
Chemical Energetics and Change

Louis Bouchard

UCLA Department of Chemistry and Biochemistry
E-mail address: lsbouchard@ucla.edu







Contents

Preface xiii
First Edition xiii

Chapter 1. Gases 1
§1.1. The Ideal Gas 1
§1.2. Mixtures of Gases (ideal) 11
§1.3. Translational Molecular Motion 13
§1.4. Real Gases 23
§1.5. Diffusion 31
§1.6. Problems 37

Chapter 2. Intermolecular Interactions 55
§2.1. Electrostatics 55
§2.2. Intermolecular Interactions and Their Ranges 69
§2.3. Charge-Dipole Interaction 71
§2.4. Dipole-Dipole Interaction 74
§2.5. Hydrogen Bonding 77
§2.6. Ion-Induced Dipole 79
§2.7. Ion-Quadrupole Interaction: Cation-π 80
§2.8. Quadrupole-Quadrupole: π-Stacking 81
§2.9. Van Der Waals Force 82
§2.10. Thermal Averaging of Intermolecular Interactions 85
§2.11. Keesom Interaction (permanent dipole-permanent dipole,

thermally averaged) 87

vii



viii Contents

§2.12. Debye Force (Dipole-Induced Dipole) 88
§2.13. Boltzmann-Weighted Interactions 89
§2.14. kBT vs Interaction Strength 90
§2.15. Relative Strengths of Intermolecular Forces 90
§2.16. Hard Sphere and Lennard-Jones Potentials 91
§2.17. Problems 102

Chapter 3. Properties of Matter 119
§3.1. Structure of Liquids, Solids and Gases 119
§3.2. Effusion 121
§3.3. Phase Equilibrium 122
§3.4. Phase Transitions 123
§3.5. Phase Diagrams 125
§3.6. Solutions 127
§3.7. Non-Electrolyte Solutions 128
§3.8. Electrolyte Solutions 129
§3.9. Ionic Conduction 131
§3.10. Ideal Solutions: Raoult’s and Henry’s Laws 143
§3.11. Deviations From Raoult’s Law 145
§3.12. Colligative Properties: Non-Volatile Solutions 152
§3.13. Binary Mixtures of Liquids 157
§3.14. Osmotic Pressure 163
§3.15. Osmosis and Reverse Osmosis 164
§3.16. Problems 167

Chapter 4. Chemical Reactions 181
§4.1. Chemical Reactions and Equilibrium 182
§4.2. Operations on Reaction 184
§4.3. Multi-Phase (Heterogeneous) Reactions 185
§4.4. Direction of a Reaction 187
§4.5. Le Châtelier’s Principle: Response to (small) Changes (from

Equilibrium) 190
§4.6. Problems 192

Chapter 5. Acids and Bases 195
§5.1. Definitions of Acids: Arrhenius, Lewis, Brønsted-Lowry 195
§5.2. Acid-Base Titrations 198



Contents ix

§5.3. Redox Reactions 199
§5.4. Lewis Acids & Bases 200
§5.5. The pH Scale 204
§5.6. “ICE” Tables 210
§5.7. Weak Acids and Bases 212
§5.8. Buffer Solutions 215
§5.9. Problems 223

Chapter 6. Thermodynamics 229
§6.1. Heat vs Work 229
§6.2. Heat Capacity 231
§6.3. Expansion (P − V ) Work 239
§6.4. Other Types of Work 248
§6.5. Laws of Thermodynamics 255
§6.6. Zeroth Law 256
§6.7. First Law 257
§6.8. Second Law 260
§6.9. Third Law 275
§6.10. Thermodynamic Potentials 277
§6.11. Multi-Component Gas 285
§6.12. Electric and Magnetic Work 325
§6.13. Problems 334

Chapter 7. Chemical Kinetics 363
§7.1. Order of Reaction 364
§7.2. Reaction Order from Experiments 365
§7.3. The Reaction Rate 366
§7.4. Measurement Methods 368
§7.5. Tricks for Writing Down Rate Laws 376
§7.6. Reaction Rates From Kinetic Theory 379
§7.7. Arrhenius Law and Activation Energy Barriers 380
§7.8. Effect of Catalyst 381
§7.9. Origin of the Boltzmann Factor, e−ε/RT 382
§7.10. Problems 386

Chapter 8. Entropy Production, Chemical Kinetics and Irreversibility 397
§8.1. Entropy Production 398



x Contents

§8.2. Chemical Reaction Away From Equilibrium 399
§8.3. External vs Internal Variables 401
§8.4. Particle Flux and Heat Flux 403
§8.5. Conservation of Mass 405
§8.6. Conservation of Energy 406
§8.7. Entropy Balance 406
§8.8. Entropy Production vs External Entropy Flow 408
§8.9. Diffusion Leads to Entropy Production 411
§8.10. Heat Conduction Leads to Entropy Production 412
§8.11. Summary: Onsager’s Formulation of the Second Law 413
§8.12. Problems 414

Appendix A. Appendices 417
§A.1. Vector 417
§A.2. Euclidean Length 417
§A.3. Dot Product of Two Vectors 417
§A.4. Derivative of a Function of One Variable 418
§A.5. More Than One Variable: Partial Derivative 418
§A.6. Taylor’s Theorem 419
§A.7. Chain Rule 420
§A.8. Total Differential 421
§A.9. Exact Differentials 422
§A.10. Einstein Summation Convention 423
§A.11. Multivariate Taylor Expansion 423
§A.12. Example: Derivative of 1/r 424
§A.13. Probability Concepts 424
§A.14. Continuous Random Variables 425
§A.15. Probability Distribution Functions 425
§A.16. Mean Value 426
§A.17. Variance 426
§A.18. Average of a Function of a Random Variable 427
§A.19. More than One (Continuous) Random Variable 428
§A.20. Statistical Independence 428
§A.21. Angular Averaging 433
§A.22. Spherical Coordinates 434
§A.23. Dirac Delta Function 434



Contents xi

§A.24. Integration Over a Sphere 435
§A.25. Gradient 437
§A.26. Legendre Transformation 437
§A.27. Maximizing Entropy vs Minimizing Energy 441
§A.28. Problems 447

Bibliography 465

Index 467





Preface

First Edition

This is a collection of lecture notes for chem 20B at UCLA, from when I
taught during the Winter quarter of 2018 and Spring quarter of 2017, as well
as chem 20BH (honors version) Winter quarter of 2015. Chem 20B (“Ener-
getics and Change”) is the second quarter of general chemistry for physical
sciences students. Chem 20B mainly follows the second half of the textbook
by Oxtoby, Gillis and Campion, “Principles of Modern Chemistry” [1]. The
lecture notes were originally based on certain chapters of the book (hence
the similar structure and organization), but evolved over time to provide
more in-depth coverage of selected topics. This document is in the form of
“lecture notes” rather than a textbook; the former being less wordy than the
latter. The word energetics here refers to all aspects of energy, as it relates to
chemical transformations and more generally speaking, physical interactions
and the conversion of energy between thermodynamical systems.
The pre-requisites are calculus (differential and integral) as well as high-
school or freshman physics. For example I assume you know introductory
concepts in classical mechanics and electromagnetism, such as forces, New-
ton’s laws, Coulomb’s law, etc. I did include exercises to review and/or
perfect these skills. Other concepts such as probability and partial differ-
entiation, which will likely be new concepts to most freshman students, are
introduced as needed, either in the various chapters or in the “Appendix”
chapter. Practice may be found by working through end-of-chapter prob-
lems, whose solutions are provided for self-study. Some students may find
it helpful to supplement these class-notes with an introductory textbook on
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xiv Preface

general chemistry. The latter typically contain more extensive discussions,
worked examples, as well as end-of-chapter practice problems.
I have assembled the notes into a single PDF file during the summer of
2018, with the help of some UCLA students that offered to draw and re-
draw some of the figures. Many thanks go to Ellee Vikram and Emily
Hays (two former chem 20B students) for drawing the illustrations. Ellee
has also kindly proofread the entire book for typos and overall logical flow
and organization. Any remaining errors are mine. These notes are made
available on the internet as a downloadable PDF file, so they can remain
accessible to anyone anywhere, free of charge.
For those wishing to pursue more in-depth studies, more advanced textbooks
exist. To learn more about intermolecular forces, see “Intermolecular and
surface forces” by Israelachvili [2] or “The molecular theory of gases and
liquids” by Hirschfelder [3]. For statistical mechanics, McQuarrie has au-
thored an excellent textbook (“Statistical mechanics”) [4]. McQuarrie and
Simon’s “Molecular thermodynamics” [5] provides excellent coverage of both
equilibrium and non-equilibrium thermodynamics. Kjelstrup and Bedeaux
(“Non-equilibrium thermodynamics for engineers”) [6] as well as De Groot
and Mazur (“Non-equilibrium thermodynamics”) [7] are also recommended.
To learn more about probability, the book by A.N. Shiryaev (“Probabil-
ity”) [8] is outstanding. For chemical kinetics, see Ancheyta’s “Chemical
reaction kinetics” [9] as well as Chorkendorff and Niemantsverdriet (“Con-
cepts of modern catalysis and kinetics”) [10].
Finally, a few words about notation. For work, the unusual notation ∆W
is used rather than w, to emphasize that it is obtained from infinitesimal
quantities, i.e. ∆W =

∫
δW (along some path). Same for heat transfer, the

notation ∆Q is used instead of q because ∆Q =
∫
δQ (along some path).

The “Capital Delta” notation is used to emphasize that those quantities are
obtained by integrating a differential 1-form along a given path. I use bold-
face and arrows to denote vectors (E and ~E); both notations mean the same
thing. Instead of ln the natural log is written log to avoid confusion with
1n. Integration volume is often written vol to avoid confusion with V , the
thermodynamic system volume, when the two are different. The shorthand
notation ∂x is sometimes used for the partial derivative ∂

∂x . Finally, ∇f
denotes the gradient of a function f , i.e. the vector ∇f = (∂xf, ∂yf, ∂zf).

Louis Bouchard
Los Angeles, CA

September 23, 2018



Chapter 1

Gases

1.1. The Ideal Gas

The famous ideal gas law, PV = nRT (P , pressure; V , volume; n, number
of moles; R, gas constant; T , temperature), originated in 18th research by
Boyle, Avogadro, and Charles. The ideal gas consists of an ensemble of N
classical molecules which are moving randomly (due to thermal motion at
positive temperature, T > 0) and do not interact with each other. N and
n are related by the Avogadro’s constant, NA, which counts the number of
atoms in 12 grams of 12C isotope:

N ≡ n ·NA ≈ N · (6.022× 1023 molecules/mol).
The statement that the particles do not interact with each other implies
that the gas density is low enough, so that intermolecular forces are not im-
portant. No interactions means no collisions. No collisions implies that the
cross-sectional area of the particles is very small. In Fig. 1.1 the molecules
should be thought of as as point particles. At low densities, the average
distance, 〈r12〉, between nearest neighbor molecules (labelled “1” and “2”
here)

〈r12〉 ∼
3

√
V

N
,

is large, much larger than the molecular diameter. N/V is called the number
density. At higher densities, the assumption of non-interacting particles is
no longer valid and we must invoke principles of kinetic molecular theory
to describe the behavior of the gas. At very low temperatures (� 1 K),
quantum effects become important and the ideal gas law breaks down [11].

1



2 1. Gases

ContainerMolecule

Figure 1.1. Ideal gases are modeled as classical particles in a box, in
the limit of low density. At low densities, interactions are not important.
The particles have infinitesimally small radius (no collisions). At higher
densities, deviations from the ideal gas law are observed, kinetic theory
is used to describe collisions and intermolecular interactions become
important.

While the properties of liquids and solids can be quite different among dif-
ferent substances, the properties of different types of gases are very similar
to each other, especially in the low density limit, where the ideal gas law
applies. The ideal gas law reflects the view that the properties of a gas
(P, V, n, T ) do not depend on the type of gas. This implies, for example,
that 1 mole of ideal gas at 300 K and 1 atm occupies exactly the same vol-
ume regardless of the type of gas (e.g., oxygen, nitrogen, xenon, etc.). It also
implies that the total pressure in a mixture of different types of non-reacting
gases is the sum of the partial pressures of each constituent gas (Dalton’s
law, see Section 1.2.2).

1.1.1. Equation of State. A thermodynamic system is described by an
equation of state, which describes a relationship between the variables that
describe the state of matter. It is a relation of the form:

f(n, P, T, V ) = 0,
where n is the number of moles of a substance, P is the pressure of the gas,
T is its temperature and V is the volume occupied by the substance. For
a given set of physical conditions (e.g. pressure, volume, temperature, etc.)
a state function is useful for analyzing the behavior of the system (gases,
liquids and solids).
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The function f is not necessarily smooth1 and may contain discontinuities,
especially at the boundaries between different phases of matter. Phase tran-
sitions that are “abrupt” will give rise to discontinuities in f . The ideal
gas law (PV = nRT ), which can be put in this form as f(n, P, T, V ) =
PV − nRT = 0, appears to be a smooth function of its variables. However,
this is only because this analytical expression describes a gas state only; it
does not describe the transition to the liquid or solid phases. This can be
seen by plotting the function (we do this in Section 1.4.4). In Section 1.4.2
we discuss the equation of state for a Van Der Waals (VDW) gas, which can
describe a transition from gas to liquid phase.
Real substances will undergo phase transitions and in principle, f , is defined
over all possible states of the substance, and may include discontinuities at
the boundaries of phase transitions. We note that the equation of state is
often obtained numerically from a discrete set of experimental data points
and may not always exist in the form of a mathematical formula (analytical
expression).

1.1.2. Description of the Ideal Gas. In the context of the ideal gas
law, it is sufficient to define the ideal gas as a set of noninteracting classical
molecules. The state of the gas is described by its macroscopic properties:
T, n, P, V . Particles have zero size (no collisions, no intermolecular inter-
actions); collisions will be discussed later, in the context of kinetic theory.
The substance (gas) is characterized by macroscopic variables such as T
(temperature), P (pressure), N (number of particles) and V (volume of
container). The mass of the particles plays no role in the description of
the gas. The equation of state for the ideal gas can be derived using three
important concepts: Boyle’s law, Charles’ law and Avogadro’s law. If we
think of the n, P, T, V space as 4-dimensional, the equation of state adds
a constraint which reduces the dimensionality of the space to 3. The ideal
gas molecule is required to “live” in that 3-dimensional space. For fixed n,
we can take n/V (density) to be a single variable. In that case, n/V, P, T
is a 3-dimensional space and the ideal gas law constraint reduces it to a
2-dimensional space (surface), as you will see in Section 1.4.4.

1.1.3. Boyle’s Law (Robert William Boyle, 1627-1691). In the 17th
century Robert Boyle trapped a gas within a glass tube with one end sealed.
Mercury was added to the tube to trap the gas. Any changes in the gas
volume could be measured as changes in the mercury level. The glass tube
was J-shaped, with a long end and a short end. The difference in mercury
levels on both ends of the tube enabled him to determine the gas pressure

1A smooth function is a function that can be differentiated with respect to its variables as many
times as desired, and all of its derivatives are continuous.
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(assuming that the ambient pressure to which the other end of the tube
was in contact which remained constant). Boyle’s 1662 J-tube experiment
is illustrated in Fig. 1.2.
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Figure 1.2. Boyle’s law describes the inverse proportionality between
pressure and volume (P ∝ 1/V ). Left: When the heights of mercury on
the two sides of the tube are the same, the pressure of the confined gas
must equal that of the atmosphere, 1 atm or 760 mm Hg. Right: Boyle
then added mercury to the J-tube. This caused the pressure of the gas
to be increased by the number of millimeters of mercury in the height
difference h. The compression of the gas causes it to occupy a smaller
volume.

Boyle’s law: In his experiments, Boyle noted that the gas volume
varied inversely with pressure

P ∝ 1
V
. at constant T, n

P : pressure of the gas (force/area)
V : volume of the gas within the container
This relationship is independent of the gas type. In the case of the
J-tube, the gas of interest is trapped at the sealed end by mercury.

An equivalent way to express this law is:
PV = constant.

This constant does not change as long as the temperature and number of
gas and mercury molecules are held constant. This means that:

P1V1 = constant = P2V2
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where P1, V1 denote the pressure and volume (respectively) of the system
in state 1 (i.e. at time 1), whereas P2, V2 are pressure and volume of the
system in state 2 (i.e. at time 2). For this to hold, everything else must be
held constant. This constant is also independent of the type of gas.
Example: Consider a rigid sphere filled with air. At time 1 its volume is
50 L and the internal air has pressure 1 bar. The number of molecules
is 2 mol, which remains constant because the sphere does not leak. At
time 2, we manage to compress the size of the rigid sphere by half so that
its volume is now 25 L. What is the pressure inside? (Temperature and
number of molecules are held constant.) Answer : It will be 2 bars because
P1V1 = P2V2 or P2 = P1V1/V2 = (1 bar)(50 L/25 L) = 2 bars.

1.1.4. Charles’ Law (Jacques Alexandre César Charles, 1746-1823).
Charle’s law, also known as the law of Charles and Gay-Lussac, involves the
concept of temperature. Charles (and later, Gay-Lussac, in similar experi-
ments) found experimentally that different gases expand to the same extent
over the same temperature interval. This established a linear relationship
between volume and temperature:

Charles’ law: The gas volume varies in proportion with tempera-
ture

V ∝ T at constant P, n
T : temperature of the gas
V : volume of the gas within the container
The constant of proportionality depends on the pressure and number
of molecules of gas present, but not on the type of gas.

Figure 1.3 illustrates the experimental finding that the volume of a gas
confined at constant pressure increases as the temperature increases. Since
V ∝ T we can write V/T = constant. The constant is independent of gas
type. It does not change as long as the pressure and number of molecules
are kept fixed. From this, we can then write

V1
V2

= T1
T2
.

1.1.5. Avogadro’s Law (Lorenzo Romano Avogadro, 1776-1856).
Avogadro’s law states that the volume is proportional to the number of
molecules N provided that temperature and pressure are held constant:

V ∝ N.
You can imagine inflating a balloon by blowing two identical puffs of air
consecutively. The first puff (N molecules) will inflate the balloon from
volume 0 to volume V1. This volume V1 corresponds to N molecules. The
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Figure 1.3. Charles’ law describes the proportionality between volume
and temperature (V ∝ T ).

second puff, because it is identical to the first one, adds N more molecules
so that Nfinal = N + N = 2N . Its volume will have doubled, V2 = 2V1.
If the balloon is spherical, doubling the volume corresponds to a radius or
diameter increase of (2)1/3 ≈ 1.26 (26% higher), since V = 4

3πr
3.

Avogadro’s law is also known as the extensive property of V . An extensive
property is often defined as one which scales with the size of the system, i.e.
V doubles if N doubles (and vice-versa).

1.1.6. Some Definitions. We will make frequent use of the following ter-
minology, especially in the context of thermodynamics:

• Macroscopic property: properties which involve many molecules.
• Microscopic property: properties which involve one or few molecules.
• Extensive property: properties which depend on the size of the system

(e.g. total mass, volume, number of moles of substance).
• Intensive property: properties which are not extensive (e.g., tempera-

ture, pressure, density, molar volume, molar mass).

1.1.7. Combining All Three Laws to Get Ideal Gas Law. We sum-
marize the above laws:

• P ∝ 1
V

at constant T,N (Boyle’s law)

• V ∝ T at constant P,N (Charles’ law)
• V ∝ N at constant T, P (extensive property of V )

If we combine these laws together we get:

V ∝ NT

P
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The proportionality constant is known as Boltzmann’s constant, kB. We get
the ideal gas law:

Ideal gas law: Equation of state for the ideal gas:
PV = NkBT

P : Pressure of the gas (force/area)
T : temperature of the gas (Kelvin scale: 0◦C = 273.15 K)
N : number of particles in the container
V : volume of the container
kB = R/NA: Boltzmann’s constant (kB=1.38×10−23 J/K)

We can also express the ideal gas law in terms of the number of moles (n:
number of moles) by using the relationship (1 mole = NA = 6.022×1023

molecules)
nR = NkB

where R=8.31 J/mol.K (ideal gas constant). Note: since kB = nR/N ,
plugging n = 1 mol and N = NA molecules gives kB = 8.31/(6.022×1023) =
1.38× 10−23 J/K.

Ideal gas law (if working in moles): The alternative form is:
PV = nRT.

1.1.8. Units of Pressure. It is very important to know the units of pres-
sure and how they are related to each other. The unit of pressure in the
SI system is the pascal (Pa), defined as a force of one Newton per square
meter. The conversion between atm, Pa, and torr is as follows: 1 atm =
101,325 Pa = 760 torr. Another common unit of pressure is the psi (pounds
per square inch): 1 atm = 14.69595 psi. Another unit is bar: 1 bar = 100
kPa (not to be confused with atm, where 1 atm = 101.325 kPa).

1.1.9. Gases at Standard Conditions. Chemists define standard con-
ditions as standard temperature and pressure (STP):

STP: 0◦C (273.15 K) and 1 atm (760 torr).
Under these conditions, the volume of 1 mol of ideal gas is called the standard
molar volume:
standard molar volume = 22.414 L, or 22.4 L (to 3 significant figures).

Indeed, this follows from the ideal gas law,

V = nRT

P
= (1 mol)(0.082057 L.atm/mol/K)(273.15 K)

(1 atm) = 22.414 L.

This particular value of R and its units (0.082057 L.atm/mol/K) are ex-
plained at the end of Section 1.4.2.
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1.1.10. Ideal Gas Law Does Not Depend on Gas Type. You may
ask, Why don’t these properties depend on the type of molecule/atom in
the gas? For example, why isn’t pressure (at fixed n, V, T ), which is force
per unit area, higher for a heavy atom than a light one? This has to do with
the velocity of molecules at a given temperature, which is lower for heavy
atoms.
The force exerted by a molecule colliding against a wall is related to the
transfer of momentum ∆p, via F = ∆p/∆t, where ∆t is a time interval.
The change in momentum is 2mv, where m is the molecular mass and v is
the molecule’s velocity. Let’s take v to be an average velocity. In a cubic
container of side length L, ∆t is equal to ∆t = 2L/v, so that P = F/L2 ∝
mv2.
The independence of P on molecular mass means, for example, thatmO2v

2
O2

=
mHev

2
He

, where mHe = 4 amu and mO2 = 32 amu. Thus, if the mass is 8
times larger, the velocity must be

√
8 times slower.

Oxygen molecules at room temperature have an average speed of about 480
m/s. This means that helium molecules at room temperature must have an
average speed of approximately

√
8 times 480 ≈ 1,360 m/s. This is the only

way that the ideal gas law can hold.
We will see later (in Section 1.3.9) that the kinetic theory of gases tells us
that the speed of gas molecules is inversely proportional to the square root
of the molecular mass, e.g.

vp =

√
2kBT
m

, v =

√
8kBT
πm

, vrms =

√
3kBT
m

.

where vp is the most probable speed, v is the average speed and vrms is the
root-mean-square speed.

1.1.11. Ideal Gas Example: Heating Gas at Constant Volume.
Suppose that we trap a gas inside a container of fixed volume V . The
temperature is T1 = 293 K and the pressure P1 is 1 atm. There is a pressure
gauge attached to the volume. Now we place the container in boiling water
(T2 = 393 K). What is the pressure gauge showing?
Answer: We can invoke the ideal gas law before and after, and use the
fact that the ideal gas constant R is the same both before and after, i.e.
PV = nRT is written as R = PV/nT . Then: P1V1/n1T1 = P2V2/n2T2.
Since the number of moles doesn’t change (container is leak-proof) and the
volume remains fixed, we can cancel out the n’s and the V ’s: P1/T1 = P2/T2.
Solving for P2 gives P2 = P1(T2/T1). Inserting the numbers we get:

P2 = (1 atm)
(393

293

)
≈ (1 atm)(1.34) = 1.34 atm.
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Note: we used an equation of state (namely, the ideal gas law). An equation
of state means that the state of the gas only depends on the current values
of its thermodynamic variables (e.g., P, T, V, n), and not on their histories.
Fortunately, the solution of this problem does not depend on how fast or
slow the heating takes place.

1.1.12. Phase Diagrams. A phase diagram is a plot which shows the dif-
ferent phases of a given substance as function of the conditions (macroscopic
variables, such as T , P , V ). The substance is in thermal equilibrium. On
the phase diagram you will find regions corresponding to the different phases
(e.g. solid, liquid, gas), as well as “phase boundary” lines between the dif-
ferent phases. These lines mark conditions under which multiple phases can
coexist at equilibrium. Phase transitions occur along lines of equilibrium.
The triple point marks the condition where the substance coexists as a solid,
liquid and a gas simultaneously. Different substances have different triple
points. The critical point is the point where the substance may transition
to the supercritical fluid state. To be in the supercritical state, the tem-
perature and pressure must be at or above the critical temperature and
pressure, respectively. Different substances have different critical points.
Each substance has a different phase diagram, the characteristics of which
are determined by intermolecular forces. Intermolecular forces are discussed
in Chapter 2.
A phase diagram should describe real substances. Typically, phase dia-
grams are obtained from experimental measurements. For any substance,
there exists an “equation of state” describing a constraint between P, T and
N/V . This equation of state can be obtained from experimental data2. A
hypothetical phase diagram is shown in Fig. 1.4.
Do not confuse Fig. 1.4 with the ideal gas law, as the ideal gas law does
not describe solids or liquids. The ideal gas law applies only to gases in the
low-density limit (e.g., the bottom-right region of P − T diagrams such as
Fig. 1.4. For example, take a fixed value of the temperature T . Consider the
compression of a gas inside a cylinder by a piston. Isothermal compression
means that we move along a vertical line (T fixed) from bottom to the top
on the diagram of Fig. 1.4. At low gas densities, PV = constant (Boyle’s
law), and the gas pressure P increases as V decreases. As P increases, the
gas eventually undergoes a phase transition from gas to liquid or gas to
solid (depending on the value of T ). The ideal gas law does not describe the
transition to the liquid, nor does it describe the state of the liquid itself.

2Some equations of state, such as the Van Der Waals equation of state, are obtained from theo-
retical arguments.
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Figure 1.4. Pressure-temperature (V, n fixed) diagram representation
of the phase diagram of some (unspecified) substance. The exact posi-
tion of the phase boundaries depends on the substance.

For fixed N , an equation of state f(P, T,N/V ) = 0 (such as PV = NkBT ,
i.e. P − kBTN/V = 0) is a constraint that defines a 2D surface in the 3D
space of T , P and N/V (N/V=number density). Thus, phase diagrams
can also be represented as surfaces, such as the one shown in Fig. 1.5. In
these diagrams, “volume” refers to the specific volume (ratio of a substance’s
volume to its mass). Specific volume is the inverse of mass density.

1.1.13. Example: Pressurized CO2 in Tank. Suppose that we have a
gas cylinder (40 cm high, 15 cm diameter) at ambient temperature filled
with CO2. The cylinder contains 10 lbs of CO2. The questions we ask is
whether the tank is filled with liquid CO2 or gaseous CO2. And if so, what
is the pressure?
Answer: The tank is a cylinder whose volume is V =(40 cm)(πr2) = (0.4
m)(π (0.075 m)2) ≈ 7.1×10−3 m3. How many moles do we have in the tank?
The mass of CO2 is m=10 lbs = 4,500 g. (1 lb is 450 g.) The molecular
mass of CO2 is 12+32=44 g/mol. Thus, n = 4, 500 g/(44 g.mol−1) ≈ 102

mol.
Ambient temperature is 293 K. If this were a gas, we would have P =
nRT/V ≈ 3 ·107 Pa ≈ 300 atm ≈ 300 bar. This is a very high pressure. We
suspect that there is probably no gas inside the tank because at that high
pressure, the CO2 probably becomes a liquid.
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Figure 1.5. Surface plot representation of the phase diagram of some
substance. The equation of state, f(P, T,N/V ) = 0, defines a 2D surface
in the 3D space of P, T and N/V . Some lines of constant pressure
(isobar), temperature (isotherm) and volume (isochoric) are indicated
on the graph.

The phase diagram for CO2 is shown in Fig. 1.6. This graph shows that we
cannot have a pure gas in the tank. At 293 K, increasing the pressure leads
to a liquid. We have either a liquid or a supercritical fluid, depending on the
exact position of the vertical dashed line. (Although I looked up the critical
point of CO2, and found it to be 73 atm and 31◦C, which suggests we have
a liquid since our temperature is not high enough.) P inside the tank is
most definitely not equal to 300 atm because the gas eventually turns into
a liquid (phase transition).

1.2. Mixtures of Gases (ideal)

1.2.1. Partial Pressures. A consequence of the ideal gas law is that the
total pressure of a gas mixture, Ptot, is a sum of the partial pressures of each
individual gas components, i.e.,

Ptot =ntot
RT

V
= (n1 + n2 + · · ·+ nN )RT

V
= P1 + · · ·+ PN

=X1Ptot + · · ·+XNPtot,

where ni is the number of moles of species i, ntot = n1 + · · ·+nN is the total
number of moles in the mixture, Xi = ni/ntot is the mole fraction of species
i and Pi = niRT/V = XiPtot is the partial pressure of species i. This result
follows because the ideal gas law only cares about the number of moles (at
fixed T ,P ), not the nature of the molecules.
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Figure 1.6. Phase diagram for CO2.

Let’s look at an example. Suppose that a gas mixture consists of nN2 moles
of N2 and nO2 moles of O2. The mole fraction XN2 of N2 is defined as:

XN2 = nN2

nN2 + nO2

= nN2

ntot
.

Similarly, the mole fraction XO2 of O2 is defined as:

XO2 = nO2

nN2 + nO2

= nO2

ntot
.

In particular, the partial pressure of N2 within the gas container is given
by:

PN2 = nN2
RT

V
= XN2Ptot,

where Ptot = PN2 + PO2 is the total pressure in the container. The second
equality follows from:

XN2Ptot =
(
nN2

ntot

)(
ntot

RT

V

)
= nN2

RT

V
.

Similarly, the partial pressure of O2 within the gas container is:

PO2 = nO2
RT

V
= XO2Ptot.

1.2.2. Dalton’s Law For Gas Mixtures. The result from the previous
section is known as Dalton’s law. Dalton’s law says that the total pressure
of a gas mixture is the sum of the pressures exerted by the individual gases.
This is illustrated in Fig. 1.7 for the case of two gases mixed together into
one tank. Note that the total volume is the same in all three containers.
The total pressure is the sum of the partial pressures:
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Gas A = 3 atmP Gas B = 4 atmP Gas A + B = 7 atmP

Figure 1.7. Dalton’s law: the total pressure in a mixture of gases equals
the sum of the partial pressures of each gas. Here, 7 atm = 3 atm + 4
atm.

Dalton’s law: Consider a gas mixture with N species and total
number of moles ntot = n1 + n2 + · · ·+ nN , where ni is the number
of moles of species i. Then, the total pressure Ptot in the mixture

Ptot =P1 + · · ·+ PN = (n1 + · · ·+ nN )RT
V

=(X1 + · · ·+XN )Ptot = ntot
RT

V
where ntot is the total number of moles in the gas mixture, Pi is the
partial pressure of species i and Xi is its mole fraction.

Dalton’s law is valid in the absence of significant interactions. It is a conse-
quence of the ideal gas law.

1.3. Translational Molecular Motion

1.3.1. Estimating Pressure in Terms of Wall Collisions. Pressure
arises from collisions of gas molecules against a wall (Fig. 1.8). An ensemble
of N gas molecules is held in a container of volume V = L3 at temperature
T . Consider elastic collisions of gas molecules against the shaded wall whose
area is A = L2 as shown below. Only the vx component of the molecule’s
velocity matters, as orthogonal components (vy, vz) do not lead to collisions
against the shaded wall.
When a gas molecule collides with the wall in an elastic collision, its x
velocity component vx is reversed → −vx. Consider a molecule which is
initially near the left wall, moves to the right, collides with the shaded wall,
then bounces back to the left wall. Its momentum change is:

∆px = px,before − px,after = px,before − (−px,before) = 2px,before = 2mvx.
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Vx

L

L

L

Figure 1.8. Pressure on the wall is force per unit area exerted by the
molecules colliding on the wall and abruptly changing their momentum
upon collision.

(m: mass of molecule) The transit time for this trajectory is

∆t = 2L
vx
.

Force exerted on the shaded wall is obtained from Newton’s second law

Fx = dpx
dt ≈

∆px
∆t = 2mvx

2L/vx
= mv2

x

L
.

The total force on the wall arising from N molecules is

Fx,tot =
N∑
i=1

Fx,i =
∑
i

m

L
v2
x,i = Nm

L

(
1
N

∑
i

v2
x,i

)
︸ ︷︷ ︸

≡v2
x

= Nmv2
x

L
.

The bar denotes the average over N molecules. If there is no preference for
the velocity direction (isotropic motion) we have that

v2 = v2
x + v2

y + v2
z = 3v2

x

where ~v = (vx, vy, vz). Therefore, v2
x = 1

3v
2.

Pressure and Kinetic Energy: The pressure P on the shaded
wall is force, F = Fx,tot, divided by the wall area (L2):

P = Fx,tot
L2 = Nmv2

3L3 .

Since V = L3, this can be written in the form of an ideal gas law:

PV = 1
3Nmv

2.
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If we denote the average kinetic energy per molecule as

Kav = 1
2mv

2

we see that the pressure, a macroscopic property, is related to the average
translational kinetic energy per molecule, which is a microscopic property.

(1.1) P = 2
3
NKav

L3 = 2
3
NKav

V
or PV = 2

3NKav.

1.3.2. Temperature and Kinetic Energy of Molecules. Molecular
motions can be related to temperature of the gas if we invoke the ideal
gas law:
(1.2) PV = NkBT.

Temperature and Kinetic Energy: Comparison of (1.1) and
(1.2) yields the important result that the average molecular kinetic
energy is proportional to the absolute temperature:

T = mv2

3kB
= 2

3
Kav

kB
.

Thus, temperature is a measure of the average kinetic energy of the
atoms in a monatomic gas. (This is valid only for a monatomic gas
because the kinetic energy, K, would be different than 1

2mv
2 in the

case of molecules, which possess internal rotational and translational
motions.)

1.3.3. Derivation of Ideal Gas Law. To “prove” or derive the ideal
gas law from kinetic theory3 we need to show that v2 is proportional to
temperature:

v2 =
∫ ∞

0
v2f(v)dv ∝ T,

where f(v)dv is the probability that a molecule chosen at random in the
gas will have speed in the range [v, v + dv]. Ludwig Boltzmann derived the
result

f(v) =
(

m

2πkBT

)3/2
4πv2 exp

(
− mv2

2kBT

) {Maxwell-Boltzmann
speed distribution

}

3The combination of the results T = 2
3
Kav
kB

and P = 2
3
NKav
V

does not lead to the ideal gas law,
PV = NkBT , because we’ve had to invoke the ideal gas law in order to obtain the relationship
between temperature and kinetic energy, T = 2

3
Kav
kB

.
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for the speed of a particle of mass m, where the speed v is
√
v2
x + v2

y + v2
z

and the velocity is ~v = (vx, vy, vz). Then4

Kav = 1
2mv

2 = m

2 v
2 = m

2

∫ ∞
0

v2f(v)dv = 3
2kBT.

This equality is called the equipartition theorem. This theorem states that
at thermal equilibrium, every particle has exactly the same average kinetic
energy, (3/2)kBT . Boltzmann thus established a definition of temperature
(macroscopic quantity) in terms of the kinetic energy of the gas particles
(microscopic quantities), T = (2/3)Kav/kB.

1.3.4. Root-Mean-Square Speed. In the previous section we found that
1
2mv

2 = 3
2kBT . Cancelling out the 1/2, solving for v2 and taking the square

root gives the root-mean-square speed:

vrms ≡
√
v2 =

√
3kBT
m

=

√
3RT
M

.

where M is the molar mass.

1.3.5. Interpretation of Maxwellian Density. The velocity of the center-
of-mass of a molecule can be denoted by ~V = (Vx, Vy, Vz) (capital V ). We
view this velocity as a random variable, in the sense that the act of picking
a molecule at random within an ensemble is a random experiment. When a
molecule is selected, we then have a deterministic quantity, which we denoted
by a lowercase ~v = (vx, vy, vz). The probability that the random variable ~V
will take on values in the range Vx ∈ [v1

x, v
2
x], Vy ∈ [v1

y , v
2
y ], Vz ∈ [v1

z , v
2
z ] is

given by the integral:

P
(
Vx ∈ [v1

x, v
2
x], Vy ∈ [v1

y , v
2
y ], Vz ∈ [v1

z , v
2
z ]
)

=
∫ v2

x

v1
x

dvx
∫ v2

y

v1
y

dvy
∫ v2

z

v1
z

dvzf~V (~v),

where f~V (~v) = f~V (vx, vy, vz) if the probability density function for ~V .

4Let a = m/2kBT . From integral tables,
∫∞
−∞ e−ax

2 dx =
√
π/a, differentiating both sides

twice with respect to a gives: d2

da2

∫∞
−∞ e−ax

2 dx =
∫∞
−∞ x4e−ax

2 dx =
√
π(−1/2)(−3/2)a−5/2 =

(3/4)
√
πa−5/2. Changing the limits of integration to

∫∞
0 leads to a factor of 1/2 and we have:∫∞

0 x4e−ax
2 dx = (3/8)

√
πa−5/2. Now we can easily integrate:

v2 =
∫ ∞

0
v2f(v)dv =

(
m

2πkBT

) 3
2 4π

∫ ∞
0

v4 exp
(
−av2

)
dv

=
(

m

2πkBT

) 3
2 4π

{
3
√
π

8

(
m

2kBT

)− 5
2

}
=

3kBT
m

.

Learn more about Gaussian integrals: https://en.wikipedia.org/wiki/Gaussian integral
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The left hand side denotes a joint probability, which is the probability of
the simultaneous occurrence of all three events Vx ∈ [v1

x, v
2
x], Vy ∈ [v1

y , v
2
y ],

and Vz ∈ [v1
z , v

2
z ]. If we take the intervals to be infinitesimally small, i.e.

Vx ∈ [vx, vx + dvx], Vy ∈ [vy, vy + dvy], Vz ∈ [vz, vz + dvz], then the integrals
reduce to the following5

P (Vx ∈ [vx, vx + dvx], Vy ∈ [vy, vy + dvy], Vz ∈ [vz, vz + dvz])
= f~V (~v)dvxdvydvz.

This quantity is the probability of finding a molecule whose x component
of velocity, Vx, lies in the range [vx, vx + dvx] (centered near vx, with width
dvx), and similarly for Vy and Vz. This can be written in terms of the volume
element dV (the symbol × denotes Cartesian product):

dV = [vx, vx + dvx]× [vy, vy + dvy]× [vz, vz + dvz].
Thus,

f~V (~v)dvxdvydvz = P
(
~V ∈ dV

)
.

In 1D the situation is even simpler. The quantity

P(Vx ∈ [v1, v2]) =
∫ v2

v1
fVx(vx)dvx

denotes the probability that the x component of the velocity of a molecule
chosen at random will be in the interval [v1, v2]. The probability density
function can be obtained from this probability by taking the interval [v1, v2]
to be an infinitesimally small interval, e.g. [vx, vx + dvx], in which case we
have:

P(Vx ∈ [vx, vx + dvx]) =
∫ vx+dvx

vx
fVx(vx)dvx = fVx(vx)dvx.

1.3.6. Derivation of Maxwellian Distribution. We will show how the
speed distribution is obtained from the velocity distribution. Boltzmann has
shown that the velocity distribution is

(1.3) f~V (~v) = fVx(vx)fVy(vy)fVz(vz) =
(

m

2πkBT

)3/2
exp

(
− mv2

2kBT

)
,

He did this by assuming that the kinetic energies ε = 1
2mv

2 of a gas molecule
are distributed according to the Gibbs distribution (Boltzmann factor):

p(x) = Ae−ε(x)/kBT ,

where x denotes the state of the system (in our case, x is the velocity v),
ε(x) is the energy of the state x, A is a normalization constant such that∫
p(x)dx = 1. (We will derive this Gibbs distribution later in the course,

5In other words, we made use of
∫ y+dy
y

f(x)dx = f(y)dy. To prove this, simply write the integrals
as Riemannian sums. There is only 1 term in the summation.
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using the first law of thermodynamics.) For ε(v) = 1
2mv

2, we shall denote
this distribution as f~V (~v):

Maxwell velocity distribution: The Maxwell velocity distribu-
tion

f~V (~v) =
(

m

2πkBT

)3/2
exp

(
− mv2

2kBT

)
,

describes the probability distribution of the velocities of gas
molecules in an ideal gas. The quantity f~V (~v)d3~v = f~V (~v)dvxdvydvz
is the probability that you will find a molecule whose velocity lies
within the volume element d3~v centered at ~v, i.e. where the x com-
ponent of velocity is in the interval [vx, vx + dvx], its y component is
in the interval [vy, vy + dvy] and its z component, in [vz, vz + dvz].

1.3.7. Maxwellian is a Product of Gaussians. In the previous section
we wrote that the velocity distribution factors into a product, f~V (~v) =
fVx(vx)fVy(vy)fVz(vz). This is due to the independence of the directions x,
y and z. The velocity of a gas molecule is described with a vector ~v =
(vx, vy, vz). In a gas the velocity components vi (i = x, y, z) average to zero,
vi = 0, since negative values are equally likely to occur as positive values in
an isotropic gas. To say that the gas is “isotropic” means that f~V (~v) is only
a function of the magnitude |~v|, or equivalently, v2 = v2

x + v2
y + v2

z . Thus,
we can write f~V (~v) as f~V (|~v|). I prefer to use f~V (v2) = f~V (v2

x + v2
y + v2

z)
instead, since v2 also depends only on the magnitude of ~v.
Also, the x, y, z components of the velocity are statistically independent of
each other. Thus, f~V (v2) = f~V (v2

x + v2
y + v2

z) can be factored into a product
of three independent functions, one for each coordinate:

f~V (v2) = f~V (v2
x + v2

y + v2
z) = fVx(v2

x)fVy(v2
y)fVz(v2

z).
where fVx , fVy and fVz are the same function because motion along x follows
the same behavior as motion along y or z.
The only mathematical function which fulfills this condition is the expo-
nential, since exp(−av2) = exp(−av2

x) exp(−av2
y) exp(−av2

z), where a > 0
is a constant. We need a > 0 so that the fVi (i = x, y, z) integrate to 1.
(If a < 0 the function fVi would blow up at infinity and is not integrable.)
Thus these probability density functions are all Gaussian. If f~V is to be a
probability distribution it must be nonnegative (f~V ≥ 0) and normalized:∫
f~V (v2)d3~v = 1.

A normalization constant c can be determined from the normalization con-
dition 1 =

∫∞
−∞ fVi(vi)dvi = c

∫∞
−∞ exp(−av2

i )dvi (i = x, y, z), leading to
c =

√
a/π. By assuming that the molecular kinetic energies are distributed

according to the Gibbs distribution (Boltzmann factor), Ludwig Boltzmann
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found that a is related to the average kinetic energy per particle, Kav =
3
2kBT = 1

2mv
2. Namely, a = m/2kBT .

1.3.8. Maxwell-Boltzmann Speed Distribution. In the previous sec-
tion, we saw that each fVi(vi) (i = x, y, z) has the form of a Gaussian
distribution centered at 0. However, the speed v =

√
v2
x + v2

y + v2
z does not

average to zero at finite temperatures because each component is squared,
turning negative values into positive ones.
Let’s now find the probability of observing a molecule with speed in the
range [v, v+ dv]. We must “add” the probability f~V (~v) over all velocities in
a spherical shell of radius v and thickness dv, as illustrated in Fig. 1.9.

Figure 1.9. Velocity space.

This shell has volume 4πv2dv, and f~V (~v) has the same “constant” value
over this entire shell. The result is obtained trivially by multiplying f(~v) by
4πv2.

Maxwell speed distribution: The Maxwell speed distribution is:

(1.4) f(v) = f~V (~v)4πv2 =
(

m

2πkBT

)3/2
4πv2e

− mv2
2kBT .

The product f(v)dv gives the probability of finding a molecule with
speed in the range [v, v + dv]. We note that the units of f(v) are
s/m because the integral

∫∞
0 f(v)dv = 1. Thus, since dv has units

m/s, f(v) must have the inverse units, s/m.

This distribution is no longer Gaussian, but is skewed toward nonnegative
values, as seen in Fig. 1.10.
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Figure 1.10. Shape of the Maxwell-Boltzmann speed distribution
(equation 1.4).

