3} : ligroine $(1: 1)$ to give 11 mg of $69(62.2 \%$ overall yield from the dimethoxy acetate). This ketone decomposed gradually at room temp. Rechromatography on silica gel gave 7 mg of crystals, m.p. $215^{\circ} .60 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 7.2-7.8(4 \mathrm{H}, \mathrm{m}), 4.05(3 \mathrm{H}, \mathrm{s}), 4.0(3 \mathrm{H}, \mathrm{s}), 3.71(2 \mathrm{H}, \mathrm{s})$, $3.28(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 2.57(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}) . \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 1720$, $1670,1585,1340,1290,1260,1010 \mathrm{~cm}^{-1}$. (Found : C, $71.23 ; \mathrm{H}$, 4.70. Calc for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{5}: \mathrm{C}, 71.42 ; \mathrm{H}, 4.79 \%$).

Method B: To a soln of $70^{33}(97 \mathrm{mg}, 0.28 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$ was added $\mathrm{AcCl}_{3}(250 \mathrm{mg}, 1.88 \mathrm{mmol})$ and the mixture was stirred at room temp under \mathbf{N}_{2}. After stirring for 4 days, dil HCl was added and then the mixture was extracted with a large amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Usual workup of the extracts gave a residue (104 mg). To a soln of this residue in dry acetone (20 ml) was added anhyd $\mathrm{K}_{2} \mathrm{CO}_{3}(500 \mathrm{mg})$ and $\mathrm{Me}_{2} \mathrm{SO}_{4}(1 \mathrm{ml})$. After stirring under reflux for 4 hr , the mixture was concentrated in vacuo, poured onto water, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Normal workup gave a residue which was treated with 1 ml of $3.5 \% \mathrm{HCl}$ in 10 ml of acetone and refluxed for 30 min. Water was added and the soln extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was separated, dried over MgSO_{4}, filtered and concentrated in vacuo to give a residue which was chromatographed on silica gel eluting with CHCl_{3} containing a trace of acetone to give 86 mg of the ketone 69. Recrystallization gave crystals, m.p. $215^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ and IR identical to that prepared by Method \mathbf{A}.

Acknowledgement-The financial support of the National Institutes of Health (Grant No. CA-21968) is gratefully acknowledged. We also thank Professors T. R. Kelly and G. A. Hiegel for providing detailed preparations of intermediates and Professor D. W. Cameron for an authentic sample of 2acetylemodin.

REFERENCES

${ }^{1}$ Camille and Henry Dreyfus Foundation Teacher-Scholar, 1978-1983; Alfred P. Sloan Foundation Fellow, 19791981.
${ }^{2}$ Winstein Dissertation Award Recipient (JAL 1977 ; MAL 1979).
${ }^{3}$ IBM Research Fellow, 1978-1979.