Another way to derive this is to transform to spherical coordinates in velocity
space, (v, θ, φ). Denoting, V = |~V | =

√
V 2
x + V 2

y + V 2
z (V is also a random

variable, since it is constructed from the components Vx, Vy and Vz, which
are themselves random variables), the probability P(V ∈ [v1, v2]) is

P(V ∈ [v1, v2]) =
∫
{~v|v1≤v≤v2}

dvxdvydvzf~V (~v)

=
∫ v2

v1
v2dv

∫ 2π

0
dφ
∫ π

0
sin θdθf~V (~v) = (4π)

∫ v2

v1
v2dvf~V (~v)

since f~V (~v) is independent of θ, φ (by definition, it only depends on the
magnitude |~v|). In particular, if we choose the interval [v1, v2] to be [v, v+dv],
then

(1.5) P(V ∈ [v, v + dv]) = 4πv2f~V (~v)dv =
(

m

2πkBT

)3/2
4πv2e

− mv2
2kBT︸ ︷︷ ︸

Maxwell speed dist.

dv.

1.3.9. How Fast do Molecules Travel? There are three different types
of average speeds we may be interested in, depending on the context. The
most probable speed is obtained by setting df(v)/dv = 0 and solving for v,
i.e. df/dv ∝ (2v − v2m2v/2kBT ) = 0. The result is:

(1.6) vp =

√
2kBT
m

.
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The mean value of the speed is

(1.7) v =

√
8kBT
πm

.

The root-mean-square speed is (derived in Section 1.3.4):

(1.8) vrms =

√
3kBT
m

.

We see that: vp < v < vrms. These formulae can be expressed in terms of
molar massM instead by simply replacing kB/m by R/M. These quantities
are illustrated in Fig. 1.11 relative to the probability distribution (Eq. 1.5).
Geometrically, the most probable speed corresponds to the peak of this
distribution whereas the mean speed is the velocity at which the areas to its
left and to its right are equal. And you will recall from the previous lecture
that the RMS speed is related to temperature and average kinetic energy of
a molecule.
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Figure 1.11. Maxwell-Boltzmann speed distribution (equation 1.4).
Most probable speed (vp), mean speed (v) and rms speed (vrms) are
shown on the plot (see also equations 1.6, 1.7 and 1.8).

1.3.9.1. Sample Calculation. Calculate the most probable speed, vp, for H2
gas at room temperature (T=300 K).
Strategy: Invoke the formula in molar units, vp = (2RT/M)1/2 and plug in
M=2 g/mol.
Solution:

vp =
√

2(8.31 J/mol.K)(300 K)
(2 g/mol)

1000 g
1 kg ∼ 1580 m/s.
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1.3.10. Dependence of Speed Distribution on T and m. For a fixed
temperature T the Maxwell speed distribution (Eq. 1.4) for heavy gases
(e.g. 132Xe) is shifted to the left because of the low velocities, whereas the
distribution for light gases (e.g. 4He) is shifted to the right because of higher
velocities. This is illustrated in Fig. 1.12.

Pr
ob

ab
ili

ty
 D

en
si

ty

Speed

Xe
Ar
Ne
He

Figure 1.12. Dependence of the Maxwell-Boltzmann speed distribution
(Eq. 1.4) on molecular mass. For heavier molecules, it is shifted to the
left. The total area equals 1 regardless of mass.

The area under the curve, however, remains constant, which explains the
flattening of the curves with light gases. If we fix the gas type (e.g. N2) the
distribution is skewed to the left for cold gases and to the right for warmer
gases. This is illustrated in Fig. 1.13.
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Figure 1.13. Dependence of the Maxwell-Boltzmann speed distribution
(Eq. 1.4) on temperature. For higher temperatures, the distribution is
shifted towards larger speeds. The total area equals 1 regardless of
temperature.
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1.4. Real Gases

In this section we look at the case where the ideal gas law is inadequate.

1.4.1. Deviations From the Ideal Gas Law. If we compress a gas,
its density increases and deviations from the ideal gas law are expected
(Fig. 1.14).

Figure 1.14. Compression of a gas leads to higher density, where in-
termolecular interactions become more important.

The ideal gas law becomes less accurate when intermolecular interactions are
important. Such a situation occurs at high pressures and low temperatures.
At high pressures, the molecules are closer to each other and interact more.
At low temperatures their velocities are reduced and intermolecular collisions
last longer.
Consider two different gases, He and HF. In both cases, we have 0.1 mol of
each gas, and each gas is placed in a cubic container of volume 2 L. The
temperature of both containers is held at 500 K. Experimentally, we measure
the pressures to be PHe = 2.05 atm and PHF = 2.03 atm. The ideal gas law
predicts that the pressure will be (recall that 1 atm = 101.325 Pa)

Pideal = nRT

V
= (0.1 mol)(8.31 J/mol.K)(500 K)

(2 L)(0.001 m3/L) = 207.750 kPa = 2.05 atm,

or6

Pideal = nRT

V
= (0.1 mol)(0.08206 L.atm/K.mol)(500 K)

2 L = 2.05 atm.

Comparing this to the experimentally measured pressure values we conclude
that He gas behaves like an ideal gas under those conditions whereas HF
deviates from an ideal gas. This is due to the nature of the intermolecular

6You can find values of the gas constant R expressed in many different convenient units at the
URL https://en.wikipedia.org/wiki/Gas constant
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interactions. In He, such interactions are small, limited to VDW forces,
where as HF is a polar molecule and dipole-dipole interactions are significant.
This experiment can be repeated for numerous additional gases and we ob-
tain the results:

Molecule Preal(atm)
CO2 2.06
Ar 2.05

H2O 2.02
SF6 2.08

CH2Cl2 2.04
Repulsive forces increase the pressure compared to the ideal gas law. Repul-
sive forces can arise when the molecules are ions. They also arise because
of the finite volume of the molecules. Indeed, molecules take up space,
leading to a “reduced volume” in which gas molecules can diffuse. These
molecules also hit the walls harder due to their finite-size, compared to ideal
gas molecules which have size zero. Thus, P is larger.
Attractive forces exist when molecules have opposite charges, or dipole mo-
ments (permanent or induced), or VDW interactions. This has the effect of
reducing the pressure of the gas.

1.4.2. Van Der Waals Gas. A simple model for a non-ideal gas is the
VDW gas. It accounts for the volume occupied by the particles and for the
attractive forces between pairs of particles. Although it performs slightly
better than the ideal gas law, its range of applicability is limited, making it
mainly a pedagogical tool.
The starting point is the ideal gas law, PV = nRT , where P is the “ideal
gas pressure” and V is the “ideal gas volume”. The volume is set equal to
the container volume Ṽ less the volume occupied by the gas molecules, nb:

V = Ṽ − nb,
where b is the particle volume occupied by one mole of gas. The ideal gas
pressure, P , is equal to the measured pressure P̃ plus a correction term,
an2/V 2:

P = P̃ + a
n2

V 2

where a > 0 for attractive intermolecular forces and a < 0 for repulsive
forces. The result is (dropping the tilde notation):
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Van Der Waals equation of state: The VDW equation of state
is (

P + n2a

V 2

)
(V − nb) = nRT

where a > 0 for attractive intermolecular interactions and a < 0 for
repulsive forces. b is always positive because it represents volume.
Rearranging this equation

Pvdw = nRT

(V − nb) −
n2a

V 2

makes it obvious that the effect of the term n2a
V 2 is to reduce the

pressure in the system (when forces are attractive, a > 0). In general,
both a and b depend on temperature.

The excluded volume for one mole of particles is:

b = NA · 4×
(

4πr3

3

)
,

where r is the particle radius and NA is Avogadro’s number. The factor of 4
arises because the radius of the sphere is taken to be 2r (instead of r), which
is the distance of closest approach between two spheres’ centers (Fig. 1.15).

d/2 d/2

d

Figure 1.15. Molecules as hard spheres. The distance of closest ap-
proach is d (as measured from center to center).

This gives a factor of 23 = 8, but we then divide by 2 to avoid over-counting
(adding up excluded volumes for each sphere would over-count this total
excluded volume by a factor of two).
The quantity (n/V )2 is proportional to ρ2, the square of the gas density. This
reflects the fact that pressure drops occur because of pairwise encounters
between molecules.
The VDW equation of state describes a first order phase transition from
liquid to vapor. Several isotherms are shown in Fig. 1.16.
Tc is the critical temperature. At Tc, the local maximum and minimum
coalesce into a single inflection point where (∂2P/∂V 2)T = 0, in addition
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Figure 1.16. VDW equation of state illustrated in the form of isotherms
in the P, V plane. The critical temperature (Tc) is indicated on this
graph; see Section 1.4.3. The Maxwell construction is shown in dark
blue.

to (∂P/∂V )T = 0. The critical point is the maximum temperature and
pressure at which distinct liquid and gas phases exist. In Section 1.4.3 we
show how to express the critical point in terms of the substance (a, b).
The quantity

κ = − 1
V

∂V

∂P

∣∣∣∣
T
≈ − 1

V

∆V
∆P at constant T

is called isothermal compressibility. For a normal substance, pressure should
drop with increasing volume (think Boyle’s law, P ∝ 1/V ), leading to κ > 0.
However, for the VDW gas we see that κ < 0 in the oscillatory region of
Fig. 1.16. Such behavior is not physical. The Maxwell construction was
invented to avoid non-physical behavior where P increases with V . This
construction is shown in the blue isotherm of Fig. 1.16: the oscillatory region
of the VDW isotherm is deleted and replaced by a horizontal straight line.
The vertical position of the horizontal straight line is such that the two
blue areas are equal. The horizontal line indicates the phase transition from
liquid to gas and is characterized by infinite isothermal compressibility, κ =
−(1/V )(∂V/∂P ) → ∞. Experimentally measured values of the isothermal
compressibility for different substances are shown in Table 1.1.
The VDW constants a and b depend on the gas type. a is a measure of
the attractive forces between the molecules. b is due to the finite volume
of the molecules and to their general incompressibility. Table 1.2 provides
examples for several gases.

Substance Compressibility (Pa-1)
T/◦C 1 atm 1000 atm

Acetic acid 20 9.08 —
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Acetone 20 12.75 —
25 12.39 6.02

Benzene 20 9.44 —
25 9.67 5.07

Chloroform 20 10.15 —
25 9.74 5.34

Cyclohexane 25 11.20 —
Ethyl alcohol 20 10.98 —
Mercury 20 0.40 0.39
Methanol 20 12.11 —
Water 20 4.58 —

25 4.57 3.48
Table 1.1. Isothermal compressibility, κ, of selected compounds. κ de-
pends on temperature and pressure. Source: CRC Handbook of chem-
istry and physics [12].

Substance Formula a b
L2×atm
(mole)2

L
mole

Acetic acid CH3COOH 17.59 0.1068
Acetone (CH3)2CO 13.91 0.0994
Ammonia NH3 4.170 0.03707
Argon Ar 1.345 0.03219
Benzene C6H6 18.00 0.1154
Carbon dioxide CO2 3.592 0.04267
Carbon
monoxide

CO 1.485 0.03985

Chlorobenzene C6H5Cl 25.43 0.1453
Cyclohexane C6H12 22.81 0.1424
Ethane C2H6 5.489 0.06380
Ethanol C2H5OH 12.02 0.08407
Helium He 0.03412 0.02370
Hydrogen H2 0.2444 0.02661
Methane CH4 2.253 0.04278
Nitrogen N2 1.390 0.03913
Nitrous oxide N2O 3.782 0.04415
Oxygen O2 1.360 0.03183
Phosphine PH3 4.631 0.05156

Table 1.2. VDW constants a and b for different substances. a and b are
known to vary with temperature. Source: CRC Handbook of chemistry
and physics [12].
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Note: to use the values from Table 1.2, the pressure must be in atmospheres,
temperature should be in Kelvin and volume must be in liters. To use
the VDW formula with these constants, R must be 0.08206 L.atm/mol/K.
The value of R that is appropriate depends on the units you are working
with. Here are some commonly used values of R you may encounter in the
literature:
0.082057 L atm mol−1 K−1

62.364 L Torr mol−1 K−1

8.3145 m3 Pa mol−1 K−1

8.3145 J mol−1 K−1

These values of R are all equal to each other. They are obtained by con-
verting units. For example, 8.3145 J mol−1 K−1 is equal to 8.3145 m3 Pa
mol−1 K−1 because 1 J = 1 m3 Pa. Likewise, if we multiply 8.3145 m3

Pa mol−1 K−1 by (1 atm/101,325 Pa) and by (1 L/0.001 m3), we obtain
0.082057 L atm mol−1 K−1.

1.4.3. Critical Point. Differentiating the VDW pressure

P = nRT

(V − nb) −
n2a

V 2

with respect to V , we get
−nRT (V − nb)−2 + 2n2aV −3.

Differentiating again gives
2nRT (V − nb)−3 − 6n2aV −4.

Setting these two expressions equal to zero and solving for T and V gives
the critical temperature and volume, respectively. Multiply

−nRT (V − nb)−2 + 2n2aV −3 = 0
by 2/(V − nb) to get

−2nRT (V − nb)−3 + 4n2aV −3(V − nb)−1 = 0.
Then add the second equation

2nRT (V − nb)−3 − 6n2aV −4 = 0
to get (cancelling terms with T ),

−6an2V −4 + 4an2V −3(V − nb)−1.

Then multiply by V 3/(2an2) to get, 2(V − nb)−1 = 3V −1, which is solved
to get Vc = 3nb.
To get Tc we substitute Vc into any of the two equations (say the first one),
which gives

−nRT (3nb− nb)−2 + 2an2(3nb)−3 = 0,
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or RT/4 = 2a/(27b), from which Tc = 8a/(27bR).
To get Pc we substitute Vc and Tc into the VDW equation and solve for P ,

Pc = nRTc
Vc − nb

− a n
2

V 2
c

= nR(84/(27bR)
3nb− nb− an2/(3nb)2 ,

which simplifies to Pc = a/(27b2). In Section 1.4.4, we show how the critical
point can be used to express the VDW equation of state in dimensionless
form.

1.4.4. Dimensionless VDW Eq. of State. In the previous section we
have found the critical point:

Pc = a/(27b2), Tc = 8a/(27bR), Vc = 3nb.
We can define the reduced parameters:

P ′ = P

PC
, T ′ = T

Tc
, V ′ = V

Vc
.

Solve for P , T and V and substitute into(
P + an2

V 2

)
(V − nb) = nRT,

to get: (
P ′

a

27b2 + an2

(V ′3nb)2

)(
V ′3nb− nb

)
= nR

8aT ′

27bR.

This simplifies to: (
P ′ + 3

V ′2

)(
V ′ − 1

3

)
= 8

3T
′.

This dimensionless form is useful for graphing the VDW equation. As a
function of V ′, T ′, P ′, it is independent of the type of gas (the dependence
on gas type has been absorbed in the definitions of V ′, T ′, P ′).

1.4.5. P-V-T Diagrams for VDW Gas. For fixed number of moles, the
equation of state is a function of three variables (P, V, T ). In 3D space, this
relation between these variables represents a constraint, i.e. a 2D surface.
The equation of state plotted as a 2D surface is called P-V-T diagram.
Figure 1.17 compares surface plots of the equation of state for ideal vs VDW
gas.
In Fig. 1.17 the “isothermals” (T = constant) are shown in the horizontal
plane for the ideal gas. For the VDW gas, “isobars” (P = constant) are
shown in the horizontal plane. For the ideal gas law, the isothermals are
P ∝ 1/V whereas for the VDW gas the relationship between T and V is
more complicated.
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Figure 1.17. P-V-T surface for an ideal gas (left) and a VDW gas
(right). Note: The axes are rotated (TPV vs PV T ) to show the best
view of each surface.

1.4.6. Virial Expansion. The virial expansion of the pressure of a many-
particle system in powers of the density provides systematic corrections to
the ideal gas law. Denoting the gas density as ρ = N/V the ideal gas law
reads:

PV = NkBT → P

kBT
= N

V
≡ ρ. (ideal gas law)

We know that the ideal gas law holds at low pressures, or equivalently (for
fixed T ), at low densities. As the gas density is increased, we expect some de-
viations from the ideal gas law behavior. These deviations can be described
by replacing the right hand side by a Taylor series in the gas density.

Virial expansion:
P

kBT
= ρ+B2(T )ρ2 +B3(T )ρ3 + . . .

The ideal gas law is then viewed as the low density limit (ρ → 0) of the
virial expansion. The virial coefficients Bi(T ) depend on temperature and
describe the interactions between the particles. The calculation of virial
coefficients from knowledge of the intermolecular potentials is done using
methods of statistical mechanics.
The first correction term, B2(T )ρ2, describes pairwise collisions between
molecules. It is proportional to ρ2 because two-body collisions depend on
the product of the probability of finding molecule 1 in some volume element
times the probability of finding molecule 2 in the same volume element.
For a uniform gas, each probability is proportional to the gas density; their
product is ρ2. The second correction term, B3(T )ρ3 describes three-body
collisions. The probability of a three-body encounter is proportional to ρ3.
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The latter are extremely rare events and this term is typically much smaller
than the previous term, B2(T )ρ2.

1.4.7. VDW eq. of State vs Virial Expansion, Boyle Temperature.
Comparison of the virial expansion:

(1.9) P

kBT
= ρ+B2(T )ρ2 +B3(T )ρ3 + . . .

where ρ = N/V , with the VDW equation of state:(
P + n2a

V 2

)
(V − nb) = nRT.

This leads to the virial coefficients of the VDW gas:

B2(T ) = b

NA
− a

N2
AkBT

, B3(T ) = b2

N3
A

, etc.

This is left to the reader as an exercise.7 The point at which B2(T ) = 0 is
called the Boyle temperature:

TB = a

bkBNA
= a

bR
.

It is at the Boyle temperature that the attractive and repulsive forces acting
on the gas particles balance out. At that temperature, the non-ideal gas
behaves like an ideal gas over some range of pressures.

1.5. Diffusion

Molecular diffusion, often simply called diffusion, is the thermal motion of
all (liquid or gas) particles at temperatures above absolute zero. The rate
of this movement is a function of temperature, viscosity of the fluid and
the size (mass) of the particles. Diffusion explains the net flux of molecules
from a region of higher concentration to one of lower concentration. Once
the concentrations are equal the molecules continue to move, but since there
is no concentration gradient the process of molecular diffusion has ceased
and is instead governed by the process of self-diffusion, originating from the
random motion of the molecules. The result of diffusion is a gradual mixing
of material such that the distribution of molecules is uniform. Since the
molecules are still in motion, but an equilibrium has been established, the
end result of molecular diffusion is called a “dynamic equilibrium”. In a
phase with uniform temperature, absent external net forces acting on the
particles, the diffusion process will eventually result in complete mixing.

7Hint: 1) expand the VDW eq. into powers of ρ; 2) identify the coefficients of like powers of ρ.
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1.5.1. Einstein’s Theory of Brownian Motion (1905). A translation
of Einstein’s paper from German to English can be found here:

http://www.relatividad.org/einstein brownian05.pdf

Suppose that we have a probability density function8 φ(∆) which describes
the probability that a molecule will undergo a displacement ∆ during a
short time interval τ . The medium contains n particles and during this time
interval the number of particles, dn, which experience a shift between ∆ and
∆ + d∆ is:

dn
n

= φ(∆)d∆ =
{probability that a particle at x at time t will be

in the range [x+ ∆, x+ ∆ + d∆] at time t+ τ

}
We assume that φ is normalized,

∫
φ(∆)d∆ = 1, and symmetric (probability

of a displacement to the left equals the probability of a displacement to the
right):

φ(∆) = φ(−∆).
Let c(x, t) be the number of particles per unit volume at position x and time
t. When going from time t to time t+ τ the particle density at x is a result
of particles which undergo a displacement ∆ from another location:

c(x, t+ τ) =
∫ ∞
−∞

c(x+ ∆, t)φ(∆)d∆. (∗)

Next we assume that φ extends over short distances only and that beyond
∆ its value is small. Thus, we can Taylor expand c in both space and time:

c(x, t+ τ) = c(x, t) + τ
∂c

∂t
+ . . .

c(x+ ∆, t) = c(x, t) + ∆∂c(x, t)
∂x

+ ∆2

2!
∂2c(x, t)
∂x2 + . . .

Substituting into (∗) we get (all limits of integration are over all space):

c+ τ
∂c

∂t
= c

∫
R
φ(∆)d∆ + ∂c

∂x

∫
R

∆φ(∆)d∆ + ∂2c

∂x2

∫
R

∆2

2 φ(∆)d∆.

Because φ(∆) = φ(−∆) (even function), the second, fourth, etc. terms
on the right hand side vanish. This is because those terms feature an odd
function (∆, ∆3, ∆5, etc.) times an even function (φ(∆)), which is odd.

8A probability density function is one which is nonnegative (φ ≥ 0) and normalized∫∞
−∞ φ(∆)d∆ = 1.
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The integral of an odd function over all space is zero:9∫
R
odd× even =

∫
R
odd = 0.

This is illustrated in Fig. 1.18 for the special case of
φ(∆) = (1/

√
2π) exp(−∆2/2).

-2 0 2

∆

0

0.1
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(1/ sqrt(2 π)) exp(-∆2/ 2)
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∆
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(1/ sqrt(2 π)) ∆ exp(-∆2/ 2)

Figure 1.18. An even function (left) times an odd function (middle)
yields an odd function (right), whose area under the curve is zero.

Using
∫
φ(∆)d∆ = 1 for the first term and setting

1
τ

∫
R

∆2

2 φ(∆)d∆ ≡ D, (diffusion coefficient)

we get that c(x, t) must satisfy:

(1.10) ∂c

∂t
= D

∂2c

∂x2 .

c(x, t) is a solution to this equation for given initial and boundary conditions.
For initial condition c(x, 0) = nδ(x) (all particles are at the origin at time
t = 0) and no physical boundaries (the case of unrestricted diffusion), the
solution to the 1D diffusion equation is

c(x, t) = n√
4πDt

e−x
2/4Dt

where
√
x2 =

√
2Dt is the root-mean-square displacement. You can check

that this is indeed a solution by direct substitution into equation 1.10.

9If you don’t like ∆, use x:∫
R
xφ(x)dx = 0,

∫
R
x3φ(x)dx = 0,

∫
R
x5φ(x)dx = 0, , etc.
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Calculation of the value of D requires knowledge of φ which the above anal-
ysis does not provide. For a gas, we can obtain an estimate for D using
simple arguments about molecular collisions.
The solution c(x, t) is a function of two variables, x and t. For fixed t, this
can be thought as the concentration profile as function of space (x). The
time dependence means that the concentration profile evolves over time.
For the case where all the particles are found at x = 0 at time t = 0, the
time-evolution simply describes the diffusional spreading of particles over
space until the concentration is uniform. If there are no boundaries (i.e.
space extends to infinity), the limit t → ∞ results in a spatially uniform
concentration (of zero)
One way to represent the solution c(x, t) is a two-dimensional surface in
3D space (see Fig. 1.19). For fixed t, the function of x always describes a
Gaussian (bell-shaped) profile. At time t = 0, it is sharply peaked near the
origin (x = 0); however, its width increases over time (t > 0).
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Figure 1.19. Concentration of particles as function of time (t) and
space (x), then all particles are at the origin (x = 0) at time t = 0.

1.5.2. Diffusion Coefficient: Estimating the Value of D. The Ein-
stein model for diffusion does include a prescription to calculate the diffusion
coefficient,

D = ∆2

2τ ,

where ∆ is the particle displacement along some direction and ∆2 is the
mean square displacement. To calculate it, we require knowledge of the
PDF φ(∆). But φ(∆) may not necessarily be known to us.
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Kinetic theory can be used to estimate D: First we note that from the
formula, D = ∆2/2τ , D has units of m2/s. The collision rate Z1 among
molecules in a gas should be proportional to gas density N/V , molecular
cross-sectional area πd2 (where d = 2r instead of r as the hard spheres
cannot overlap) and mean speed v:

Z1 =
√

2N
V
πd2v.

The factor
√

2 comes from a more detailed calculation. We can express v in
terms of the temperature using

v =

√
8kBT
πm

to get:

Z1 = 4N
V
d2

√
πkBT

m
.

Then the mean free path λ (average distance travelled between collisions)

λ = vZ−1
1 = v√

2(N/V )πd2v
= 1√

2πd2N/V
.

We then have for the diffusion coefficient
Diffusion coefficient: is proportional to the mean free path and
the mean molecular speed

(1.11) D = 3π
16λv = 3π

16
1√

2πd2N/V
·

√
8kBT
πm

= 3
8

√
kBT

πm
· 1
d2N/V

.

The numerical constants shown arise from a more detailed theoretical anal-
ysis. The main trends are that if T increases the diffusion is faster whereas
if m, d or N/V increase diffusion is slower. We note that D ∼

√
T here,

whereas D ∼ T for the Stokes-Einstein model:
(1.12) D = 2γkBT/M,

where γ is a friction coefficient and M is the mass of the Brownian particle.
The former is for a gas, whereas the latter is for a Brownian particle in a
liquid. Example calculations:
1.5.2.1. Example 1. Calculate the collision frequency for a molecule of ni-
trogen gas at 1 atm and 300 K (room temperature). Take the diameter of
N2 to be 370 picometers.
Solution: The density N

V = NAP
RT (ideal gas law) is

(6.022× 1023 mol−1)(1 atm)
(0.08206L atm mol−1 K−1)(300 K) = 2.46× 1022L−1 = 2.45× 1025m−3.
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To calculate the collision frequency, we need the mean speed:

v =

√
8RT
πM

=
√

8(8.3145 J.mol−1K−1)(300 K)
π(28.00× 10−3 kg/mol) = 445 m.s−1,

where M is the molar mass. Then,
Z1 =

√
2π(2.45× 1025 m−3)(3.70× 10−10 m)2(445 m.s−1) = 6.63× 109 s−1.

1.5.2.2. Example 2. Calculate the mean free path and the diffusion constant
for the nitrogen molecules of the previous example.
Solution: The mean free path is

λ = 1√
2π(3.70× 10−10 m)2(2.45× 1025 m−3)

= 6.68× 10−8 m.

The diffusion constant is

D = 3π
16λv = 3π

16 (6.68× 10−8 m)(445 m.s−1) = 1.75× 10−5 m2s−1.

1.5.3. Mean-Square Displacement. If we denote the displacement along
x by ∆x (and similarly for y and z), we have seen that the root-mean-square
(RMS) displacement along x is related to the diffusion coefficient D by:

D = ∆2
x

2τ or ∆2
x = 2Dτ.

This relation is valid for displacement in one dimension. In three dimensions,
the length of the displacement is ∆r =

√
∆2
x + ∆2

y + ∆2
z, and by linearity of

the averaging operator10 we have
∆2
r = ∆2

x + ∆2
y + ∆2

z = ∆2
x + ∆2

y + ∆2
z = 6Dt.

The last equality follows from the assumption that the mean-square dis-
placement along x is the same (on average) as the displacements along y

and z, i.e. ∆2
x = ∆2

y = ∆2
z = 2Dt. This is the assumption of isotropic dif-

fusion, which is correct in the absence of external fields or physical barriers
to diffusion. In d-dimensions, the mean-square displacement is 2dDt.
In Section 1.5.1, we have seen that in the case where all diffusing particles are
located at the origin x = 0 at time t = 0, their distribution (concentration as
function of x) at some later time t > 0 will be Gaussian centered at x = 0 and
width proportional to

√
2Dt. This distribution is a statistical concept: the

Gaussian function describes the behavior of a very large number of particles.

10The average of a function, f(X) of a random variable X, is the integral f(X) =
∫
f(x)p(x)dx,

where p(x) is the probability density of X and the integral is over the range of allowed values of
X. Thus, the averaging operation is a linear operation because the integral is a linear operator,
i.e. af(X) + bg(X) = af(X) + bg(X), where a and b are constants and f, g are functions.
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The RMS displacement, which is proportional to
√
t, should be contrasted

with ballistic motion, for which a projectile thrown at velocity v undergoes
a displacement vt, i.e. displacement depends on t rather than

√
t. The

√
t

dependence reflects the fact that random motion leads to much back-and-
forth, in such a way that the RMS displacement increases over time but
the growth is slower. An example path for a single particle11 is shown in
Fig. 1.20.

r

Figure 1.20. A particle undergoes random motion. A sample path is
shown here. The displacement, ∆~r, is the vector that connects the start
and end points.

1.5.4. Diffusion vs Self-Diffusion. The theory of diffusion we have been
discussing is called self-diffusion, i.e. the diffusion of gas molecules within
the same gas type, i.e. oxygen molecules in a gas of oxygen. Diffusion is a
more general concept: it generally refers to the diffusion of species 1 within
species 2. For example, the diffusion of hydrogen atoms through copper, or
the diffusion of oxygen impurity molecules through nitrogen gas.

1.6. Problems

Problem 1. Consider a monatomic gas with atoms whose diameter is
d = 3.16 × 10−10 m. At what pressure does the mean free path of the
gas atoms become comparable with the diameter of an atom if T = 300
K? Calculate the diffusion constant at this pressure and comment on its
magnitude. Assume that the gas obeys the ideal gas law even at these high
pressures.

Solution. The diameter of Kr atoms is d = 3.16×10−10 m. When the mean
free path λ = 1√

2πd2N/V
is comparable to the diameter of atom, N/V

should be around 7.12 × 1027/m3. From the ideal gas law, N/V = P

kBT
,

P=2.95×107 Pa. The diffusion constant is

D = 3
8

√
RT

πM

1
d2N/V

= 3
8

√
8.314× 300

π × (83.789 · 10−3)
1

(3.16 · 10−10)2(7.12 · 1027)

11This picture shows a single trajectory (of a single molecule). The concept of RMS displacement
is statistical, i.e. it is obtained from the random diffusion of many particles.
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which evaluates to D = 5.1342 × 10−8 m2/s. This value is comparable to
diffusion in solids. Diffusion coefficients in solids are in the range 10−8 −
10−30 m2/s. �

Problem 2. Consider a VDW gas at the critical point. Obtain expressions
for the critical pressure, molar volume, and temperature in terms of con-
stants a and b. The critical point is defined as the point on the P − Vm
curve where the first and second derivatives of the pressure with respect to
molar volume vanish, i.e. ∂P

∂Vm

∣∣∣
c

= 0 and ∂2P
∂V 2

m

∣∣∣
c

= 0.

Solution. This problem was solved in Section 1.4.3. Based on the VDW
equation

P = RT

Vm − b
− a

V 2
m

.

The first derivative of pressure equals zero

∂P

∂Vm

∣∣∣∣∣
c

= − RTc
(Vm − b)2 + 2a

V 3
m

∣∣∣∣∣
c

= 0.

The second derivative of pressure equals zero

∂2P

∂V 2
m

∣∣∣∣∣
c

= 2RTc
(Vm − b)3 −

6a
V 4
m

∣∣∣∣∣
c

= 0.

Solving the above equations then substituting Vc and Tc into the VDW
equation to solve for pc gives (see Section 1.4.3 for details):

Vc = 3b, Tc = 8a
27bR, Pc = a

27b2 .

�

Problem 3. A 20 liter container is filled with 1 mol of Kr atoms at a
temperature of 400 K. (a) Use the VDW equation of state to compute the
pressure of the system. (b) Find the pressure once more but using the
ideal gas law. (c) Calculate the percent error between the results. (d) Now
calculate the VDW and ideal-gas pressures if the volume of the container
was 4 liters. (e) Find the percent error between the results. (f) Compare
the percent errors you have obtained and explain any differences. For Kr
the VDW parameter are a = 2.325 L2 bar mol−2 and b = 0.0396 L mol−1.

Solution. For (a), we use P = RT

Vn − b
− a

V 2
n

. This gives:

P = (0.082057 L atm K−1 mol−1)(400 K)
20 L mol−1 − 0.0396 L mol−1 −2.295 L2 atm mol−2

(20 L mol−1)2 = 1.639 atm
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For (b) we use P = RT

Vn
. This gives:

P = (0.082057 L atm K−1 mol−1)(400 K)
20 L mol−1 = 1.641 atm

For (c),
% Error =

∣∣∣∣1.639− 1.641
1.641

∣∣∣∣× 100 = 0.122%

For (d),

P = (0.082057 L atm K−1 mol−1)(400 K)
4 L mol−1 − 0.0396 L mol−1 −2.295 L2 atm mol−2

(4 L mol−1)2 = 8.144 atm

For (e),

P = (0.082057 L atm K−1 mol−1)(400 K)
20 L mol−1 = 8.206 atm

�

Problem 4. There are 25 grams of He and 56 grams of Ar gas mixed in a
20 L container. The temperature of the mixture is 300 K. Find the partial
pressure of each gas and total pressure inside the container. Assume the
ideal-gas law is valid for both gases.

Solution.

ntotal = 25 g
4.0026 g mol−1 + 56 g

39.948 g mol−1 = 7.65 mol−1

P = (7.65 mol−1)(0.082057 L atm K−1 mol−1)(300 K)
20 L = 9.42 atm

PHe =
25 g

4.0026 g mol−1

7.65 mol−1 (9.42 atm) = 7.69 atm

PAr = 9.42 atm− 7.69 atm = 1.73 atm
�

Problem 5. You have two ideal gases, M and N, in a container of fixed
volume. The mole fraction of M is XM = 1

3 . Initially the pressure was
equal to Pi. Later a total of two moles of one of the gases are added to
the container, while holding the temperature constant. The new pressure is
equal to 11

9 Pi. Compute the number of moles of M and N that were initially
present in the container.

Solution.

Pf = 11
9 Pi,

11
9

(nM + nN )RT
V

= (nM + nN + 2)RT
V

,
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nM + nN + 2 = 11
9 (nM + nN ), 1

3 = nM
nM + nN

→ nN = 2nM ,

3nM + 2 = 11
9 (3nM ), nM = 3 mol, nN = 6 mol

�

Problem 6. Suppose that the diameter of a gas molecule is 0.4 nm. Next,
draw a sphere around each molecule, whose diameter is approximately equal
to the average distance between neighboring molecules (assuming a spatially
uniform gas). What is the sphere diameter in units of molecular diameters
at 0◦C and 1 bar.

Solution.
PV = nRT

V

n
= RT

P
= (8.31)(273)

100, 000 ≈ 0.023 m3/mol

Vmolecule = V

nNA
= 0.023

6.022× 1023 ≈ 3.8× 10−26 m3 = 38 nm3

Vsphere = 4πr3

3
The answer is:

2 3
√

3Vmolecule
4π
d

≈ 2 3√9.07
0.4 ≈ 10.4.

�

Problem 7. Calculate the RMS speed of oxygen molecules having a typical
kinetic energy of 10 kJ mol−1. At what temperature would this be the RMS
speed?

Solution. v21/2 =
√

3RT
M , KE = 3

2RT , v21/2 =
√

2KE
M = 7.9 × 102 ms−1,

T = 2KE
3R = 802 K �

Problem 8. An ideal gas A has a temperature TA and molar mass MA.
A second gas B has a molar mass MB. At what temperature TB will the
gases have the same average speed?

Solution.

vA =
√

8RTA
πMA

vA = vB
TA
MA

= TB
MB

→ TB = TA(MB

MA
)

�
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Problem 9. The variance is useful because it measures how far data points
are spread relative to their mean value. Let X be a random variable with
discrete distribution {P (xi)} (i = 1, . . . , N). The variance is defined as
σ2 ≡ var(X) = (X − X̄)2 =

∑N
i=1 P (xi)(xi − x̄)2. (a) Expanding the square

in (X − X̄)2, and invoking the linearity property of expectation value (i.e.
aX + bY = aX + bY , where Y = X2 here), show that the variance is also
equal to X2− (X̄)2. (b) Instead of the variance, consider a slightly different
quantity, X − X̄. Calculate the expectation value of X − X̄. Explain why
the latter is not a very useful quantity.

Solution.

X − X̄ =
N∑
i=1

P (xi)(xi − X̄) =
N∑
i=1

P (xi)xi −
N∑
i=1

P (xi)X̄ = x̄− X̄ = 0

X − X̄ is not a useful quantity because it is always zero. �

Problem 10. Consider a volume V of an ideal gas inside a selectively
permeable piston. What would the volume be if all of the other extensive
properties of the gas double and all the intensive properties become a third
of their initial values?

Solution. Extensive properties are V, n. Intensive properties are P, T .

V = nRT

P
, Vf =

2nR 1
3T

1
3P

, Vf = 2nRT
P

, Vf = 2V

�

Problem 11. The partial pressure of oxygen in a mixture of oxygen and
hydrogen is 0.200 atm, and that of hydrogen is 0.800 atm.
a) How many molecules of oxygen are in a 1.500-L container of this mixture
at 40◦C?
b) If a spark is introduced into the container, how many grams of water will
be produced?

Solution. a) total pressure = 0.200 atm + 0.800 atm = 1.000 atm

n = PV

RT
n = 0.05840 mol of total gas

XO2 = 0.200 atm
1.000 atm = 0.200

nO2 = XO2n = 0.0117 moles of O2

b) 2 H2 + O2 = 2 H2O

XH2 = 0.800 atm
1.000 atm = 0.800



42 1. Gases

nH2 = XH2n = 0.0467 moles of H2
0.0467 moles of H2 / 2 = 0.0234 moles > 0.0117 moles O2
O2 is thus the limiting reagent
0.0117 moles × 2 = 0.0234 moles H2O
0.0234 moles × 18.0152 g/mol = 0.422 g H2O

�

Problem 12. Researchers recently reported the first optical atomic trap.
In this device, tightly focused beams of laser light replace the physical walls
of conventional containers, creating a type of trap where the motion of the
atoms is substantially reduced. The laser beams briefly (0.5 s) exert enough
pressure to confine 500 sodium atoms in a volume of 1.0 × 10−15 m3. The
temperature of this gas can be cooled down to 0.00024 K (cooling means that
the kinetic energy is lowered by the laser trap), a pretty low temperature.
Compute the root-mean-square speed of atoms in this confinement.

Solution. MNA = 22.9898 g/mol = 0.0229898 kg/mol

vrms =

√
3RT
M

=
√

3× 8.31 J/(mol ·K)× 0.00024 K
0.02298 kg/mol = 0.51 m/s

�

Problem 13. Calculate the average (mean or expectation value) of the
function sin(X) over the interval [0, 1], where X is a Gaussian-distributed
random variable with mean 0 and variance 1, i.e. its pdf is p(x) = 1√

2πe
−x2/2.

(a) Write down an expression for the mean value of sin(X), namely sin(X).
(b) Evaluate it numerically. (Hint: feel free to use a web site such as
https://www.wolframalpha.com to get the result.)

Solution. (a) The integral we need to compute is:

sin(X) =
∫ 1

0

1√
2π
e−x

2/2 sin(x)dx

(b) In Wolfram Alpha, we can type
Integrate (1/sqrt(2*Pi))*sin(x)*exp(-xˆ2/2) from 0 to 1
in the box to get the result: 0.145352. �

Problem 14. Show by direct calculation (integration) that the mean speed
of an ideal gas molecule in 3D is v =

√
8kBT
πm =

√
8RT
πM . (Hint: consult tables

of Gaussian integrals.)

Solution. We need to evaluate the integral v =
∫∞
0 vf(v)dv, where f(v) is

the Maxwell-Boltzmann speed distribution,

f(v) = (m/2πkBT )3/24πv2e−mv
2/2kBT .
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From tables of Gaussian integrals, e.g.
https://en.wikipedia.org/wiki/Gaussian integral, we invoke:∫ ∞

0
x2n+1e−ax

2dx = n!
2an+1 = 1

2a2 = 1
2

(2kBT
m

)2

with n = 1 and a = m/2kBT . With this, we obtain v =
√

8kBT
πm . �

For the problems below, you are asked to calculate probabilities. In all
cases, this amounts to computing the integral of the PDF over the range of
interest. (To get the result numerically, you can use Wolfram Alpha.) For
example, letX be a random variable taking values in the range (−∞,∞). By
definition, the PDF is a non-negative function p(x) ≥ 0 that is normalized
to 1, i.e.

∫∞
−∞ p(x)dx = 1. Suppose you are asked what is the probability

that X takes values in the range [−1, 1], then you simply integrate over all
x values in that range:

P(−1 ≤ X ≤ 1) =
∫ 1

−1
p(x)dx

and knowing p(x), you would integrate to get the result. If you are asked
what is the probability that X takes values less than 10, this would be an
integral of p(x) over the set (−∞, 10]:

P(−∞ < X ≤ 10) =
∫ 10

−∞
p(x)dx

Likewise, the probability of X taking negative values is:

P(X < 0) =
∫ 0

−∞
p(x)dx

If you want to know the probability that X takes a value less than -1 but
greater than -2, or greater than 3 and less than 4, i.e. in the range [−1,−2]∪
[3, 4], then:

P(−2 ≤ X ≤ −1 or 3 ≤ X ≤ 4) =
∫ −1

−2
p(x)dx+

∫ 4

3
p(x)dx

You may also find the following page useful:
https://en.wikipedia.org/wiki/Probability density function

Problem 15. Show by direct integration that the Gaussian (normal) PDF

p(x) = 1√
2πσ2

e−(x−µ)2/2σ2

is normalized to 1. You can use analytical or numerical techniques, as long as
you explain what you did. The Gaussian (bell-shaped distribution) random
variables are frequently encountered in the physical sciences.
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Solution. Shifting the origin to 0 (i.e. substitution of variable y = x − µ)
and using the Gaussian integral:∫ ∞

−∞
e−y

2/2σ2dy =
√
π2σ2

which cancels the prefactor 1√
2πσ2 to give 1. �

Problem 16. Use the Maxwell velocity distribution to calculate the proba-
bility of an oxygen (O2) molecule (a molecule chosen randomly) would have
an x component of velocity between 10 and 20 m/s at room temperature
and standard pressure (a). Does the pressure matter? Why? (b) At 20 K.
(c) Calculate the probability of an oxygen (O2) molecule would have an x
component of velocity between -20 and -10 m/s at room temperature and
standard pressure. (d) Calculate the probability of an oxygen (O2) mol-
ecule would have an x component of velocity between -20 and 20 m/s at
room temperature and standard pressure. (e) What is the probability of a
molecule having an x velocity component exactly equal to 20 m/s? (Hint:
you may use Wolfram Alpha to get the numerical result, but clearly explain
what you did.)

Solution. The velocity distribution (PDF) for vx is:

fvx(vx) =
(

m

2πkBT

)1/2
e−mv

2
x/2kBT =

( M
2πRT

)1/2
e−Mv2

x/2RT

where m is the molecular mass andM is the molar mass (M=0.032 kg/mol
for O2). Pressure does not matter because ideal gas assumes no intermolec-
ular interactions. Plug in T=293 K for (a); the factor

√
M

2πkBT evaluates
numerically to

√
0.032/(2π ∗ 8.31 ∗ 293)=1.45 × 10−3. For T=20 K it is√

0.032/(2π ∗ 8.31 ∗ 20)=5.54×10−3. In Wolfram, type:
integrate 1.45e-3*exp(-0.032*vˆ2/(2*8.31*293)) from 10 to 20
and get 0.014479. For (b) we use T=20 K for (b), and integrate from 10 to
20 m/s:
integrate 5.54e-3*exp(-0.032*vˆ2/(2*8.31*20)) from 10 to 20
and get 0.0541713. For (c) integrate from -20 to -10 at RT:
integrate 1.45e-3*exp(-0.032*vˆ2/(2*8.31*293)) from -20 to -10
and get 0.0144778. For (d), from -20 to 20.
integrate 1.45e-3*exp(-0.032*vˆ2/(2*8.31*293)) from -20 to 20
and get 0.0579492. For (e), the probability is zero, because the integral has
no width (the length of the interval of integration is zero). �

Problem 17. Use the Maxwell speed distribution to calculate the probabil-
ity an oxygen (O2) molecule would have a speed between 10 and 20 m/s at
room temperature and standard pressure (a). (b) What is the probability
of the molecule having a speed between -20 and -10 m/s? (c) Probability of
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speed between 0 and 1000 m/s? (d) What is the probability of a molecule
having exactly the speed 20 m/s?

Solution. The Maxwell speed distribution is:

fV (v) =
( M

2πRT

)3/2
4πv2e−Mv2/2RT .

The numerical factor is (4π)(0.032/(2π ∗ 8.31 ∗ 293))3/2=3.8×10−8. For (a),
in Wolfram Alpha we type
integrate 3.8e-8*vˆ2*exp(-0.032*vˆ2/(2*8.31*293)) from 10 to 20

and get 0.000089. For (b) if we naively type
integrate 3.8e-8*vˆ2*exp(-0.032*vˆ2/(2*8.31*293)) from -20 to -10

we get 0.00496 (same as in (a)). However, negative speeds are not allowed,
so the speed distribution is not defined for negative speeds. Thus, this prob-
ability is zero. For (c),
integrate 3.8e-8*vˆ2*exp(-0.032*vˆ2/(2*8.31*293)) from 0 to 1000

we get 0.995253. For (d), the probability is zero. �

Problem 18. Consider molecules in thermal equilibrium that can diffuse
only in 1 direction (say, x). The Maxwellian distribution (PDF) for the
velocity component vx was given in class:

fvx(vx) =
√

m

2πkBT
e−mv

2
x/2kBT

The meaning of this PDF is that the product
fvx(vx)dvx

gives the probability that a molecule chosen at random will have an x com-
ponent of velocity between vx and vx + dvx. Recall that in 3D the speed is
v ≡ ‖~v‖ =

√
v2
x + v2

y + v2
z . We computed the speed distribution by integrat-

ing the 3D velocity distribution over a spherical shell of volume 4πv2dv. The
speed distribution (PDF), f(v), has the meaning that the product f(v)dv
gives the probability that a molecule chosen at random will have a speed
between v and v+ dv. However, in 1 dimension, the speed is v ≡ ‖~v‖ = |vx|.
Calculate the speed distribution in the 1D case. Check that your result is
normalized.

Solution. The velocity distribution integrated over the set of points vx
such that v ≡ ‖~v‖ = |vx|. There are two such points: vx = v and vx =
−v. Denoting V the random variable that corresponds to speed, the speed
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distribution, f(v)dv = P(v < V < v + dv), is then the sum of two terms:

P(v < V < v + dv) =
∫
{vx:v<V <v+dv}

fvx(vx)dvx

=
[√

m

2πkBT
e−m(−v)2/2kBT +

√
m

2πkBT
e−mv

2/2kBT
]

dv

=
√

m

2πkBT
2e−mv2/2kBTdv

where the notation {vx : v < V < v+dv} means we integrate over all points
vx ∈ (−∞,∞) such that the speed V is between v and v+dv. Normalization
is easy to check by integrating from 0 to ∞; you will see that the factor of
2 is essential. �

Problem 19. Calculate the speed distribution in 2D, P(v < V < v + dv) =
f(v)dv. The 2D velocity distribution is:

fvx(vx)fvy(vy) =
(

m

2πkBT

)
e−m(v2

x+v2
y)/2kBT .

The meaning of this velocity distribution is that the product
fvx(vx)fvy(vy)dvxdvy

gives the probability that a molecule chosen randomly will have x velocity
component in the range [vx, vx+dvx] and y velocity component in the range
[vy, vy + dvy]. (Hint: integrate fvx(vx)fvy(vy)dvxdvy over the set of points
(vx, vy) such that v < V < v + dv; it is easiest to use polar coordinates.)
Check that the resulting PDF is normalized.

Solution. In polar coordinates the area element is vdvdθ. Then, v =√
v2
x + v2

y and

P(v < V < v + dv) =
∫
{(vx,vy):v<V <v+dv}

fvx(vx)fvy(vy)dvxdvy

=
(

m

2πkBT

)∫ 2π

0
dθ
∫ v+dv

v
ve−mv

2/2kBTdv

=
(

m

2πkBT

)
2πve−mv2/2kBTdv.

To check for normalization, we borrow the result
∫∞

0 xe−ax
2dx = 1/(2a)

from tables of integrals. Integrating f(v)dv from 0 to ∞ gives:∫ ∞
0

f(v)dv =
(

m

2πkBT

)
2π
∫ ∞

0
ve−mv

2/2kBTdv =
(

m

2πkBT

)
2π2kBT

2m = 1.

�
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Problem 20. Now that you have done the 1D and 2D cases, go back and
study how the 3D case was done (see Section 1.3.8). What is the difference
between 1D, 2D and 3D cases?

Solution. f(v) is proportional to vne−mv2/2kBT , where n = 0, 1, 2 (for 1D,
2D and 3D, respectively). The numerical coefficient also follows a pattern
related to dimensionality. Namely, we have

(
m

2πkBT

)n/2
, n = 1, 2, 3 as well

as the other numerical factor, which is either 2, 2π or 4π, depending on
whether we have 1D, 2D or 3D, respectively. �

Problem 21. Show that for an ideal gas, the most probable speed is up =√
2kBT
m and the average speed is ū =

√
8kBT
πm . Recall the Maxwell-Boltzmann

speed distribution is

f(u)du =
( m

2πkBT
) 3

2 4πu2 exp
(−mu2

2kBT
)
du.

Note: here we used u =
√
v2
x + v2

y + v2
z for speed to avoid confusion with

velocity (v) which we use in the next problem.

Solution. The most probable speed the value of u at the point where the
first derivative of the distribution is zero. Let a = m

2kBT . Dropping the
constants, since we are equating the derivative to zero,

df
du = d

du
(
u2 exp(−au2)

)
= (2u− 2au3) exp(−au2) = 0.

We denote this particular value of u as up. Therefore,

1− au2 = 0 or up =
√

1
a

=

√
2kbT
m

.

To calculate u, the integral that we need to solve is
∫∞
0 u3 exp(−au2)du since

the remaining terms are constants that we will multiply in later. We do a
change of variables by setting w = u2 which also gives dw = 2udu and then
do integration by parts.∫ ∞

0
u3 exp(−au2)du = 1

2

∫ ∞
0

w exp(−aw)dw

= − 1
2ae

−aw
∣∣∣∞
0

+ 1
2a

∫ ∞
0

e−awdw = 1
2a2 .

Now we restore the constants and substitute for a,

u =

√
8kBT
πm

.

�

Problem 22. Show that v2 = v2
x + v2

y + v2
z = v2

x + v2
y + v2

z .
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Solution. By linearity of the integral

v2 =v2
x + v2

y + v2
z =

( m

2πkBT
) 3

2
∫
R3

(v2
x + v2

y + v2
z) exp

(
− mv2

2kBT
)

d3~v

=
( m

2πkBT
) 3

2
[ ∫

R3
v2
x exp

(
− mv2

2kBT
)

d3~v +
∫
R3
v2
y exp

(
− mv2

2kBT
)

d3~v

+
∫
R3
v2
x exp

(
− mv2

2kBT
)

d3~v

]
=v2

x + v2
y + v2

z

where the averaging in the last line is done over
∫
R3(· · · )d3~v. This averaging

can also be done along a single variable, as explained below.
For the v2

x term, integration with respect to y and z is immediate, since the

PDFs are normalized, i.e. using
∫
R

(
m

2πkBT

) 1
2 exp

(
− mv2

y

2kBT

)
dvy = 1 (and the

analogous result for vz):( m

2πkBT
) 3

2
∫
R3
v2
x exp

(
− mv2

2kBT
)

d3~v =
( m

2πkBT
) 1

2
∫ ∞
−∞

v2
x exp

(
− mv2

x

2kBT
)
dvx,

which equals 〈v2
x〉. The angle brackets in 〈v2

x〉 denote averaging along a single
variable

∫
R(· · · )dvx. Thus,

v2 = 〈v2
x〉+ 〈v2

y〉+ 〈v2
z〉

�

Problem 23. Show that each degree of freedom of a gas particle adds 1
2kBT

to the average kinetic energy of the gas, Kav = 1
2mv

2, where v2 = v2
x+v2

y+v2
z .

In other words, show that

〈Kx〉 = 〈Ky〉 = 〈Kz〉 = 1
2kBT

where Kav = 〈Kx〉 + 〈Ky〉 + 〈Kz〉 and Kx = 1
2mv

2
x, Ky = 1

2mv
2
y and Kz =

1
2mv

2
z . The angle brackets denote averaging along a single direction, e.g.

〈Kx〉 =
∫ 1

2mv
2
x · fVx(vx)dvx.

Solution.
〈Kx〉 = 1

2m〈v
2
x〉

We have just shown that v2 = 〈v2
x〉+〈v2

y〉+〈v2
z〉 so the corresponding equality

for kinetic energy is also true. We now just need to calculate 〈v2
x〉.

〈v2
x〉 =

( m

2πkBT
) 1

2
∫ ∞
−∞

v2
x exp

(
− mv2

x

2kBT
)
dvx
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Let us switch to a more convenient notation:∫ ∞
−∞

v2
x exp

(
− mv2

x

2kBT
)
dvx =

∫ ∞
−∞

x2 exp(−ax2)dx = − d
da

∫ ∞
−∞

exp(−ax2)dx

which equals to − d
da

√
π
a , according to the well-known result for Gaussian

integration. Then,

− d
da

√
π

a
= 1

2

√
π

a3 =
√
π

2
(2kBT

m

) 3
2
.

Finally,
〈Kx〉 = 1

2m〈v
2
x〉 = 1

2kBT.

Same for Ky and Kz. Therefore, we see that Kav, which equals 1
2mv

2 =
3
2kBT , is made up of 3 contributions, each equalling 1

2kBT . This is called
the equipartition theorem. �

Problem 24. In Section 1.4.6, we expressed the equation of state for a gas
as a Taylor expansion in terms of gas density, ρ = N

V . That is,
P

RT
= ρ+B2(T )ρ2 +B3(T )ρ3 + . . .

This expansion is called the virial expansion. Bn(T ) is the nth virial coeffi-
cient. The virial expansion is a generalization of the ideal gas law ( P

RT = ρ)
that includes higher powers of ρ to account for the gas behavior at higher
densities. (The idea gas law is only valid in the low density limit.)
(a) Show that for the VDW equation of state,

B2(T ) = b

NA
− a

N2
AkBT

.

(b) The temperature for which B2(T ) = 0 is called Boyle’s temperature,
TB. Find the expression for TB for a VDW gas. Explain what is the Boyle
temperature and discuss what are practical applications of the Boyle’s tem-
perature.

Solution. Let us compare the virial expansion:

(1.13) P

kBT
= ρ+B2(T )ρ2 +B3(T )ρ3 + . . .

where ρ = N/V , with the VDW equation of state:(
P + n2a

V 2

)
(V − nb) = nRT.

Expanding the product:

PV − Pnb+ n2a

V
− n3ab

V 2 = nRT.
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Dividing throughout by RT (V − nb):
P

RT
= n

(V − nb) + n3ab

V 2RT (V − nb) −
n2a

V RT (V − nb) .

Writing ρ̃ = n/V :
P

RT
= ρ̃

(1− bρ̃) + ρ̃3ab

RT (1− bρ̃) −
ρ̃2a

RT (1− bρ̃) .

Using the geometric series 1
1−r = 1 + r + r2 + r3 + . . . with r = bρ̃ we get:

P

RT
=
{
ρ̃+ ρ̃3ab

RT
− ρ̃2a

RT

}
(1 + bρ̃+ b2ρ̃2 + . . . ).

Expanding,
P

RT
= ρ̃+ ρ̃2

(
b− a

RT

)
+ ρ̃3

(
b2
)

+ . . .

Finally, we replace R = NAkB and ρ̃ = n/V = N/(NAV ) = ρ/NA

(1.14) P

kBT
= ρ+ ρ2

(
b

NA
− a

N2
AkBT

)
+ ρ3

(
b2

N3
A

)
+ . . .

Identifying the coefficients of like powers of ρ in (1.14) and (1.13), we find:

B2(T ) = b

NA
− a

N2
AkBT

, B3(T ) = b2

N3
A

, etc.

The point at which B2(T ) = 0 is called the Boyle temperature:

TB = a

bkBNA
= a

bR
.

It is at the Boyle temperature that the attractive and repulsive forces acting
on the gas particles balance out. At that temperature, the non-ideal gas be-
haves like an ideal gas over some range of pressures. (It’s an ideal gas as far
as the second virial coefficient is concerned; there are of course, higher-order
terms that do not enforce the ideal-gas behavior, although these terms get
progressively smaller in magnitude.)

Applications of Boyle temperature: gas cylinders and compression pumps
are industrially important. If a gas in a mechanical cylinder liquefies it is
a problem. The mechanical device needs to be above the Boyle temperature.

In thermodynamics, the Joule-Thomson (JT) effect describes the tempera-
ture change of real gases when forced through a valve or porous plug while
being insulated from heat exchange with the environment. Whether the
gas will cool or heat up depends on whether attractive or repulsive forces
predominate at the temperature in which the forced expansion occurs. The
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temperature at which this reversal occurs is known as the inversion temper-
ature Ti which is defined as when the JT coefficient µJT becomes zero.

µJT = ∂T

∂P

∣∣∣∣
H

= 0

Solving this expression for the VDW gas (undergoing an isenthalpic process)
gives Ti = 2Tb and is used to determine whether an isenthalpic expansion
of a real gas will cause it to cool or heat up. Thus, the concept of the Boyle
temperature is not only important in refrigeration and air conditioning but
also industrially for gas liquefaction. One such process of turning gases into
liquids is the Hampson-Linde cycle which needs a positive µJT to operate.
In other words, a gas must be below its inversion temperature to be liquified
by this process, which is true for all real gases at room temperature except
for helium, hydrogen, and neon. If a gas undergoes a JT expansion at a
temperature above its Ti, then it will actually heat up. �

Problem 25. Derive expressions for the pressure, molar volume, and tem-
perature of a VDW gas at its critical point in terms of VDW constants a
and b. The critical point is defined as the point on the P − Vm curve where
the first and second derivatives of the pressure with respect to molar volume
vanish, i.e. ∂P

∂Vm

∣∣∣
c

= 0 and ∂2P
∂V 2

m

∣∣∣
c

= 0.

Solution.
P = RT

Vm − b
− a

V 2
m

∂P

∂Vm

∣∣∣
c

= − RTc
(Vm − b)2 + 2a

V 3
m

∣∣∣
c

= 0

∂2P

∂V 2
m

∣∣∣
c

= 2RTc
(Vm − b)3 −

6a
V 4
m

∣∣∣
c

= 0

Solving the above expressions for Vc and Tc then substituting into the vdw
equation of state to solve for Pc results in

Vc = 3b, Tc = 8a
27bR, Pc = a

27b2 .

�

Problem 26. The diffusion coefficient of CCl4 in heptane at 25.0 ◦C is 3.89
x 10−9 m2 s−1. How long will it take for a CCl4 molecule to undergo a
mean-square displacement of 5.5 mm?

Solution. In 3D, the mean-square displacement is
∆r2 = ∆x2 + ∆y2 + ∆z2 = 6Dt
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Substituting values

t = (0.0055 m)2

6(3.89× 10−9 m2 s−1) = 1.30× 103 s

�

Problem 27. Calculate the pressure necessary for the mean free path λ of
argon at 25.0 ◦C to become comparable to the size of the 1.00 L vessel that
contains it (in other words, when λ = V 1/3). Take the radius of an Ar atom
to be 188 pm. Assume argon behaves as an ideal gas.

Solution. The mean free path can be written as

λ = 1√
2πd2N/V

The number density of an ideal gas can be written as
N

V
= P

kBT

Combining the above expressions, substituting values, and solving for P

P = kBT√
2πd2λ

= (1.381× 10−23 J/K)(298.15 K)√
2π(2× 188× 10−12 m)2(0.100 m)

= 0.0656 Pa

�

Problem 28. A tank is filled with 1000 g of nitrogen at 0.00◦C and 16.0 atm
pressure. The tank is then heated to 50.00◦C and the valve is opened. What
is the total mass (in grams) of the nitrogen that escapes if the external
pressure is 1.00 atm. and the temperature is maintained at 50.00◦C?

Solution. Using PV = nRT we can calculate the volume of the tank from
the initial data. PV = nRT , V = nRT/P , n =?.

n = (1000. g N2(g))
( 1 mol N2(g)

28.00 g N2(g)

)
= 35.714 mol N2(g)

V = (35.714 mol)(0.08206 L.atm/mol/K)(273.15 K)
16.0 atm = 50.03 L→ 50.0 L

This gas will continue to escape until the internal pressure equals the exter-
nal pressure of 1.00 atm. The amount of gas remaining in the tank:

n = PV

RT
= (1.00 atm)(50.03 L)

(0.08206 L.atm/mol/K)(323.15 K) = 1.8867 mol N2(g)

(1.8867 mol N2(g))
(28.00 g N2(g)

1 mol N2(g)

)
= 52.827 g N2(g)

The amount of gas that escaped = 1000. g-52.827 g=947.172 g → 927 g
N2(g). �
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Problem 29. For the given equation of states (a) and (b) below, find the 2nd

virial coefficient, B2(T ), by both methods (1) and (2) which are explained
below. Recall that the virial expansion is a polynomial expansion of P

kBT

with respect to the number density ρ = N/V . To find B2(T ), you will want
to re-write the given equation of state in the proper form on the left hand
side, and then do a polynomial expansion with respect to ρ on the remaining
terms on the right hand side. Recall that a Taylor expansion of f(ρ) at ρ = 0
will yield a polynomial expansion. Note: You may want to rationalize why
it is a sound idea to Taylor expand P

kBT
at ρ = 0. Once you have the virial

expansion, you can find B2(T ) by two methods.
(1) You can group terms by powers of ρ and then “select” the coefficient
that goes with ρ2.
(2) You can divide your virial expansion by ρ, subtract by one, divide by
ρ again, then take the limit as ρ → 0 for the remaining terms. You may
recognize the term Z = PV

NkBT
.

(a) P = RT
Vm−b −

a√
TVm(Vm+b)

(b) P = RT
Vm−b + RT

Vm
(1− exp(b/Vm))

Solution. The general strategy is to write the given equation of state in
the form of the virial expansion P

kBT
= ρ + B2(T )ρ2 + B3(T )ρ3 + . . . and

then compare orders of ρ to determine the second virial coefficient, B2(T ).
Alternatively, we can manipulate the expression then take the limit as ρ→ 0.
Both methods are demonstrated below.
(a) First we rewrite the expression to isolate constants and then do Taylor
expansions with respect to ρ to write the equation of state in powers of ρ.

P = NkBT

V

1
1− Nb

V

− aN2
√
TV 2N2

A

1
1− Nb

V NA

= ρkBT
1

1− bρ −
aρ2
√
TN2

A

1
1− bρ

NA

By Taylor expansion,
1

1− bρ = 1 + bρ+ (bρ)2 + . . .

1
1− bρ

NA

= 1 + bρ

NA
+
( bρ
NA

)2
+ . . .

Now utilizing the Taylor expansions and fitting to the form of the virial
expansion,

P

kBT
= ρ+ ρ2

(
b− a√

TN2
A

)
+O(ρ3)



54 1. Gases

where O(ρ3) means terms of order equal to or higher than ρ3. By method
(1), clearly B2(T ) =

(
b − a√

TN2
A

)
. Alternatively by method (2), we can

manipulate the expression then take limit as ρ→ 0. Let Z = P
kBTρ

.

Z = 1 + ρ
(
b− a√

TN2
A

)
+O(ρ2)

lim
ρ→0

Z − 1
ρ

= lim
ρ→0

(
b− a√

TN2
A

+O(ρ)
)

= b− a√
TN2

A

= B2(T )

Since O(ρ) depends on ρ or higher orders of ρ, it will vanish as ρ→ 0.

(b) We use the same strategy as in part (a)

P = kBTρ
( 1

1− bρ
)
− kBTρ

(
1− exp(bρ/NA)

)
By Taylor expansion,

1
1− bρ = 1 + bρ+ (bρ)2 + . . .

1− exp(bρ/NA) = bρ

NA
+ 1

2!
( bρ
NA

)2
+ . . .

Now plugging in those Taylor expansions and fitting to the form of virial
expansion,

P

kBT
= ρ+ ρ2

(
b+ b

NA

)
+O(ρ3)

Since we have grouped terms by order of ρ it is clear that

B2(T ) = b+ b

NA

Alternatively,
Z = 1 + ρ

(
b+ b

NA

)
+O(ρ2)

lim
ρ→0

Z − 1
ρ

= lim
ρ→0

(
b+ b

NA
+O(ρ)

)
= b+ b

NA
= B2(T )

�



Chapter 2

Intermolecular
Interactions

Intermolecular forces are very important in chemistry because they deter-
mine the properties of dense matter such as the nature of phase transitions.
For example, the boiling point depends on the strength of intermolecular
interactions: tightly bound solvent molecules typically have a higher boiling
point. In a (dense) gas, intermolecular interactions may manifest themselves
in deviations from the ideal gas law at higher pressures. In a liquid, they
determine the spatial arrangement of solvent molecules or the interaction of
solvent molecules with solutes. In a crystalline solid, these forces hold the
crystal together.

2.1. Electrostatics

The electric field E is a vector field whose SI units are N/C (Newtons per
Coulomb) or V/m (Volts per meter). It gives rise to the force exerted on a
charged particle, q (units: Coulomb), according to the Lorentz force law:

F = q(E + v×B).
(v: particle velocity; B: magnetic field, assumed zero here.)
The electric field of a point charge falls off as 1/R2, where R is the distance
to the charge, whereas the vector field E points along the radial direction as
shown in Fig. 2.1. The fact that the field falls off with distance is illustrated
by the lower density of E-field lines away from the charge. For a charge of
opposite sign, the direction of the arrows is reversed.

55
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-q

Figure 2.1. Electric field lines of a negatively charged point charge are
radial and point towards the charge.

+q-q

Figure 2.2. An electric dipole consists of opposite charges separated
by a distance. The electric field flows from the positive to the negative
charge.

For two point charges, the electric field lines are created at the site of the pos-
itive charge and extend toward the negative charge, as shown in Fig. 2.2. The
density of lines represents the strength of the electric field locally. For two
charges of the same sign, the field lines form a repulsive pattern (Fig. 2.3).
For a parallel plate capacitor (two parallel electrodes, with opposite charges),
the field lines are parallel, as shown in Fig. 2.4. The figure also shows
that an electron traveling initially to the right will be attracted toward
the positive electrode, according to the Lorentz law: F = qE = (−e)E,
i.e., F points downward if E points upward. e is the elementary charge,
1.602176 × 10−19 C. The charge of the proton is e and the charge of the
electron is −e.

2.1.1. Electric Dipole. Let q > 0 be an electric charge. A permanent
electric dipole moment (EDM), p, is a physical arrangement of a positive
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+q+q

Figure 2.3. Two electric charges of the same sign lead to repulsion. The
electric field lines still flow from positive to negative charges, except that
there are no negative charges here, so the lines go to infinity where the
charge is eventually zero.

+ + + + + + + +

- - - - - - - -

E
v

Figure 2.4. Parallel plate capacitor. Electric field lines flow from pos-
itive to negative charges (upward, in this example). A charge q enters
the capacitor from the left with initial velocity ~v along x. The dotted
line shows the downward accelerating trajectory of the charge, implying
that q < 0.

d

q-q

Figure 2.5. The EDM is a vector, p = qd, that points from the negative
(−q) to the positive (+q) charge (q > 0). Its length is q times |d|.

(+q) and a negative (−q) charge separated by a distance d. The dipole mo-
ment is defined as p = qd. Its SI units are charge times distance [Coulomb
× meter]. It is a vector pointing along the intermolecular vector d. By con-
vention, we take it to point from the negative to the positive charge. This
is illustrated in Fig. 2.5.
The CGS unit for dipole moment is Debye. 1 D ≈ 3.336×10−30 C·m. The
Debye is defined to be equal to 10−10 esu·Å, where 1 esu (electrostatic units)
≈ 3.336 × 10−10 C. Inter-atomic distances within molecules are typically
measured in units of angstrom (Å), where 1 Å = 10−10 m.
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E

d

θ 

-q

+q F

-F

p

d/2 Sinθ
θ 

Figure 2.6. Torque on a dipole by an electric field.

Figure 2.7. Tables of Pauling electronegativities.

Dipole moments in a molecule can be permanent or induced. H2O, for
example, has a permanent EDM. Molecules without a permanent EDM can
still be polarized by the application of an electric field (see Section 2.1.2).
A consequence of p 6= 0 is that the electric dipole will want to orient itself
along the electric field lines as a consequence of the Lorentz force F = qE
which leads to a torque τ = p×E (×: cross product1) on the dipole, as
shown in Fig. 2.6.
1The cross product x× y of two vectors x = (x1, x2, x3) and y = (y1, y2, y3) is defined as the
vector obtained from the determinant of the matrix

x× y ≡

∣∣∣∣∣ x̂ ŷ ẑ
x1 x2 x3
y1 y2 y3

∣∣∣∣∣ = x̂(x2y3 − x3y2) + ŷ(x3y1 − x1y3) + ẑ(x1y2 − x2y1).
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Cl
δ−

Cl H
δ− δ+

H
δ+

Cl H
δ− δ+

Cl H
δ− δ+

Figure 2.8. Dipole-dipole interaction in HCl.

Dipole moments can occur between two ions in an ionic bond or between
atoms in a covalent bond; dipole moments arise from differences in elec-
tronegativity. The larger the difference in electronegativity, the larger the
dipole moment. The distance between the charge separation is also a de-
ciding factor into the size of the dipole moment. The dipole moment is a
measure of the polarity of the molecule. Electronegativities can be found
online, e.g., http://webelements.com. Such a table is reproduced here
(Fig. 2.7).

H H

O

H

H

O

Hydrogen

Bond

δ-

δ+

δ+

δ-

δ+ δ+

Figure 2.9. Hydrogen bonding interaction between H2O molecules.

In Fig. 2.8 a molecule of HCl can be represented as having a small net
negative charge on the Cl end, balanced by a small net positive charge on
the H end. The overall charge is zero, however, the distribution of charges
is spatially-dependent. The forces between two HCl molecules depend on
their orientations. (a) The oppositely charged ends (green arrows) are closer

Its magnitude is |x||y| sin θ. θ is the angle between x and y. Its geometric meaning is the area of
the parallelogram traced with sides x and y. It is a vector pointing in a direction perpendicular
to the plane spanned by x and y. x× y = 0 means the two vectors are parallel to each other.
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than the ends with the same charge (red arrows). This gives a net attractive
force. (b) Here, the opposite is true, and the net force is repulsive.

δ+ δ−

δ− δ+

δ− δ+δ− δ+

δ− δ+

δ− δ+

δ−δ+δ− δ+

Attraction Attraction

Repulsion Repulsion

Figure 2.10. Permanent EDM in H2O leads to attraction or repulsion
between pairs of molecules, depending on the relative orientation of these
molecules. Four different examples are shown here.

Table 2.1. Dipole moments for various molecules. Source: Israelachvili [2]

Compound Dipole Moment (Debye)
NaCl 9.0 (meas. in gas phase)

CH3Cl 1.87
H2O 1.85
NH3 1.47
CO2 0
CCl4 0

A popular example of permanent EDM is the water molecule H2O, which has
partial positive charge on the hydrogen and partial negative charges on its
oxygen, leading to the formation of hydrogen bonds in water (see Fig. 2.9).
The molecule H2O is said to be polar because it possesses a permanent
electric dipole moment indicated by the arrow in Fig. 2.11. This interaction
can be interpreted in terms of Coulomb’s law (like charges repel each other
whereas unlike charges attract each other), as shown in Fig. 2.10.
Table 2.1 lists dipole moments of several popular compounds.
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H H
O

δ+

δ

δ+

2-

p

Figure 2.11. Net electric dipole moment of a water molecule forms as
the vector sum of two dipole moments, each along the two H-O bonds,
pointing from O to H, since O is more electronegative. According to
our convention for the direction of the EDM, the vector ~p = q~d points
upward, from the negative partial charge to the positive side.

Tables 2.2, 2.3 and 2.4 are some values of permanent dipole moments of
selected molecules. The unit is the Debye (D). Recall that 1 D=3.336×10−30

C·m. We note that hydrogen-bonding molecules can have different dipole
moments in the gas, liquid, and solid phases, as well as in different solvents.

Table 2.2. Dipole moments of molecules. Source: Israelachvili [2]

Molecules
Alkanes 0 H2O 1.85
C6H6 (benzene) 0 CnH2n+1OH (alcohols) 1.7
CCl4 0 C6H11OH (cyclohexanol) 1.7
CO2 0 OMCTS 0.42
CO 0.11 CH3COOH (acetic acid) 1.7
CHCl3 (chloroform) 1.06 C2H4O (ethylene oxide) 1.9
HCl 1.08 CH3COCH3 (acetone) 2.9
HF 1.91 HCONH2 (formamide) 3.7
NH3 1.47 C6H5OH (phenol) 1.5
CH3Cl 1.87 C6H5NH2 (aniline) 1.5
NaCl 8.5 C6H5Cl (chlorobenzene) 1.8
CsCl 10.4 C6H5NO2 (nitrobenzene) 4.2

Table 2.3. Bond Moments. Source: Israelachvili [2]

Bond Moments
C-H+ 0.4 C-C 0 C+-Cl 1.5-1.7
N-H+ 1.31 C=C 0 N+-O 0.3
O-H+ 1.51 C+-N 0.22 C+=O 2.3-2.7
F-H+ 1.94 C+-O 0.74 N+=O 2.0

Table 2.4. Bond Moments. Source: Israelachvili [2]

Group Moments
C-+CH3 0.4 C-+COOH 1.7 Adenine ∼ 3
C-+OH 1.65 C-+OCH3 1.3 Thymine ∼ 4
C-+NH2 1.2-1.5 C+-NO2 3.1-3.8 Guanine ∼ 7

Cytosine ∼ 8
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2.1.2. Electric Polarization. Suppose that we have an electrically neu-
tral molecule placed in an electric field E. It can acquire a dipole moment p
through the action of the electric field by distorting its electron cloud. This
is the case regardless of whether or not the molecule has a permanent EDM.
The application of an electric field to a molecule gives rise to an induced
EDM whose magnitude is proportional to E:2

p = ε0αE,
where E is the “local” electric field at the site of the molecule, ε0 = 8.85× 10−12

Farad per meter [F/m]) is the permittivity of free space and α is the molecu-
lar polarizability (or simply, “polarizability”). The latter is a property that
is specific to the molecule. Polarizabilities for several molecules can be found
in Table 2.5.
Question: What must be the SI units of α?
Solution: From p = ε0αE, α = p/(ε0E), where E is V/m, p is C.m and ε0
is F/m. Thus, α has units C.m/(F.V/m/m) or m3, since Farad is defined
as Coulombs per Volt.
Alternate Units: Alternatively, we absorb ε0 into α, keeping SI units, and
write p = αE instead of p = ε0αE. In this case, α has SI units of C.m2/V.
Closely Related Units: A related set of units (which differs from the previous
one by 4π), which we shall use in Section 2.6, is p = αE, where α is given
in units of (4πε0)Å3 = 1.11×10−40 C.m2/V. (See Table 2.5.)

Example 2.1. Equation p = αE is to be used with the data from Table 2.5.
Let’s look at the case of CCl4, which has a polarizability of 10.5 and units
of (4πε0)Å3. Suppose the electric field is 110 V between two electrodes
separated 1 cm apart, i.e. E=(110 V)/(1 cm)=11,000 V/m.

p = αE =(4πε0)Å3(10.5)(110 V)
=(1.11× 10−40 C.m2/V)(10.5)(11, 000 V/m)
=1.282× 10−35 C.m

Because our formula uses SI units, the units of p are automatically C.m,
as long as α and E are in SI units. The SI units of E are V/m. The SI
units of α are C.m2/V (and if polarizability values from Table 2.5 are used,
we must multiply by the scaling factor 1.11 × 10−40). This magnitude can
be compared to a permanent EDM. While CCl4 has no permanent EDM,
other molecules such as NaCl or H2 do. According to Table 2.1, H2O has

2Sometimes this is written in terms of the polarization density, P (dipole moment per unit volume),
where P = χeε0E, where χe is the electric susceptibility. p is obtained from P by multiplying the
latter by volume. χe and α are related by χe = αN/V , where N/V is the number of molecules
per unit volume.
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Table 2.5. Electronic Polarizabilities of Molecules. Polarizabilities here
are given in volume units of (4πε0)Å3=(4πε0)10−30 m3=1.11×10−40 C2

m2 J−1. 1 Joule = 1 Coulomb times Volt (J=C.V). The numerical value
of 4πε0 is 4π× 8.854× 10−12 ∼ 1.11× 10−10. Note that when molecules
are dissolved in a solvent medium, their polarizability can change by up
to 10%. Source: Israelachvili [2]

Atoms and Molecules
He 0.20 NH3 2.3 CH2=CH2 4.3
H2 0.81 CH4 2.6 C2H6 4.5
H2O 1.45-1.48 HCl 2.6 Cl2 4.6
O2 1.60 CO2 2.9 CHCl3 8.2
Ar 1.63 CH3OH 3.2 C6H6 10.3
CO 1.95 Xe 4.0 CCl4 10.5

Bond Polarizabilities
C-C aliphatic 0.48 C-H 0.65 C-Cl 2.60
C'C aromatic 1.07 O-H 0.73 C-F 0.73
C=C 1.65 C-O 0.60 Si-Si 2.24
C≡C 2.39 C=O 1.36 Si-H 1.27

Molecules Groups
C-O-H 1.3 -CH2- 1.84 CF3 2.4
C-O-C 1.1 CH3 2.0 Si-O-Si 1.4
C-NH2 2.0 -CF2- 2.0 Si-OH 1.6

a permanent EDM of 1.85 Debye. Since 1 D ≈ 3.3465 × 10−30 C.m, its
permanent EDM in SI units is 6.2× 10−30 C.m.

Example 2.2. What is the magnitude of the electric field strength required
to induce an EDM in H2O of the same magnitude as its permanent EDM?
Solution: According to the data from Table 2.1, H2O has a permanent
EDM of 1.85 Debye, which correspond to 6.2×10−30 C.m in SI units. From
Table 2.5, the polarizability of H2O is in the range 1.45-1.48, with units of
1.11× 10−40 C.m2/V. Let’s take 1.48. Equating the polarizations

6.2× 10−30 C.m = (1.11× 10−40 C.m2/V)(1.48)E
and solving for E gives:

E = 6.2× 10−30 C.m
(1.11× 10−40 C.m2/V)(1.48) = 38× 109 V/m.

Example 2.3. How does one generate an electric field of magnitude 38 ×
109 V/m? Solution: One way is to apply a voltage across electrodes that are
very close to each other. For example, if we apply 110 V across electrodes
separated by 3 nm, we will get an electric field of this magnitude. In practice,
this is difficult to achieve. On the other hand, let’s look at the electric
field of an ion. A point charge Q generates an electric field of magnitude
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E = Q/(4πε0r2) some distance r away from the charge. Let’s take Q = e
(elementary charge). Solving for r:

r =
√

1
4πε0

Q

E
=
√

(9× 109 N.m2/C2)(1.6× 10−19 C)
38× 109 V/m ≈ 2×10−10 m = 2 Å.

Thus, in close proximity of an ion, such an electric field can be found.
Note: The units are m because we are using a formula in SI units and
all our physical quantities have been provided in SI units. If you are un-
convinced, you can work out the units yourself: inside the square root we
have C.(N.m2/C2)/(V/m), which equals N.m3/(C.V). However, 1 J=1 C.V.
Thus, our units are N.m3/J, whereas 1 J=1 N.m. This leaves us with m2.
Taking the square root gives m.

2.1.3. Origin of the Coulomb’s Law. The Maxwell equations in free
space are:

∇ ·E = ρ

ε0
, ∇ ·B = 0, ∇×E = −∂B

∂t
, ∇×B = µ0

(
J + ε0

∂E
∂t

)
The various quantities are: J, current density (units: Ampères per square
meter [A/m2]); µ0, permeability of free space (value: 4π× 10−7 V.s/(A.m)
or N/A2); ρ, charge density (units: Coulomb per cubic meter [C/m3]).
The Coulomb’s law is a consequence of the first Maxwell equation, which
we integrate over a volume vol enclosing an electrical charge Q:∫

vol
∇ ·E d3r =

∫
vol

ρ

ε0
d3r = Q

ε0
.

Here,
Q =

∫
vol
ρ(r)d3r.

Consider the electric field of a single charged particle placed at the origin.
Using the Gauss divergence theorem,3 we may rewrite the left hand side as
a surface integral: ∫

∂vol
E · ds = Q

ε0
,

where ds is a surface area element and ∂vol denotes the boundary of the
volume vol. For example, if vol is a sphere, then ∂vol is a spherical shell.

3Let E be a C1 (differentiable, with continuous derivative) vector field. Let Ω ⊂ R3 be a volume.
The Gauss divergence theorem states that the volume integral can be reduced to a surface integral:∫

vol

(∇ ·E)d3r =
∫
∂vol

E · ds

The surface area element ds is a vector pointing outward normal to the surface at each point.
Another way to write the integrand of the second integral is E · n̂ds, where n̂ is the unit vector
that is outward normal to the surface. ds is an area element.
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The electric field of a single charged particle is radial and does not depend
on the spherical angles θ, φ.
Let vol be a sphere centered at the origin with radius R. Then, spherical
coordinates ∫

vol
f(r)d3r ≡

∫ π

0
dθ
∫ 2π

0
dφ
∫ R

0
drf(θ, φ, r) sin θ

render the integral trivial and the electric field is4

E = Q

4πε0
1
r2 r̂.

Using the Lorentz law with B = 0, the force is:

F = qE = k
qQ

r2 r̂,

where
k = 1

4πε0
= 9 · 109 Nm2/C2.

This relationship is called the Coulomb’s law. Since F ∝ 1/R2, we also say
it’s an inverse square law. Work is the line integral of force over distance.
Let us integrate along a line/curve starting at the point Pi and ending at
Pf . Pi is usually taken to be a “reference” point at infinity whereas Pf is
the point of interest (where V is to be evaluated). We find:

(2.1) V (R) = −
∫ Pf

Pi

F · dr = −k
∫ R

∞

qQ

r2 dr = k
qQ

R
.

This is often written (q = q1, Q = q2):

(2.2) V (R) = k
q1q2
R

.

The negative sign (Eq. 2.1) describes the work we do against the electrical
force to move the charge from point Pi (say, at infinity) to point Pf ; i.e., we
have to apply a negative force −F.
Here, R is the distance vector between the two ions, as indicated in Fig. 2.12.
In 3D, R ≡ |R| ≡

√
X2 + Y 2 + Z2, where X,Y, Z are the components of

the vector R.5

4Q/ε0 is needed so it matches what’s on the right hand side. The 1/(4π) is needed in order to
cancel out the value of the integral over angles θ, φ, which gives 4π:∫ π

0
dθ
∫ 2π

0
dφ sin θ =

∫ π

0
dθ
∫ 1

−1
d(cos θ) = 4π.

5For consistency, you can check that the force — the negative gradient of the potential energy V
— gives the correct result:

F = −∇V = k
q1q2

R2 r̂

where r̂ ≡ R/|R|.
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r

q1 q2 F = kq q 1 2

r 2

q1 q2
Unlike charges attract

Like charges repel

Figure 2.12. Coulomb interaction.

2.1.4. Interacting Charge Distributions. Suppose now that instead
of two interacting point charges, we have two non-overlapping, continuous
charge distributions (ρA and ρB), as shown in Fig. 2.13 (R = rB − rA).

rA
r ‘

rB

r ‘‘

R =
r
B - r

A

ρ
A

ρ
B

Figure 2.13. Two continuous electric charge distributions, ρA and ρB ,
shown here as clouds, interact via the Coulomb’s law.

The vectors rB and rA are center-of-mass (com) coordinates for each charge
distribution. Namely, if µA(r) is the mass density for the charge distribution
ρA, its center of mass is defined by

rA = 1
MA

∫
vol
µA(r)rd3r

where MA is the total mass of A, i.e. MA =
∫
vol µA(r)d3r. As an example,

suppose that the mass distribution6 describes a point mass m1 at r1 and
another point mass m2 located at r2. The center of mass is then:

rcom = 1
m1 +m2

(m1r1 +m2r2).

6In terms of Dirac delta functions (see A.23), the mass density is µ(r) = m1δ(r−r1)+m2δ(r−r2).
The total mass is

∫
R3 µ(r)d3r = m1+m2. The center of mass is at rcom = 1

m1+m2

∫
R3 µ(r)rd3r =

1
m1+m2

(m1r1 +m2r2).
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The Coulomb energy describing the interaction of these two charge distri-
butions is (c.f. Eq. 2.2):

VAB(R) = k

∫
R3

∫
R3

ρA(r′)ρB(r′′)
|r′′ − r′| d3r′d3r′′.

Now suppose that R is much larger than the radius of ρA and ρB (far field
approximation). Let us rewrite the denominator |r′′ − r′| as:

|R −R︸ ︷︷ ︸
0
−r′ + r′′| = |R−~rB + ~rA︸ ︷︷ ︸

−R
−r′ + r′′|,

and since R � |~rB − r′′| and R � |~rA − r′| we may Taylor expand (see
Section A.11) this factor about the point 1/R, using the small parameter
ε = rA − r′ − (rB − r′′): (here, we use the shorthand notation ∂α ≡ ∂/∂Rα
as well as summation over repeated indices; see Section A.10)

1
|R + ε| = 1

R
+ εα∂α( 1

R
) + 1

2εαεβ∂α∂β( 1
R

) +O(ε3).

Let us keep zeroth and first moments for now since we want to discuss only
the lowest order interactions (ion-ion, ion-dipole and dipole-dipole), i.e. we
keep cross terms (r′)(r′′) and lower order (r′) and (r′′). Terms such as (r′)2

or (r′′)2 and higher order describe quadrupole, octupole and higher order
moments. Substitution of ε gives

(2.3) 1
|R + ε| = 1

R
+ (rA − r′ − (rB − r′′))α︸ ︷︷ ︸

εα

∂α( 1
R

)

+ 1
2
{
−(rA − r′)α(rB − r′′)β − (rB − r′)α(rA − r′′)β

}
∂α∂β( 1

R
) +O(ε3)

where the derivatives are:

∂α( 1
R

) = −Rα
R3 , ∂α∂β( 1

R
) = ∂α(−Rβ

R3 ) = 3RαRβ
R5 − δαβ

R3 .

The function δαβ is called Kronecker delta. It is defined as 1 when α = β
and 0 when α 6= β. The Kronecker delta arose because we encountered a
situation that involved computing derivatives of the type: ∂x/∂x = 1 and
∂y/∂x = 0, etc.
The integral

VAB(R) = k

∫
R3

∫
R3
ρA(r′)ρB(r′′)|R + ε|−1d3r′d3r′′
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evaluates to:

k
[ qAqB

R︸ ︷︷ ︸
ion-ion
∼ 1/R

− qApB ·R
R3 + qBpA ·R

R3︸ ︷︷ ︸
ion-dipole
∼ 1/R2

+
{pA · pB

R3 − 3(pA ·R)(pB ·R)
R5

}
︸ ︷︷ ︸

dipole-dipole
∼ 1/R3

+ . . .
]
.

We have made the following abbreviations:

qA =
∫
ρA(r′)d3r′, qB =

∫
ρB(r′′)d3r′′ (monopole)

pA =
∫
ρA(r′)(r′ − ~rA)d3r′, pB =

∫
ρB(r′′)(r′′ − ~rB)d3r′′ (dipole)

... (higher order multipole moments)
This multipole expansion leads to a series of terms:

• (+) and (+): ion ion 1/R
• (+) and (+ -): ion dipole 1/R2

• (+ -) and (+ -): dipole dipole 1/R3

• (+) and (+−−+): ion quadrupole 1/R3

• (+ -) and (+−−+): dipole quadrupole 1/R4

For those who think we may have done this too quickly, here is a more
detailed derivation. What we did is substitute Eq. (2.3) into the integral

k

∫
R3

∫
R3
ρA(r′)ρB(r′′)|R + ε|−1d3r′d3r′′

in place of |R + ε|−1. The first term in Eq. (2.3) is 1/R. Its contribution to
the integral is:

k

∫
R3

∫
R3

1
R
ρA(r′)ρB(r′′)d3r′d3r′′ = k

R

∫
R3
ρA(r′)d3r′︸ ︷︷ ︸
qA

·
∫
R3
ρB(r′′)d3r′′︸ ︷︷ ︸

qB

= kqAqB
R

.

which is the term we sought. Next, according to Eq. (2.3) the second term
in the expansion of |R + ε|−1 is

(~rA − r′ − (~rB − r′′))α∂α( 1
R

)

where ∂α( 1
R) = −Rα/R3. Plugging this term into the integral gives

−k
∫
R3

∫
R3
ρA(r′)ρB(r′′)(~rA − r′ − (~rB − r′′))α

(
Rα
R3

)
d3r′d3r′′.

Next, we pull the term Rα/R
3 outside the integral, since it does not depend

on the two variables of integration. We absorb the minus sign by reversing
the order of ~rA − r′ → r′ − ~rA and ~rB − r′′ → r′′ − ~rB. Finally, we split the
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integral into two terms (i.e.
∫
A+B =

∫
A+

∫
B):

kRα
R3

∫
R3

∫
R3
ρA(r′)ρB(r′′)(r′ − ~rA)αd3r′d3r′′

− kRα
R3

∫
R3

∫
R3
ρA(r′)ρB(r′′)(r′′ − ~rB)αd3r′d3r′′.