+ Visiting Scholar on leave from Kyoto University, 1979 1981.
${ }^{5}$ Fellow of the Swiss National Science Foundation, 19811982.
${ }^{6}$ D. W. Henry, Cancer Chemotherapy, (Edited by A. C. Sartorelli), Chap 2., American Chemical Society, Washington, DC (1976); ${ }^{\circ}$ F. Arcamone, Lloydia 40, 45 (1977);'T. R. Kelly, Annu. Rep. Med. Chem. 14, 288 (1979); 'Anthracyclines: Current Status and New Developments, (Edited by S. T. Crooke and S. D. Reich), Academic Press, New York (1980); 'W. A. Remers, The Chemistry of Antituonor Antibiotics Vol. 1, Chap 2., Wiley-Interscience, Somerset, NJ (1979);'J. R. Brown, Prog. Med. Chem. 15, 165 (1978).
${ }^{7}$ T. Oki, Y. Matsuzawa, A. Yoshimoto, K. Numata, I. Kitamura, S. Hori, A. Takamatsu, H. Umezawa, M. Ishizuka, H. Naganawa, H. Suda, M. Hamada and T. Takeuchi, J. Antiblot. 28, 830 (1975); ${ }^{\circ}$ D. E. Nettleton, Jr., W. T. Bradner, R. A. Bush, A. B. Coon, J. E. Moseley, R. W. Myllymaki, F. A. O'Herron, R. H. Schreiber and A. L. Vulcano, Ibid. 30, 525(1977);'T. W.Doyle, D. E. Nettleton, R. E. Grulich, D. M. Balitz, D. L. Johnson and A. L. Vulcano, J. Am. Chem. Soc. 101, 7041 (1979); ‘P.F. Wiley, R. B. Kelly, E. L. Caron, V. H. Wiley, J. H. Johnson, F. A. MacKellar and S. A. Mizsak, Ibid. 99, 542 (1977); 'F. Arcamone, G. Cassinelli, F. DiMattoo, S. Forenza, M. C. Ripamonti, G. Rivola, A. Vigevani, J. Clardy and T. McCabe, Ibid. 102, 1462 (1980); ${ }^{\text {' W W. Keller-Schierlein and }}$ W. Rickle, Antimicrob. Agents Chemother. 68 (1971); ${ }^{\circ}$ I. Kitamura, N. Shibamoto, T. Oki, T. Inui, H. Naganawa, M. Ishizuka, T. Masuda, T. Takeuchi and H. Umezawa, J. Antibiot. 30, 616 (1977).
${ }^{84}$ A. S. Kende and J. P. Rizi, J. Am. Chem. Soc. 103, 4247 (1981); ${ }^{6}$ B. A. Pearlman, J. M. McNamara, I. Hasan, S. Hatakeyama, H. Sekizaki and Y. Kishi, Ibid. 103, 4248 (1981); ${ }^{\text {© P. N. Confalone and G. Pizzolato, Ibid. 103, } 4251}$ (1981); ${ }^{〔}$ T.-t. Li and Y. L. Wu, Ibid. 103, 7007 (1981); ${ }^{\text {R. K. }}$ Boeckman, Jr. and F.-W. Sum, Ibid. 104, 4604 (1982).
${ }^{99}$ M. E. Jung and J. A. Lowe, J. Chem. Soc. Chem. Commun. $95(1978) ;{ }^{\circ}$ M. E. Jung and R. W. Brown, Tetrahedron Lett. 3355 (1981); 'M. E. Jung and R. B. Blum, J. Chem. Soc. Chem. Commun. 962 (1981) ; ${ }^{4}$ M. E. Jung, M. Node, R. W. Pfluger, M. A. Lyster and J. A. Lowe, III, J. Org. Chem. 47, 1150 (1982); © M. E. Jung and J. A. Hagenah, Ibid. 48, 5359 (1983).
${ }^{100}$ H. H. Inhoffen, H. Muxfeldt. H. Schaefer and H. Krämer, Croat. Chim. Acta 29, 329 (1957); ${ }^{\text {b }} \mathrm{H}$. Muxfeldt, Angew. Chem. 74, 825 (1962).
${ }^{115}$ P. Bosshard, S. Fumagalli, R. Good, W. Treub, W. von Philipsborn and C. H. Eugster, Helo. Chim. Acta 47, 769 (1964); ${ }^{\text {b }}$ E. J. Corey and A. P. Kozikowski, Tetrahedron Lett. 2389 (1975); ‘A. J. Birch and V. H. Powell, Ibid. 3467 (1970).
${ }^{12}$ P. Coad, R. A. Coad and J. Hyepock, J. Org. Chem. 29, 1751 (1964).
${ }^{13}$ S. Shibata and M. Takido, Chem. Pharm. Bull. 3, 156 (1955).
${ }^{14}$ J. Breen, J. C. Dacre, H. Raistrick and G. Smith, Biochem. J. 60, 618 (1955).
${ }^{15}$ Y. Ogihara, N. Kobayashi and S. Shibata, Tetrahedron Lett. 1881 (1968).
${ }^{16}$ S. Imre, A. Oztunc and N. Būyüktimkin, Phytochem. 13, 681 (1974).
${ }^{17}$ K. Chandrasenan, S. Neelakantan and T. R. Seshadri, J. Ind. Chem. Soc. 38, 907 (1961).
${ }^{18}$ M. E. Jung and C. A. McCombs, Tetrahedron Lett 2935 (1976); Org. Synth. 58, 163 (1978).
${ }^{19}$ This reaction has been described, but it appears that no thorough investigation of the intermediate products was undertaken, but rather the entire mixture was hydrolyzed to the diacid and then HCl climinated to produce allenedicarboxylic acid. We have obtained nearly 35% of the mixture of acid esters 21 by this route. For earlier work, see: ${ }^{*}$ B. S. Burton and H. von Pechmann, Ber. Dtsch. Chem. Ges. 20, 145 (1887); ${ }^{b}$ C. K. Ingold and L. C. Nickolls, J. Chem. Soc. 121, 1638 (1922); 'J. M. van der Zanden, Recl. Trav. Chim. Pays-Bas 54, 289 (1935).