Writing the double integrals as products of integrals (one depending on r′

only and the other, on r′′ only):

kRα
R3

∫
R3
ρA(r′)(r′ − ~rA)αd3r′︸ ︷︷ ︸

(pA)α

·
∫
R3
ρB(r′′)d3r′′︸ ︷︷ ︸
qB

− kRα
R3

∫
R3
ρA(r′)d3r′︸ ︷︷ ︸
qA

·
∫
R3
ρB(r′′)(r′′ − ~rB)αd3r′′︸ ︷︷ ︸

(pB)α
which leads to:

kqBpA ·R
R3 − kqApB ·R

R3

since Rα(pA)α (summation convention) denotes the dot product of the vec-
tors R and pA. Applying the same method you should be able to de-
rive the dipole-dipole term. Do not panic when you encounter the term
(pA)αδαβ(pB)β. The summation convention stands for:

(pA)αδαβ(pB)β ≡
3∑

α=1

3∑
β=1

(pA)αδαβ(pB)β.

The Kronecker delta is zero unless α = β, in which case it equals 1. Thus
the double sum collapses into a single sum, yielding a dot product:

3∑
α=1

(pA)α(pB)α ≡ pA · pB.

2.2. Intermolecular Interactions and Their Ranges

Interactions between electrostatic charges are described by the Coulomb’s
law. So far we have considered electric charge distributions and interactions
between charge distributions. The charge distributions can be molecules.
Thus, the concepts introduced in the previous section can be applied to
describe interactions between pairs of molecules. We often have that the
molecular radius is small compared to R. For a dipole, this gives rise to
the so-called “point dipole approximation; the separation between the two
charges of the dipole is much smaller than R.



70 2. Intermolecular Interactions

Molecules consist of many electrical charges. The spatial arrangement of
charges on a molecule may include monopole (total charge), dipole moment,
quadrupole moment, etc. Some molecules can dissociate into ions, in which
case the ions have nonzero charge. Even if the total charge of a molecule
is zero, there can be dipole, quadrupole or higher-order multipole moments,
depending on how charges are spatially arranged. These spatial arrange-
ments interact among each other, as described in the previous section by
the multipole expansion.
The range of interaction is determined by how rapidly the interaction energy
falls off as function of the intermolecular separation R. Slowly decreasing
dependences of the form 1/R, 1/R2 and 1/R3 are considered “long-range in-
teractions” because they extend far in space, much farther than the molec-
ular dimensions. 1/R4, 1/R5 and 1/R6 etc. are considered “short-range
interactions” because they fall off rapidly with R.

2.2.1. Ion-Ion (Charge-Charge) Interaction. In Section 2.1.4 the lowest-
order term describes the interaction of net charges q1, q2 (of molecules “1”
and “2”) according to Coulomb’s law, V (R) = kq1q2/R, where k ≈ 9 ×
109 N.m2/C2. The interaction is isotropic (spherically symmetric), as there
is no angle dependence, only a radial (R) dependence.

Example 2.4. NaCl is made of two ions: for Na+ and Cl− we take q1 = −e
and q2 = e, with e = 1.6 × 10−19 C. In the gas phase the interatomic
separation is 0.236 nm (2.36 Å). The interaction energy is then:

V (R) = k
q1q2
R

= −(9× 109 N.m2/C2)(1.6× 10−19 C)2

0.236× 10−9 m ≈ −10−18 J.

Since 1 eV = 1.6×10−19 J, the magnitude 10−18 J ∼ 6.1 eV. This “binding
energy” can be viewed as the energy required to break this molecule apart.

The Coulomb interaction is said to be a long-range force because it falls
off slowly with distance (∼ 1/R). Ion-ion forces are relevant to electrolyte
solutions. Its magnitude can be as strong as a covalent bond. We note that
the Coulomb force vector, F, is directed along the axis of the two ions; so
the force does not depend on molecular orientation.
To have ionic interactions, we need a metal attached to a non-metal. Let’s
look at the example of NaCl. Sodium is the metal. When NaCl is dissolved
in solution, we get the ions Na+ and Cl−. Here, the metal is sodium, and
the non-metal is chlorine (Fig. 2.14). The structure of NaCl crystal is shown
in Fig. 2.15.
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Figure 2.14. Dissolution of NaCl.

Figure 2.15. NaCl crystal.

2.3. Charge-Dipole Interaction

In Section 2.1.4, the next order term is the ion-dipole interaction, which
depends on the angle between the dipole and the ion-dipole vector. When
atoms in a molecule share electrons unequally, they create what is called a
dipole moment. This occurs when one atom is more electronegative than
another, resulting in that atom pulling more tightly on the shared pair of
electrons, or when one atom has a lone pair of electrons and the difference
of electronegativity vector points in the same way. One of the most common
examples is the water molecule (Fig. 2.11), made up of one oxygen atom and
two hydrogen atoms. The differences in electronegativity and lone electrons
give oxygen a partial negative charge and each hydrogen a partial positive
charge.
The interaction between a polar solvent molecule, such as water, and a
dissolved ion is the most common case of ion-dipole interaction. This inter-
action energy scales as 1/R2, where R is the distance between the ion and
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the dipole (with the dipole assumed to be a “point dipole”).7 Figure 2.16
shows dissolved Na and Cl ions interacting with water dipoles. Positive ions
(Na+) are attracted by the negative end of the dipole (the oxygen side of the
H2O molecule) and repelled by the positive end (H atoms); thus, the (Na+)
ion is surrounded by a shell of water molecules whose oxygen (O) atoms
are near the cation and whose hydrogen (H) atoms point outward into the
solution (away from the cation). Likewise, the anion (here, Cl−) attracts the
hydrogen atoms of the H2O molecules, which are more positively charged
than the oxygen atoms. The H2O molecules are oriented around the anion
in such a way that their negative ends (here, the O atoms of H2O) point
away from the anion, and into the solution.

Na+ ion Cl
-
ion

Figure 2.16. Ion-dipole interaction between Na+ and Cl- ions and sur-
rounding water molecules.

Water Interacts With Dissolved Ions: The water molecules
have dipole moments; thus, the oxygen (O) atoms bear small, neg-
ative charges, whereas the hydrogen (H) atoms bear small, posi-
tive charges. (a) Positive ions are attracted to neighboring water
molecules in aqueous solution by ion-dipole forces. (b) Negative ions
form hydrogen bonds with water, with a nearly linear bond from O
to H to the anion. (See Fig. 2.16.)

2.3.1. Electrostatic Origin. This interaction was derived in Section 2.1.4.
Let us look at it from a different point of view. Consider a charge Q inter-
acting with an electric dipole p = qd as shown in Fig. 2.17. The interaction
energy is obtained from the Coulomb’s law: (self-interaction energy of the

7“Point dipole” in the present context means that the distance between the ion and any of the
dipole’s charges is much larger than the length of the dipole itself (charge separation).
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Figure 2.17. Ion-dipole interaction.

dipole is not included8)

V (R) = −kqQ
( 1
AB
− 1
AC

)
,

where (in the last step we make the far-field approximation R � d, such
that only the first term inside the square root is kept)

AB =
√(

R− 1
2d cos θ

)2
+
(

1
2d sin θ

)2
≈ R− 1

2d cos θ,

AC =
√(

R+ 1
2d cos θ

)2
+
(

1
2d sin θ

)2
≈ R+ 1

2d cos θ.
Insert this into the expression for V and get:

V (R) =− kqQ
(

1
R− 1

2d cos θ
− 1
R+ 1

2d cos θ

)

=− kqQ
(

d cos θ
R2 − 1

4d
2 cos2 θ

)
≈ −kqQd cos θ

R2 .

Thus, the charge-dipole energy is V (R) = −kQp cos θ
R2 , which drops off as

R−2 (inverse square law). Here, cos θ = R̂ · p̂ ≡ R · p/(|R||p|).

Example 2.5. Suppose we have an aqueous solution with dissolved NaCl.
What is the interaction energy between Na+ ions and water molecules?
Solutions: This is an ion-dipole interaction. The Na+ and Cl− ions are sur-
rounded by water molecules. For sodium, complexes of the type [Na(H2O)8]+

8Notice that we have not included a term for the Coulomb interaction of the dipole’s charges +q
and −q. This interaction is called the self-energy (of the dipole). Its inclusion causes conceptual
difficulties, especially in the limit of a point dipole, where the self-energy causes singularities.
We often sweep the self-energy under the rug and ignore it. For molecules, we are content with
saying that they have finite size and the idealization of a point dipole is not needed. In this case,
the self-energy contributes a constant term independent of R. (The zero of the energy is not
important.)
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form (with 8 water molecules bound to Na+ ions, on average), where the
average Na-O distance is approximately 250 pm. According to Table 2.1 the
permanent EDM of H2O molecules is 1.85 D, where 1 D=3.336×10−30 C.m.
Using the formula, V (R) = −kQp cos θ

R2 , we find that the interaction energy
for each Na-O bond is:

V (R) =− (9× 109 N.m2

C2 )(1.6× 10−19 C)(1.85× 3.336× 10−30 C.m)
(250× 10−12 m)2 cos θ

=− (1.42× 10−19 J) cos θ

and since 1 eV = 1.6×10−19 J, this energy is ∼ 0.9 eV, about 7 times weaker
than the interaction energy of NaCl. The factor cos θ has to do with orien-
tation of the dipole relative to the ion-dipole vector. In solution, molecules
tumble and this factor is averaged by rotations. For fixed orientation, and
referring to Figure 2.17, we see that θ = 0 (dipole pointing away from the
positive charge) has the lowest possible energy because the negative end of
the dipole is closest to the Na+ ion. When θ = π, cosπ = −1 and we have a
state of high energy because Na+ repels the positive end of the dipole. When
θ = π/2 or 3π/2, cos θ = 0 and the interaction energy is zero (half-way point
between the high energy and low energy states).

2.4. Dipole-Dipole Interaction

The dipole-dipole interaction can be thought of as describing the electro-
static coupling between the charges making up the dipoles. The dipole-
dipole interaction falls off as ∼ 1/R3, which means that the force one dipole 1
due to dipole 2 falls off as 1/R4. This interaction energy is shorter range than
the Coulomb interaction, but is still considered long-range.9 The dipole-
dipole interaction depends on the relative orientation of the two dipoles.

2.4.1. Electrostatic Origin. This interaction was derived in Section 2.1.4.
Let us look at a slightly different method of derivation. Consider two dipoles

pA = qA~dA, pB = qB ~dB

interacting electrostatically, as shown in Fig. 2.18.
The interaction energy is obtained from Coulomb’s law applied to all the
charge pairs in the system (R = rB − rA)

V (R) = k(−qA)(−qB)
|R| + k(−qA)qB

|R + dB|
+ kqA(−qB)
|R − dA|

+ kqAqB
|R + dB − dA|

.

9Long range means that when integrated over all space, the integral of V (R) is finite and doesn’t
depend on the volume (which we denote here as vol). 1/r3 is long range because the integral∫
vol

(1/r3)d3~r in spherical coordinates is (4π)
∫
vol

(1/r3)r2dr ∼
∫

(1/r)dr ∼ log(vol), which de-
pends on volume (vol). Integrals whose values depend on the volume of the region of integration
are called conditionally convergent.
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dA dB

R = r  - rAB

pA pB

Figure 2.18. Two EDMs coupled electrostatically.

We then take the limit
|R| ≡ |rA − rB| � |dA|, |dB|,

i.e., so we can neglect terms that are higher order in |dA|/|R| and |dA|/|R|,
and expand the square roots as10

(1 + x)−1/2 ≈ 1− x

2 + 3x2

8 + . . . .

After some algebra, we get the famous result: (left as a homework exercise)

(2.4) V (R) = k

{pA · pB
R3 − 3(pA ·R)(pB ·R)

R5

}
.

θ θ
1 2

p
A p

B

O

R

Figure 2.19. The relative orientation of two dipoles can be described
using 3 angles: θ1, θ2 and φ. Both θ1 and θ2 are measured in-plane,
whereas φ is measured out-of-plane.

10The first term 1
|rA−rB |

= 1
|R| = 1

R
does not need to be expanded. The remaining three terms

are the ones to be expanded. For example, the second term becomes:
1

|R + dB |
=

1
|R + dB |

=
1√

R2 + 2R · dB + d2
B

=
1
R

1√
1 + 2R · dB/R2 + d2

B/R
2

≈
1
R

[
1− (2R · dB/R2 + d2

B/R
2)/2 + 3(2R · dB/R2 + d2

B/R
2)2/8 + . . .

]
where in the last line we have used the expansion (1 + x)−1/2 ≈ 1− x

2 + 3x2

8 + . . . .
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2.4.2. Spherical Coordinates. Equation (2.4) describes to two dipoles
pA and pB interacting according to the geometry shown in Fig. 2.19. Spher-
ical coordinates will be useful later when we calculate angle-averaged inter-
actions (see Fig. 2.20).

p
A

p
B

φ
2

φ
1

θ1

θ2

ɣ

Figure 2.20. Alternative geometry to analyze the dipole-dipole interaction.

Using the identity:
cos γ = cos θ1 cos θ2 + sin θ1 sin θ2 cos(ϕ1 − ϕ2)

V becomes: (φ = ϕ1 − ϕ2 since ϕ̂ · θ̂ = 0)

V (R) = k

{
pApB
R3 [−2 cos θ1 cos θ2 + sin θ1 sin θ2 cosφ]

}
.

This follows from writing the first term as:

(2.5) pA · pB
R3 = pApB cos γ

R3 = pApB
R3 {cos θ1 cos θ2 + sin θ1 sin θ2 cosφ}

and the second term as

(2.6) (pA ·R)(pB ·R)
R5 = (pA · r̂)(pB · r̂)

R3 = pApB cos θ1 cos θ2
R3

where r̂ = R/|R|, and collecting the terms.
Example 2.6. Suppose we have two water molecules separated 3 Å apart
and interacting (only) via the dipole-dipole interaction. What is the mag-
nitude of this interaction? Solution: According to Table 2.1 the permanent
EDM of H2O molecules is 1.85 D, where 1 D=3.336 × 10−30 C.m. The
magnitude of the dipole-dipole interaction11 is on the order of:

V (R) =kpApB
R3 = (9× 109 N.m2

C2 )(1.85× 3.336× 10−30 C.m)2

(5× 10−10 m)3

≈1.3× 10−20 J ≈ 0.08 eV

11This formula is exact when ~pA and ~pB are parallel to each other (setting γ = 0 in Eq. 2.5), and
when ~pA and ~pB are both perpendicular to ~R (setting θ1 = θ2 = 0 in Eq. 2.6).
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It is known from experiments that the hydrogen bond energy in water is
23.3 kJ/mol. The conversion to eV goes like this:

(23.3× 103 J
mol)(

1 eV
1.6× 10−19 J)( 1 mol

6.022× 1023 atoms) = 0.242 eV,

i.e. the conversion factor is 1 kJ/mol = 0.01037 eV. The dipole-dipole in-
teraction only partially accounts for the interaction energy between pairs of
water molecules. Covalent character is also present in the hydrogen bond.

2.5. Hydrogen Bonding

Hydrogen bonding is commonly found in water, between pairs of water
molecules (Fig. 2.21), where the H atom bonds to the O atom of a neighbor-
ing molecule. The bond is partly ionic, due to the partial positive charge of
the H atom and partial negative charge of the O atom, and partly covalent,
due to the sharing of electrons from the oxygen’s lone pair.

Figure 2.21. Hydrogen bonding between two water molecules.

Hydrogen (H) bonds can be thought of as especially strong dipole-dipole
interactions involving the strongest electronegative elements of the periodic
table. A hydrogen bond (H-bond) is the interaction between two polar
groups that occurs when a hydrogen (H) atom covalently bound to a small,
highly electronegative atom such as nitrogen (N), oxygen (O), or fluorine (F)
experiences the electric field of another highly electronegative atom nearby.
(Remember: FON.)
The molecule itself must possess either a N-H, N-O or N-F bond for this to
work. As an example, H2O can undergo hydrogen bonding because it has
H-O bonds. The H-bond itself will occur between pairs of neighboring H2O
molecules. On the other hand, CH3F does not H-bond because there are no
H-F bonds (CH3F only possesses C-F and H-C bonds).
The H-bond is strong because the dipole is strong. The dipole is strong due
to the large difference in electronegativity; the H-atom does not possess any
core electrons to shield its positive charge.
Hydrogen bonding is typically stronger than VDW interactions, but weaker
than covalent or ionic bonds. H-bonds can be intramolecular (within the
same molecule) or intermolecular (between different molecules). Intermolec-
ular hydrogen bonding is responsible for the high boiling point of water
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H  O2

HF

NH3

NH3 H  O2and

Intramolecular. 

covalent bond

Intermolecular

hydrogen bond

Figure 2.22. Examples of hydrogen bonding.

(100◦C) compared to the other group 16 hydrides that have much weaker
hydrogen bonds. Intramolecular hydrogen bonding is partly responsible for
the secondary and tertiary structures of proteins and nucleic acids. It also
plays an important role in the structure of polymers, both synthetic and
natural.
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Figure 2.23. Effect of hydrogen bonding on boiling point. Group 15
(orange), 16 (blue) and 17 (purple) elements are compared.
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The examples of NH3, H2O and HF are shown in Fig. 2.22. Hydrogen
bonding can also occur between different types of molecules, as shown in the
last two lines in Fig. 2.22 (the case of intermolecular NH and HO bonding).
Finally, we note that the boiling point is strongly affected by hydrogen
bonding, as shown in Fig. 2.23. If H2O did not possess the ability to form
hydrogen bonds, its boiling point would likely be below -50◦C.

2.6. Ion-Induced Dipole

Ion-dipole interactions can also be found in non-polar solvents. We call these
“ion-induced dipole” or “charge-induced dipole”. In that case, it is the ion’s
electric field that induces a dipole moment in neighboring solvent molecules
(electric polarization was explained in Section 2.1.2). This situation is illus-
trated in Fig. 2.24. We note that molecules can be polarized regardless of
whether or not they already possess an EDM. In the case where the molecule
has an EDM, the polarization would be an additional (albeit smaller) effect.
So the ion-induced dipole interaction is present regardless of the existence
of a permanent EDM.

+
Na+

_+

Cl -

+

_

_

Figure 2.24. Ion-induced dipole interaction.

When a molecule of polarizability α is at distance R from an ion of charge ze,
the electric field of the ion E = ze/4πε0R2 (electric charge is often written
as a multiple of the elementary charge: q = ze) will induce in the molecule
a dipole moment of

p = αE = αze

4πε0R2

Here, α is given in units of (4πε0)Å3 = (4πε0)10−30 m3=1.11×10−40 C2m2J−1

= 1.11×10−40 C.m2/V since 1 Joule = 1 Coulomb times Volt (1 J=1 C.V).
(See Table 2.5.)
Let us look at the magnitude of this interaction. We shall estimate the
distance by which the electron cloud of a methane (CH4) molecule is shifted
relative to the center of the molecule due to the presence of a bare sodium
ion whose center is 0.4 nm from the center of the molecule.
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For a monovalent ion such as Na+, the electric field at a distance of 0.4 nm
from its center is

E = e

4πε0R2 = (1.602× 10−19)
(4× 3.142× 8.854× 10−12)(0.4× 10−9)2 = 9.0× 109 V/m

The induced dipole moment on a methane molecule (see Table 2.5 for po-
larizability of CH4) is therefore,

p = αE = 4πε0(2.6× 10−30)︸ ︷︷ ︸
Table 2.5

(9.0× 109) = 2.60× 10−30 C.m

= 2.60× 10−30/3.336× 10−30 = 0.78 D.
Since a dipole moment is charge×distance, this corresponds to a unit charge
separation in the molecule of d = p/e = 0.016 nm, which is about 8% of the
molecular radius of methane (of 0.2 nm).
From this calculation, the induced dipole moment can be on the order of
1 Debye, which is quite large. We may therefore anticipate that the forces
associated with induced dipole moments can also be large.
The scenario is the following. An ion is adjacent to a molecule, including a
dipole moment p. The electric field of the induced dipole (which will act on
the ion) is12

E(R) = − 2p
4πε0R3 = − 2αE

4πε0R3 = − 2α(ze)
(4πε0)2R5

so that the attractive force and energy are:

F (R) = (ze)E(R) = − 2α(ze)2

(4πε0)2R5 ,

V (R) = −
∫ R

∞
F (r)dr = − α(ze)2

2(4πε0)2R4 = −1
2αE

2.

where E(R) = ze/2πε0R2 is the field acting on the molecule. Thus,

V (R) = − α(ze)2

2(4πε0)2R4

The situation is illustrated in Fig. 2.25.

2.7. Ion-Quadrupole Interaction: Cation-π

An example of the ion-quadrupole interaction (V (R) ∼ 1/R3) is the cation-π
interaction, which involves an electron-rich π system (e.g. benzene, ethylene,
acetylene) and an adjacent cation (e.g. Li+, Na+). This interaction can
be as strong as hydrogen bonding and salt bridges in proteins. Cation-π

12The electric field of a dipole is E = 1
4πε0

( 3(p·̂r)r̂−p
R3

)
.
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Figure 2.25. Ion-induced dipole interaction.

interactions play important roles in protein structure, molecular recognition
and enzyme catalysis.
Take the example of benzene. It has no permanent dipole moment because
all dipoles (CH bonds) are weak and their interactions vanish due to sym-
metry. However, the π electrons above and below the benzene ring create
a negative charge, which counterbalances the positive charge in the plane
of the benzene ring. This leads to a quadrupole moment. The negative π
electrons interact with the cation nearby, leading to the cation-π interaction,
which is a type of ion-quadrupole interaction. See Fig. 2.26.

Na
+

Figure 2.26. Ion-quadrupole interaction: benzene interacting with Na+

ion (left). Benzene possesses an electric quadrupole moment (right).

2.8. Quadrupole-Quadrupole: π-Stacking

π-stacking is an example of quadrupole-quadrupole interaction. The ben-
zene dimer is capable of quadrupole-quadrupole interaction because each
benzene ring contains π electron clouds. These interactions are important
in nucleobase stacking within DNA and RNA molecules, protein folding and
molecular recognition. Three different conformations of the benzene dimer
are shown in Fig. 2.27.



82 2. Intermolecular Interactions

Sandwich T-shaped Parallel-displaced

Figure 2.27. Three different conformations of the benzene dimer

2.9. Van Der Waals Force

Van Der Waals (VDW) interactions, which behave as V (R) ∼ 1/R6, de-
scribe “dynamical effects” arising from quantum fluctuations, induced dipoles
and molecular tumbling. 1/R6 interactions include 3 contributions:

• London dispersion forces: Of quantum mechanical origin, they are a type
of “induced dipole-induced dipole” interaction whereby dynamic motions
of charge distributions around the molecule lead to a temporary dipole mo-
ment. Such a temporary dipole on one molecule will induce a temporary
dipole in the other molecule. Example (He): For a non polar atom such as
helium, the time average of its dipole moment is zero, but at any instant
there exists a finite dipole moment given by the instantaneous positions
of the electrons about the nucleus. This instantaneous dipole generates
an electric field that polarizes any nearby neutral atom, inducing a dipole
moment in it. The resulting interaction between the two dipoles gives rise
to an instantaneous attractive force between the two atoms, and the time
average of this force is finite. The overall dependence is 1/R6:

V (R) = 3
2

α1α2
(4πε0)2R6

I1I2
(I1 + I2)

where aα1 and α2 are the polarizabilities of the two molecules, I1 and I2
are the first ionization potentials of the molecules,
• Keesom force: When molecules have permanent dipole moments and tum-

ble, the Keesom force (derived in Section 2.10) is defined as the motionally-
averaged dipole-dipole interaction. While static dipole-dipole interactions
behave as V (R) ∼ 1/R3, the motionally-averaged interaction is weaker
and V (R) ∼ 1/R6. It is the angular dependent part of the dipole-dipole
interaction that causes a weakening of the dipole-dipole interaction.
• Debye force: A molecule with a permanent dipole moment (such as HCl

or H2O) adjacent to a non-polar molecule can induce a dipole moment
in the non-polar molecule. These two dipoles (permanent dipole-induced
dipole) interact together, giving rise to the Debye force (see Section 2.12).
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The strength of the induced dipole depends on the polarizability of the
non-polar molecule.

By far, London dispersion forces comprise the largest and most important
contribution to VDW forces. Because of this, VDW forces are often referred
to as “London dispersion forces” interchangeably. In reality, Keesom and
Debye forces can also contribute to the 1/R6 dependence.13

Approximate contributions of the dispersion to the total intermolecular in-
teraction energy are shown in Table 2.6.

Table 2.6. Contribution of the dispersion to the total intermolecular
interaction energy.

Molecule pair % of the total energy of interaction
Ne-Ne 100
CH4-CH4 100
HCl-HCl 86
HBr-HBr 96
HI-HI 99
CH3Cl-CH3Cl 68
NH3-NH3 57
H2O-H2O 24
HCl-HI 96
H2O-CH4 87

Source: https://en.wikipedia.org/wiki/London dispersion force

2.9.1. Factors Affecting the Strength of London Dispersion Forces.
Dispersion forces are a mutual interaction between the polarizable charge
distributions on two separate molecules, and they are always attractive.
Very often, dynamic motions of charge around the molecule lead to a tempo-
rary dipole moment. Such a temporary dipole on one molecule will induce a
temporary dipole in the other molecule. These transient, fluctuating dipoles
attract one another in much the same way as do permanent dipoles.
Figure 2.28 provides a simple view of the source of this interaction. The po-
larizability increases with the number of electrons in the atom or molecule.
Heavier atoms or molecules interact more strongly by dispersion forces than
do lighter ones. These electrons are less strongly bound than those of the
lighter elements, because they are shielded from the full attraction of the
nucleus by intervening electrons. Consequently, they are more easily dis-
torted by external fields of neighboring dipoles. Dispersion forces provide
the attractive, 1/R6, term in the Lennard-Jones potential.

13Keesom and Debye interactions are not always present because they require permanent dipoles
and sufficient polarizability (in the case of Debye). Not every molecule meet such criteria.
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Figure 2.28. London interaction.

A fluctuation of the electron distribution on one atom induces a correspond-
ing temporary dipole moment on a neighboring atom. The two dipole mo-
ments interact to give a net attractive force, called a “dispersion force.”
There are three main factors affecting the strength of London dispersion
forces:
• Contact area: the closer we can bring two molecules together, get their

electron clouds to touch, the stronger the dispersion force will be. For ex-
ample, n-pentane has stronger dispersion forces than neopentane (Fig. 2.29),
even though they have the same number and types of atoms. The n-
pentane is shaped like a column (as opposed to spheres, as is the case for
neopentane) and makes better contact with other like molecules. Thus,
the boiling point of n-pentane will be higher than neopentane.

n-pentane
neopentane

BP = 36.1 C
BP = 9.5 C

CH C CH

CH

CH

vs.

3

Lorem ipsum

Lorem ipsum

Lorem ipsum

3 3

3

3

Figure 2.29. Boiling points of n-pentane vs neopentane.

• Polarizability: the more electrons we have, the stronger the polarizability
of the molecule. Thus, molecular size matters. Think about proteins
(very large molecules). Much of their 3D shapes originate from London
dispersion forces. Another example is halogens going down the rows: F,
Cl, Br, I. At ambient temperatures, F and Cl are gases, Br is a liquid and
Iodine is a solid. As the atoms get bigger, they have more electrons, and
the stronger the dispersion forces are.

Example: Silk Fibroin. Fibroin is the main protein in silk from moths
and spiders. It consists of antiparallel β-sheet structure (Fig. 2.30). It
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has small side chains (Ala and Gly) that allow the close packing of sheets.
Its structure is stabilized by: 1) hydrogen bonding within sheets and 2)
London dispersion interactions between the sheets:

Figure 2.30. Structure of silk fibroin.

Note: for proteins, several interactions matter. These include: 1) the
hydrophobic effect, 2) hydrogen bonding (peptide bond N-H and C=O
interact to yield α-helices and β-sheets), 3) London dispersion and 4) elec-
trostatic interactions, such as interactions between permanently charged
groups, e.g., salt bridges stabilize the protein.
• Pi-bonding: molecules with π-bonding will exhibit stronger London dis-

persion forces (Fig. 2.31).

C C

H

H

H

H

 σ bond

π bond

π bond

Figure 2.31. π-bonding.

2.10. Thermal Averaging of Intermolecular Interactions

When the interaction energy falls below kBT the dipoles can rotate more
or less freely. We are then interested in the Boltzmann average of these
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interactions over the angles. At room temperature we have

kBT ≈ 0.03 eV ∼ 4 · 10−21 J.
We define the thermal average energy by angle-averaging the Boltzmann
factor corresponding to some interaction energy V (R,Ω) (Ref. [2]):

e−V (R)/kBT ≡
〈
e−V (R,Ω)/kBT

〉
=
∫
e−V (R,Ω)/kBTdΩ∫

dΩ
In spherical coordinates the solid angle element is dΩ = sin θ dθ dφ, where
θ, φ are polar and azimuthal angles, respectively. Thus,

e−V (R)/kBT ≡
〈
e−V (R,Ω)/kBT

〉
= 1

4π

∫ 2π

0
dφ
∫ π

0
e−V (R,θ,φ)/kBT sin θ dθ

When calculating such integrals the following results are useful14:

〈cos2 θ〉 = 1
4π

∫ π

0
cos2 θ sin θdθ

∫ 2π

0
dφ = 1

2

∫ 1

−1
x2dx = 1

3 .

〈sin2 θ〉 = 1
4π

∫ π

0
sin2 θ sin θdθ

∫ 2π

0
dφ = 2

3

〈sin2 φ〉 = 〈cos2 φ〉 = 1
2

〈sin θ〉 = 〈cos θ〉 = 〈sin θ cos θ〉 = 0
〈sinφ〉 = 〈cosφ〉 = 〈sinφ cosφ〉 = 0

Averaging over the angles implies that the system (e.g. charge-dipole or
dipole-dipole) samples all possible angles over some time period15.
When V is less than kBT we may Taylor expand the exponential

e−V (R)/kBT = 1− V (R)
kBT

+ · · · =
〈

1− V (R,Ω)
kBT

+ 1
2

(
V (R,Ω)
kBT

)2
− . . .

〉

14These are obtained using trigonometric identities or tables of integration. For example, the
second relation follows from ∫

sin3(ax)dx =
cos 3ax

12a
−

3 cos ax
4a

+ C

15Instead of computing the time-average of some quantity, we invoke the idea of the ensemble
average through the ergodic theorem

1
T

∫ T

0
(·)dt ≈

1
vol

∫
(·)d3~r,

where vol=volume (of some region of space comprising the ensemble of molecules). The left hand
side is the time average of some quantity and the right hand side is the average of that quantity
across an ensemble of molecules. The validity of the ergodic theorem is discussed in statistical
mechanics and will not concern us here except to say that the ensemble average is used here by
invoking the Boltzmann distribution.
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Thus,

V (R) =
〈
V (R,Ω)− V (R,Ω)2

2kBT
+ . . .

〉
Example: 1) Charge-dipole interaction: we recall the geometric picture for
this interaction (Fig. 2.17) and the expression for its interaction energy

V (R) = −qp cos θ
4πε0R2 .

Performing the thermal averaging we find:

V (R) =
〈
−qp cos θ

4πε0R2︸ ︷︷ ︸
〈cos θ〉=0

−
(

qp

4πε0R2

)2 cos2 θ

2kBT
+ . . .

〉
= − q2p2

6(4πε0)2kBTR4 ∼
1
R4

for kBT > qp/(4πε0R2).
2) Dipole-dipole interaction: we recall the geometric picture for this inter-
action (Fig. 2.19) and its interaction energy in spherical coordinates (see
Section 2.4.2 for derivation)

V (R) = kpApB
R3 {−2 cos θ1 cos θ2 + sin θ1 sin θ2 cosφ} .

The first order term vanishes since 〈cos θ1〉 = 0, etc. The second order term
does not vanish and equals

V (R) =
〈
− k

2p2
Ap

2
B

2R6kBT

(
4 cos2 θ1︸ ︷︷ ︸

1/3

cos2 θ2︸ ︷︷ ︸
1/3

+0 + sin2 θ1︸ ︷︷ ︸
2/3

sin2 θ2︸ ︷︷ ︸
2/3

cos2 φ︸ ︷︷ ︸
1/2

)
+ . . .

〉

=− k2p2
Ap

2
B

3kBTR6

for kBT > kpApB/R
3. Note: we did not include the cross term
−4 cos θ1 cos θ2 sin θ1 sin θ2 cosφ

since it is zero (because 〈cos θ1〉 = 0, etc.). This is the Keesom interac-
tion and it scales as ∼ 1/R6. The Keesom interaction is 1 of 3 different
contributions to the VDW interaction.

2.11. Keesom Interaction (permanent dipole-permanent
dipole, thermally averaged)

The Keesom interaction, which was derived in Section 2.10, is due to the
interaction of permanent dipoles. It is temperature dependent. Such in-
teractions consist of attractive interactions between an ensemble of dipoles
that are averaged over different rotational orientations of the dipoles. It is
assumed that the molecules are constantly rotating and are never get locked.
The energy of a Keesom interaction depends on the inverse sixth power of the
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distance, unlike the interaction energy of two spatially fixed dipoles, which
depends on the inverse third power of the distance. The Keesom interaction
can only occur among molecules that possess permanent dipole moments,
i.e., two polar molecules. Also, Keesom interactions are very weak VDW
interactions and do not occur in aqueous solutions that contain electrolytes.
The angle-averaged interaction is given by:

V (R) = −m2
1m

2
2

24π2ε2oε
2(kBT )R6 ,

where m is the charge per unit length and ε is the dielectric constant of
surrounding medium (ε = 1 for vacuum).
This force is inversely proportional to temperature. At low temperatures
the dipoles want to be in the energetically favorable “ground state” whereas
at high temperature they are found in random orientations (where the forces
cancel out on average), causing a weakening of the force.

2.12. Debye Force (Dipole-Induced Dipole)

The interaction of a polar molecule with a non polar molecule is analogous
to the ion-induced dipole interaction. Suppose that we have a fixed dipole p
with orientation θ with respect to the line joining it to a polarizable molecule,
the electric field of the dipole acting on the molecule is (omitting the angular
factor and other factors), E ∝ R−3, which means that the interaction energy
is

(2.7) V (R, θ) = −1
2αE

2 ∝ α

R6

For two molecules possessing permanent dipole moment p1 and p2 and po-
larizabilities α1 and α2, their net dipole-induced dipole energy is

V (R) = −
[
p2

1α2 + p2
2α1

]
(4πε0)2R6

This Debye interaction is one of three inverse sixth power contributions to
the total VDW interaction energy between molecules.
The Debye force is an angle averaged interaction because it arises from in-
teractions between rotating permanent dipoles and from the polarizability of
atoms and molecules (induced dipoles). These induced dipoles occur when
one molecule with a permanent dipole repels another molecule’s electrons. A
molecule with permanent dipole can induce a dipole in a similar neighboring
molecule and cause mutual attraction. Debye forces cannot occur between
atoms, because atoms do not possess permanent electric dipole moments.
The forces between induced and permanent dipoles are not as temperature
dependent as Keesom interactions because the induced dipole is free to shift
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and rotate around the non-polar molecule. The Debye induction effects and
Keesom orientation effects are termed polar interactions.
One example of an induction-interaction between permanent dipole and in-
duced dipole is the interaction between HCl and Ar. In this system, Ar
experiences a dipole as its electrons are attracted (to the H side of HCl) or
repelled (from the Cl side) by HCl.
This kind of interaction can be expected between any polar molecule and
non-polar/symmetrical molecule. The induction-interaction force is far weaker
than dipole-dipole interaction, but can be stronger than the London disper-
sion force, depending on the strength of the dipoles involved.

2.13. Boltzmann-Weighted Interactions

Here is an alternative approach to deriving thermally averaged interaction
energies. It gives almost the same result as the previous method. We all
agree that the interaction energy, V (R,Ω), should be averaged over the
angles in some way (i.e. over the unit sphere). We also know that some
angles are more likely than others, because certain configurations of the
dipole-dipole interaction are lower in energy than others. It makes sense to
weigh these angles more heavily in the average. This can be done using the
Boltzmann factor:

V (R) = 〈V (R,Ω)e−V (R,Ω)/kBT 〉
〈e−V (R,Ω)/kBT 〉

≡
∫
V (R,Ω)e−V (R,Ω)/kBTdΩ∫

e−V (R,Ω)/kBTdΩ
,

where the denominator, 〈e−V (R,Ω)/kBT 〉, is a normalization factor.
Here, Ω denotes any set of spherical angles, depending on the nature of the
problem we want to solve. The ion-dipole interaction, for example, requires
only one such set of angles whereas the dipole-dipole interaction requires two
sets of spherical angles. Suppose that there are two sets of angles involved,
Ω = (Ω1,Ω2) = (θ1, φ1, θ2, φ2) then Ω is shorthand notation for all spherical
angles. The integral is over all unit spheres associated with each set of
angles. For example, if Ω ≡ (Ω1,Ω2) = (θ1, φ1, θ2, φ2), then

∫
dΩ stands for:∫

dΩ =
∫ π

0
sin θ1 dθ1

∫ π

0
sin θ2 dθ2

∫ 2π

0
dφ1

∫ 2π

0
dφ2.

In the high-temperature regime (V < kBT ) we may employ a Taylor expan-
sion for the exponential. The denominator approaches 1 if we keep only the
zeroth order term e−V (R,Ω)/kBT ≈ 1. The numerator is expanded in powers
of V/kBT :

V (R) = 〈V (R,Ω) e−V (R,Ω)/kBT︸ ︷︷ ︸
expand

〉 ≈
〈
V (R,Ω)

(
1− V (R,Ω)

kBT
+ . . .

)〉
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Substituting the dipole-dipole energy (see Section 2.4.2 for derivation)
V (R) = (kpApB/R3){−2 cos θ1 cos θ2 + sin θ1 sin θ2 cosφ}

into this expression, the lowest order term 〈V (R,Ω)〉 vanishes for the same
reasons as before16. The next order term gives

V (R) =−
〈
V (R,Ω)2

kBT
+ . . .

〉

=− k2p2
Ap

2
B

(kBT )R6

〈
4 cos2 θ1︸ ︷︷ ︸

1/3

cos2 θ2︸ ︷︷ ︸
1/3

+0 + sin2 θ1︸ ︷︷ ︸
2/3

sin2 θ2︸ ︷︷ ︸
2/3

cos2 φ︸ ︷︷ ︸
1/2︸ ︷︷ ︸

2/3

〉

So,

V (R) = − 2k2p2
Ap

2
B

3(kBT )R6 .

We are off by a factor of 2 but otherwise have obtained the correct formula
with the 1/R6 dependence.

2.14. kBT vs Interaction Strength

In the previous section, the Boltzmann factor is used to weigh the angles
according to their energies. Angles that lead to lower energy configura-
tions weigh more heavily: the Boltzmann factor, e−V/kBT , involves compar-
ing the interaction energy strength V (R,Ω) for a given angle configuration
Ω = (θ, φ) to kBT . If V (R,Ω) is small compared to the magnitude of kBT
(0.03 eV at room temperature), then the Boltzmann factor is large. Other-
wise, its magnitude is small (compared to 1).

2.15. Relative Strengths of Intermolecular Forces

Table 2.7 gives typical dissociation energies (Ed) for different types of bonds.
It is best to think of these values as “typical” values, i.e. orders of magnitude.
The actual strengths will vary depending on the molecules involved. Ionic
bonding and covalent bonding will always be stronger than intermolecular
forces in any given substance. To determine whether ionic bonding occurs,
we must have a metal bound to a non-metal, e.g. NaCl.
The main intermolecular forces are summarized in Table 2.8.

16Recall: 〈cos2 θ〉 = 1/3, 〈sin2 θ〉 = 2/3, 〈sin2 φ〉 = 〈cos2 φ〉 = 1/2 and 〈sin θ〉 = 〈cos θ〉 = 0,
〈sin θ cos θ〉 = 0, 〈sinφ〉 = 〈cosφ〉 = 0, 〈sinφ cosφ〉 = 0
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Table 2.7. Typical dissociation energies for different types of chemical
bonds. 1 cal = 4.184 J. 1 eV = 1.6×10−19 J.

Bond type Ed (kcal/mol) Ed (kJ/mol) Ed (eV)
Interatomic (intramolecular) bonds
Ionic lattice (solid) 250-4,000 1,046-16,736 11-173
Ionic (molecular) 80-251 335-1,050 3.5-10.9
Covalent bond 15-260 63-1,088 0.653-11.2
Metallic 26.3-83.7 110-350 1.14-3.63
Intermolecular bonds
Hydrogen bond 1-12 4.2-50.2 0.04-0.52
Dipole-dipole (excluding H-bond) 0.5-5.0 2.1-21 0.022-0.218
London dispersion <1 to 15 <4.2-62.8 <0.04-0.65
Dipole-induced dipole ∼0.48 ∼2.0 ∼0.021

2.16. Hard Sphere and Lennard-Jones Potentials

Insights into the physics of liquids, gases and solids have often come from
computer simulations. Some of the very first scientific computer simulations
back in the 1950s studied the hard-sphere (HS) liquid.
The hard-sphere potential is defined as:

V (R) =
{

+∞ R < a

0 R ≥ a
where a is the distance of closest approach, twice the molecular radius and
R = R/|R|. This potential only models the repulsive core, but no attractive
tail. Because of the abrupt transition at r = a it describes perfectly non-
overlapping spheres. The HS potential has proved valuable in the study
of sphere packings. HS exhibit a fluid-solid phase transition at sufficiently
high densities. An early surprise was that the HS system has a first-order
freezing transition.
The simplest liquid models17 are defined by pair potentials, V (R). If rij =
|ri − rj | is the distance between particles i and j, the potential energy V as
a function of all particle coordinates is given by

V (r1, . . . , rN ) =
∑
i<j

V (rij).

17We call them “liquid models” because in gases we mostly neglect collisions; thus the inter-
molecular potentials are not so important. In solids, these spherically symmetric models are not
suitable because they fail to describe the many different possible spatially ordered arrangements
in crystals. More sophisticated models are needed which describe reduced symmetry.
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Table 2.8. Most common intermolecular forces. Source: Israelachvili [2]

Type of Interaction 

Covalent, Metallic 

Charge-Charge 

Charge-Dipole (fixed) 

( freely rotating) 

Dipole-Dipole 

p1
( freely rotating) 

Charge-Non-polar 

Dipole-Non-polar (fixed)

(rotating) 

Non-polar - Non-polar 

Hydrogen Bond 

r 

r 

r 

r 

r 

r 

r 

I I I 

r 

Interaction Energy 

Complicated, short range 

+Q 1 Q2 /4rcEor (Coulomb Energy)

-Qp cos 8/4rcEor2

-p 1 p2 (2cos91 cos82 -sin81 sin92 cos<1>)/41tc0 r3

-pf p�/3(4nco/kTr6 (Keesom energy)

-Q2 a/2(4rcEo) 2r4

-p2 a/( 4rcEo)2 r6 (Debye energy)

_ % hva� 
6 (London Dispersion energy)( 4rrn0) r 

Complicated, short range, 
proportional to -1/r 2

p2

p2p1

p

p

p

p

p

p

Such systems are traditionally referred to as ‘simple liquids’ because they de-
scribe point particles with isotropic interactions, i.e. with a mathematically
simple Hamiltonian.
In many simulations one uses ad hoc pair potentials. The most famous one
is the Lennard-Jones (LJ) pair potential (1924) defined by

VLJ(R) = 4ε
[(

σ

R

)12
−
(
σ

R

)6
]
,

where ε is the well depth18, σ is the distance at which V (R) passes through
zero. The attractive part, which describes VDW forces, is proportional to

18The point where the slope is zero gives:
dV
dR

= 4ε
[
12(σ/R)11(−σ/R2)− 6(σ/R)5(−σ/R2)

]
= 0,
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R−6 whereas the repulsive part, which describes Pauli repulsion, is propor-
tional to R−12 (Fig. 2.32).

Figure 2.32. Lennard-Jones potential.

(Recall that the force F = −dV/dR in 1D or F = −∇V in 3D.) The sixth-
power term does not represent other kinds of bonding (non-VDW) well.
The twelfth-power term appearing in the potential is chosen for its ease of
calculation for simulations (by squaring the sixth-power term) and is not
physically based. The LJ potential is a model for intermolecular forces
designed to describe the interaction between neutral atoms or molecules.
The minimum value of VLJ(R) is −ε, which is found at R = 21/6σ (check
this by finding R such that dVLJ/dR = 0). Commonly simulated simple
liquid models are: the LJ pair potential (sometimes cut off at the mini-
mum, sometimes with other exponents than 12 and 6), the purely repulsive
inverse-power law pair potentials V (R) ∝ (R/σ)−n, the Yukawa “screened
Coulomb” pair potential V (R) ∝ exp(−R/σ)/R, the Morse pair potential
that is a difference of two exponentials, V (R) = De(e−2a(R−re)−2e−a(R−re)),
and the HS pair potential.

2.16.1. PE Curves for Different Molecules (but same # of elec-
trons). The relative strengths and effective ranges of several intermolecu-
lar forces are illustrated in Fig. 2.33, which shows how the potential energy

and solving for R leads to R = σ21/6. Substitution of this R value into the Lennard-Jones equation
gives V (σ21/6) = −ε.
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(PE) depends on the intermolecular separation (center-to-center distance)
for several pairs of ions, atoms, and molecules.
The potentials illustrated in Fig. 2.33 include Coulomb (R−1), dipole-dipole
(R−3), dispersion (R−6), and repulsive (R−12) potentials. The species shown
were chosen so that the interacting atoms, ions, or molecules have the same
number of electrons (Ar, Cl, K, HCl). For comparison, the covalent bond
(intramolecular force) for Cl2 is also shown.
The ion-ion interaction of K with Cl is the strongest (stronger even than the
covalent interaction in Cl2), followed by the interaction between two HCl
molecules (dipole-dipole and dispersion) and the Ar-Ar interaction (disper-
sion only).
Notice in Fig. 2.33 the dramatically different depths of the wells (several
orders of magnitude), as well as the distinctly different distances at which
the minima occur.
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Figure 2.33. Potential energy curves showing attractive and repulsive
forces for different types of interactions.

The potential energy of a pair of atoms, ions, or molecules depends on the
distance between the members of the pair. Here, the potential energy at
large separations (to the right side of the graph) is arbitrarily set to zero by
convention. As pairs of particles approach each other, the potential energy
becomes negative because attractive forces come into effect. The lowest
point in each curve occurs at the distance where attractive and repulsive
forces exactly balance. The relative potential energy values at these minima
measure the relative strength of the attractive forces in the various cases
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illustrated. Note the shallow potential energy minimum for HCl and Ar.
The inset of Fig. 2.33 shows these same two curves with the vertical scale
expanded by a factor of 100.

2.16.2. Are CO2 and H2O Polar or Nonpolar? To determine whether
dipole-dipole interactions are significant, we need to look at two things: 1)
the dipole moment of each bond and 2) the geometry of the molecule. The
net dipole moment, which determined if a molecule is polar or not, is the
vector sum of all its constituent dipole moments (i.e. we vectorially add up
the dipole moments of all bonds). When two atoms involved in a bond have
a significant difference in electronegativity, the bond is polar, with a dipole
moment that points toward the least electronegative atom (according to our
convention). For example, the C=O bond is polar because the difference in
electronegativity is ∆EN = 3.5−2.5 = 1.0, which is significant. In the C=O
bond, the most electronegative atom is O; thus the dipole moment points
from O to C.
CO2 has covalent bonds, each of which have a dipole moment, but its over-
all dipole moment is zero due to cancellation of the two dipole moment
vectors, which point in opposite directions. The molecule is therefore non-
polar (Fig. 2.34). Only VDW forces exist. The molecule has no net dipole
moment because even though CO bonds are polar, they cancel each other
out due to the geometry of the molecule.

Figure 2.34. CO2 has no permanent EDM (by symmetry) whereas H2O does.

CO2 is linear because the C atom has a complete octet of valence electrons
arising from covalent bonding to its two neighboring O atoms. H2O is bent
because the octet around the O atom features 2 lone electron pairs.

2.16.3. Are BF3 and NH3 Polar or Nonpolar? Boron trifluoride (BF3)
is perfectly nonpolar because the dipole vectors for each bond vectorially
cancel out. Ammonia (NH3) has an overall dipole because the vectors point
somewhat in one direction (Fig. 2.35).
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Figure 2.35. BF3 has no permanent EDM (by symmetry) whereas NH3 does.

2.16.3.1. Ammonia (NH3). Ammonia is nonplanar because of the presence
of a lone pair of electrons on the nitrogen atom. This can be seen by drawing
the Lewis structure (Fig. 2.36). Ammonia can also do hydrogen bonding
since it has N-H bonds.

HH N

H

Figure 2.36. Lewis structure of NH3.

2.16.3.2. Boron Trifluoride (BF3). To see that BF3 is planar we draw its
Lewis structure (Fig. 2.37). Boron has 3 valence electrons, whereas fluorine
has 7. We have a total of 3+3(7)=24 valence electrons, which is a multiple
of 8. There are no lone pairs on the central boron atom. Because fluorine is
more electronegative than boron, boron will see its 3 electrons pulled away
toward the F atoms.

B

F

F

F

Figure 2.37. Lewis structure of BF3.

There are no ionic interactions here. There are no hydrogen atoms, so there
cannot be any hydrogen bonds. This molecule is non-polar, because the 3
orientations of the dipole moments relative to the boron atom all cancel out
vectorially.
ionic H-bond dipole dispersion
no no no yes
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4 3

Figure 2.38. Structure of CF4 and CH3F. CF4 is nonpolar because the
vector sum of all bond dipoles is zero. CH3F is polar due to its lower
symmetry. The direction of the arrow indicates the orientation of the
permanent EDM.

2.16.4. Are CF4 and CH3F Polar or Nonpolar? CF4 is nonpolar be-
cause of geometry (Fig. 2.38). CH3F has an overall dipole because of the
CF bond. However, it does not participate in hydrogen bonding since it has
no H-F bonds. For CF4 we have:
ionic H-bond dipole dispersion
no no no yes

For CH3F we have:
ionic H-bond dipole dispersion
no no yes yes

P

Cl

ClCl P

Cl
Cl

Cl
100

204 pm

Figure 2.39. Structure of phosphorous trichloride.

2.16.5. Phosphorous Trichloride (PCl3). Phosphorous trichloride has
the Lewis structure and 3D representation shown in Fig. 2.39. For PCl3,
phosphorous (P) has 5 valence electrons whereas chlorine (Cl) has 7, for a
total of 5 + 3(7) = 26. The highest multiple of 8 is 24. The difference is 26
- 24 = 2, which tells us that there is 1 lone pair of 2 electrons on the central
phosphorus atom. Because Cl has 7 valence electrons, it needs 1 more to
get to 8, Cl wants to form 1 bond to acquire this extra electron. Therefore,
we draw 3 lone pairs on each chlorine (Cl) atom so that each Cl atom has 8
electrons. If we count all valence electrons in the structure, we have a total
of 26.
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In PCl3 we don’t have a metal attached to a non-metal. Thus, there are no
ionic interactions. There are no hydrogen bonding interactions because there
is no hydrogen atom. However, we do have dipolar interactions because the
molecule is polar: P has a lone pair of electrons whereas Cl has 3 (P atom is
more positively charged than Cl), leading to a dipole moment from each Cl
atom (negatively charged) to the P atom (positively charged). Their vector
sum (net dipole moment) points upward in Fig. 2.39. Finally, dispersion
forces are always present.
ionic H-bond dipole dispersion
no no yes yes

2.16.6. Boiling Points (B.P.) of Alkanes: Effects of Molar Mass. If
we have only VDW interactions among molecules, it is important to look at
other factors, such as number of electrons (polarizability), contact area and
π-bonding. Consider molecules that are all linear but whose molar mass
differs. In Fig. 2.40, the boiling points of n-alkanes increase with molar
mass because the dispersion force is stronger due to increased contact area
between dimers.
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Boiling point (°C) vs. No. of carbon atoms

Figure 2.40. Boiling point of several alkanes.

2.16.7. B.P. of n-pentane vs Neopentane: Effects of Molecular
Shape. Molar mass is not the only factor. Molecular shape also matters.
For n-pentane, the boiling point (B.P.) is higher than neopentane because
n-pentane makes contact with its neighbors using a larger contact area,
increasing the number of interactions possible.



2.16. Hard Sphere and Lennard-Jones Potentials 99

n-pentane (B.P. = 36.1◦C)

CH3

CH2

CH2

CH2

CH3

(large contact region here)

CH3

CH2

CH2

CH2

CH3

For neopentane the contact area is much smaller because the molecules
are nearly spherical, therfore decreasing the boiling point by reducing the
number of interactions possible:

neopentane (B.P. = 9.5◦C)
CH3

CCH3

CH3

CH3

(small contact region here)
CH3

CCH3

CH3

CH3

2.16.8. Dipole-Dipole Examples. For CH4 the molecule is nonpolar be-
cause of its symmetry. We note that each C-H bond is very weakly polar,
due to the very small difference in electronegativity ∆EN = 2.5− 2.1 = 0.4
between C and H.
For CCl4, the molecule is also nonpolar for the same reason (geometry).
Here, the difference in electronegativity in the C-Cl bonds is larger, ∆EN =
3.0− 2.1 = 0.9.
Chloroform (CHCl3) is polar because of its lower symmetry. The net dipole
moment points along the C-H bond direction.
This is shown below:
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CH4 is nonpolar CCl4 is nonpolar CHCl3 is polar
(due to symmetry) (due to symmetry) (C-H axis)

H

H
H

H

Cl

Cl
Cl

Cl

H

Cl
Cl

Cl

For C2H2F2, there are 3 possible isomers. Of the three shown, the first two
are polar while the third one is nonpolar:

polar polar nonpolar
(net left) (net down) 0

H

H

F

F

F

H

F

H

H

F

F

H

While CH2FCH2F looks nonpolar as drawn, a C-C single bond can rotate
freely. Thus, there are times when the dipole moments do not cancel each
other out. This residual (time-averaged) dipole moment is non-zero and the
molecule is polar on the average.

1,2-difluoroethane

F

C

H

H
C

F

H

H

2.16.9. Examples that Involve Hydrogen Bonding. H2O is more po-
lar than H2S. In fact, it can undergo hydrogen bonding with other water
molecules.
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H2O H2S
H-bond dipolar

H
O

H H
S

H

In Fig. 2.41, both molecules have the same atoms (C2H6O), but different
arrangements. Dimethyl ether is polar but its boiling point is lower than
ethanol, which has a much higher boiling point because it undergoes hydro-
gen bonding (due to the terminal O-H).

OH
Melting Point = -114.1

Boiling Point = 78.3

O

Melting Point = -138.5

Boiling Point = -22.0

*Hydrogen Bond

Figure 2.41. Effect of intermolecular bonding on boiling and melting
points. (Temperatures shown are in Celsius degrees.)

2.16.10. Combining it All: Ordering Compounds Based on Boil-
ing Points. Another typical question you may be asked to solve involves
ordering compounds in order of their boiling points. In the example below,
we have: NaCl, ethane, ethanol, difluoromethane.
You may be ask to arrange these molecules in order of increasing B.P. The
first step is to identify the dominant intermolecular interaction:
NaCl CH3CH3 CH3CH2OH CH2F2
ionic nonpolar H-bond dipolar

Note: CH2F2 does not form H-bonds. It’s a tetrahedral structure where all
H and F atoms are bound to the carbon (Fig. 2.42).

C

F

H
H

F

Figure 2.42. Structure of CH2F2.

Ordering according to B.P. gives:
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CH3CH3 < CH2F2 < CH3CH2OH < NaCl
(-89◦C) (-52◦C) (78◦C) (1413◦C)

2.16.10.1. Boiling Point: Periodic Table Trends. Substances with weaker
intermolecular forces lead to lower boiling points, Tb. For example, ionic
liquids have high boiling points because of the strong Coulomb interaction
among ions. NaCl has Tb ∼ 1,686 K. Helium boils at ∼ 4 K. Xenon has
a higher boiling point than helium because it has a higher polarizability.
Polar liquids (e.g. HCl) have higher boiling points than non-polar liquids
(e.g. N2). See Fig. 2.43.
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Figure 2.43. Periodic table trends affecting the boiling points. Ele-
ments from five different groups are shown: group 18 (red), group 14
(blue), group 15 (purple), group 17 (green) and group 16 (orange).

2.16.10.2. Example. State which intermolecular forces dominate among pairs
of molecules of the following substances: (a) F2(s), (b) HBr(l), (c) NH4Cl(s).
Solution: (a) Since F2 is nonpolar, VDW forces dominate. (b) Since HBr has
an EDM, dipole-dipole dominates. HBr does not form H-bonds. (c) Within
NH4Cl(s) there are ion-ion forces (between NH+

4 and Cl− ions). Between
pairs of NH4Cl molecules, there can be H-bonds (thanks to the N-H bonds).
NH4Cl also has a permanent EDM, so there are dipole-dipole forces. And
of course, VDW forces. The strongest intermolecular forces would be the
H-bonding.

2.17. Problems

Problem 30. Compare the magnitude of the gravitational force on a mol-
ecule to typical intermolecular forces. For the latter, assume an electrostatic
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(Coulomb) interaction between two elementary charges separated 1 nm apart.
There are 2 components to the gravitational force: the attraction of the
Earth, the attraction from nearest-neighbor molecules. Take the distance
between nearest-neighbor molecules to be 1 nm. Why do we discuss inter-
molecular forces in this chapter, but not gravity?

Solution. The gravitational force between two objects is F = G(m1m2)R−2,
where R is the distance between the centers of mass of the two objects,
m1,m2 are the masses of objects 1 and 2 (respectively) and G is the gravi-
tational constant, whose magnitude is 6.67×10−11 N.m2/kg2. We first con-
sider the gravitational force exerted on a molecule by planet Earth. Near
the surface of the Earth, F = mg, where g ∼ 9.81 m/s2. One proton weighs
1.672×10−27 kg. Then, F ≈ 1.64× 10−26 N.
Second, we consider the gravitational attractive forces between two nearby
molecules. For two hydrogen atoms separated R = 1 nm apart, this force is
F = (6.67× 10−11)(1.672× 10−27)2 · (1× 10−9)−2 ≈ 1.86× 10−46 N.
For electrostatic interactions, the forces are calculated from the Coulomb’s
law, which states that the force experienced by two charges q1, q2 sepa-
rated by a distance R has magnitude F = (4πε0)−1(q1q2)R−2. Electrostatic
charges of ions are on the order of 1.6 × 10−19 C. Typical intermolecu-
lar distances are a few Angstroms. Take R = 1 nm for example. Then,
F = (1.11× 10−10)(1.6× 10−19)2 · (10−9)−2 ≈ 2.8× 10−30 N.
We conclude that intermolecular electrostatic forces are 16 orders of magni-
tude smaller than intermolecular gravitational forces. Thus, intermolecular
gravitational forces can be neglected. On the other hand, the Earth’s grav-
itational force is 4 orders of magnitude stronger than electrostatic forces.
But unlike intermolecular forces, which have random directions, the Earth’s
gravitational field always points downward and has a net effect of causing
substances to flow. �

Problem 31. Calculate the force applied by one atom on another according
to a Lennard-Jones potential. Evaluate the force at the distances of 3.0, 3.8,
4.5 Å for oxygen. (For oxygen σ = 3.58 Å and ε = 1.622 × 10−21 J.) Is the
force attractive or repulsive at these points?

Solution. Starting from:

VLJ(R) = 4ε
[(

σ

R

)12
−
(
σ

R

)6
]

Take the (-ve) derivative of the LJ potential with respect to r to get the
force

FLJ(R) = −dV
dR = −4ε

(
6σ6

R7 −
12σ12

R13

)
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For 3.0 Å: 1.8 × 10−9 J/m, which is repulsive. For 3.8 Å: 2.9 × 10−11 J/m,
which is repulsive. For 4.5 Å: -1.1 × 10−11 J/m, which is attractive. [Note:
the unit J/m is equivalent to Newtons.] �

Problem 32. How can NaCl crystal dissolve in water when ionic forces in
the NaCl crystal (the “lattice energy” that holds the NaCl crystal together
is approximately 8.2 eV; the ion-ion bond strength in NaCl is 1.52 eV) are
stronger than ion-dipole forces? For the ion-dipole force between water
molecules and the ions in the crystal, use the formula (SI units)

V (R) = − Qp

4πεR2 ,

where R is the distance between the ion and the dipole (we assume a “point
dipole”), p is the electric dipole moment and Q is the ion charge (an electron
has charge Q = −1.602 × 10−19 C). The ion separation in NaCl crystal is
0.28 nm. For water molecules, p=1.85 Debye or 6.17×10−30 C.m in SI units,
since 1 D=3.336×10−30 C.m. ε is the dielectric permittivity. For vacuum,
ε = 8.85 × 10−12 F/m. Explain how it is possible for water to dissolve the
NaCl crystal in spite of the fact that the ion-dipole interaction is weaker
than the ion-ion interaction that holds the crystal together (since we know
this to be true from experiments).

Solution. For vacuum, 1/4πε0 = 8.99 × 109 N.m2.C−2. For an ion-dipole
distance of 2.5 Å, the interaction strength is
(1.85 ∗ 3.336× 10−30)(1.6× 10−19)(8.99× 109)

(2.5× 10−10)2 = 1.42× 10−19 J = 0.88 eV

If we consider the lattice energy of NaCl (8.2 eV), approximately 9 water
molecules are needed (on average) to break apart each ion in the NaCl
structure. On the other hand, if we consider the ion-ion bond strength of
NaCl (1.52 eV), about 2 water molecules are needed per ion. (So the actual
number of water molecules per ion of NaCl is between 2 and 9.) �

Problem 33. Imagine that NaCl crystal is completely dissolved in water.
The more NaCl we dissolve, the more Na+ and Cl− ions are present in
water. The solution consists of metal aquo complexes with the formula
[Na(H2O)8]+, with Na-O distance of 250 pm. The chloride ions are also
strongly solvated, each being surrounded by an average of 6 molecules of
water. When solvated the Na and Cl ions are stable. There will come a point
where too many ions present in aqueous solution will lead to precipitation
(Na+ and Cl− ions will become so close to each other, in terms of average
separation, that the formation of NaCl will be preferred over dissolution).
What is this concentration, and how does it compare with the solubility
limit of NaCl in water (357 mg/mL at 25◦C)? (Hint: consider the point
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where the ion-ion interaction energy becomes stronger than the ion-dipole
interaction energy.)

Solution. Notation: We use V to denote volume and V (R) to denote in-
termolecular interaction strength. Let us assume n = 7 water molecules on
average per hydrated ion complex, so we can treat the case of Na and Cl
simultaneously. (It’s no problem to take n = 8 and n = 6; I am doing this
simplification only to save space.) This calculation can only be approximate
since we disregard the screening of charges and the dielectric constant of the
medium. We also neglect any dynamical effects and neglect the hydrogen
bonding between the inner and outer hydration layers.

It is instructive to look at two different limits. We start with the worst
possible case scenario. Let us consider the size of water molecule, 2.75 Å,
and atomic radius of Na+ (1.02 Å) and Cl− (1.81 Å). The worse case scenario
is an ion-dipole separation of R = 2.75+1.81 = 4.56 Å. You can think of this
as a rough attempt at modeling hydrogen bonding between the inner and
outer hydration layers; the net effect being to “pull” inner water molecules
away from the ion. Then, V (R) = − Qp

4πεR2 evaluates numerically to

= 8.99× 109 · (1.85 ∗ 3.336× 10−30)(1.6× 10−19)
(456× 10−12)2 = 4.23× 10−20 J,

Multiplying by 7 and solving for R in the Coulomb’s law:

7 ∗ (4.23× 10−20 J) = q1q2
4πεR = 8.99× 109 · (1.6× 10−19)2

R

which gives R=7.7 Å. Let’s round this up to 1 nm. For inter-ion separation

of 1 nm, the concentration of ions, N
V

= 1
/

4
3πR

3, is

= 5.2× 1026 ions/m3 = 868 mol/m3 ∗ (0.001 m3/L) = 0.868 mol/L.
We want to compare this to the solubility of NaCl in water (359 g/L). The
molar mass of Na of Cl ions is 25 or 35 g/mol, respectively (29 g/mol avg.).
Then,

0.868 mol/L ∗ 29 g/mol = 25 g/L.
which is too low. This is ok because it is only an estimate for the worst case
scenario.
Let us use instead the data provided in the problem (R=250 pm for Na-O
distance). The ion-dipole energy between ion and water, V (R) = − Qp

4πεR2 ,



106 2. Intermolecular Interactions

is

= 8.99×109 · (1.85 ∗ 3.336× 10−30)(1.6× 10−19)
(250× 10−12)2 = 1.42×10−19 J = 0.88 eV,

and since we have n = 7 such water molecules bound to the ion, the total
binding energy is 6.16 eV. Our task is to find R (distance between Na and Cl
ions) such that the ion-ion interaction energy is larger than 6.16 eV. Setting
E(ion− ion) = 6.16 eV and invoking Coulomb’s law:

7 ∗ (1.42× 10−19 J) = q1q2
4πεR = 8.99× 109 · (1.6× 10−19)2

R

which gives R of approximately 2.3 Å. Then, N
V

= 1
/

4
3πR

3 is

= 1.96× 1028 ions/m3 = 32, 583 mol/m3 ∗ (0.001 m3/L) = 32.6 mol/L,
where

32.6 mol/L ∗ 29 g/mol = 945 g/L.
This overshoots the actual solubility limit of NaCl (359 g/L), but is off only
by a factor of 3. We found that the solubility limit lies between 25 and 925
g/L. �

Problem 34. Consider β-sheets that are stacked in a protein. While the
strength of interaction between individual sheet elements is small, the over-
all interaction between sheets is strong because of cooperative effects (i.e.
the sum of a very large number of small interactions leads to a strong inter-
action). Estimate the total energy of interaction (bonding energy) between
pairs of β-sheets.

Solution. Let us consider the case of silk fibroin. β-sheets are stabilized
by hydrogen bonding between peptide strands. In a β-sheet, regions of
the polypeptide backbone lie parallel to each other and are connected by
hydrogen bonds. The hydrogen bonds are formed between the carbonyl
oxygen and the amine hydrogen of amino acid (AA) in adjacent strands
in a polypeptide (i.e., the hydrogen bonds are inter-stand). The distance
between adjacent amino acids is 3.5 Å.
The protein fibroin in silk has a repeating sequence of amino acids: mostly
Gly-Ser-Gly-Ala-Gly-Ala, extending in length to over 5000 residues.19 5,000
residues correspond to a length of 3.5 Å* 5000 = 1,750 nm = 1.75 µm.
VDW interaction are weak (0.4-4.0 kJ/mol compared with 12-30 kJ/mol for
a hydrogen bond).20 Thus, along the first dimension (peptide chain), there

19From: http://www.biotopics.co.uk/jsmol/fibroin.html
20From: https://chem.libretexts.org/Core/Physical and Theoretical Chemistry/
Physical Properties of Matter/Atomic and Molecular Properties/
Intermolecular Forces/Specific Interactions/Van Der Waals Interactions
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are 5000 residues; assume 1 hydrogen bond per residue (0.4-4.0 kJ/mol), and
one VDW interaction (12-30 kJ/mol), the total interaction strength rang-
ing from 5000*(0.4+12)=62,000 kJ/mol to 5000*(4+30)=170,000 kJ/mol.
Along the second dimension, let’s assume it is 1.75 µm long, and that each
neighboring AA chain are 5.5+3.7=11.2 Å apart (see figure below).
The structure of silk fibroin is:21

Thus, there are approximately 1,750 nm/11.2 Å= 1562 AA chains.
For a pair of sheets, the total interaction energy is between
1562*62,000 kJ/mol = 96,844,000 kJ/mol to
1562*170,000 kJ/mol = 265,540,000 kJ/mol.
And since 1 eV = 96.485 kJ/mol, this energy range is 1 to 2.7 MeV, a very
large binding energy. If we assume only VDW bonding, the total energy is
in the range
1562*5000*(0.4)=3,124,000 kJ/mol = 32 keV to
1562*5000*(4)=31,240,000 kJ/mol = 323 keV.
This should be compared against the strength of covalent bonds
(200-1,000 kJ/mol) and ionic interactions (3,000 kJ/mol; for NaCl, 7.97
eV). We see that VDW interaction between β-sheets is several orders of
magnitude stronger. This is a very strong bond, which is a consequence
of the cooperative effect of many small interactions. Breaking such a bond
would require enormous forces (or a suitable enzyme). �

Problem 35. Hydrogen bonding is an intermolecular force often denoted
by X − H · · · X where X=F,O, or N and the dotted line is the intermolecular
attraction between molecules of a dimer. This attraction involves a strongly
21https://www.sciencedirect.com/science/article/pii/S0079670015000155
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negative partial charge (in fact, a lone pair) on X pulling the positively
charged H atom from the neighboring molecule.
(a) Does H2O or NH3 form stronger hydrogen bonds with itself? State
reasons to support your answer.
(b) Does NH4

+ hydrogen bond with itself, why or why not?

Solution. (a) H2O · · · H2O hydrogen bond is stronger than NH3 · · · NH3
bond because (1) the electronegativity difference between O and H is larger
than that between N and H and (2) the hydrogen bonding in H2O is linear
whereas the hydrogen bonding in NH3 is bent.

(b) Draw the Lewis structure: N H
H

H
H

. There are no lone electron pairs!

Thus, NH4
+ does not hydrogen-bond with itself because it does not have

lone pairs to participate in hydrogen bonding. �

Problem 36. Consider the compounds CHCl3 and CHBr3 and compare the
strengths of their dipole-dipole force and the strengths of their VDW forces.
The respective boiling points are 61◦C and 149◦C. For these compounds,
which type of intermolecular force (dipole-dipole or VDW) contributes more
to the apparent difference in boiling points?

Solution. CHCl3 has a stronger dipole-dipole force among its dimers be-
cause Cl is more electronegative than Br. However, the difference in elec-
tronegativities ∆EN = 3.0−2.5 = 0.5 for C-Cl versus ∆EN = 2.8−2.5 = 0.3
for C-Br is small. Thus, differences in the dipole-dipole interaction strength
are small (0.3 vs 0.5). CHBr3 has a stronger VDW force because Br is a
heavier atom than Cl and has more electrons. But CHBr3 has the higher
boiling point, so differences in VDW interactions must be stronger than
differences in the d-d interaction. �

Problem 37. Calculate the mean-square displacement (msd) x2, for a freely
diffusing particle (no boundaries). The average of x2 is defined as x2 =∫
R x

2pt(x)dx, where pt(x) is the PDF that solves the diffusion equation:

pt(x) = 1√
4πDt

exp
(
−x2

4Dt

)
The product pt(x)dx is the probability that a particle will be found in the
interval [x, x + dx] at time t when it was initially at x = 0 at time t = 0.
Using the formula for Gaussian integration I gave you in class you can easily
check that this PDF is normalized, i.e.

∫
R pt(x)dx = 1. Show by direct

calculation that x2 = 2Dt. Note: the reason we don’t use x to quantify the
displacement of particles undergoing diffusion is that x equals zero and is
therefore trivial and non-informative. We instead use the second moment x2,
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which is nonzero because of the square. To get units of length we can take
the square root,

√
x2, which is called the “root-mean-square” displacement.

Solution. By definition,

x2 =
∫
R

1√
4πDt

x2 exp
(
−x2

4Dt

)
dx.

Let a = 1
4Dt , and observe that (using formula for Gaussian integral provided

in class)∫
R
x2e−ax

2dx = − d
da

∫
R
e−ax

2dx = − d
da

√
π

a
= 1

2

√
π

a3 =
√
π(4Dt)3

2 .

Thus,

x2 = 1√
4πDt

√
π(4Dt)3

2 = 2Dt.

�

Problem 38. The dipole moment ~p = q~d is the product of the charge q and
the displacement vector ~d pointing from positive to negative charge. Use
vector addition and the diagram below to calculate the dipole moment for a
water molecule ~pH2O given that the O-H+ bond moment |~pO−H+ | = 1.51 D.

H H
O

104.5

p

Solution.
|~pH2O| = 2 |~pO−H+ | cos(1

2θ) = 2× (1.51 D) cos(52.25◦) = 1.85 D
�

Problem 39. The spherical coordinate expression for the dipole-dipole in-
teraction energy in the point dipole approximation is (Section 2.4.2):

V (R, θ1, θ2, φ) = − |~pA||~pB|4πε0εR3 [2 cos θ1 cos θ2 − sin θ1 sin θ2 cosφ]

where ~pA and ~pB are the dipole moments of dipoles A and B, respec-
tively. They are vectors with length and orientation. |~pA| and |~pB| are
the corresponding magnitudes (strengths) of the dipole moments. ε0 =
8.854 × 10−12 F m−1 is the vacuum permittivity, ε is the dimensionless di-
electric constant of the solvent (ε = 1 in the case of vacuum) and R is the
inter-dipole center-to-center separation length (assuming “point dipoles”,
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i.e. infinitely small dipoles). The angles θ1, θ2 and φ, which describe the
relative orientations of the dipoles, are illustrated in Fig. 2.19.
(a) Determine the expression for the maximum attraction energy.

(b) Consider the situation when the dipoles are aligned anti-parallel to one
another (still undergoing attractive interaction). Compare this energy to
your answer in part (a).

(c) Are dipole-dipole forces alone strong enough to hold pure polar liquids
of dipole moment 1 D together without the contribution of any other in-
termolecular forces? Compare your answer to part (a) or (b) at typical
liquid-phase inter-dipole separations of 0.29 - 0.36 nm to room temperature
thermal energy kBT at 298 K.

Solution. (a) Maximum attraction occurs when θ1 = θ2 = 0. (Please note
that attraction here is twice as strong as if we had θ1 = 90◦, θ2 = 180◦.)

V (R, 0, 0, φ) = − |~pA||~pB|(2πε0ε)R3

The negative sign denotes attractive force.
(b) If the dipoles are anti-parallel, θ1 = 90◦ and θ2 = 180◦, the interaction
energy is (φ = 0):

V (R, 0, 0, 0) = − |~pA||~pB|(4πε0ε)R3

which is still attractive because of the negative sign. Except that it differs
by a factor of 2 from the expression in a.
(c) Yes, for strongly polar liquids of high dielectric constant. �

Problem 40. In Section 2.10 we defined the thermally averaged energy
by angle-averaging the Boltzmann factor corresponding to some interaction
energy V (R,Ω):

e−V (R)/kBT ≡
〈
e−V (R,Ω)/kBT

〉
=
∫
e−V (R,Ω)/kBTdΩ∫

dΩ
In spherical coordinates the solid angle element is dΩ = sin θ dθ dφ, where
θ, φ are polar and azimuthal angles, respectively. Suppose we are interested
in the low-temperature limit. Let us write V (R,Ω0) for the lowest energy
configuration (ground state energy). We then write the remaining energies
as differences from the lowest energy: ∆V (R,Ω) = V (R,Ω)−V (R,Ω0). The
ground state energy corresponds to ∆V = 0. Then,

e−V (R)/kBT = e−V0(R,Ω0)/kBT
∫
e−∆V (R,Ω)/kBTdΩ∫
dΩ ∼ const.× e−V (R,Ω0)/kBT ,



2.17. Problems 111

since when T → 0, only the term e−∆V (R,Ω0)/kBT = 1 contributes to the
integral. The value of the integral depends on how fast ∆V falls to zero as
function of Ω. Take log of both sides:

−V (R)/kBT = log(const)− V (R,Ω0)/kBT.
In the low temperature limit, the term log(const) is negligible compared
to the 1/T terms and we obtain the important result that the thermally
averaged intermolecular energy is simply the ground state energy:

V (R) = V (R,Ω0) as T → 0.

(a) Let us take the case of the charge-dipole interaction. The interaction
energy is

V (R, Ω) = −Qp cos θ
4πε0R2 ,

where Q is the electric charge (in Coulombs), p is the strength of the dipole
moment, R is the charge-dipole separation, θ is the angle of the dipole tilt
with respect to the charge-dipole axis, as shown in Fig. 2.17. Using the
procedure outlined above, calculate the thermally averaged charge-dipole
interaction strength in the low temperature limit.

(b) The high temperature regime occurs when V (R,Ω) < kBT . Calculate
the charge-dipole interaction at high temperatures by expanding

e−V (R)/kBT ≡
〈
e−V (R,Ω)/kBT

〉
=
∫
e−V (R,Ω)/kBTdΩ∫

dΩ
Explain what happens to V (R) in the limit T →∞.

(c) The Boltzmann-averaged dipole-dipole interaction is known as the Kee-
som interaction and it is attractive and temperature dependent. Recall the
dipole-dipole interaction potential for static dipoles can be written as (see
Fig. 2.19):

V (R, θ1, θ2, φ) = − |~pA||~pB|4πε0εR3 [2 cos θ1 cos θ2 − sin θ1 sin θ2 cosφ]

Explain the behavior of the interaction when kBT is larger than the dipole-
dipole interaction energy.

(d) Calculate the thermal energy kBT at 298 K in eV and J.

(e) What is the inter-dipole separation at which orientational order breaks
down for nitrobenzene in carbon tetrachloride? εcarbon tetrachloride = 2.24,
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|~pnitrobenzene| = 4.2 D and at T = 298 K.

(f) What is the value of the Keesom interaction energy at the high temper-
ature limit (i.e., as T →∞)?

(g) Calculate the dipole-dipole interaction energy at the low temperature
limit.

(h) Consider the 1/R2 vs. 1/R4 dependence of the charge-dipole interaction
energy at the low-T vs. high-T limits, respectively. Also consider the dipole-
dipole interaction at its low-T limit (1/R3) and high-T limit (1/R6). What
is the significance of these differences in the R-dependence when T varies?
Why is the interaction becoming more short-ranged in the high-T limit?

Solution. (a) Since V (R) = V (R,Ω0), we need to find V (R,Ω0), the ground
state energy. Suppose Q > 0. In that case, the minimum of V (R) with
respect to θ is found by inspection of the expression for V (R,Ω), which
shows that the minimum value occurs when cos θ = 1, or when θ = n2π,
n = 0, 1, 2, . . . . Then, V (R,Ω0) = −(Qp)/(4πε0R2). If Q < 0, we would
need cos θ = −1, which would occur when θ = π(2n+ 1), n = 0, 1, 2, 3, . . . .
b) Since we are in the high-T limit, we may Taylor-expand both sides

e−V (R)/kBT = 1− V (R)
kBT

+ ... =
〈

1− V (R, Ω)
kBT

+ 1
2

(
V (R, Ω)
kBT

)2
− ...

〉
Cancelling out the 1’s on both sides and multiplying out by kBT leaves us
with:

V (R) =
〈
V (R,Ω)− V (R, Ω)2

2kBT
+ ...

〉
Substituting the charge-dipole interaction for V (R,Ω)

V (R) =
〈
−Qp cos θ

4πε0R2 −
(
Qp cos θ
4πε0R2

)2 cos2 θ

2kBT
+ ...

〉
The first term vanishes since the average 〈cos θ〉 = 0. The second term
survives:

V (R) ≈ − Q2p2

6(4πε0)2(kBT )R4

where we used the fact that 〈cos4 θ〉 is a nonzero constant (you can easily
check that

∫ 1
−1 x

4dx is nonzero by symmetry of x4, where x = cos θ). When
T → ∞, the interaction energy V (R) vanishes. As the temperature of the
system increases, more molecules have sufficient energy to occupy the less
favorable configurations. The higher, less favorable, configurations are those
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that give less favorable interactions between the dipoles (i.e., higher poten-
tial energy configurations).

(c) At thermal energies kBT greater than the dipole-dipole interaction en-
ergy, the Keesom interaction averages over all angles and dipoles no longer
have orientational preference to one another. The angle-averaged Keesom
interaction potential and its condition is given below.

V (R)Keesom = − |~pA|2|~pB|2

3(4πε0ε)2(kBT )R6 for kBT >
|~pA||~pB|

(4πε0ε)R3

(d)
kBT = (1.38× 10−23 J/K)(298 K) = 4.11× 10−21 J

4.11× 10−21 J
( 1 eV

1.602× 10−19 J

)
= 0.0257 eV

(e)

R =
(

|~p|2

(4πε0ε)kBT

)1/3

=
( ((3.34× 10−30 C.m.D−1)(4.2 D))2

4π(8.85× 10−12 F m−1)(2.24)(1.38× 10−23 J K−1)(298 K)

)1/3

=0.577 nm
(f) As T →∞, V (R)Keesom → 0.
g) In the low temperature limit, the energy is just the ground state energy.
This is the result obtained in (a).
(h) As discussed in lecture, in the high-T limit, there is an equal mix of
ground and excited state configurations. When these average-out the in-
teraction, it leads to partial cancellation and weakening of the interaction.
This partial cancellation takes the long-range interaction (1/R3) and turns
it into a short-range (1/R6) interaction. �

Problem 41. Model the dissolution of NaCl in water by comparing the
lattice energy of an NaCl crystal to the number of ion-dipole interactions
of Na+ and Cl− with the dipole of water that it would take to equal this
energy according to the steps below.

(a) Calculate the ion-ion interaction energy between sodium cation and chlo-
ride anion by taking R = 0.282 nm as the distance between the ion centers
(an experimental value determined by crystallography) in the NaCl crystal
lattice and using the Coulomb interaction (ion-ion) below. Assume vacuum
so ε = 1. The variable z referes to the charge valency of the ion (e.g., z =
1 for Cl−, z = 2 for Ca2+, z = 3 for Fe3+, etc.). z times the elementary
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charge of the electron, e, gives the charge of the ion. The experimentally
determined value for the NaCl lattice energy is 787 kJ/mol. How close does
your estimate compare to the experimental lattice energy? Propose reasons
why your answer may deviate from the experimental value.

V (R)ion-ion = z1z2e
2

4πε0εR
(b) Calculate how many molecules of water it would take to equal the ex-
perimentally determined lattice energy of 787 kJ/mol for an NaCl crystal
based entirely on ion-dipole interactions between water, Na+ and Cl−. Use
the value R = 0.354 nm, the average distance between the center of sodium
or chloride ions and the water dipole, in your calculation. Take the angle θ
to be equal to 0◦, the ion-dipole orientation that yields a maximum value for
the potential energy. Assume vacuum so ε = 1 for a more direct comparison
to the lattice energy conditions. Note that in the diagram, Q represents the
magnitude of the charge participating in the charge-dipole interaction. For
the case of monovalent ions such as Na+ and Cl−, ze = Q where z represents
ion valency and e represents the elementary charge e = 1.602×10−19 C. See
Fig. 2.17 for geometry.

V (R)ion-dipole = −ze|~p| cos θ
4πε0εR2

(c) Convert the solubility limit of NaCl in water (36.0 g/100. mL) to a mole
fraction and compare your answer to the mole fraction of 1 mol NaCl per
mol H2O from your answer to part (b). How close was your estimate to the
experimental value?

Solution. (a)

V (R)ion-ion =(1)(1)(1.602× 10−19 C)2(6.022× 1023 mol−1)
4π(8.854× 10−12 F m−1)(1)(0.282× 10−9 m)

=493 kJ/mol
This answer is not bad for a first order estimate but deviates significantly
due to the long-range nature of Coulombic interactions. Ions other than
nearest neighbors can interact with one another and must be considered. In
more rigorous models of lattice energies, the term that accounts for this long-
range interaction is called the Madelung constant. Furthermore, repulsions
between ions of the same charge in the lattice are also significant.
(b)

nH2O
nNaCl

× V (R)ion-dip. = V (R)ion-ion



2.17. Problems 115

where V (R)ion-dip. evaluates to:

=− ze|~p| cos θ
4πε0εR2

=− (1)(1.602× 10−19 C)(6.17× 10−30 C.m)(1)(6.022× 1023 mol−1)
4π(8.854× 10−12 F.m−1)(1)(0.354× 10−9 m)2

=− 42.7 kJ/mol
Considering only the absolute magnitudes of the energies and solving for
moles of water

nH2O
nNaCl

= 787 kJ/mol
42.7 kJ/mol = 18.4

We find that it would take 18 molecules of water to dissolve 1 molecule of
NaCl. In other words, 9 molecules of water per ion. Please note that in this
problem and in the previous one, we have assumed that ε = 1 (vacuum).
We would get different results if we used the dielectric constant of each
respective medium.
(c)

36.0 g NaCl
100. mL H2O ≈

36.0 g NaCl
100. g H2O

36.0 g NaCl
100. g H2O

( 18.02g/mol H2O
58.44 g/mol NaCl

)
= 0.111

Taking the reciprocal of this mole fraction gives a number of 9 moles of water
for every mole of NaCl at the solubility limit which is surprisingly close to
the coarse estimate of 18.4 from part (b). Please note that this assumes
ions are homogeneously and randomly distributed in solutions. This is not
the case (ions of opposing charge associate loosely, and there is also an ionic
atmosphere forming). �

Problem 42. At 90◦C, the vapor pressure of methylbenzene is 400. Torr
and that of 1,2-dimethylbenzene is 150. Torr. What is the composition
of the liquid mixture that boils at 90◦C when the pressure is 0.50 atm?
Calculate the composition of the vapor produced.

Solution. Combine Dalton’s law and Raoult’s law.
Ptotal = PA + PB = XAP

◦
A + (1−XA)P ◦B

P ◦MB = 400. Torr
P ◦1,2-DMB = 150. Torr

Solve for XMB = XA

XA = Ptotal − P ◦B
P ◦A − P ◦B
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Boiling occurs when

Ptotal = 0.50 atm
(760. Torr

1 atm
)

= 380 Torr

Substituting
XA = 380 Torr− 150. Torr

400. Torr− 150. Torr = 0.920

X1,2-DMB = XB = 1− 0.920 = 0.080
Vapor phase composition is given by

YMB = YA = XAP
◦
A

P ◦B + (P ◦A − P ◦B)XA

= (0.920)(400. atm)
150. atm + (400. atm− 150. atm)(0.920) = 0.968

Y1,2-DMB = YB = 1− 0.968 = 0.032
�

Problem 43. Isothermal compressibility is a material property defined by:

κ = − 1
V

(
∂V

∂P

)
T

(a) Calculate κ for an ideal gas.
(b) Calculate κ for a VDW gas.

Solution. (a)

V = nRT

P
, κ = − 1

V

(
∂V

∂P

)
T

= − P

nRT

(
− nRT

P 2

)
= 1
P

(b)

κ = − 1
V

(
∂V

∂P

)
T

= − 1
V

(
∂P

∂V

)−1

T
, P = nRT

V − nb
− an2

V 2(
∂P

∂V

)
T

= − nRT

(V − nb)2 + 2an2

V 3

κ = − 1
V

1(
− nRT

(V−nb)2 + 2an2

V 3

) = (V − nb)2 · V −1

nRT − 2an2(V − nb) · V −3

�

Problem 44. Calculate the thermal expansion coefficient, α = 1
V

(
∂V
∂T

)
P

,
for ideal and VDW gas.

Solution. Idea gas was done in class, α = 1/T . Regarding V as a function
of temperature, V = V (T ), we can solve for

(
∂V
∂T

)
P

by differentiation:

∂

∂T

[(
P + a

n2

V 2
)(
V − nb

)
= nRT

]
P
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∂

∂T

[
PV − Pnb+ a

n2

V
− ab n

3

V 2 = nRT
]
P(∂V

∂T

)
P

(
P − a n

2

V 2 + 2ab n
3

V 3

)
= nR(∂V

∂T

)
P

= nR

P − a n2

V 2 + 2ab n3

V 3

and then divide by V to arrive at the result.

α = 1
V

(∂V
∂T

)
P

= nR

PV − an2

V + 2ab n3

V 2

�

Problem 45. The Lennard-Jones potential is as follows: V (r) = 4ε[(σ/r)12−
(σ/r)6], where ε and σ are constants. The ε corresponds to the potential
well depth at the equilibrium intermolecular (interatomic) distance. (i.e.
where the potential energy is a minimum). Calculate the intermolecular
(interatomic) distance in Å that corresponds to ε for a He..He interaction.
Derive an expression in terms of σ for this distance for any atomic/molecular
interaction.

Solution. You might start out by sketching a potential energy curve. From
such a graph we see that the distance we need to calculate occurs at the
minimum of the function, so one technique to calculate this r is to take the
derivative of the function and set it equal to zero and solve for an r value
that makes the derivative equal to zero.
You may also want to find the constants for He.

ε = 1.41× 10−22 J, σ = 2.56× 10−10 m = 2.56 Å.