${ }^{20}$ P. Yates and D. J. Bichan, Can. J. Chem. 53, 2045 (1975).
${ }^{22}$ The dianion of monoethyl malonate has been used successfully in similar reactions: J. E. McMurry, W. A. Andrus and J. H. Musser, Syn. Commun. 8, 53 (1978); P. Pollet and S. Gelin, Synthesis 142 (1978).
${ }^{22}$ The production of cyclobutane derivatives from the reaction of silyl enol ethers and very electron-deficient olefins has been reported before. See H. K. Hall, Jr. and P. Ykman, J. Am. Chem. Soc. 97,800 (1975). In general, this reaction does not work well with simple unsaturated esters such as acrylates. It is interesting that upon heating these isomers can be easily converted into the more stable cyclohexene cycloadducts, presumably via a zwitterionic intermediate (or perhaps an oxy-Cope rearrangement).
${ }^{23}$ Compound 40 , the derived acetate, and the acid resulting from oxidation are all isomeric mixtures at both the carbon bearing the hydroxy (or acetoxy) function and the double bond. However, all of the isomers are converted into the same compound, namely, 25c, upon base-catalyzed isomerization of the double bond into the ring.
${ }^{24}$ Although the Friedel-Crafts chemistry of 4-pyrones has been extensively studied [L. L. Woods, J. Org. Chem. 27, 696 (1962) and references therein], similar resctions with 2 pyrones have not, although 2-pyrone itself afforded 5 -nitro-2-pyrone on treatment with nitronium fluoroborate [W. H. Pirkle and M. Dines, J. Heteracycl. Chem. 6, 313 (1969)]. Thus the pyrone electronic structure is compatible with electrophilic substitution reactions.
${ }^{25}$ R. H. Wiley and N. R. Smith, J. Am. Chem. Soc. 74, 3893 (1952).
${ }^{26}$ S. Danishefsky, M. P. Prisbylla and S. Hiner, J. Am. Chem. Soc. 100, 2918 (1978).
${ }^{27}$ T. R. Kelly and M. Montury, Tetrahedron Lett. 4309, 4311 (1978). We thank Professor Kelly for a detailed preparation of 5,7-dihydroxynaphthoquinone. ${ }^{\text {b J. F. Garden and R. H. }}$ Thomson, J. Chem. Soc. 2483 (1957).
${ }^{28}$ H. J. Banks and D. W. Cameron, J. Chem. Soc. Chem. Commun. 1557(190); ${ }^{\text {bH.J. Banks, D. W. Cameron and M.J. }}$ Crossley, Aust. J. hem. 29, 2231 (1976). We gratefully thank Professor Cameron for an authentic sample of 2acetylemodin.
${ }^{29}$ This regiochemistry is that expected from our earlier work with methoxyquinone [J. A. Lowe, UCLA Dissertation, 1977] and that of others. [R.G.F. Giles and G.H.P. Roos, J. Chem. Soc. Perkin Trans I, 1632, 2057 (1976)].
${ }^{30}$ M. Sharma, P. Sharma and S. Rangaswami, Ind. J. Chem. 15B, 544 (1977).
${ }^{31}$ Dr. Rangaswami informed us that all of the compound and its spectra have been lost and therefore no comparison samples were available.
${ }^{32}$ J. Palecék, Coll. Czech. Chem. Commurn. 29, 2030 (1964).
${ }^{33}$ J. P. Gesson, J. C. Jacquesy and M. Mondon, Tetrahedron Lett. 3351 (1980).
${ }^{34}$ N. R. Smith and R.H. Wiley, Org. Syntheses Coll. Vol., 4, 549 (1963).
${ }^{35}$ F. Feist, Justus Liebigs Ann. Chem. 345, 60 (1906).
${ }^{36}$ N. Bland and J. F. Thorpe, J. Chem. Soc. 101, 856 (1912).
${ }^{37}$ H. Raistrick, R. Robinson and A. R. Todd, J. Chem. Soc. 488 (1933).
${ }^{38}$ L. F. Fieser and J. T. Dunn, J. Am. Chem. Soc. 59, 1016 (1937).
${ }^{39}$ S. K. Pavanaram, P. Hofer, H. Linde and K. Meyer, Helv. Chim. Acta 46, 1377 (1963).
${ }^{40}$ This procedure is a slight modification of one developed by G. Stork and G. A. Hiegel. We thank Dr. Hiegel for making this unpublished procedure available to us.
${ }^{41}$ For a similar ketalization process: H. Newman and R. B. Angier, J. Org. Chem. 31, 1456 (1966).
${ }^{42}$ R. Mantione, Bull. Soc. Chim. France 4523 (1969).
${ }^{43}$ J. E. McMurry and J. H. Musser, Org. Syntheses 56, 65 (1977).
${ }^{4}$ J. A. D. Jeffreys, J. Chem. Soc. 2153 (1959).
${ }^{45}$ R. Lukes and K. Syhora, Chem. Listy 46, 731 (1952).