V (r) = 4ε
[(

σ

r

)12
−
(
σ

r

)6
]

V (r) = 4εσ12r−12 − 4εσ6r−6.

dV (r)
dr = (−12)(4ε)σ12r−11 − (−6)(4ε)(σ6)(r−5)

= (−6)(4ε)(σ)
[
2
(
σ

r

)11
−
(
σ

r

)5
]

= 0

When the square bracket equals zero, dV/dr = 0. Thus, 2(σ11/r11) −
(σ5/r5) = 0 and 2(σ11/r11) = (σ5/r5) which gives 2(σ)6 = (r)6 and r =
(2σ6)1/6 = σ(2)1/6 = σ(1.122). This is the general expression in terms of σ
for the distance r. Now, plug in σ for He to obtain the specific answer

(2.56 Å)(1.122) = 2.87 Å
for the He...He interaction. �





Chapter 3

Properties of Matter

The bulk properties of gases, liquids and solids — molar volume, density,
compressibility, and thermal expansion, among others — differ widely, often
by orders of magnitude. All of these properties depend on temperature
and pressure. Gases, liquids and solids differ by their local structure. We
have outlined the most important forces responsible for interactions between
molecules. These forces help determine the structure of solids and liquids,
solubility limits for different solutes, surface tension, boiling points, melting
points, etc.

3.1. Structure of Liquids, Solids and Gases

Figure 3.1 illustrates the packing structure of solids (left), liquids (middle)
and gases (right). As the Figure illustrates, gases are isolated molecules.
Liquids are packed molecules, but the packing shows little ordering. Solids
can be ordered.

Figure 3.1. Structure of solids, liquids and gases.
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3.1.1. Density. Liquids and solids are dense: their density is about 1,000
times larger than gases. However, they differ in their ordering: solids are
often crystalline whereas liquids are usually disordered. Solids can also be
disordered (amorphous). Gases are dilute and disordered.

3.1.2. Compressibility. Gases are compressible whereas liquids and solids
are said to be incompressible. (Liquids and solids can be compressed slightly,
but much less than gases can be compressed.) The isothermal compressibil-
ity κ of a substance is the change in its volume in response to a change in
the applied pressure under conditions of constant temperature. The formal
definition is:

κ = − 1
V

(
∂V

∂P

)
T
≈ − 1

V

(∆V
∆P

)
T

where the approximation is good in the limit of small ∆P and ∆V . This
says that κ is the (negative) fractional change in volume in response to a
small pressure change. Its unit are inverse pressure. The value of κ for
a real gas will depend on molecular properties such as molecular size and
intermolecular interactions: for example, we expect that κ decreases with
molecular size but increases as intermolecular interaction strength increases.
On the other hand, let us take the ideal gas. Since PV = nRT , V = nRT/P .
Thus, the derivative with respect to P is ∂V/∂P = −nRT/P 2. Then,
κ = −(1/V )(−nRT/P 2), and inserting V = nRT/P gives:

κ = 1
P
.

Thus, the lower the pressure, the higher the compressibility. The higher the
pressure (in the container) the less compressible the gas is. Also, note that
κ is independent of the gas type, as expected for an ideal gas.

Homework problem: calculate the isothermal compressibility of a VDW gas
and compare with the case of an ideal gas.

3.1.3. Mean Free Path. The mean free path is defined as the average
distance traveled by a molecule (or atom/particle) between successive col-
lisions. In Section 1.5.2 we derived an expression for the mean free path
in gases using arguments from kinetic theory. The collision causes the par-
ticles/molecules to change direction or energy. If the collisions are elastic,
total momentum and total energy are conserved quantities. At ambient
pressure, there are approximately 1019 molecules/cc and the mean free path
is on the order of 70 nm. The mean free path is inversely proportional to
the gas density.
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In a gas, the mean free path (λ) is much larger than the molecular diameter
d: λ � d. In a liquid, the mean free path is less than d: λ < d. In a solid
there exists no concept of mean free path.

3.1.4. Volume. In a gas, the volume is inversely proportional to the pres-
sure: V ∝ P−1. In a liquid or solid, the volume remains mostly constant.

3.1.5. Thermal Expansion. When a material such as a solid is heated it
will expand because of the increase in interatomic distances within the lattice
as a result of increased thermal vibrations (phonons). This is quantified by
the coefficient of thermal expansion:

α = 1
V

(
∂V

∂T

)
P
≈ 1
V

(∆V
∆T

)
P
,

where the approximation holds in the limit of small ∆T and ∆V . The sub-
script P indicates constant pressure. For solids and liquids, this coefficient
is on the order of 0.02% per degrees Celsius, which is much smaller than in
the case of a gas.

3.1.6. Diffusion Coefficient. In Section 1.5.2 we derived an expression
for the diffusion coefficient of gases using arguments from kinetic theory. In
a gas, molecular diffusion is fast: D ∼ 0.2 cm2/s. In a liquid, the diffusion
is moderate: D ∼ 2 × 10−5 cm2/s. In a solid, diffusion is slow: D ∼
2 × 10−9 cm2/s for hydrogen in iron or D ∼ 10−30 cm2/s for aluminum in
copper.
Note: “aluminum in copper” refers to the diffusion of aluminum atoms
in a copper lattice. When specifying diffusion coefficients one must indi-
cate the diffusing substance and the surrounding matrix. If only one sub-
stance is specified, this refers to the “self-diffusion” coefficient, i.e. how fast
atoms/molecules move within the same substance.

3.2. Effusion

Effusion is the flow of gas out of a container through a tiny hole (pinhole)
as illustrated in Fig. 3.2. The effusion rate can be computed from the rate
of collisions at the wall. The latter is proportional to:

N

V
vA ∝ N

V

√
8kBT
πm

A.

Suppose that a container of volume V is held at temperature T and contains
a mixture of two gases A and B (NA molecules of A and NB molecules of
B). This leads to:

rate of effusion of A
rate of effusion of B = NA

NB

√
mB

mA
.
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Hole

Vacuum

Figure 3.2. Effusion of a gas from a box through a small nozzle (hole).

This is Graham’s law of effusion. A rigorous derivation requires arguments
from the kinetic theory of gases. It was used in the past as a technique
to separate isotopes by consecutive stages of enrichment. This technique
was later replaced by the gas centrifuge method where the centrifugal force
creates a gradient of molecules/atoms of different weights. Nowadays, the
technique of laser isotope separation is the method of choice because of its
much higher efficiency.

3.3. Phase Equilibrium

Figure 3.3. Approach to equilibrium in evaporation and condensa-
tion. Initially, the pressure above the liquid is very low, and many more
molecules leave the liquid surface than return to it. As time passes,
more molecules fill the gas phase until the equilibrium vapor pressure
is approached; the rates of evaporation and condensation then become
equal. Three points in time are illustrated in Fig. 3.4.

More than one phases (solid, liquid, gas) can co-exist. Suppose we evacuate
a flask and put liquid water in it, with the temperature held at 25◦C. We
then monitor the pressure of water vapor inside the flask. At time t = 0, the
pressure of water vapor begins to rise from zero. It increases with time and
gradually levels off at a value of 0.03126 atm, which is the vapor pressure
of water at 25◦C. The contents of the flask have reached equilibrium, a
condition in which no further changes in macroscopic properties occur as
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long as the system remains isolated. If some of the water vapor that has
formed is removed, additional water evaporates from the liquid to reestablish
the same vapor pressure, Pvap(H2O)=0.03126 atm.

Figure 3.4. Schematic representation of the dynamics illustrated in
Fig. 3.3, at three different points in time: (left) t = 0, (middle)
t=intermediate and (right) t =∞.

What is happening on a microscopic scale to cause this spontaneous move-
ment of the system toward equilibrium? According to kinetic theory, the
molecules of water in the liquid are in a constant state of thermal motion.
Some of those near the surface are moving fast enough to escape the at-
tractive forces holding them in the liquid; this process of evaporation causes
the pressure of the water vapor to increase. As the number of molecules in
the vapor phase increases, the reverse process begins to occur: molecules in
the vapor strike the surface of the liquid, and some are captured, leading
to condensation. As the pressure of the gas increases, the rate of conden-
sation increases until it balances the rate of evaporation from the surface
(see Figs. 3.3 and 3.4). Once this occurs, there is no further net flow of
matter from one phase to the other; the system has reached phase equilib-
rium, characterized by a particular value of the water vapor pressure. Water
molecules continue to evaporate from the surface of the liquid, but other wa-
ter molecules return to the liquid from the vapor at an equal rate. A similar
phase equilibrium is established between an ice cube and liquid water at the
freezing point.
Vapor pressure depends on temperature and type of substance, as shown in
Fig. 3.5. For fixed volume and number of moles, the temperature at which
the vapor pressure equals 1 atm defines the normal boiling point of a
liquid and the normal sublimation point of a solid.

3.4. Phase Transitions

Suppose 1 mol of gaseous sulfur dioxide is compressed at fixed temperature
of 30◦C. The volume of the substance is measured at each pressure, and a
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Figure 3.5. Temperature dependence of vapor pressure for different
substances.

graph of volume against pressure is constructed (Fig. 3.6). At low pressures,
the graph shows the inverse dependence (V ∝ 1/P ) predicted by the ideal
gas law. As the pressure increases, deviations appear because the gas is not
ideal.

Figure 3.6. P-V diagram of SO2.

For pressures up to 4.52 atm, this behavior is quite regular and can be
described by the VDW equation. At 4.52 atm, something dramatic occurs:
The volume decreases abruptly by a factor of 100 and remains small as the
pressure is increased further. The gas underwent a phase transition from
gas to liquid as a result of the applied pressure. If the compression of SO2
is continued, another abrupt (but small) change in volume will occur as the
liquid freezes to form a solid.
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Condensed phases also arise when the temperature of a gas is reduced at
constant pressure. If steam (water vapor) is cooled at 1 atm pressure, it con-
denses to liquid water at 100◦C and freezes to solid ice at 0◦C. Liquids and
solids form at low temperatures once the attractive forces between molecules
become strong enough to overcome the kinetic energy of random thermal
motion.
Six phase transitions occur among the three states of matter (see Fig. 3.7).

Figure 3.7. The most commonly encountered phase transitions in
chemistry describe structural transitions between the liquid, solid and
gas states.

3.5. Phase Diagrams

If the temperature of a substance is held constant and the applied pressure
is changed, phase transitions between two phases will be observed at par-
ticular pressures. Making the same measurements at a number of different
temperatures provides the data necessary to draw the phase diagram for
that substance – a plot of pressure against temperature that shows the sta-
ble state for every pressure – temperature combination. Figure 3.8 shows a
sketch of the phase diagram for water. For each substance there is a unique
combination of pressure and temperature, called the triple point (marked
“T”), at which the gas, liquid, and solid phases coexist in equilibrium. Ex-
tending from the triple point are three lines, each denoting the conditions
for the coexistence of two phases at equilibrium. Along the line TA, solid
and gas are in equilibrium; along TB, solid and liquid; and along TC, liquid
and gas. The regions bounded by these lines represent conditions where
only one phase exists.
The P-T diagram for H2O at fixed volume is shown in Fig. 3.8.
Notice how the solid-liquid coexistence line tilts leftward. This is a result
of the anomalous properties of water (owing to its abilities for hydrogen
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Figure 3.8. P-T diagram of H2O.

bonding and directionality of the bonding); for H2O, the ice phase is less
dense than the liquid phase. Other substances tilt towards the right, because
the solid phase is denser than the liquid phase.
A P-V-T diagram may look like the one shown in Fig. 1.5. Note: This
surface plot is definitely not for water, because the solid-liquid coexistence
line does not tilt leftward. To learn more about the anomalous properties
of water, see:
http://www1.lsbu.ac.uk/water/water anomalies.html

The gas-liquid coexistence curve extends upward in temperature and pres-
sure from the triple point. This line (similar to a parabola) is the vapor
pressure curve of the liquid substance. The gas-liquid coexistence curve
does not continue indefinitely, but instead terminates at the critical point
(labelled). Along this coexistence curve there is an abrupt, discontinuous
change in the density and other properties from one side to the other. The
differences between the properties of the liquid and the gas become smaller
as the critical point is approached and disappear altogether at that point.
For pressures above the critical pressure (218 atm for water), it is no longer
possible to identify a particular state as gas or liquid. A substance beyond
its critical point is called a supercritical fluid because the term fluid in-
cludes both gases and liquids. The liquid-solid coexistence curve does not
terminate as the gas-liquid curve does at the critical point, but continues
to indefinitely high pressures. In practice, such a curve is almost vertical
because large changes in pressure are necessary to change the freezing tem-
perature of a liquid. For most substances, this curve inclines slightly to the
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right (Fig. 3.9a,b): An increase in pressure increases the freezing point of
the liquid. In other words, at constant temperature, an increase in pressure
leads to the formation of a phase with higher density (smaller volume), and
for most substances, the solid is denser than the liquid. Water and a few
other substances are anomalous (see Fig. 3.9c); for them, the liquid-solid
coexistence curve slopes up initially to the left, showing that an increase in
pressure causes the solid to melt. This anomaly is related to the densities
of the liquid and solid phases: ice is less dense than water (which is why ice
cubes float on water), so when ice is compressed at 0◦C, it melts.

Figure 3.9. P-T diagrams for argon (a), carbon dioxide (b) and water (c).

3.6. Solutions

Solutions are homogeneous systems that contain two or more substances.
Usually, it consists of a solvent (liquid) in which we have dissolved a sec-
ond substance (solid, gas or liquid). “Solid solutions” are also possible in
which more than two different substances are mixed, such as bismuth and
selenium.1 The host substance is called the solvent and the added substance
is the solute.2

3.6.1. Composition: Mole Fraction, Molarity and Molality. The
mole fraction, X1, of a substance, 1, in a mixture is the number of moles
of that substance, n1, divided by the total number of moles of all substances

1In solid solutions, it is more difficult to maintain homogeneity of the system, depending on the
degree of miscibility of the constituent substances. We often observe a certain amount of phase
separation.
2The usual convention is to label as “solvent” the most abundant substance.
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present n1 + · · ·+ nN :

X1 = n1
n1 + n2 + . . . nN

where N is the number of substances present (including the solvent) and ni
is the number of moles of the i-th substance.
The concentration of a substance is the number of moles per unit volume.
The basic unit is molarity, defined as number of moles of solute per liter
of solution:

molarity = moles solute
liters solution = mol L−1 ≡ M.

Because volume depends on temperature, some prefer to use molality,
which is defined as the number of moles of solute per kilogram of solvent:

molality = moles solute
kilograms solvent = mol kg−1.

We note that at 20◦ C the two concepts are identical for water, since its
density is 1.00 g/cm3 (so that 1.00 L of water weighs 1.00 kg).

3.6.2. Preparing Solutions. Suppose that a solution of 1 M (molar) con-
centration is prepared. One possible method is to weigh 1 mol of solute, then
add slightly less than 1 L of solvent (to avoid overshooting our target volume
of 1 L). We then add solvent continuously until we reach a final volume of
exactly 1 L.
In chemistry, we often prepare “stock solutions” which are highly concen-
trated, then dilute the stock solution to obtain the desired concentration.
Suppose that the stock solution contains n1 = c1V1 moles of solute, where c1
is the concentration of solute and V1 is the volume of stock solution. To get
a solution of concentration c2 from this, all we need to do is realize that if
we dilute the solution, it will still contain n1 moles of solute. Thus, n1 = n2,
where n2 = c2V2. So, we may write:

c2 = moles of solute
final solution volume = c1V1

V2
.

3.7. Non-Electrolyte Solutions

In organic and inorganic chemistries, different solvents than water are nor-
mally used. Here, we shall mainly discuss solutions of the aqueous type.
When dissolving a solute, such as C12H22O11, in water, we write it as
C12H22O11(aq) to mean that the environment is aqueous. Solutions can
be classified as electrolytes and non-electrolytes, due to the very different
nature of the intermolecular interactions.
Non-polar molecules such as hydrocarbons do not dissolve significantly in
water. Hydrocarbons are hydrophobic and tend to phase-separate. Molecules



3.8. Electrolyte Solutions 129

that are polar are readily dissolved in water. A typical example is sugar,
Cm(H2O)n. Some examples of common sugars are shown in Fig. 3.10.

Figure 3.10. Pentoses.

As can be seen in Fig. 3.10 these molecules include OH (hydroxyl) groups
bonded to carbon atoms, which provide sites for hydrogen bonding interac-
tions with water molecules. Figure 3.11 shows the example of the fructose
molecule whose hydroxyl groups readily form a hydrogen bonding network
with surrounding water molecules. Also shown in a hydrogen bond between
a water molecule and an oxygen atom in the fructose ring.

Figure 3.11. Hydrogen bonding between fructose and surrounding wa-
ter molecules.

3.8. Electrolyte Solutions

3.8.0.1. Dissolution of Electrolytes. In electrolyte solutions the ion-dipole
solute-solvent bonding can be much stronger than the case of dipole-dipole
interactions (or hydrogen bonding) for non-electrolyte solutions. Consider
the dissolution of potassium sulfate:

K2SO4(s)→ 2K+(aq) + SO2−
4 (aq).
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The dissolution occurs through the ion-dipole forces. Each positive ion is
surrounded by water molecules with the negative end of their dipole mo-
ments toward the positive ion. For most ionic solids, several water molecules
are needed to pull an ion from the lattice. In Problem 32 (p. 104) you are
asked to calculate how many water molecules are needed to dissolve Na+

and Cl− ions from the NaCl lattice.

Solution

Solid

O
H H

K+

SO4
2-

K+

K+

SO4
2-SO4

2-

Ions in Solution

Ions being Solvated

K+

K+

Figure 3.12. Electrolyte solution.

In Fig. 3.12, each SO2−
4 anion in solution is surrounded by water molecules

oriented with the positive end of their dipole moments toward the anion.
Likewise, each K+ ion is surrounded by water molecules oriented with the
negative end of their dipole moments toward the cation.

Figure 3.13. Hydrated ion.

3.8.0.2. Hydration Shell of Ion. The ability of salts to dissolve in water de-
pends strongly on their stabilization by the solvent molecules. This process
is known generally as solvation, and in the case of water, as hydration. All
ions dissolved in water are hydrated (see Fig. 3.13).
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In the standard model for hydrated ions (Fig. 3.13), the water molecules
(red) closest to the negative ion (green) are the most tightly bound, and
constitute the primary hydration shell. H2O molecules in the outer hydra-
tion shell experience local ordering by hydrogen bonding, but this is opposed
by the electrostatic field of the central cation. As one moves farther out and
the electrostatic field due to the central ion weakens, local hydrogen bonded-
clusters enlarge and begin to dominate, finally becoming the sole source of
local ordering within the bulk water region of the solution.
The attractive forces that are operational here [hydrogen bonding (dipole-
dipole) and even the stronger ion-dipole forces that bind the waters in the
primary shell to the central ion] are continually subject to disruption by
thermal motions. This affects even the waters within the primary shell;
residence times of these H2O molecules are usually less than 10−4 s.

3.9. Ionic Conduction

+

+

+

+

+

+

-

-

-
-

E-field

+

-

positive charges

negative charges
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Figure 3.14. Electrical conductivity in a material. The current density
~J = σ ~E is proportional to the conductivity σ and applied electric field
~E. Multiplication of ~J by the cross-sectional area of the conductor, A,
gives the total current ~I. The direction of ~J points along ~E. The units of
~J are A/m2. Since the units of ~E are V/m, the SI unit for conductivity
are Siemens per meter (S/m=A/V.m), where 1 S = 1 Ω−1 = 1 A/V.

The phenomenon of electrical conductivity is illustrated in Fig. 3.14. Elec-
trical charges experiencing an electric field ~E accelerate due to the Lorentz
force, ~F = Q~E, but are slowed down because of scattering3. The net effect

3While electrons in the conduction band of a conductor do not interact with each other (the
“free electron gas” model), they do scatter at the positively charged lattice sites via the Coulomb
interaction.
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is to eliminate acceleration, leaving charges that are moving at constant ve-
locity. This is the statement of Ohm’s law, ~J = σ ~E, where σ is the electrical
conductivity of the medium in which charges flow. Multiplication of ~J by
the cross-sectional area of the conductor, A, gives the total current, ~I.
Suppose that our conductor has a square cross-sectional area, A = L2, where
L is the side length. Multiplication of ~J = σ ~E by A gives ~I = (σL)( ~EL).
Denoting ~EL as the voltage V and (σL) as R−1 (the inverse resistance).
This gives I = R−1V or V = RI, which is the familiar form of Ohm’s law.
The units of R are Ohm (Ω). The inverse of conductivity, σ−1, is called the
resistivity. The units of σ−1 are Ω.m.
The units of ~I are C/s; thus charges are flowing at constant rate as long as ~E
remains constant. The sign convention is that positive charges move along ~E

(and therefore, ~I) whereas negative charges move in the opposite direction.
In a metallic conductor, negative charges are electrons and positive charges
are holes. In ionic solutions, positive charges are the positively charged ions
whereas negative charges are the negatively charged ions.
The conduction of electricity through an ionic solution differs from metallic
conduction in two fundamental ways:
• The current is associated with the transport of relatively large and massive

hydrated ions, rather than by nearly weightless electrons. Compared to
ions, electrons move largely unimpeded through the metal. But ions,
with their closely-held waters of hydration and more diffuse secondary
hydration shell and oppositely-charged counterions, must disrupt the local
hydrogen-bonded water structure as they move through the solution.
• Transfer of electric charge into and out of the solution occurs at electrodes,

and is accompanied by chemical reactions at these interfaces.
Electrolytic conduction involves the transport of electric charge in the form
of hydrated ions. Movement of these ions in response to an electric potential
gradient is known as migration. Transport of electric charge is measured in
Ampère (A). 1 A ≡ 1 C/s. Current (I) is the flow of charge per unit time:
I = dQ/dt, where Q(t) describes is the electric charge in a given region as
function of time.
An ion of charge Q undergoes a drift from cathode to anode in solution,
under the action of an electric field E. In chemistry, the convention is to
call the cathode the electrode which attracts positive ions and the anode the
electrode which attracts negative ions.4 See Fig. 3.15.
When a voltage (potential difference), V = V (cathode) − V (anode), is ap-
plied an electric field is created between the two electrodes. The E-field
4In physics, the convention is reversed: the anode is the negatively charged electrode and the
cathode is the positively charged electrode.
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Figure 3.15. Experimental setup for the electrolysis of KCl.
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Figure 3.16. Electric field between two parallel plates (anode and cathode).

arrows point from the positive electrode to the negative electrode. The
E-field lines are shown in Fig. 3.16.
This electric field gives rise to a force F = QE. While F = ma, the ions
accelerate under the E-field, but also slow down because of random thermal
motion and viscous drag (collision with fluid molecules). The overall motion
is that of a constant velocity rather than acceleration.
Using this sign convention, in Fig. 3.16, the anode (positive electrode) is
on the right, the cathode (negative electrode) is on the left, and the E-field
arrows between the two electrodes point from right to left (with E-field
lines always originating from the + charges at the electrodes). According
to F = QE, the negative ions (Q < 0) drift from left to right (direction
opposite to the E-field), i.e. from the cathode to the anode.
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Force over distance leads to work:5

W (work) =
∫ b

a
F · dl = Q

∫ b

a
E · dl

where the integral is carried out along a path (line or curve) connecting a
to b. If E is parallel to the path dl, E · dl = E dl and we get

W = Q

∫ b

a
E dl = Q[V (b)− V (a)].

where V (b) − V (a) is the potential difference (voltage) between the two
electrodes (one at a and one at b). Electric field has units of V/m; if we have
two electrodes separated by a distance d, then the E-field has magnitude
V/d, where V is the potential difference between the two electrodes, V =
V (b)− V (a).
Electric charge is measured in units of Coulombs. One Coulomb (1 C) is
one ampère-second (1 A.s); if a current of one ampère (1 A) flows for one
minute (60 s), the quantity of charge transported will be 60 C.
When charges migrate in an electric field, thermodynamic work is done. One
Coulomb (1 C) of charge moving through a potential difference of one volt
results in the performance of one joule (1 J) of work.
Ideal solutions are solutions whose properties depend linearly on the con-
centration of a dissolved species. Water is not electrically conductive unless
we add electrolytes. The dissolved ions conduct electricity. We would ex-
pect that the electric conductivity σ of the solution increases linearly with
the concentration of ions [A+], i.e. σ ∝ [A+]. This is true at low ion con-
centrations. However, the more ions are dissolved in solution, the more
they interact among each other, leading to deviations from ideal behavior.
In fact, for “strong” electrolytes, at high concentrations, the conductivity
begins to decrease, as shown in Fig. 3.17.
In general, ionic solutions are not ideal, meaning that we can expect in-
teraction among the ions leading to deviations from ideal behavior. The
non-ideality character of a solution occurs at ion concentrations above 10-
100 µm; the exact point of onset depends on the strength of intermolecular
interactions.
Significant early developments in the theory of electrolyte solutions are due
to Debye and Hückel (1923) as well as Lars Onsager. The decrease in the
molar conductivity of a strong electrolyte was attributed to the mutual in-
terference of the ions, which becomes more pronounced as the concentration
increases. Because of the strong attractive forces between ions of opposite

5I removed the minus signs to keep things simple. In physics books, the sign convention is
slightly different: E = −∇V (∇ = gradient, or derivative with respect to space), V (b) − V (a) =∫ b
a

(∇V ) · dl = −
∫ b
a

E · dl. Then, W =
∫ b
a

F · dl = −Q
∫ b
a

E · dl = Q[V (b)− V (a)].
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Figure 3.17. Conductivity of saline solution and comparison to theory
(AEM, Advanced Electrolyte Model by Kevin Gering, R&D 100, FLC
Far West, and Idaho Innovation awards, 2014). In the low concentration
limit, conductivity increases with ion concentration. However, at higher
ion concentrations, the conductivity decreases due to significant ion-ion
interactions. The SI unit for conductivity is Siemens per meter (S/m).
1 S = 1 Ω−1 = 1 A/V, or 1 S = 1 A2/(kg.m2.s3).

signs, the arrangement of ions in solution is not completely random. In the
immediate neighborhood of any positive ion, there tend to be more nega-
tive than positive ions, whereas for a negative ion there are more positive
than negative ions. Onsager accounted for thermal effects leading to random
motion of the ions.
The specific example of NaCl is shown in Fig. 3.18. As seen in Fig. 3.18(a),
each sodium ion has six chloride ions as its nearest neighbor. When the
sodium chloride is dissolved in water, this ordering is still preserved to a
very slight extent [Fig. 3.18(b)]. The ions are much farther apart than
in the solid; the electrical attractions are therefore much smaller and the
thermal motions cause irregularity. The small amount of ordering that does
exist, however, is sufficient to exert an important effect on the conductivity
of the solution.
The effect of the ionic atmosphere is to exert a drag on the movement of a
given ion. If the ion is stationary, the atmosphere is arranged symmetrically
about it and does not tend to move it in either direction. See Fig 3.19(a).
However, if a potential that tends to move the ion (indicated by the upward
arrow) is applied, the atmosphere will decay to some extent under the ion
and build up more above it. See Fig. 3.19(b). Since it takes time for these
relaxation processes to occur, there will be an excess of ionic atmosphere
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Figure 3.18. Structure of NaCl in solid (crystalline) form (a) and in
solution (b). The solution structure is time-averaged.

below the ion (i.e., behind it) and a deficit above (in front of it). This
asymmetry of the atmosphere will have the effect of dragging the central
ion back. This is the relaxation or asymmetry effect.

Figure 3.19. (a) The ionic atmosphere surrounds an ion. (b) When the
ion moves, the ionic atmosphere follows the ion as it moves in solution.

There is a second reason why the existence of the ionic atmosphere impedes
the motion of an ion. Ions are attracted to solvent molecules mainly by
ion-dipole forces; therefore, when they move, they drag solvent along with
them. The ionic atmosphere, however, having a charge opposite to that of
the central ion, moves in the opposite direction to it and therefore drags
solvent in the opposite direction. This means that the central ion has to
travel upstream, and it therefore travels more slowly than if there were no
effect of this kind. This is the electrophoretic effect (Fig. 3.20).
The theory of Debye and Hückel supposes the ions travel through the solu-
tion in straight lines, neglecting zigzag Brownian motion brought about by
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Figure 3.20. Electrophoretic effect.

collisions of surrounding solvent molecules. Lars Onsager in 1926 improved
the theory to account for these “thermal effects.”

3.9.1. Ionic Solutions Generally Exhibit Non-Ideal Behavior. The
conceptual definition of an ideal solution requires that the interactions of
solvent-solvent, solvent-solute, and solute-solute molecules are identical, some-
thing that is clearly not possible in ionic solutions. As a consequence, the
operational criteria of solution ideality (linear dependence of colligative and
other properties on nominal concentrations), does not apply. In general, we
cannot realistically expect calculations based on equilibrium constants to re-
liably predict the compositions of solutions having significant concentrations
of ions.
The actual quantity we use to express the summed concentrations of ions
of all kinds in a solution is the ionic strength. See this Wikipedia article for a
definition and examples: http://en.wikipedia.org/wiki/Ionic strength

What “significant” means in this context depends on the charges of the
ions, and this includes “spectator” ions that are not directly involved in a
reaction. A very crude rule-of-thumb is that ion concentrations in excess of
0.0001 M are likely to exhibit non-ideal behavior.

3.9.2. Interactions Among Dissolved Ions. It is not possible using con-
ventional synthetic chemistry techniques to introduce a single kind of ion
into water. Bulk matter cannot possess a significant net electric charge.
Thus, all ionic solutions contain both anions and cations in the propor-
tions required to ensure electroneutrality. Coulombic interactions between
charged particles fall off with separation distance far more slowly than do
the weaker ion-dipole forces responsible for water ordering, and are thus
operative even in solutions that we would normally regard as quite dilute,
down to about 10−4 M.
3.9.2.1. Oppositely-Charged Ions Tend to Pair Up. Depending on the sizes
and charges of the two kind of ions, they may form relatively stable ion
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pairs in which the “bonding” is purely electrostatic and independent of the
chemical properties of the ions (Fig. 3.21).

Figure 3.21. Oppositely-charged ions in solution tend to pair up.

Neglect of ion-pairing can lead to erroneous assumptions about the con-
centrations of “free” ions in solutions, and misinterpretation of calculations
involving solubility. Here are a few examples:
• In addition to forming the sparingly-soluble solid CdI2, part of the cad-

mium in a solution in equilibrium with the two ions will exist as the soluble
species CdI+(aq) and CdI0

2(aq).
• Similarly, solutions in equilibrium with Ca(OH)2(s) will also contain species

CaOH+(aq) and Ca(OH)0
2(aq).

• The ion-pair CaCO0
3(aq) is believed to tie up a significant fraction of the

total carbonate when water is in equilibrium with solid calcium carbonate.
The ions in the more strongly-bound pairs will be in contact and within
a common hydration shell, whereas others may have only their shells in
contact.
3.9.2.2. Electrostatic Forces Lead to Local Charge Imbalances Near an Ion.
Simple electrostatics predicts that oppositely-charged ions are more likely to
be found close to a given ion, while like-charged ions tend to be farther away.
Thus in addition to hydration shells, ions in solution are surrounded by a
region containing an excess of counter-ions, known as the ionic atmosphere.
The latter tends to move along with the ion as it diffuses or migrates through
the solution.

Figure 3.22. Ionic atmosphere.

• In Fig. 3.22, the ionic atmosphere corresponds to the yellow region just
outside the primary hydration shell [blue].
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• Although only the positive counter-ions are explicitly represented in the
ionic atmosphere in the diagram, it is important to understand that the
atmosphere contains ions of both charges; the positive ions are just present
in greater quantity. Near the outer boundary of the ionic atmosphere, the
displaced negative ions are in excess. Only in the bulk solution are their
concentrations identical.
• The atmosphere surrounding an cation will of course have the opposite

charge. Because cations tend to be smaller than anions, the volume and
charge density of the atmosphere is expected to be bigger.

3.9.3. Most Salts are Not Completely Dissociated in Water. The
dissolution of cadmium iodide is water is commonly represented as

CdI2(s)→ Cd2+ + 2I−.
This is actually wrong.6 To most people, this would imply that a 0.1 M
solution of this salt would contain 0.1 M of Cd2+(aq)? This would be wrong
because it fails to take into account that the two ions react with each other.
Firstly, they combine to form neutral, largely-covalent molecular species:

Cd2+(aq) + 2I−(aq)→ CdI2(aq).
This non-ionic form accounts for 76% of the Cd present in the solution. In
addition, they form a molecular ion CdI+(aq) according to the following
scheme (the K’s are equilibrium constants, see Section 4.1.0.1):

CdI2(s)→ Cd2+ + 2I−, K1 = 10−3.9

Cd2+ + I− → CdI+, K2 = 10+2.3

CdI2(s)→ CdI+ + I−, K = 10−1.6 = 0.023.
As a consequence, the concentration of “free” Cd2+(aq) in an aqueous cad-
mium iodide solution is only about 2% of the value you would calculate
by taking K1 as the solubility product. The principal component of such
a solution is actually (covalently-bound) CdI2(aq). It turns out that many
salts, especially those of metals beyond Group 2, are similarly only partially
ionized in aqueous solution. See Table 3.1.

Table 3.1. Species present in various ionic solutions. This is Table 2
from [13].

Solute Molarity Ionic Strength Fraction of Metal Present as Each Species
KCl 0.52 0.5 K+ 0.95 KCl 0.05
CsCl 0.55 0.5 Cs+ 0.9 CsCl 0.1
KI 0.58 0.5 K+ 0.87 KI 0.13
CsI 0.61 0.5 Cs+ 0.82 CsI 0.18
Na2SO4 0.25 0.5 Na+ 0.76 NaSO−

4 0.24

6The data shown here and in the table are from Ref. [13]. This fact was stated by Arrhenius in
1887, but has been largely ignored and is almost never mentioned in standard textbooks.
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K2SO4 0.36 0.7 K+ 0.7 KSO−
4 0.3

(NH4)2SO4 0.23 0.5 NH−
4 0.8 NH4SO−

4 0.2
MgSO4 0.043 0.1 Mg2+ 0.58 MgSO4 0.42
MgCl2 0.44 1.0 Mg2+ 0.7 MgCl+ 0.3
BeCl2 0.27 0.7 Be2+ 0.8 BeCl+ 0.2
CaCl2 0.44 1.0 Ca2+ 0.7 CaCl+ 0.3
SrCl2 0.42 1.0 Sr2+ 0.7 SrCl+ 0.3
BaCl2 0.39 1.0 Ba2+ 0.8 BaCl+ 0.2
Pb(NO3)2 0.021 0.05 Pb2+ 0.65 PbNO+

3 0.33 Pb(NO3)2 0.02
CuSO4 0.045 0.1 Cu2+ 0.56 CuSO4 0.44
FeSO4 0.047 0.1 Fe2+ 0.53 FeSO4 0.47
CuCl2 0.42 1.0 Cu2+ 0.7 CuCl+ 0.3
CdCl2 2.86 1.0 Cd2+ 0.014 CdCl+ 0.31 CdCl2 0.67
CdI2 0.50 0.14 Cd2+ 0.02 CdI+ 0.22 CdI2 0.76

3.9.4. Activities and Activity Coefficients. The quantitative treat-
ment of ionic solutions is based on the Debye-Hückel theory, which was
developed in the 1920s. This theory models the electrostatic interactions
between ions and their ionic atmospheres, and can predict mean ionic activ-
ity coefficient for solutions whose ionic strengths are not very high. Many
extensions to this model have been suggested; all are mathematically com-
plicated and all fail for “highly concentrated” solutions.
The practical approach to the problem of non-ideality is to introduce a quan-
tity known as the activity, which can be thought of as the thermodynamically-
effective concentration. The relation between activity a and the “analytical”
concentration c is given by the activity coefficient γ (gamma), where a = γc.
An ideal solution has γ = 1. As ionic concentrations increase, activity
constants diminish. Activity coefficients approach unity in the limit of zero
concentration. Because solutions containing ions of a single charge species
cannot be prepared, all experimental measurements can only yield mean
ionic activity coefficients (i.e. the coefficient describes both positive and
negative ions simultaneously).

3.9.5. Reactions: Halide Compounds. An unknown solution that is
suspected to contain halide compounds such as KCl, KBr and KI can be
identified with silver nitrate solution, AgNO3. The halogen will react with
Ag+ and form a precipitate, with varying color depending on the halogen:

• AgF: No Precipitate
• AgCl: White
• AgBr: Pale Yellow
• AgI: Bright Yellow

3.9.6. Reactions: Precipitation. Barium sulfate is not very soluble in
water at room temperature. The following reaction is very unfavorable:

BaSO4(s)→ Ba2+(aq) + SO2−
4 (aq).
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Instead, the reverse reaction is much more likely to happen. It is called a
precipitation reaction

Ba2+(aq) + SO2−
4 (aq)→ BaSO4(s).

One possible way to obtain this reaction is to mix barium chloride and
potassium sulfate:

BaCl2(aq) + K2SO4(aq)→ BaSO4(s) + 2KCl(aq).
What happens during this reaction is that the ions dissociate, followed by
precipitation:
Ba2+(aq)+2Cl−(aq)+2K+(aq)+SO2−

4 (aq)→ BaSO4(s)+2K+(aq)+2Cl−(aq).
The potassium and chloride ions appear on both sides of the equation. They
are called spectator ions, as they do not take part in the reaction. We can
omit the spectator ions and write the net ionic equation:

Ba2+(aq) + SO2−
4 (aq)→ BaSO4(s).

3.9.7. Reactions: Ionic Exchange. Suppose that we dissolve magne-
sium sulfate and sodium hydroxide in aqueous solution. The ions dissolve
to some extent:

MgSO4 + 2NaOH→ Mg2+ + SO2−
4 + 2Na+ + 2OH−.

Of those ions that do dissolve there is a strong tendency for precipitation.
In this particular case, the following precipitation reaction takes place:

→ Mg(OH)2(s) + SO2−
4 + 2Na+.

Example calculation (electrolyte solution):
Problem: For the MgSO4 with NaOH reaction, suppose we start
with 20 mL (0.020 L) of 2.0 M solution of MgSO4. How much 1.0 M
NaOH is needed to precipitate all Mg(OH)2(s)? What is the final
[Na+]?
Solution: We calculate the number of moles at the start:
nMgSO4 = [MgSO4] ·V = 2 mol/L · 0.020 L = 0.040 mol (2 sig. figs.)
Based on this amount of MgSO4, we require a minimum of

nNaOH = 2 · nMgSO4 = 2 · 0.040 mol = 0.080 mol.
We solve nNaOH = [NaOH] · V for V :

V = nNaOH
[NaOH] = 0.080 mol

1.0 mol/L = 0.080 L = 80 mL,

[Na+] = nNa
V

= 0.080 mol
(0.080 + 0.020) L = 0.80 M.
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Another example is water softening by ion exchange. Water that contains
divalent cations, such as Ca2+, Mg2+ and Fe2+ causes problems. First, they
combine with fatty-acid anions in soaps to produce hard deposits on clothes,
washing machines and kitchen sinks:

Ca2(aq) + 2C17H35COONa(aq)︸ ︷︷ ︸
soap

→ (C17H35COO)2Ca(s)︸ ︷︷ ︸
deposit

+2Na+(aq).

Secondly, when bicarbonate (HCO+
3 ) is present in water, the hard-water

cations cause a buildup of deposits in boilers, pots and pipes, which not
only looks dirty but can damage the plumbing:

Ca2+(aq) + 2HCO−3 (aq)→ CaCO3(s) + CO2(g) + H2O(l).
The removal of hard-water ions (water softening) is accomplished by ex-
changing soft-water Na+ ions for the hard-water ions. Ion-exchange resins
are insoluble polymers with covalently bound anion groups, such as -SO−3 or
-COO−, with Na+ ions attached to balance the charge. The divalent cations
in hard water are attracted to the resin’s anionic groups and displace the
Na+ ions into the water. One type of ion is exchanged for another. The
resin is replaced when all the resin sites are occupied, or it can be regener-
ated by treating it with a very concentrated Na+ solution, which exchanges
Na+ ions for the bound Ca2+.

3.9.8. Importance of Matching the Number of Moles in Reactions.
When solving problems, pay attention to the data given to you, such as
masses of substances, volumes of solutions and concentrations. For exam-
ple, a problem may ask you which volume or concentration of a solution
is required to neutralize or precipitate a given substance. The problem
frequently boils down to matching the number of moles and inspecting the
stoichiometry of the chemical reaction to ensure the correct number of moles
are used. For a given stoichiometry, the number of moles is calculated using
the formula n = c · V , where n is the number of moles, c is concentration
and V is volume. The example of the previous section is typical.
One more thing you will need to check is whether or not a substance has
fully dissociated in the solvent or not. Knowing the extent of a reaction
(how far it goes) is essential to knowing the correct number of moles.
Oxtoby [1] (p. 481-2) discusses the following two reactions:
Potassium dichromate with hydrochloric acid:

K2Cr2O7(s) + 14HCl(aq)→
2K+(aq) + 2Cr3+(aq) + 8Cl−(aq) + 7H2O(l) + 3Cl2(g).
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Preparation of elemental bromine from its salts in solution:

2Br−(aq) + Cl2(aq)→ 2Cl−(aq) + Br2(aq).

3.10. Ideal Solutions: Raoult’s and Henry’s Laws

Vapor pressure (Fig. 3.23) is the pressure of a substance as measured in
the space above the liquid or solid substance. It is easiest to measure this
pressure in closed container in the gas space above the substance that is
initially (at time t = 0) vacuum-pumped. Vapor pressure of a substance
arises because of thermal energy (kBT ), which imparts some fraction7 of
molecules with kinetic energy large enough to leave the liquid or solid8 phase
and escape into the gas phase.

Figure 3.23. Vapor pressure.

A solution is a homogeneous phase that contains more than one component.
Although if both components are in the same phase, e.g. liquids9, and
the solution is homogeneous, there is no fundamental difference between
components in a solution as far as labeling them solvent vs solute. It is
then common practice to label the component that constitutes the larger
proportion of the solution as the solvent; the component in lesser proportion
is commonly called the solute.

7For a given temperature and molecular mass, you should be able to calculate this fraction from
the Maxwell-Boltzmann speed distribution. The energy should be larger than intermolecular
forces that keep the liquid (or solid) together.
8At sufficiently low temperature and pressure, a solid substance may sublimate to the gas phase
without passing through the liquid phase (c.f. Fig. 1.4).
9Solid solutions are also possible when there are one or more solutes in a solvent, and the chemical
components remain in a single homogeneous phase.
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Partial vapor pressures of the individual components of the solution yield
information about the individual components in solution. This is because
the partial vapor pressure measures the escaping tendency of a molecule from
solution, which is in turn a measure of the cohesive forces present in solution.
Thus, measurements of the vapor pressure of each component as a function
of pressure, temperature, and mole fraction lead to some understanding of
the system, namely, the intermolecular forces and the physical properties
affected by them (e.g. boiling point, freezing point, etc).
Ideal solutions are homogeneous mixtures of substances that have physical
properties linearly related to the amount of solute present. The classic state-
ment of this condition is Raoult’s law, which is valid for many highly dilute
solutions and for a limited class of concentrated solutions, namely, those
in which the interactions between the molecules of solute and solvent are
the same as those between the molecules of each substance by itself. Solu-
tions of benzene and toluene, which have very similar molecular structures,
are ideal solutions: any mixture of the two has a volume equal to the sum
of the volumes of the separate components, and the mixing process occurs
without absorption or evolution of heat. The vapor pressures of the solu-
tions are mathematically represented by a linear function of the molecular
composition. Ideal solutions are analogous to ideal gases (Pi = niRT/V ,
which expresses the linear dependence of the partial pressure, Pi, of the i-th
component of a gas mixture on gas density ni/V of that component at fixed
T ).
When the components of nonideal solutions are mixed, the volume of the
mixture ordinarily differs from the sum of the volumes of the pure compo-
nents, and heat is evolved or absorbed. The properties of such solutions
often are described in terms of their deviations from those of ideal solu-
tions. Mixtures of acetone and chloroform, for example, are said to show
negative deviations from ideality: their vapor pressures are lower than those
calculated on the assumption of a linear relationship to the molecular com-
position. Solutions of acetone and carbon disulfide, on the other hand, have
higher vapor pressures than those that would characterize an ideal solution.
The cases of chloroform in acetone and chloroform in ethanol will be dis-
cussed later in the context of Fig. 3.28.

3.10.1. Raoult’s Law (François Marie Raoult, 1830-1916). Raoult’s
law says that the vapor pressure of a component (1), P1, in solution is
the product of the pure substance’s vapor pressure, P ◦1 (may depend on
temperature), and its mole fraction, X1:

P1 = X1P
◦
1 .



3.11. Deviations From Raoult’s Law 145

A solution which obeys this law is called an ideal solution. Solutions that
deviate from this law are called non-ideal solutions. For non-ideal solution,
this linear relationship only holds in the dilute limit (X2 → 0, X1 → 1, for
a 2-component solution). Mathematically, this law is expressed as a limit:

(3.1) P ◦1 = lim
X1→1

P1
X1

.

Real solutions may show positive deviations (with vapor pressures higher
than those predicted by Raoult’s law) or negative deviations (with lower
vapor pressures).
The total vapor pressure, of a solution consisting of N components will be
the sum of the vapor pressures:

Ptot = P1 + P2 + · · ·+ PN ,

where 1, 2, . . . , N include all components of the solution (all solutes plus
solvent). Using Raoult’s law this can be written as:

Ptot = X1P
◦
1 +X2P

◦
2 + · · ·+XNP

◦
N ,

where X1 +X2 + · · ·+XN = 1. This relationship look similar to the Dalton’s
law, but applies to ideal solutions.
For a 2-component system, where “1” is the solvent and “2” is the solute,

X1 = n1
n1 + n2

.

Here, n1 is the number of moles of solvent and n2 is the number of moles of
solute. n1 + n2 is the total number of moles in solution. X1 +X2 = 1.
Raoult’s law is a statement regarding the behavior of solvents when a solute
is added. Raoult was known for his research on solutions. He published
papers on solute-induced freezing point depression of solutions, depression
of a solvent’s vapor pressure, and various experiments involving solvents,
such as benzene and acetic acid, in addition to water. The laws he pub-
lished concern the properties of the solvent, enable the determination of the
molecular weights of dissolved substances, and are valid in the limit of dilute
solutions.
Raoult’s law is typically only valid at low solute concentrations. The re-
lationship P1 = X1P

◦
1 is analogous to the ideal gas law, P1 = n1RT/V .

Both laws express the linear dependence of P1 on the amount of substance
1, namely X1 (or n1 for gases).

3.11. Deviations From Raoult’s Law

Real solutions deviate from ideal behavior, as shown in Fig. 3.24.
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Figure 3.24. In an ideal solution, a graph of solvent vapor pressure P1
versus mole fraction of solvent X1 is a straight line. Nonideal solutions
behave differently; examples of positive and negative deviations from
the ideal solution are shown. The vapor pressure of pure solvent is P ◦1 .

3.11.1. Negative Deviations. On a molecular level, negative deviations
arise when the solute attracts solvent molecules especially strongly, reducing
their tendency to escape into the vapor phase. The substance wants to stay a
liquid. (Recall our discussion of the VDW equation, where attractive forces
lower the pressure.)

3.11.2. Positive Deviations. Positive deviations arise in the opposite
case, when solvent and solute molecules are not strongly attracted to each
other. The substance wants to be a gas, so its pressure is higher than it
should be. Even non-ideal solutions with non-dissociating solutes approach
Raoult’s law as X1 approaches 1, just as all real gases obey the ideal gas
law at sufficiently low densities.
No deviations: A number of pairs of liquids obey Raoult’s law over a wide
range of compositions:

• benzene — toluene
• ethylene bromide — ethylene chloride
• carbon tetrachloride — trichloroethylene
• acetic acid — isobornyl acetate

It should be noted that air is generally present above the solution at a
pressure that makes up the difference between the total vapor pressure and
atmospheric pressure. The fact that air is present can generally be ignored
in the vapor phase.

3.11.3. How Raoult’s Law Works. While studying colligative proper-
ties of solvents, Raoult discovered that adding a solute lowers the vapor pres-
sure. This is because the additional solute particles occupy space (volume
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fraction) in solution. Vapor pressure is due to surface molecules escaping
into the gas phase. If some of these solvent molecules are replaced by solute
molecules, there will be fewer solvent molecules able to escape into the gas
phase (due to obstruction), lowering the vapor pressure of the solvent.
When a liquid is in a sealed container, evaporation proceeds until there are
as many molecules returning to the liquid as there are escaping (per unit
time). At this point the vapor is said to be saturated, and the pressure of
that vapor is called the saturated vapor pressure. Figure 3.25 shows the
case where we start from 100% alcohol and dilute it by adding water (the
case of 70% alcohol, 30% water is shown). Figure 3.25 shows that there are
fewer alcohol molecules in the gas phase after dilution with water.

Figure 3.25. (left) Dynamic equilibrium between volatile molecules in
the liquid and gas phase. (right) Dynamic equilibrium of a solution con-
sisting of volatile solvent molecules (blue circles) and non-volatile solute
molecules (water molecules in this case). Note that fewer molecules exist
in the gas phase compared to the pure solvent. (The 70-30 alcohol-water
solution may deviate slightly from Raoult’s law because of the high con-
centration of water.)

As mentioned earlier, some fraction of the solvent molecules have sufficient
energy to escape from the surface and enter the gas phase. If the number
of solvent molecules on the liquid’s surface is reduced by the addition of
solute, there will be a smaller number of solvent molecules that will be able
to escape during any given time interval. On the other hand, molecules
in the gas phase can always return to the solution regardless of how much
solute is present (assuming an ideal solution). The net effect of this is that
when equilibrium is established, there will be fewer solvent molecules in the
vapor phase, and the vapor pressure is lowered.
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3.11.4. Limitations of Raoult’s Law. In practice, there’s no such thing
as an ideal solution! However, features of one include:

• Ideal solutions satisfy Raoult’s law over a wide range of concentrations,
meaning that some key macroscopic properties (such as vapor pressure,
boiling point, freezing point, etc.) depend linearly on the amount of solute
added and not on the nature of the solute itself.
• In an ideal solution (Fig. 3.26), it takes exactly the same amount of energy

for a solvent molecule to break away from the surface of the solution as
it did in the pure solvent. The forces of attraction between solvent and
solute are exactly the same as between the original solvent molecules.
• There are very few cases of truly ideal solutions where Raoult’s law holds

precisely over the entire range of concentrations. When solutions deviate
from ideal solutions, the Raoult’s law will still hold, but in the dilute limit
(see Eq. 3.1).

Solvent Solute

F1

F2

In ideal solution, F1 = F2

Figure 3.26. Ideal solution. The intermolecular forces shown are aver-
age forces (averaged over all such interactions, and over time).

3.11.5. Henry’s Law (William Henry, 1774-1836). While Raoult’s
law applies to solvents, Henry’s law applies to the solute. Henry’s law is
the statement that the vapor pressure of a volatile dissolved substance is
proportional to the mole fraction (or concentration) of that substance in
solution. Suppose we have a solute “2” with low mole fraction X2. Its vapor
pressure (even in non-ideal solution) is proportional to X2:10

P2 = k2X2,

where k2 is a constant (the Henry’s law constant), which is usually denoted
kH . The SI units of the Henry’s law constant are Pa. Its value depends on
both solute and solvent. A volatile substance is one for which the Henry’s law
constant is non-zero. In mathematical terms, Henry’s law is the statement

10Since X2 = 1−X1, we can also express this as P2 = k2X2 = k2(1−X1).
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that the following limit exists:

(3.2) k2 = lim
X2→0

P2
X2

.

We also find Henry’s law expressed in concentration units, P2 = k2 ·c2, where
k2 has units of pressure per unit concentration (e.g. L.atm/mol) and c2 has
concentration units (mol/L). Concentration units arise as follows: suppose
we have a gas, such as CO2 dissolved in water. The chemical equilibrium is:

CO2(aq)
 CO2(g) + H2O(l), Keq = [CO2(g)][H2O(l)]
[CO2(aq)] .

The concentration of water is a constant, so we can combine it with Keq by
dividing both sides by [H2O(l)]:

kH = Keq

[H2O(l)] = PCO2

[CO2(aq)] .

Thus, kH has units of atm/M if PCO2 is in atm. Chemical equilibrium will
be covered in Chapter 4.

Henry’s law: (Applicability)
• Henry’s law applies in the limit of low concentrations of the solute.
• Henry’s law can be used to infer the concentration of dissolved

gas in a solvent from the knowledge of the vapor pressure of this
solute, provided of course, that Henry’s law constant is known.

Whenever Raoult’s law is valid for a solvent, Henry’s law is valid for a solute
(see Fig. 3.27). Henry’s law may be applied to dilute solutions of a binary
liquid system. It is found that in the limit of infinite dilution, most liquid
solvents obey Raoult’s law but that under the same conditions the solute
obeys Henry’s law.
One application of Henry’s law is the carbonation of beverages: by knowing
the partial pressure of a given gas in the space above a solution, we can
estimate how much of the substance is dissolved in solution. This is best
understood by working an example.
3.11.5.1. Example. Suppose that we have a carbonated drink (soda). CO2
gas is dissolved and the can is pressurized. The partial pressure of CO2
above the soda (in the soda can) is 0.01 atm (this can be taken as the total
gas pressure, since water is far less volatile than CO2). Henry’s law constant
for CO2 dissolved in water at 20◦C is 29.4 L.atm/mol. Find the amount of
CO2 dissolved in solution.
Solution: If the Henry’s law constant is specified in units of L.atm/mol, this
means the Henry’s law is in the form P = kH ·c, where P is the partial pres-
sure of the solute above the solution and c is the concentration of the solute in
solution. From c = P/kH , we find c = 0.01 atm/29.4 L.atm/mol=0.34 mM.



150 3. Properties of Matter

Figure 3.27. Vapor pressures above a mixture of two volatile liquids.
Both ideal (blue lines) and non-ideal behaviors (red curves) are shown.
Positive deviations from ideal solution behavior are illustrated, although
negative deviations are observed for other non-ideal solutions. Raoult’s
and Henry’s laws are shown as dilute solution limits for the non-ideal
mixture; the markers explicitly identify regions where Raoult’s law and
Henry’s law represent actual behavior.

Note: This problem is slightly more complicated when kH is specified in
pressure units, e.g. kH = 0.163 × 104 atm. We instead use the form,
XCO2kH = PCO2 . The mole fraction is:

XCO2 = PCO2

kH
= 0.01 atm

0.163× 104 atm = 0.061× 10−4.

The mole fraction is defined as:
XCO2 = nCO2

nH2O + nCO2

= cCO2

cH2O + cCO2

≈ cCO2

cH2O
= cCO2

55 M
Inserting the numerical value for XCO2 and solving for cCO2 :

0.061× 10−4 = cCO2

55 M → cCO2 = (0.061× 10−4)(55 M) = 0.34 mM.

This suggests another expression for the Henry’s law:

P2(atm) = kH(atm)X2
[H2O]
[H2O] = kH(atm)

[H2O] · c2(M).

where [H2O]=55 M and c2(M) = X2 · [H2O].

3.11.6. Henry’s Law Constant. Henry’s law constant kH depends on the
solvent, solute and temperature. You can find such constants tabulated
under various conditions. See, for example,
http://www.henrys-law.org/henry.pdf

If a gas is dissolved in a solvent, the pressure of the gas in equilibrium
with the solution is proportional to the amount of gas dissolved. (And
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vice-versa.) Likewise, if several gases from a mixture of gases dissolve in
a solution, Henry’s law applies to each gas independently, regardless of the
pressure of the other gases present in the mixture (meaning, for example,
that air could be present as well, and we can neglect air).
Henry’s law constant is the vapor pressure of the liquified gas at
the temperature of the solution. The dissolved gas may be viewed
in terms of its solubility under the pressure P2, or P2 may be taken as the
vapor pressure of the volatile solute.

Temperature dependence of Henry’s law constant: An expres-
sion for the temperature dependence of the Henry’s law constant is (see
Problem 52 or Atkins [14] for derivation):

kH(T ) = k	H exp
(
−∆solnH

R

[ 1
T
− 1
T	

])
where ∆solnH is the enthalpy of solution (in molar units here, since
the denominator uses R). We will introduce enthalpy later (see Sec-
tion 6.10.2). T	 is a reference temperature and k	H is the value of
kH measured at this reference temperature. Note: The value of k	H
depends on both the solvent and the solute. For example k	H differs for
oxygen in water compared to nitrogen in water. Likewise, k	H is different
for oxygen in benzene versus oxygen in water.

3.11.7. Summary: Raoult’s and Henry’s Laws. The three plots in
Fig. 3.28 summarize the behavior of Raoult’s and Henry’s laws.

Pure
Chloroform

Pure
Acetone

Pure
Ethanol

Pure
Chloroform

Figure 3.28. Summary of Raoult’s and Henry’s laws. (left) Vapor pres-
sure of two liquids obeying Raoult’s law. The total pressure at constant
temperature is obtained from P = X1P

0
1 + (1−X1)P 0

2 . (middle) Vapor
pressure of the system acetone-chloroform at 328 K showing negative
deviations from Raoult’s law. Dashed lines show Raoult’s law behavior.
(right) Vapor pressure of the system ethanol-chloroform at 318 K show-
ing positive deviations from Raoult’s law. Dashed lines show Raoult’s
law behavior.
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3.11.8. Henry’s Law Example. Dry air contains 78.084 mol % N2 and
20.946 mol % O2. Calculate the relative proportion of N2 and O2 dissolved
in water under a total pressure of 1.000 bar. Henry’s law constants for N2
and O2 are 6.51× 107 Torr and 3.30× 107 Torr, respectively, at 25◦C.
Solution: Application of Dalton’s law gives

PN2 = 0.78084× 750.06 Torr = 585.7 Torr
PO2 = 0.20946× 750.06 Torr = 157.1 Torr

We then apply Henry’s law to get the mole fractions

XN2 = PN2

kH(N2) = 585.7 Torr
6.51× 107 Torr = 9.00× 10−6

XO2 = PO2

kH(O2) = 157.1 Torr
3.30× 107 Torr = 4.76× 10−6

Since XN2 = nN2/ntot and XO2 = nO2/ntot, the relative proportions are:

for N2
nN2

nN2 + nO2

= 9.00× 10−6

9.00× 10−6 + 4.76× 10−6 = 9.00× 10−6

1.376× 10−6 = 0.654

for O2
nO2

nN2 + nO2

= 4.76× 10−6

9.00× 10−6 + 4.76× 10−6 = 0.346

This is approximately a ratio of 2 N2 to 1 O2.

3.12. Colligative Properties: Non-Volatile Solutions

Raoult’s law forms the basis for the four colligative properties of dilute
solutions. Colligative means that the properties depend on the number of
dissolved particles, independently of the nature of the particles themselves.
These properties are:

• Lowering of vapor pressure
• Boiling point elevation
• Freezing point depression
• Osmotic pressure

3.12.1. Lowering of Vapor Pressure (Raoult’s Law). Suppose we
have a two-component solution where “1” is the solvent and “2” is the solute.
Raoult’s law for the solvent component says that:

∆P1 = P1 − P ◦1 = X1P
◦
1 − P ◦1 = (X1 − 1)P ◦1 ≡ −X2P

◦
1 ,

where X1 = 1−X2 = n1/(n1+n2) is the solvent mole fraction, P ◦1 is the pure
solvent vapor pressure and X2 = n2/(n1 + n2) is the solute’s mole fraction.
Because the sign is negative, we have a lowering of the vapor pressure. Thus,
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the vapor pressure is always lower when we add a solute, as compared to
the pure solvent.
Note that ∆P1 = −X2P

◦
1 depends only on X2, the mole fraction of the

solute. It does not depend at all on the nature of the solute. This is an
example of a colligative property.

3.12.2. Boiling Point Elevation (Raoult’s Law). A consequence of the
lowering of vapor pressure is the elevation of the boiling point. This fact
has been used as a way to determine molar masses. In Fig. 3.29, ∆P1 is
the decrease in vapor pressure at Tb and ∆Tb is the change in temperature
needed to keep the vapor pressure at 1 atm. The quantity

∆Tb = T ′b − Tb
is the increase in boiling point caused by the addition of solute to the pure
solvent. Let us look at the slope of this graph near 1 atm, assuming that
the two curves are parallel near that point:

−∆P1
∆Tb

= slope of curve = S → ∆Tb = −∆P1
S

= X2P
◦
1

S
= 1
S

(
n2

n1 + n2

)
from Raoult’s law with P ◦1 =1 atm. S is a property of the solvent (indepen-
dent of the solute) because we assumed the two curves were parallel. For
dilute solutions (n1 � n2) we have

∆Tb = 1
S

n2
n1

= 1
S

(
m2/M2
m1/M1

)
,

where m1 and m2 are the masses of the solvent and solute (in grams) and
M1 and M2 are their molar masses in grams per mole. Because M1 is a
property of the solvent, it can be lumped into S. We define a new constant:

Kb = M1

(1000 g.kg−1)S

Boiling point elevation:

∆Tb = Kb

(
m2/M2

m1/(1000 g.kg−1)

)
= Kbm.

If m1 is in grams, m1/(1000 g.kg−1) is the number of kilograms of solvent.
m2/M2 is the number of moles of solute. Hence, this expression is equal to
Kbm where m is the molality of the solution.
Note: if the substance dissociates in solution, we must count the total mo-
lality. For example, if we dissolve NaCl, we get two species: Na+ and Cl−.
Thus, the molality should be doubled, as we now have 2 moles of ions for
each mole of NaCl dissolved.
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Figure 3.29. The vapor pressure of the solvent above a dilute solution
is lower than that of the pure solvent at all temperatures. As a result,
for the solution to boil (that is, for the vapor pressure to reach 1 atm), a
higher temperature is required for the solution than for the pure solvent.
This amounts to an elevation of the boiling point, ∆Tb = T ′b − Tb > 0.

3.12.3. Example w/ Multiple Ions. Lanthanum(III) chloride (LaCl3)
is a salt that completely dissociates into ions in dilute aqueous solution,

LaCl3(s)→ La3+(aq) + 3Cl−(aq)
yielding 4 mol of ions per mole of LaCl3. Suppose 0.2453 g of LaCl3 is
dissolved in 10.00 g of H2O. What is the boiling point of the solution at
atmospheric pressure, assuming ideal solution behavior?
Solution: The molar mass of LaCl3 is 245.3 g/mol. The moles of LaCl3 are

0.2453 g
245.3 g/mol = 1.000 × 10−3 mol. The molality, m, is (4)(1.000×10−3) mol ions

0.0100 kg solvent
= 0.400 mol/kg. We look up the value of Kb from tables and insert this
molality into the equation for the boiling-point elevation:

∆Tb = Kbm = (0.512 K.kg/mol)(0.400 mol/kg) = 0.205 K.
This is the boiling point elevation. The new boiling point of the solvent
(water) is increased to 100.000◦C+0.205◦C = 100.205◦C. The actual boiling
point is slightly lower than this because the solution is nonideal.

3.12.4. Freezing Point Depression (Raoult’s Law). In a pure solvent,
such as water, the formation of the solid phase usually11 involves the creation
of a crystalline structure. The example of water is shown in Fig. 3.30.
The process of going from gas to liquid, or from liquid to solid, requires us
to remove energy from the system (i.e. via cooling), as shown in Fig. 3.31.

11Not all solids are crystalline. Some are amorphous.
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Figure 3.30. Structure of water in the liquid and crystalline (solid) phases.

Figure 3.31. Phase transitions between different states of matter re-
quire the addition or removal of energy.

When a solute is added, however, the mere presence of the solute interferes
with the formation of the solid crystalline structure (see Fig. 3.32). Indeed,
the solute added (red) in the solvent (grey) prevents the rigid, ordered ar-
rangement of a solid from being achieved. The particles of solute block the
crystallization of the solvent, at least up until a certain point, causing a
depression in the freezing point of the water. This is an entropic effect (see
Problem 56).

Figure 3.32. Freezing point depression. (a) Pure solvent (b) Solvent
plus solute.

Application 1: Why do we add ethylene glycol, CH2OHCH2OH, to water
in a car radiator in winter? Without any additive the water would freeze
at 0◦C and the resulting increase in volume would crack the radiator. Since
ethylene glycol is very soluble in water, it can form a solution with a freezing
point low enough to prevent freezing even on the coldest winter day.
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Application 2: In many countries, salt is added to melt the ice on the
sidewalk. The ice melts because the NaCl added lowers the freezing point
of water. Of course, this only works at mild temperatures. At temperatures
well below the freezing point, salt only has the effect of increasing friction.

Vapor pressure diagram. At the freezing point the vapor pressure of
the solid solvent is equal to the vapor pressure of the solvent in solution.
The freezing temperature of the solution is the temperature at which the
vapor-pressure curve of the pure solid solvent intersects that of the solution
(see Fig. 3.33). As solute is added to the solution, the vapor pressure of the
solvent falls and the freezing point drops. ∆Tf = T ′f − Tf is negative.
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Solvent Pure Solid 
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Tf=Tf’-Tf
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Figure 3.33. Change in the temperature associated with the freezing
point depression. ∆Tf = T ′f − Tf < 0.

By analogy with the case of the boiling point elevation we write:
∆Tf = T ′f − Tf = −Kfm.

If the substance dissociates in solution, we must use the total molality, as
the example below shows:

3.12.5. Example Problem. The number of moles of the major dissolved
species in a 1.000-L sample of seawater are as follows:
Na+ 0.458 mol. Mg2+ 0.052 mol. Ca2+ 0.010 mol. K+ 0.010 mol. Cl− 0.533
mol. SO2−

4 0.028 mol. HCO−3 0.002 mol. Br− 0.001 mol. Neutral species:
0.001 mol.
Estimate the freezing point of the seawater, assuming Kf = 1.86 K.kg/mol
for water.
Solution: Because water has a density of 1.00 g/cm3, 1.00 L of water weighs
1.00 kg. For dilute aqueous solutions, the number of moles per kilogram of
solvent (the molality, m) is therefore approximately equal to the number
of moles per liter. The total molality, obtained by adding the individual
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species molalities just given, is m = 1.095 mol/kg. Then
∆Tf = −Kfm = −(1.86 K.kg/mol)(1.095 mol/kg) = −2.04 K.

The seawater should freeze at approximately -2◦C. Nonideal solution effects
make the actual freezing point slightly higher than this.
The graph of Fig. 3.34 shows freezing point of water vs molality of solute
added. This graph appears to suggest that the freezing point of water de-
pends not only on molality but also on the dissolved substance. This differ-
ence in slopes is actually due to the fact that different substances decompose
into different numbers of ions (one: M, two: MX1, three: MX2 and four:
MX3). When using the formula ∆Tf = −Kfm, the molality m must ac-
count for the total number of moles of all solute species added to the solvent.
For example, if 1 mol of NaCl added to water completely dissociates into
Na+ and Cl−, then m should count 2 mol of ions. If the substance added
does not dissociate, then m only counts the number of moles of undissoci-
ated substance. If the substance partially dissociates, then we must add all
the moles of reactants and products according to the chemical equilibrium
describing the partial dissociation of the solute added.
Table 3.2 lists freezing point depressions and boiling point elevations for
different solvents.

Table 3.2. Boiling-point elevation and freezing-point depression constants.

Solvent Formula Tb(◦C) Kb(K.kg/mol) Tf (◦C) Kf (K.kg/mol)
Acetic acid CH3COOH 118.1 3.07 17 3.9
Benzene C6H6 80.1 2.53 5.5 4.9
Carbon tetrachloride CCl4 76.7 5.03 -22.9 32
Diethyl ether C4H10O 34.7 2.02 -116.2 1.8
Ethanol C2H5OH 78.4 1.22 -114.7 1.9
Naphthalene C10H8 — — 80.5 6.8
Water H2O 100 0.512 0.0 1.86

3.13. Binary Mixtures of Liquids

Suppose that we have an “ideal binary mixture”, i.e. two liquids (A and B)
that behave together as ideal solution. Both liquids are volatile and thus
generate a non-zero vapor pressure. Figure 3.35 shows vapor pressure vs
mole fraction of A. Traces shown are for the two partial vapor pressures of
the mixture components (A,B) as well as the total vapor pressure, which
is the sum of both partial pressures. For an ideal solution the Raoult’s
and Henry’s laws have the same form, featuring the same slope. The only
difference is that Raoult’s law refers to the solvent whereas Henry’s law refers
to the solute. Otherwise, their form is identical (i.e., they both describe
straight line behavior vs mole fraction).
Figure 3.36 shows the behavior of a real solution compared to an ideal
solution. The real solution is the curved trace. The ideal solution is the
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Molality (mol/kg)

Figure 3.34. Freezing point vs molality. Molality as the number of
moles of solute added (per kg solvent). The red colored lines give the
observed depression of the freezing point of water by acetic acid, NaCl,
and FeCl3 as the molality of the solutions increases. Straight blue lines
sketch the predicted ideal behavior for one through four moles of parti-
cles per mole of solute added to the solution. The experimental curve
for NaCl (which gives two moles of dissolved particles per mole of NaCl
added) stays close to the ideal straight line for MX; the experimental
curve for FeCl3 (which gives four moles of dissolved particles) stays fairly
close to the ideal straight line for MX3. The pattern suggests that acetic
acid dissolves to give one mole of particles per mole of solute. As molal-
ity increases, the observed freezing-point depressions deviate in varying
ways from the straight lines.

straight line. There are two straight lines: one for Raoult’s law and one for
Henry’s law. The Raoult’s law is the straight line that is tangent to the real
solution curve near mole fraction XB = 1 (the limit of nearly pure solvent).
It extrapolates to zero mole fraction. The Henry’s law is the case of a dilute
solution, and refers to the solute. It is a straight line that is tangent to the
curve at XB = 0 and extrapolates at XB = 1 to the pressure required to
liquify the solute substance at the same temperature. Thus, the two slopes
are different and carry different meanings. (The Henry’s law constant is a
measure of the volatility of the solute in a particular solvent, whereas the
Raoult’s law constant is just the vapor pressure of the pure solvent.)
Figure 3.37 illustrates the behavior of three different “real solutions”: carbon
disulfide in acetone, benzene in methylbenzene and chloroform in acetone.
For carbon disulfide in acetone, there is a positive deviation from the ideal
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Figure 3.35. The total vapor pressure and the two vapor pressures of
an ideal binary mixture are proportional to the mole fractions of the
components.
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Figure 3.36. When a component (the solvent) is nearly pure, it has a
vapor pressure that is proportional to its mole fraction with a slope P 0

B

(Raoult’s law). When it is the minor component (the solute) its vapor
pressure is still proportional to the mole fraction, but the constant of
proportionality is now KB (Henry’s law).

solution. Neither substance likes each other, and intermolecular forces are
weak, hence the high volatility.
For benzene in methylbenzene, we see behavior that is close to ideal solution.
Both substances are very similar in terms of intermolecular bonding, yet the
attraction forces are moderate. See Fig. 3.38.
For chloroform in acetone, the intermolecular forces between them are strong,
as both substances are polar. Hence, the deviations are negative. See
Fig. 3.39.



160 3. Properties of Matter

0 1Mole fraction of carbon 
disulfide, X (CS2)

Pr
es

su
re

, P
/T

or
r

0

100

200

300

400

500

Total

Carbon
disulfide

Acetone

Figure 3.37. Strong deviations from ideality are shown by dissimilar
liquids (in this case carbon disulfide and acetone, propanone).
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Figure 3.38. Two similar liquids, in this case benzene and methylben-
zene (toluene), behave almost ideally, and the variation of their vapor
pressures with composition resembles that for an ideal solution.

3.13.1. Volatile Solutes: Distillation. Henry’s law applies to volatile
solutes, because without volatility, the partial pressure of the solute in the
gas space would be zero. Henry’s law enables us to calculate the amount of
solute dissolved in a solution (mole fraction) based on the knowledge of its
vapor pressure and the Henry’s law constant for that substance and solvent
at a given temperature.
Using Henry’s law we can explain the phenomena of distillation, which is a
method for separating component substances from liquid mixtures through
vaporization and condensation. It is a separation process that is based on
differences in volatility (vaporization point) of components in the mixture.
The main applications of distillation include separation of crude oil into its
components, desalination of sea water, purification of liquid chemicals (e.g.
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Figure 3.39. The experimental partial vapor pressures of a mixture of
chloroform (trichloromethane) and acetone (propanone).

solvents) and the production of distilled beverages with a higher alcohol
content.

Figure 3.40. In a distillation column (still), temperature decreases with
height in the column. The less volatile components condense and fall
back to the flask, but the more volatile ones continue up the column
into the water-cooled condenser, where they condense and are recovered
in the receiver.

The equipment used for distillation is called a still (Fig. 3.40). The process
is based on differences in volatility, as quantified by the vapor pressure of
the substances at some given temperature.

3.13.2. Example. Consider a mixture of hexane and heptane. At ambient
temperatures, the vapor pressure of pure hexane is 0.198 atm whereas that
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of pure heptane is 0.060 atm. Suppose that a mixture consists of mole
fractions Xhexane = 0.4 and Xheptane = 0.6, the partial pressures are:

Phexane = XhexaneP
◦
hexane = (0.4)(0.198 atm) = 0.0792 atm

Pheptane = XheptaneP
◦
heptane = (0.6)(0.060 atm) = 0.0360 atm

From Dalton’s law the total pressure is P = Phexane + Pheptane = 0.1152
atm. The mole fractions in the vapor are:

X ′hexane = 0.0792 atm
0.1152 atm = 0.688

X ′heptane = 1−X ′hexane = 0.312

Thus, the vapor is enriched in the more volatile component. In a temperature-
mole fraction plot (see Fig. 3.41), the distillation process at constant total
pressure is illustrated. The component with the lower vapor pressure (com-
ponent 2) has the higher boiling point (T 2

b ). If a solution starts at mole
fraction 0.6 (see plot) and we raise its temperature until it touches the liq-
uid line in the plot, the vapor in equilibrium with the solution is richer in
the more volatile component 1. Its composition lies at the intersection of the
horizontal constant-temperature line and the equilibrium vapor curve. Com-
ponent 1 is enriched, as indicated by the component 2 mole fraction which
is down to 0.312. The process is repeated until the desired enrichment is
attained.
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Figure 3.41. The boiling point of an ideal solution varies with the
composition of the solution. The upper curve is the boiling temperature
referred to the vapor composition, and the lower curve is the boiling
temperature referred to the liquid composition. The vapors boiling off
a solution that has a 0.600-mol fraction of component 2 are enriched
in the more volatile component 1 to the extent that their mole fraction
of component 2 is only 0.312 (red arrow). The subsequent blue arrows
show the further steps used in obtaining nearly pure component 1 by
fractional distillation.
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3.14. Osmotic Pressure

Osmosis describes the transport of small molecules through membranes. It is
important in biology and reverse osmosis (a commercial process to desalinize
water). Suppose a solution is contained in an inverted tube, the lower end of
which is covered by a semipermeable membrane. This solution has a solute
concentration of c moles per liter. When the end of the tube is inserted in
a beaker of pure solvent (see Fig. 3.42), solvent flows from the beaker into
the tube. The volume of the solution increases, and the solvent rises in the
tube until, at equilibrium, it reaches a height, h, above the solvent in the
beaker.

Figure 3.42. Osmotic pressure builds up when concentrations across a
membrane are unequal.

The pressure on the solution side of the membrane is greater than the at-
mospheric pressure on the surface of the pure solvent by an amount given
by the osmotic pressure, π:

π = ρgh

where ρ is the density of the solution (water: 1.00 g/cm3) and g is the
gravitational acceleration constant (9.8 m/s2). For example, h=0.17 m in a
dilute aqueous solution gives:

(3.3) π = (1.00 g/cm3)(10−3 kg/g)(106 cm3m−3)(9.8 m/s2)(0.17 m)

≈ 1.7× 103 kg/m/s2 = 1.7× 103 Pa = 1.7× 103 Pa
1.013× 105 Pa/atm = 0.016 atm.
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van’t Hoff (1887) discovered a relationship between osmotic pressure π, con-
centration c and absolute temperature T :

π = cRT

since c = n/V we can write this in a form similar to the ideal gas law:
πV = nRT.

The following example illustrates the use of the van’t Hoff formula to find
the molar mass of a chemical species, if an osmometer provides the osmotic
pressure in units of atm.

3.14.1. Example. We dissolve 2.00 g of a protein in 0.100 L water. The
osmotic pressure is 0.021 atm at 25◦C. What is the approximate molar mass
of the protein?
Solution: The concentration in moles per liter is

c = π

RT
= 0.021 atm

(0.08206 L.atm.mol−1.K−1)(298 K) = 8.6× 10−4 mol/L

The number of moles (n = c · V , V=0.100 L) is:
n = c · V = 8.6× 10−4 mol/L · 0.100 L = 8.6× 10−5 mol.

The molar mass, by definition, is:

M = m

n
= 2.00 g

8.6× 10−5 mol = 23, 000 g/mol.

Remark: If you are confused about the constant R = 0.08206 L.atm/mol/K,
when we earlier using R = 8.31 J/mol/K, the relationship between the two is
easily obtained by realizing that J (Joules) are a unit of energy, and energy is
PV (pressure × volume). In SI units, the units of pressure are Pa, whereas
those of volume are m3. Converting 1 J=(1 Pa)·(1 m3) to L.atm:

(1 Pa) · (1 m3) · 1 atm
101325 Pa ·

1000 L
1 m3 = 1

101.325 L.atm

So that the gas constant becomes (in the new units):

8.31 J/K/mol · 1
101.325

L.atm
J = 0.08206 L.atm/mol/K.

3.15. Osmosis and Reverse Osmosis

Before we conclude our discussion on colligative properties we will provide
a few remarks concerning the driving forces behind the osmotic process.
Osmosis is illustrated in Fig. 3.43. Reverse osmosis is shown in Fig. 3.44.
Let’s look at the driving forces involved. Suppose that we have two compart-
ments, one which contains the pure solvent (see Fig. 3.45, left) and another
which contains a solvent with solute (right):
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Figure 3.43. Osmotic pressure builds up when concentrations across a
membrane are unequal. This schematic shows the situation before (left)
and after (right) equilibrium is reached.
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Figure 3.44. Osmotic pressure builds up when concentrations across a
membrane are unequal.

Reverse osmosis (Fig. 3.44) can be described in terms of chemical poten-
tials. A potential gives rise to a flux or force of some kind. In a way analo-
gous to the gravitational potential which leads to objects falling from high
places and the electric potential which leads to the flow of charges between
electrodes, the chemical potential leads to chemical or physical transforma-
tions involving molecules. It is differences in the potential that lead to these
forces. For example, we need a positively charged electrode and a negatively
charged electrode for electric currents to flow through a conductive medium.
Likewise, differences in the chemical potential of a substance between two
compartments (or points in space) will lead to the flow of molecules.
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Pure Solvent Solution

μ*  (p)
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μ  (p + II)A

Equal at equilibrium

p p + II

Figure 3.45. Experimental apparatus for reverse osmosis.

In general, the chemical potential of a substance indicates its potential for
physical or chemical transformation. In the absence of a chemical reaction,
chemical potential differences drive physical transport such as diffusion. You
can think of the chemical potential as indicative of the concentration of a
given molecular species. Diffusion describes the random movement of chem-
ical species. The consequence of this random motion is that it leads to
uniform distributions of concentrations: gases diffuse away from regions of
high concentrations toward regions of low concentrations12. Equilibrium is
reached when the concentration of each chemical species is uniform every-
where in space. Thus, we can think of each substance as having a chemical
potential which indicates the local concentration of this particular substance.
In Fig. 3.44 the solute is found in high concentration in the right-most com-
partment and has zero concentration in the left-most compartment. Thus,
the solute wants to move from the right compartment to the left compart-
ment. However, the semi-permeable membrane in the middle does not allow
this diffusion to take place. Therefore, the flux of solute particles toward the
left is zero because of this membrane. On the other hand, there is a higher
concentration of solvent in the left compartment compared to the right com-
partment. This is because of the presence of solute molecules in the right
compartment, which leads to a lower concentration of solvent molecules.
Thus, the solvent wants to move from the left compartment toward the

12The flux of the ith component, Ji is driven by gradients in the chemical potentials according
to relationships of the type Ji = −

∑
k
Mik∇µk, where µk is the chemical potential of the kth

component and Mik is a coupling coefficient between fluxes in i and gradients in k. In the case
where there is no coupling between the components (Mik = 0 for i 6= k) we have Ji = −Mii∇µi.
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right compartment, in an attempt to equate the solvent concentrations ev-
erywhere. This flux of solvent from the left to the right leads to a higher
pressure on the right compartment: the osmotic pressure. At equilibrium,
the chemical potentials of the solvent are equal in both compartments. This
causes the gradient (difference) in chemical potentials to be zero and the
driving force vanishes.

Reverse osmosis: What happens if we apply an external pressure
to overcome the osmotic pressure? In this case, the solvent will want
to move from the top compartment to the bottom compartment. The
solute will also want to move from the top to the bottom. However, it
will not be able to do so because of the semi-permeable membrane.
Thus, only the solvent will be transferred. This process leads to
an accumulation of pure solvent in the bottom compartment. This
process, called reverse osmosis, can be used to purify water and other
solvents.

Reverse osmosis is a technique that can be used to purify water. When a
sufficiently high pressure is applied to overcome the osmotic pressure across
a membrane, water is forced back through the membrane, leaving ions and
other dissolved substances behind. In a sense, this method filters out the
ions and other unwanted substances at the molecular level.
Even after municipal water treatment, drinking water still contains heavy
metal ions such as Pb2+, Cd2+ and Hg2+ that are toxic. Commercial reverse
osmosis systems can be purchased for domestic use to remove these toxic
ions. Reverse osmosis can also be used to desalinize (remove ions) from
seawater. Seawater is pumped under high pressure into tubes containing
hollow fiber membranes. Water molecules (but not ions) pass through the
membranes into the fiber to be collected. This method can purify seawater
to less than 400 ppm of total dissolved solids in one pass, making it suitable
for drinking.

3.16. Problems

Problem 46. The average molar masses of unknown polymers can be de-
termined through osmotic pressure experiments. Several aqueous solutions
of non-volatile poly(ethylene) oxide of an unknown molar mass were pre-
pared and the osmotic pressure expressed in terms of height of the solvent
in a thin tube according to the experimental setup below. You may take the
density of water to be 1.004 g cm−3, P = 1.00 atm, and T = 298.15 K.
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concentration (g L−1) 2.042 6.613 9.521 12.602
height (cm) 0.592 1.910 2.750 3.600

Calculate the molar mass of the dissolved poly(ethylene) oxide sample. Hint:
plotting the data will be helpful.

Solution. From the graph of height vs concentration, a straight light is fit
through the data points. We should force the intercept to be zero, since
π = cRT has no offset. Rearranging,

π = cRT = mRT

VM
and π = ρgh

Therefore,

h =
( RT

ρgM

)
c

The slope of the fitting curve is equal to the above quantity in parentheses.
Rearranging, converting to mks units, and plugging in the slope,

M = (8.314 J K−1 mol−1)(298.15 K)
(1.004× 103 kg m−3)(9.81 m s−2)(0.29× 10−2 m4 kg−1)

= 87 kg mol−1

�

Problem 47. You determine the osmotic pressure of an aqueous solution
at 300 K to be 120 kPa. Calculate the freezing point of the solution based
on this data.

Solution. The freezing point depression equation
∆Tf = Kfm

and osmotic pressure equation
π = cRT

can be combined based on the following relationships

m = nsolute
kgH2O

≈ nsolute
V ρH2O

, c = n

V
, n = πV

RT
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to form the following expression for temperature change

∆Tf = Kfπ

RTρ

The freezing point depression constant and density for H2O are Kf=1.86
K.kg.mol−1 and 103 kg.m−3, respectively.

∆Tf = (1.86 K.kg.mol−1)(120× 103 Pa)
(8.314 J.K−1 mol−1)(300. K)(103 kg.m−3)

= 0.0895 K

so solution will freeze at -0.0895◦C. �

Problem 48. Each increase in pressure of 100 atm decreases the melting
point of ice by about 1.0◦C.
(a) Estimate the temperature at which liquid water freezes under a pressure
of 400 atm.
(b) One possible explanation of why a skate moves smoothly over ice is
that the pressure exerted by the skater on the ice lowers its freezing point
and causes it to melt. The pressure exerted by an object is the force (its
mass × the acceleration of gravity, 9.8 m.s-2) divided by the area of contact.
Calculate the change in freezing point of ice when a skater with a mass of
75 kg stands on a blade of area 8.0×10−5 m2 in contact with the ice. Is this
sufficient to explain the ease of skating at a temperature of, for example,
−5◦C (23◦F)?

Solution. (a)

Tf = 0◦C + ∆Tf = 0◦C−
(400

100
)
× 1◦C = −4◦C

(b)

P = (75 kg)(9.8 m.s-2)
8.0× 10−5 m2 × 1 atm

101325 Pa = 90.67 atm

No, this pressure is not high enough for this effect to explain the relative
ease of skating at −5◦C. �

Problem 49. Glycerol was once used in antifreeze because it can lower
the freezing point of water below 0◦C. What mass percentage of glycerol in
water must be used to reduce the freezing point of the mixture to −5.0◦C,
assuming ideal solution behavior? (Kf = 1.87 K.kg/mol.)

Solution. Using ∆Tf = −Kfm with ∆Tf = −5.0 K and the value of Kf

provided, yields m = 2.7 mol/kg (moles of glycerol per kg of solvent). Multi-
plication of m by the molecular weight of glycerol (92.09 g/mol) gives 248.6
g glycerol per kg (1,000 g) solvent. (Let’s round this to 250 g to get round
numbers; in practice, don’t round.) We have 250 g glycerol in 1,000 g water.
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The total mass of the solution is 250 g + 1,000 g = 1,250 g. The mass
fraction is 250 / 1,250 = 0.20, or 20% of total solution by mass. �

Problem 50. Show that for one nonvolatile ionic molecule, that completely
ionizes into x ions per molecule, the formula for the vapor pressure lowering
is ∆P = −xXsaltP

◦
B as the limit of the solute concentration approaches zero.

Xsalt is the ratio of the number of moles of the ionic salt in solution to the
total number of moles if the compound were to not ionize.

Solution. n0 := moles of H2O
n1 := moles of ionic compound
XB:= mole fraction when the compound completely dissociates
Xsalt := mole fraction the compound does not dissociate

Xsalt = n1
n1 + n0

≈ n1
n0

XB = xn1
xn1 + n0

≈ xn1
n0

∆PB = −XBP
◦
B = −xn1

n0
P ◦B = −xXBP

◦
B

�

Problem 51. You have a non-volatile solvent Q, with a molar mass of 97.80
g mol−1, dissolved in 0.551 pounds of water (water is a solvent as well, but
it is volatile compared to Q). The solution has a vapor pressure of 23.8 torr.
Take the vapor pressure of water to be 0.056 atm at the temperature of the
solution. Determine how many grams of Q are present in the solution.

Solution. The only volatile component is water. Thus, the vapor pressure
of the solution, Pvap is due to the water solvent. The Raoult’s law is applied
to the water solvent:

Pvap = XsolventP
◦
solvent,

Xsolvent = Pvap/P
◦
solvent = 0.031 atm/0.056 atm = 0.56.

Since we have 0.551 lb (249.92 g) of water and its molar mass is 18 g/mol,
this implies we have nH2O = 249.92/18 = 13.9 mol of water. Then,

0.56 = nH2O
nH2O + nQ

= 13.9
nQ + 13.9 ,

nQ = 10.9 mol,
nQ × 97.8 g.mol−1 = 1066 g.

�



3.16. Problems 171

Problem 52. 13 A total of 10 g of nonvolatile solute are added to five moles
of a solvent whose total volume is 200 cm3. The freezing point of the solvent
is 280 K, while its molar enthalpy of fusion is 2,000 cal mol−1. It’s found that
the solvent in the solution freezes at 279.894 K. By assuming the solution is
ideal, compute the osmotic pressure at 300 K.

Solution. This is a freezing point depression problem, a colligative property
(Raoult’s law). Consider the heterogeneous equilibrium where we have a
solid A(s) melting into a liquid A(l), but the liquid phase has some amount
of solute B dissolved. A(s) is in equilibrium with A(l); this means that the
chemical potentials of A in the two phases are equal:

µ∗A(s) = µ∗A(l) +RT logXA

where XA is the mole fraction of A and ∗ denotes the pure substance. This
leads to the formula for freezing point depression ∆Tf = K ′XB presented
in class, K ′ = RT 2

f /(∆fusH), because differentiation of:

logXA = µ∗A(s)− µ∗A(l)
RT

= ∆fusG

RT
with respect to T :

d logXA

dT = d
dT

∆fusG

RT
Then we use the Gibbs-Helmholtz equation, ∂(∆G/T )/∂T |P = −∆H/T 2,
to get d logXA

dT = −∆fusH/(RT 2). Multiply both sides by dT and integrate
from XA = 1 to XA, and from T = Tf to T :∫ logXA

0
d logXA = − 1

R

∫ T

Tf

∆fusH

T 2 dT

The left hand side integrates to logXA, which equals log(1 −XB), but for
small values of XB, this is approximately equal to −XB. Then, assuming
that ∆fusH is constant across this temperature range,

XB = ∆fusH

R

(
1
Tf
− 1
T

)
,

where XB=Xsolute. Writing 1
Tf
− 1

T = T−Tf
TTf

≈ ∆Tf
T 2
f

(since T ≈ Tf ), ∆Tf =
T − Tf , yields the result ∆Tf = K ′XB, where K ′ = RT 2

f /(∆fusH). (Note:
this convention results in ∆Tf > 0.)

13This problem requires Chapter 6 as a pre-requisite; it is placed here because it deals with the
topic of freezing point depression. Upon first reading, you can skip the derivations and merely
use the boxed equation.
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Finally,

Xsolute = 2000 cal mol−1

1.987 cal K−1 mol−1 ( 1
279.894 K −

1
280 K) = 0.0013614

and

π = RTXsolute

Vn
= (0.0821 atm.L.K/mol)(300 K)(0.0013614)

0.2 L
5 mol

= 0.8379 atm

NOTE: We have employed two results. The first is the Gibbs-Helmholtz
equation, ∂(∆G/T )/∂T |P = −∆H/T 2. This equation is derived as follows:(
∂(G/T )
∂T

)
P

= 1
T

(
∂G

∂T

)
P

+Gd(1/T )
dT = 1

T

(
∂G

∂T

)
P
− G

T 2 = 1
T

[(
∂G

∂T

)
P
− G

T

]
Then, from dG(P, T ) = V dP − SdT , (∂G/∂T )P = −S, by definition G =
H−TS, or S = (H−G)/T , (∂G/∂T )P = (G−H)/T , we get for the square
bracket: (

∂G

∂T

)
P
− G

T
= G−H

T
− G

T
= −H

T
.

Thus, (
∂(G/T )
∂T

)
P

= −H
T 2 ,

which holds for each term in ∆G = Gf − Gi; hence we can replace G by
∆G and H by ∆H. The second result is the Gibbs energy at constant
temperature (dT = 0), dG = V dP , integrated from initial to final state:

G(Pf ) = G(Pi) +
∫ Pf

Pi

V dP

which, for an ideal gas, gives G(Pf ) = G(Pi) + RT
∫ Pf
Pi

(1/P )dP = G(Pi) +
RT log(Pf/Pi). The corresponding molar quantity is called the molar Gibbs
energy (Gibbs energy per mole of substance), or chemical potential; hence
µ = µ	+RT log(P/P	), where 	 denotes a reference state. For simplicity,
we write P ≡ P/P	. Denoting the quantities relating to pure substances
by a ∗, so the chemical potential of pure A is written µ∗A or µ∗A(l) to denote
a liquid. Because the vapor pressure of the pure liquid is P ∗A, it follows
that the chemical potential of A in the vapor (treated as perfect gas) is
µ	A+RT logP ∗A (with PA, a relative pressure PA/P	). If another substance,
a solute, is also present in the liquid, the chemical potential of A in the
liquid is changed to µA and its vapor pressure is PA. The vapor and solvent
are in equilibrium, so we can equate the chemical potentials, µA = µ	A +
RT logPA. Combining these two equations to eliminate µ	A, we get µA =
µ∗A − RT log(P ∗A) + RT logPA = µ∗A + RT log(PA/P ∗A). Invoking Raoult’s
law, PA = XAP

∗
A, we get µA = µ∗A + RT logXA. This derivation is from

Atkins [14]. �
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Problem 53. Let’s estimate the rate of evaporation for water at RT. 1)
Calculate the energy, ∆H, that binds water molecules in a liquid. You can
find more information about the structure of water at the link below:
http://www1.lsbu.ac.uk/water/water hydrogen bonding.html
Here are some figures showing tetrahedrally coordinated water molecules:

As always, such structures are understood in the sense of time-averages.
The actual picture is very dynamic. You may also consult any other useful
articles you may find. 2) Then calculate the fraction, f , of water molecules
with kinetic energies sufficiently large to break the hydrogen bonding struc-
ture apart and escape to the gas phase. Let’s assume that water molecules
in the liquid phase also obey Maxwell-Boltzmann statistics. Feel free to use
Wolfram Alpha to compute the relevant integrals numerically. 3) Use the
fraction calculated in #2 to estimate the rate of evaporation in kg per square
meter per second. The approach we shall use is loosely is inspired by the
Langmuir theory of adsorption on surfaces. How many molecules are there
per unit area on the water’s surface? Call this quantity, σ, for area density
(units: # molecules/m2). Consider the following formula:

E = 1
6 · σ · τ

−1
0 e−∆H/RT · f

The factor of 1/6 is a geometric factor I’ve added to account for the fraction
of water molecules moving upwards (imagine a cube with 6 faces, and only
those moving towards the top face go towards the gas region; the rest stay
in solution). The factor f gives the “area coverage”, that is, the fraction of
water molecules that are eligible to escape from the solution because their
kinetic energies are large enough to enable a jump. τ0 is a “residence time”,
which we take to be the average lifetime of a water molecule in a hydrogen-
bonded cluster. The paper below cites hydrogen bond lifetimes in the range
1-20 ps:
https://arxiv.org/pdf/0706.1355
Let’s take τ0=20 ps, the worst case scenario (very long lived clusters). The
Arrhenius factor e−∆H/RT gives the fraction of eligible water molecules that
will actually jump (at a given temperature T ); this fraction grows larger
with T . ∆H is the energy barrier required to break the hydrogen bonded
cluster (see part #1). You can check that the units of E are molecules/m2/s.
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Solution. 1) Per articles
https://arxiv.org/pdf/0706.1355
http://www1.lsbu.ac.uk/water/water hydrogen bonding.html
the energy required to break the bonds is on the order of a few kJ/mol. One
value cited was 9.80 kJ/mol. Let’s take 9.80 kJ/mol.

2) For water, M = 18 g/mol=0.018 kg/mol.√
8RT/πM =

√
8(8.31)(293)/(π · 0.018) ≈ 587 m/s.

This is the average speed of a water molecule. From part 1), the kinetic
energy must exceed 9.80 kJ/mol. From K = 1

2Mv2, this corresponds to a
speed of

√
2K/M =

√
2(9800 J/mol)/(0.018 kg/mol)=1043 m/s.

We must integrate

f(v) =

√(
M

2πRT

)3
4πv2e−Mv2/(2RT )

from 1043 m/s to ∞, using T = 293 K:

f =

√(
M

2πRT

)3
4π
∫ ∞

1043
v2e−Mv2/(2RT )dv

Numerically, the prefactor
√(

M
2πRT

)3
evaluates to 1.276×10−9.

Also, M/(2RT )=3.696×10−6. In Wolfram Alpha, the integral can be eval-
uated by typing:
integrate (vˆ2)*exp(-(vˆ2)*(3.696e-4)) from 1043 to infinity
This gives the result: 2.81×106. Multiplication by 4π × 1.276× 10−9 gives:

f = 0.045
so about 4.5% of molecules have enough kinetic energy to escape the solu-
tion and go into the gas phase.

3) Water has mass density ρm=1 g/cc=106 g/m3=103 kg/m3. Number den-
sity is (103 kg/m3)∗(6.022×1023 molecules/mol)/(0.018 kg/mol). Elevating
this to the power 2/3 gives an area density of σ = 1.038×1019 molecules/m2.

E = 1
6σ · τ

−1
0 · e−∆Hvap/RT · f = 1.39× 1027 molecules/m2/s.

where ∆Hvap = 9.8 kJ/mol. RT=(8.31 J/mol/K)(293 K)=2.434 kJ/mol.
Then, e−∆Hvap/RT ≈ 0.01784. To get units of kg/m2/s we must convert
molecules to kg, using molar mass (0.018 kg/mol) and Avogadro’s constant:

Emass = E

NA
· (0.018 kg/mol) = 2.07 kg/m2/s
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This value is close to the experimental value of 1.97 kg/m2/s cited here:
http://likesundanese.blogspot.com/2013/09/
water-evaporation-rate-per-surface-area.html �

Problem 54. Use the evaporation rate, E, you found in Problem 53 to
estimate the amount of water evaporated around the planet by all bodies
of water during 1 day. (You will need to look up this information about
the total surface area of the Earth that is water.) Assume that all water
is at RT and that the temperature is uniform (held at RT) everywhere.
(This assumption is probably OK, since the average temperature on Earth
is 16◦C, per https://www.space.com/17816-earth-temperature.html,
so not too far off from RT.) Compare the amount of water evaporated in
1 day to the total rainfall in 1 day. (Look up the average annual rainfall,
and divide by 365 days to get the daily rate.) These two numbers should
balance each other, right? (If not, explain why not.)

Solution. About 70% of the Earth’s surface is water-covered (with the
oceans accounting for 95.6% of all Earth’s water). The surface area of
the Earth is 196.9 millions of square miles, or 5.1×108 km2. So 70% of
this works out to 361 million km2 (or 139.4 million mi2). This data is from:
https://www.universetoday.com/25756/surface-area-of-the-earth/

Multiplication of E by 361×1012 m2 and by 1 day (86,400 seconds) gives:
(2.07 kg/m2/s)(361× 1012 m2)(86, 400 s) = 6.45× 1019 kg

The Earth’s average annual precipitation is approximately 5.36×1014 m3.
Source: https://hypertextbook.com/facts/2008/VernonWu.shtml
Divided by 365 days, this gives 1.47×1012 m3 per day. Because water has
density of 1000 kg/m3, this corresponds to 1.47×1015 kg of water.
The estimate is off by 4 orders of magnitude (1.47×1015 kg vs. 6.45×1019 kg).
We neglected the rate of condensation. We can estimate the rate of conden-
sation if we know the amount of water in the air (humidity level), [H2O] (in
moles/m3), the average (say, rms) speed vrms of the air molecules, and γ
the uptake coefficient. γ is the probability that a molecule hitting the water
surface will be reabsorbed into the solution. Then,

J = γ

6 · vrms · [H2O]

where the factor 1/6 is introduced for the same reason as before. Let’s
assume the air temperature is the same as the solution temperature and
take γ = 1. Taking vrms = 1043 m/s. According to
https://www.cactus2000.de/uk/unit/masshum.shtml
if the relative humidity were 51.73%, which appears to be some ideal value
“comfortable to humans”
https://en.wikipedia.org/wiki/Relative humidity
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the water concentration at normal pressure and temperature (25◦C and
101.325 kPa) is 3.9798×1017 molecules/cc, or 3.9798×1023 molecules/m3.
Then, J in units of kg/m2/s is:
J

NA
·(0.18 kg/mol) = 1

6 ·(1043)·(3.9798×1023)· 0.018
6.022× 1023 ≈ 2.067 kg/m2/s

Then, condensation accounts for the difference. Note: the choice of 51.73%
is semi-arbitrary here and the exact value chosen matters. The moral of the
story here is that precipitations alone do not account for the difference, by
a long shot. We must include the rate of condensation at the very least. �

Problem 55. Suppose you want to build a swimming pool in your backyard
(assume a surface area of 500 square foot) and you want to estimate how
much water it will consume. How many gallons of water per day do you
lose by evaporation? (Assume RT.) Note: this calculation (and the one in
Problem 54) neglects the effects of direct sunlight.

Solution. 500 square feet = 46.5 square meters. Multiplication of E by
46.5 m2 and by 1 day (86,400 seconds) gives:

(2.07 kg/m2/s)(46.5 m2)(86, 400 s) = 8.32× 106 kg
Again, this number is much too high. If instead, we account for condensation
and air humidity (51% r.h.), we get a much smaller loss

(2.07− 2.067 kg/m2/s)(46.5 m2)(86, 400 s) = 12, 053 kg
A pool of this size (say 5 m wide x 10 m long, 1.5-3.5 m deep) may have
a volume of 125,000 liters (kg). This represents about 10% loss of water
volume per day. Losses may be less if the pool temperature is lower. �

Problem 56. Freezing point depression. The addition of a (non-volatile)
solute to the solvent lowers the freezing point because the solute impedes
the formation of the crystalline solid. This is mainly an entropic effect that
describes the space (configurations) occupied by the solute, thereby forcing
the solvent molecules to rearrange themselves around the solute particles to
accommodate them. Recall that the freezing point depression is given by
the formula ∆Tf = Kf ·m, where m is the molality of the solute and Kf is a
constant. (With this convention, ∆Tf > 0.) This formula is a statement of
the fact that ∆Tf a colligative property. (a) Explain why? Kf has a name;
it is called the cryoscopic constant. It can be shown
http://www1.lsbu.ac.uk/water/colligative properties.html
that the cryoscopic constant can be written in the form:

Kf =
MRT 2

f

∆Hfus
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where ∆Hfus is the enthalpy of fusion, M is the molar mass of the solvent,
R is the gas constant, Tf is the fusion temperature of the pure solvent. It
can also be shown
www4.ncsu.edu/∼franzen/public html/CH433/lecture/

Colligative Prop h.pdf
https://en.wikipedia.org/wiki/Entropy of fusion
that the enthalpy of fusion is related to the entropy of fusion, ∆Sfus:

∆Sfus = ∆Hfus/Tf ,

because ∆Gfus = ∆Hfus− Tf∆Sfus = 0 at equilibrium. The entropy of fu-
sion, ∆Sfus = S(liquid)− S(solid), is the increase in entropy when melting
a substance. For a pure substance, this is almost always positive [mean-
ing that S(liquid) > S(solid)] since the degree of disorder increases in the
transition from an organized crystalline solid to the disorganized structure
of a liquid; the only known exception is helium. Suppose for simplicity that
S(liquid) does not change significantly with addition of the solute [i.e. it
may change a bit, but not as much as S(solid), so that S(liquid) is always
larger than S(solid); this is, of course, an approximation, but good enough
to illustrate the main point].
Thus, Kf (and thereby, ∆Tf ) depend on ∆Sfus. Let us look at the origins
of these entropic effects from a very simple picture. Our task here shall be
to examine the effect of solute addition on S(solid). Imagine a 2D fluid,
for example, a 3×3 matrix (square array). When the solvent is pure, this

array looks like:
◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦

, where ◦ denotes a solvent particle. When a solute

particle is added, this matrix may look like
• ◦ ◦
◦ ◦ ◦
◦ ◦ ◦

, where • denotes a solute

particle. In fact, there can be 9 different configurations, corresponding to all
possible ways to insert a • in any of the 9 positions. The entropy of the solid,
according to Boltzmann, is proportional to the logarithm of the number of
configurations of fixed energy, Ω: S(solid) = kB log(Ω), where log=natural
log. For pure solvent, Ω = 1, since there is only 1 possible configuration,

namely,
◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦

. Since log(1) = 0, S0 = 0. For 1 solute particle, Ω = 9

and S1 = kB log(9). Thus, S1 > S0, i.e. the entropy for 1 solute particle is
greater than the entropy of the pure solvent.
(b) What do you conclude about the effect of solute on S(solid), and its
impact on ∆Tf , the freezing point depression? Now let’s go to 3D. Imagine
a 3×3×3 array/cube (27 total lattice positions).
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(c) What is the entropy, S0 of the pure solvent. What is the entropy, S1,
of the solution containing 1 solute particle? What is the entropy, S2 of the
solution containing 2 particles? etc. (Continue this process up to S27, the
case of the pure solute.) What can you conclude about Sn, n = 1, . . . , 27,
and its effect on ∆Tf , the freezing point depression?
(d) Here, we have considered a solid of size 3×3×3 for simplicity; what
happens in the limit of large volume V ?

Solution. (a) Colligative property only depends on the mole fraction of the
solute, not on its nature. (b) As solute is added, S(solid) increases, up to
the point where the amount of solute equals the amount of solvent (50-50
mixture). At the same time, S(liquid) − S(solid) decreases. This causes
∆Tf to increase.
(c) There are Ω(27, 1) =

(27
1
)

= 27 ways of placing 1 particle in a 3×3×3
lattice, Ω(27, 2) =

(27
2
)

= 27 · 26/2 = 351 ways of placing 2 particles in
a 3×3×3 lattice, Ω(27, 3) =

(27
3
)

= 27 · 26/2 = 2925 ways of placing 2
particles in a 3×3×3 lattice, . . . , Ω(27, 26) = 27, Ω(27, 27) = 1. So the
entropy increases as we add more solute, up to the point there the amount
of solute equals the amount of solvent (at which point the solute becomes
the solvent), followed by a decrease. As far as the freezing point depression,
∆Tf , is concerned, the effect becomes more pronounced as more solute is
added.
(d) In the limit of large volume, the same idea applies to the freezing point
depression. The discrete variables become continuous parameters. �

Problem 57. Find out what conditions (T, P ) are used to carry out am-
monia synthesis in industrial processes. Explain why the reaction is carried
out under those conditions. How do these conditions affect the chemical
equilibrium?

Solution. The conditions are approximately 200 atm and 450◦C. Carrying
out the reaction at high pressure shifts the equilibrium towards the product,
per Le Châtelier’s principle. However, the reaction is exothermic, so lower
temperatures are better. However, the reaction rate can be pretty slow at
low temperatures. Why 450◦C then? At high temperatures, the reaction
rate increases. 450◦ represents a compromise (between equilibrium and re-
action rate). This compromise results in a significant amount of ammonia
produced, in a very short time. More details can be found here:
https://chemguide.co.uk/physical/equilibria/haber.html �

Problem 58. Dialysis relies on a membrane to separate molecules in a
solution. Consider a system in equilibrium consisting of a flexible dialysis
vessel filled with a solution of a purified protein sitting in water. Describe
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what happens to the system if:
a) You increase the concentration of the protein in the vessel.
b) You decrease the concentration of the protein in the vessel.
c) Add a small, impure protein sample (containing salts and dyes) to the
vessel.

Solution. Let us invoke Le Châtelier’s principle:
a) The vessel expands as more water enters to balance the increased con-
centration.
b) The vessel contracts as water leaves in response to the reduced concen-
tration.
c) The salt and dyes diffuse through the dialysis vessel, leaving a more pure
sample of the protein. The vessel also likely expands some due to the in-
creased concentration. �

Problem 59. The vapor pressures of each component in a mixture of
propanone (acetone, A) and trichloromethane (chloroform, C), were mea-
sured at 35◦ C with the following results:

χc 0 0.2 0.4 0.6 0.8 1.0
PC/torr 0 35 82 142 219 293
PA/torr 347 270 185 102 37 0

Confirm that the mixture “conforms” to Raoult’s law for the component in
large excess and to Henry’s law for the component that is minor. Estimate
the Henry’s law constants, KA and KC .

Solution. You should graph this data and realize that it shows a general
conformity to Raoult’s law by both components. Both components exhibit
a negative deviation to Raoult’s law. So, at large mole fractions the compo-
nent obeys Raoult’s law (experimental data will approach the line) and at
small mole fractions the component obeys Henry’s law. �

Problem 60. Ethanol (CH3CH2OH) has a normal boiling point, Tb of
78.4◦C. When 46.58 g of Na2SO4 (sodium sulfate) is dissolved in the ethanol
(mass = 1000 g) the boiling point becomes 79.6◦C. Calculate the KB for
ethanol (including appropriate units). Assume the salt completely dissolves
in the ethanol and behaves as a strong electrolyte.

Solution. We will use: ∆Tb = Kb ·m. The solute, Na2SO4 has a molar mass
of 142.04 g/mol. There is 1000 g of solvent (1.000 kg solvent). Therefore,
the molality can be calculated. Strong electrolyte:

Na2SO4︸ ︷︷ ︸
1 mol

→ 2Na+︸ ︷︷ ︸
2 mol

+ SO2−
4︸ ︷︷ ︸

1 mol︸ ︷︷ ︸
3 mol
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(46.58 g Na2SO4)
( 1 mol Na2SO4

142.04 g Na2SO4

)
= 0.3279 mol Na2SO4 × 3

= 0.9837 mol particles

m = moles of solute particles
kg of solvent = 0.9837

1.000 kg = 0.9837 m

So, ∆T = Tnew − Tb = Kb · m = 79.6◦C − 78.4◦C = 1.2◦C. So, 1.2◦C =
(Kb)(0.9837 mol/kg) and Kb = 1.2◦C

0.9837 mol/kg = 1.22◦C kg/mol which gives
1.2◦C kg/mol. �



Chapter 4

Chemical Reactions

Suppose we have a chemical reaction which describes a cobalt-HCl system
(see Fig. 4.1), where at time t = 0 we only have reactants and zero products.
As time evolves, the reactants are depleted and the products are formed. A
possible time course of this reaction is illustrated in the left hand plot (a)
of Fig. 4.1, where the time courses of concentration of a reactant (A) and
product (C) are shown. In the right hand plot (b) the roles are reversed:
species A is produced whereas species C is depleted. This plot could corre-
spond to the case where at time t = 0 we only have products present and
zero reactants, in which case only the reverse reaction initially takes place.
In both cases (a,b) some equilibrium concentrations are reached after suffi-
ciently long time. At that point, species A and C do not “remember” the
initial conditions anymore.

Figure 4.1. Chemical reactions reach equilibrium over time. The dy-
namics of the reaction are determined by its kinetics.

181
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4.1. Chemical Reactions and Equilibrium

Suppose that we have a reversible chemical reaction:
αA+ βB 
 σS + τT

• The forward reaction rate is kf [A]α[B]β,
• The backward reaction rate is kr[S]σ[T ]τ .

Here, kr and kf are called affinity constants.
At equilibrium the reaction rates for forward and backward reaction are
equal:

kf [A]αeq[B]βeq = kr[S]σeq[T ]τeq,

where the subscript eq denotes equilibrium concentrations.
4.1.0.1. Law of Mass-Action. If we call K the equilibrium constant and set
it equal to kf/kr, we have:

K ≡ kf
kr

=
[S]σeq[T ]τeq

[A]αeq[B]βeq
.

This equation for K is called the law of mass-action. Sometimes the law
of mass-action refers to the “chemical force” (affinity) between two reactants
reacting together, in the above case, this force is proportional to kf [A]α[B]β.

Chemical equilibrium: At equilibrium, the concentrations
do not change in time:

d[reactants]
dt = d[products]

dt = 0.

There are still chemical transformations taking place at equi-
librium, but the net change is zero: this is where the rates of
the forward and backward reaction are equal.

4.1.1. Comment on Reaction Rates. That the forward reaction rate is
of the form

kf [A]α[B]β

can easily be understood as follows. Suppose α = β = 1 for simplicity. The
reaction is of the form:

A+B 
 σS + τT

1 molecule of A reacts with 1 molecule of B to produce some quantities of S
and T . Thus, this event depends on the binary collision of A and B. For a
binary collision to happen in a given volume element, the rate of this reaction
should be proportional to the product of probabilities of finding a molecule of
type A in that volume times the probability of finding a molecule of type B in
that same volume. (Assuming “statistical independence” of these individual
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events, i.e. the presence of a molecule of type A within a volume element
does not influence, and is not influenced by the presence of a molecule of
type B within that same volume, which is the case for dilute concentrations),
but these probabilities are proportional to the concentrations of each species.
Namely, the probability of finding A in a volume element is proportional to
[A], the concentration of A. Same for the probability of finding a molecule of
type B within that same volume, which his also proportional to [B]. Hence,
the rate is proportional to the product [A][B]. When the stoichiometric
coefficients α and β are different from 1, this means we have three-body,
four-body, etc. collisions. But in those instances, the same reasoning can
be applied. In a three-body collision requiring the encounter of A, A and
B, the rate of this event is proportional to [A][A][B] = [A]2[B]. This idea is
easily generalized to arbitrary α and β to give [A]α[B]β.

4.1.2. For Solution Phase Reactions.

4.1.3. Notation. KC is the equilibrium constant in terms of concentra-
tions. This applies to solutions. For example,

aA+ bB � cC + dD

KC =
[C]ceq[D]deq
[A]aeq[B]beq

where the subscript eq denotes the concentrations at equilibrium (in steady
state, where concentrations do not change with time anymore).

4.1.4. For Gas-Phase Reactions. For a gas-phase reaction, the law of
mass-action is written in terms of gas pressures (all pressures are taken at
equilibrium)

KP =
(PC)ceq(PD)deq
(PA)aeq(PB)beq

and likewise we can omit the subscript eq from this.

4.1.5. Gas-Phase Reactions. For reasons of convenience and compati-
bility with concepts from thermodynamics (which we will cover later in the
course), all pressures are expressed in units of atm, relative to a reference
pressure Pref of 1 atm and we define a dimensionless quantity K:

K =
(PC/Pref )ceq(PD/Pref )deq
(PA/Pref )aeq(PB/Pref )beq

K(Pref )(c+d−a−b) =
(PC)ceq(PD)deq
(PA)aeq(PB)beq
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where, with Pref = 1 atm, the K is identical to KP (i.e. they both have the
same numerical value):

K = KP =
(PC)ceq(PD)deq
(PA)aeq(PB)beq

.

(The equality K = KP holds as long as Pref=1 atm and partial pressures
are in units of atm.)

4.1.6. Liquid Phase Reactions. Likewise if we define a K value in terms
of concentrations referenced to a reference concentration cref

K = ([C]eq/cref )c([D]eq/cref )d

([A]eq/cref )a([B]eq/cref )b

and express our concentrations in units of molar (M) and take cref=1 M, K
has the same numerical value as KC :

K = KC =
[C]ceq[D]deq
[A]aeq[B]beq

.

(The equality K = KC holds as long as cref=1 M and concentrations are in
units of M.)

4.2. Operations on Reaction

4.2.1. Inverse Reaction. Suppose we have a reaction

aA+ bB � cC + dD, K1 =
[C]ceq[D]deq
[A]aeq[B]beq

and another reaction, which is the inverse of the first one:
cC + dD � aA+ bB.

Then the rate constants are inverses of each other:

K2 =
[A]aeq[B]beq
[C]ceq[D]deq

= 1
K1

.

4.2.2. Multiplication of the Stoichiometric Coefficients. Suppose that
we multiply the reaction:

aA+ bB � cC + dD, K1 =
[C]ceq[D]deq
[A]aeq[B]beq

by a factor of 2,
2aA+ 2bB � 2cC + 2dD.

The effect is to raise the equilibrium constant to the power 2:

K2 =
[C]2ceq[D]2deq
[A]2aeq [B]2beq

= (K1)2
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4.2.3. Adding Two Reactions. If we add:

2BrCl(g)� Cl2(g) + Br2(g), K1 = (PCl2)eq(PBr2)eq
(P 2

BrCl)eq

to the equation

Br2(g) + I2(g)� 2IBr(g), K2 = (P 2
IBr)eq

(PBr2)eq(PI2)eq

we get an overall reaction:
2BrCl(g) +����Br2(g) + I2(g)� 2IBr(g) + Cl2(g) +����Br2(g)

and its corresponding rate constant:

K3 = (P 2
IBr)eq(PCl2)eq���

��(PBr2)eq
(PI2)eq���

��(PBr2)eq(P 2
BrCl)eq

= (P 2
IBr)eq(PCl2)eq

(PI2)eq(P 2
BrCl)eq

Deleting Br2(g) from both sides:
2BrCl(g) + I2(g)� 2IBr(g) + Cl2(g).

Thus, we see that the equilibrium constants multiply each other:
K3 = K1 ·K2

4.2.4. Subtracting Two Reactions. By the same token subtracting two
reactions leads to the division of the equilibrium constants. This follows
from the fact that subtracting a reaction is equivalent to adding the reverse
of the second one, which we saw leads to taking the inverse of its equilibrium
constant.

4.3. Multi-Phase (Heterogeneous) Reactions

For reactions that involve some mixture of solid, liquid, and gas phases
(also known as heterogeneous reactions), we have the following equilibrium
constants

H2O(l)� H2O(g) K = (PH2O)eq

I2(s)� I2(aq) K = [I2]eq

CaCO3(s)� CaO(s) + CO2(g) K = (PCO2)eq

To write down the equilibrium constant for such a heterogeneous reaction
we must follow certain conventions:

• Gases enter the equilibrium expression as partial pressures, measured in
units of atm
• Dissolved species enter as concentrations, in units of mol/L (M)
• Pure solids and pure liquids do not appear in equilibrium expressions.

Neither does a solvent that participates in a chemical reaction provided
the solution is dilute.
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• Partial pressures and concentrations of products appear in the numerator,
and those of reactants in the denominator. Each is raised to a power equal
to its coefficient in the balanced chemical equation for the reaction.

Example: For
2Cl2(g) + 2HgO(s) + H2O(l)� HgO ·HgCl2(s) + 2HOCl(aq)

we write:
K =

[HOCl]2eq
(P 2

Cl2)eq
The HgO and HgO·HgCl2 do not appear because they are solids, and
water does not appear because it is a pure liquid. Chlorine gas enters
as its partial pressure in atm. The HOCl appears as its concentration
in M. Both the concentration of HOCl and the partial pressure of
Cl2 are raised to the second power because their coefficients in the
balanced chemical reaction are 2.

4.3.1. Dependence on Stoichiometry. It matters how you write the
equation. For example,

2H2 + O2 � 2H2O, K1 = [H2O]2eq

/
[H2]2eq[O2]eq

and
H2 + 1

2O2 � H2O, K2 = [H2O]eq
/

[H2]eq[O2]1/2eq

implies that K1 6= K2. In fact, we have K2 =
√
K1. However, both equa-

tions describe the same chemical reaction, so it would make sense that their
equilibrium constants be the same constant. This ambiguity can be avoided
by following the convention of using “stoichiometric coefficients that are the
smallest possible whole numbers”.
The convention we learned so far is: 1) express partial pressures in the equi-
librium constant in units of 1 atm, concentrations in units of 1 M, 2) omit
pure solids and pure liquids from the equilibrium constant, 3) use smallest
possible whole numbers as stoichiometric coefficients. This convention re-
moves ambiguities in the many possible values and units of the equilibrium
constant. In this course, we shall not necessarily follow this convention. The
reason for this is because many textbooks do not; hence, you should be pre-
pared to deal with different conventions. For example, in the first reaction,
K1 could have units of atm-1 or M-1, depending on whether the quantities
are expressed in units of partial pressures or concentrations. Likewise, K2
could have units of 1/

√
atm or 1/

√
M.

4.3.2. Detailed Balance. If two reactions are in equilibrium:
aA+ bB � eE and eE � cC + dD
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Then the whole thing is in equilibrium:
aA+ bB � cC + dD.

Thus, if each step is in equilibrium (balanced) then the whole thing is in
equilibrium.
This is a consequence of the addition of chemical reactions. The equilibrium
constant of the first two equations are:

K1 = [E]e

[A]a[B]b and K2 = [C]c[D]d

[E]e

The sum of the two reactions is:
aA+ bB +��eE ���eE + cC + dD (∗)

Cancelling eE on both sides leads to the desired result:
aA+ bB � cC + dD

whose equilibrium constant is

K3 = [C]c[D]d

[A]a[B]b .

We note that this is also equal to the equilibrium constant of (∗):

K1+2 = [C]c[D]d[E]e

[A]a[B]b[E]e = K1 ·K2 = [C]c[D]d

[A]a[B]b = K3.

4.4. Direction of a Reaction

Suppose we have a reaction

H2(g) + I2(g)� 2HI(g), KC =
[HI]2eq

[H2]eq[I2]eq

for which KC = 46 at 783 K. Let’s say we mix H2, I2 and HI at each 0.0020
mol/L at 783 K. (We’ll use concentrations instead of pressures.) There is a
way to predict whether or not HI will have a tendency to form.
Strategy: As you will recall KC is products over reactants. If the quantity
[HI]2/([H2][I2]) at non-equilibrium is greater than KC this means there is
too much product, so reactants will form. Thus, our strategy is to calculate
the reaction quotient

QC = [HI]2

[H2][I2] = (0.0020)2

0.0020× 0.0020 = 1.0

and compare to KC . Here, we find QC < KC and conclude that the reaction
will tend to form more product and consume reactants.
QC is called the quotient of the reaction. It is calculated under the conditions
given by the problem (not necessarily at equilibrium). Comparison of QC



188 4. Chemical Reactions

to KC tells us which direction the reaction will proceed. This concept is
illustrated in Fig. 4.2.

Figure 4.2. The value of Q relative to KC (equilibrium constant) tells
us if the reaction needs to favor the reactants or products. Red: reac-
tants; blue: products.

Exercise: A mixture of H2, N2 and NH3 with molar concentrations
3.0×10−3 mol/L, 1.0×10−3 mol/L and 2.0×10−3 mol/L, respectively,
was prepared and heated to 500 K, at which temperature KC = 61
for the reaction

N2(g) + 3H2(g)� 2NH3(g)
Decide whether ammonia tends to form or decompose. [Answer:
QC = (2.0× 10−3)2/(3× 10−3)3(1.0× 10−3) = 1.48× 105, so it tends
to decompose.]
Note: certain textbooks would express KC and QC in units of 1/M2.

4.4.1. Solving for Equilibrium Concentrations. Suppose that in equi-
librium between HCl, Cl2 and H2,

H2(g) + Cl2(g)� 2HCl(g), KC =
[HCl]2eq

[H2]eq[Cl2]eq

the concentrations are:
[H2]eq = 1.0× 10−17 mol · L−1 and [Cl2]eq = 2.0× 10−16 mol · L−1.

What is the equilibrium molar concentration of HCl given KC = 4.0× 1031

for the reaction?
Strategy: At equilibrium, the molar concentrations of the reactants and
products satisfy the expression for KC . Rearrange the expression to give
the unknown concentration, and substitute the data.
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From the expression KC = [HCl]2eq
[H2]eq[Cl2]eq

we solve for [HCl]eq:

[HCl]eq =
√

KC[H2]eq[Cl2]eq,

and substitute the data given

[HCl]eq =
√

(4.0× 1031)(1.0× 10−17)(2.0× 10−16) = 0.28.

That is, the molar concentration of HCl at equilibrium is 0.28 mol/L. This
result means that, at equilibrium, the amount of product in the system is
overwhelming compared to the amounts of reactants.

4.4.2. Effecting a Change From Initial to Equilibrium Pressures.
The reversible reaction between dinitrogen tetroxide and nitrogen dioxide is
written as:

N2O4(g)� 2NO2(g).
1 L N2O4 (at 25◦C, 1 atm) is allowed to come to equilibrium. K=0.14 atm
at 25◦C. What are PN2O4 , PNO2 and Ptot at equilibrium?
Strategy: Chemical reaction gives relationship between the partial pressures.
We setup x as the progress variable.

PN2O4 = 1 atm− x and PNO2 = 2x.
From our knowledge of the equilibrium constant (its value is given to us)

K = 0.14 atm =
(P 2

NO2
)eq

(PN2O4)eq

0.14 atm = (2x)2

1 atm− x
0.14 atm2 − 0.14x atm = 4x2

4x2 + 0.14x atm− 0.14 atm2 = 0.
Thus we need to solve a quadratic equation of the form Ax2 +Bx+ C = 0
whose roots are:

x± = −B ±
√
B2 − 4AC
2A .

We get two roots, only one of which makes physical sense (the other root,
−0.21 is rejected because x cannot be negative if product must be formed):

x = 0.17 atm.
From this, we get:

(PNO2)eq = 2x = 0.34 atm, (PN2O4)eq = 1− 0.17 = 0.83 atm,
(Ptot)eq = (0.34 + 0.83) atm = 1.17 atm.
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4.5. Le Châtelier’s Principle: Response to (small) Changes
(from Equilibrium)

Henri Louis Le Châtelier (1850-1936) stated a general principle that lets us
predict how the composition of a reaction mixture at equilibrium tends to
change when the conditions are perturbed:

Le Châtelier’s principle: When a stress is applied to a system in
dynamic equilibrium, the equilibrium tends to adjust to minimize the
effect of the stress.

Other statements you may encounter include: 1) When any system at equi-
librium is subjected to change in concentration, temperature, volume, or
pressure, then the system readjusts itself to counteract (partially) the effect
of the applied change and a new equilibrium is established. 2) Any change
in status quo prompts an opposing reaction in the responding system.
The main points to remember are:
• System initially at equilibrium (“dynamic equilibrium” = steady state)
• It is perturbed slightly from equilibrium (big changes not allowed)
• DIRECTION: Response is such that the change is opposed

4.5.1. Adding and Removing Reagents. Suppose that the following
reaction has reached equilibrium:

N2(g) + 3H2(g)� 2NH3(g)
So at time t = 0 we are at equilibrium. Suppose that we pump in more
hydrogen gas. According to Le Châtelier’s principle, the reaction will tend
to minimize the increase in the number of hydrogen molecules. Hydrogen
will tend to react with nitrogen. As a result, ammonia will be formed. If
instead of hydrogen, we were to add ammonia, then the reaction would tend
to form reactants.
The explanation is found in the previous discussion of Q and K. When
reactants are added, Q

Q = [NH3]2

[H2]3[N2]
falls below K momentarily, because the reactant concentrations appear in
the denominator of Q. As we have seen, when Q < K, the reaction mix-
ture responds by forming products. Likewise when products are added Q
rises above K. Because Q > K the reaction mixture responds by forming
reactants at the expense of the products until Q = K again.

4.5.2. Compressing a Reaction Mixture. A gas-phase equilibrium re-
sponds to compression (a reduction in volume) of the reaction vessel. Ac-
cording to Le Châtelier’s principle, the composition will tend to change in a
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way that minimizes the increase in pressure resulting from the compression.
For instance, the formation of NH3 from N2 and H2 decreases the number
of gas-phase molecules in the container because 4 mol of reactant molecules
produce 2 mol of product molecules. The forward reaction therefore de-
creases the pressure the mixture exerts. When the mixture is compressed,
the equilibrium composition will tend to shift in factor of the products, for
that minimizes the increase in pressure. The opposite response, a tendency
for products to decompose, occurs in an expansion. In order to increase the
yield of ammonia, the synthesis must be carried out with highly compressed
gases. The industrial process uses pressures of 250 atm and more.

Predicting the Effect of Compression: Predict the effect of com-
pression on the equilibrium composition of the reaction mixture in which
the equilibria

(a) N2O4(g)� 2NO2(g)
and

(b) H2(g) + I2(g)� 2HI(g)
have been established.
Solution: (a) In the reverse reaction, two NO2 molecules combine to
form one N2O4 molecule. Hence, compression favors the formation of
N2O4. (b) Because neither direction corresponds to the reduction of
gas-phase molecules, compressing the mixture should have little effect
on the composition of the equilibrium mixture.
Comment: We can deduce the Le Châtelier principle by comparing the
Q value to K. For the first reaction we have Q = [NO2]2/[N2O4]. Upon
compression all concentrations increase by the same factor. However, the
numerator will grow faster than the denominator because it is squared.
Thus, Q will increase. We end up with Q > K, which implies the
reaction will want to go in the ← direction to form more reactants in
order to lower the number of moles to counter the increase in pressure.

4.5.3. Temperature. The effect of temperature is most easily understood
by writing the heat of the reaction as a reactant or product according to
whether the reaction is endothermic of exothermic. The reaction of ammonia
synthesis:

N2(g) + 3H2(g)� 2NH3(g)
is exothermic with ∆H = −92 kJ/mol at some temperature. This heat is
produced, meaning that we can write it on the product side:

N2(g) + 3H2(g)� 2NH3(g) + heat.

Thus, with the equation written as such we easily see that upon increasing
the temperature the reaction will want to shift toward the reactants and
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consume heat in the process to counter-act the increase in heat supplied to
the reaction (due to the elevated temperature).

4.6. Problems

Problem 61. Consider the following reactions:
(I) COCl2(g)
 CO(g) + Cl2(g)

(II) FeCl2O4(s)
 FeO(s) + CO(g) + CO2(g)
Write an expression for the equilibrium constant for each reaction.

Solution. For reaction I

Kp = PCOPCl2
PCOCl@

K = [CO][Cl2]
[COCl2]

for reaction II
Kp = PCOPCO2 K = [CO][CO2]

�

Problem 62. Write an expression for the equilibrium constant for the en-
dothermic reaction

AgCl ·NH3(s)
 AgCl(s) + NH3(g)
What is the effect on PNH3 at equilibrium if additional AgCl(s) is added or
if additional NH3 is pumped into or out of the system, provided that neither
of two solids phases shown in the chemical equation are completely used up?
What is the effect on the PNH3 of lowering the temperature? Why?

Solution.
K = [NH3(g)] Kp = PNH3

Addition of AgCl(s) has no effect on PNH3 .
If PNH3 increases, it will react with solid AlCl(s) to relieve the stress on the
system. The reaction shifts to the left (from equilibrium) to achieve a new
equilibrium condition. The opposite will occur if PNH3 is decreased.
The reaction is endothermic and can be written as

AgCl ·NH3(s) + (heat)
 AgCl(s) + NH3(g)
In this context, lowering the temperature means removing heat. The reac-
tion shifts to the left and PNH3 is reduced. �

Problem 63. At 627◦C and 1 atm, SO3 is partly dissociated into SO2
and O2: SO3(g) 
 SO2(g) + (1/2) O2(g). The density of the equilibrium
mixture is 0.925 g/liter. What is the degree of dissociation of SO3 under
these circumstances?
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Solution. Let y=equilibrium Pdimer. Let x=equilibrium Pmonomer. Ptotal =
0.725 atm (at equilibrium).

Ptotal = Pdimer + Pmonomer (Dalton’s law)
∴ Pdimer + Pmonomer = 0.725 atm

y + x = 0.725 atm
We also know that:

Kp = 3.72 = Pdimer
(Pmonomer)2

So:
3.72 = (0.725− x)

x2

Use the quadratic equation to solve for x. x = 0.327. y = 0.398. Pmonomer
= 0.327 atm. Pdimer = 0.398 atm.
If none of the monomer is dimerized the Pmonomer at equilibrium would be

0.327 atm + (2× 0.398 atm) = 1.123 atm
There is actually 0.327 atm of monomer present at equilibrium

0.327 atm
1.123 atm × 100 = 29.1%

∴ 100%− 29.1% = 90.9% dimerized
�





Chapter 5

Acids and Bases

5.1. Definitions of Acids: Arrhenius, Lewis, Brønsted-Lowry

5.1.1. Arrhenius Acid. The definition of acid and base, according to
Swedish chemist Svante Arrhenius (1859-1927), classifies acids as substances
that increase the concentration of [H3O+] ions, e.g.

HCl(g) + H2O(l)� H3O+ + Cl−(aq),
and bases as substances that increase the concentration of [OH−] ions, e.g.

NaOH(s)� Na+(aq) + OH−(aq).
If we combine these two reactions, we get an acid-base neutralization reaction

HCl + NaOH� H2O + NaCl,
which is seen to be of the form:

acid+ base� water + salt.

This creates an electrolyte solution, since
NaCl� Na+(aq) + Cl−(aq).

The neutralization reaction involves the combination of hydrogen ions and
hydroxide ions to form water: H+(aq) + OH−(aq)→ H2O(l).
This strong acid/base reaction produces a strong electrolyte solution in the
sense that its dissociation constant is very large: K � 1, i.e. the equilibrium
constant heavily favors the formation of products.
One problem with this Arrhenius definition is it makes only reference to
water as the solvent. What if the solvent is different from water? Another
problem arises with the weak base ammonia, NH3, because Arrhenius the-
ory suggests that all bases contain OH−. Where is OH− in NH3? Moreover,

195



196 5. Acids and Bases

the Arrhenius theory does not account for the behavior of amphiprotic sub-
stances.1

5.1.2. Brønsted-Lowry Definition. A slightly more general definition of
an acid is a proton donor and a base is a proton acceptor. To describe the
behavior of ammonia:

NH3︸ ︷︷ ︸
base

+ H2O︸ ︷︷ ︸
acid

� NH+
4 + OH−.

In this reaction, H2O acts as an acid, giving up a proton H+, which is taken
up by NH3, the base. As a result of this, the ions OH− and NH+

4 are formed.
The pair NH3/NH+

4 is called a conjugate pair. NH+
4 is the conjugate acid

of NH3, the conjugate base. Similarly, H2O/OH− is a conjugate pair where
H2O is the acid and OH− is the conjugate base. Pairs (1) and (2) are
explicitly identified below:

NH3︸ ︷︷ ︸
base(1)

(aq) + H2O︸ ︷︷ ︸
acid(2)

(l)� NH+
4︸ ︷︷ ︸

acid(1)

(aq) + OH−︸ ︷︷ ︸
base(2)

(aq).

The equilibrium constant for this reaction is:

Kb = [NH+
4 ]eq[OH−]eq
[NH3]eq

= 1.8× 10−5.

Some authors prefer to call Kb the ionization constant rather than the equi-
librium constant, where the latter is the ratio [NH+

4 ]eq[OH−]eq
[NH3]eq[H2O]eq

. But according
to our rules for writing down equilibrium constants [H2O]eq does not appear
in the expression since it is a pure liquid. Kb is normally called the base
ionization constant. See Fig. 5.1.
5.1.2.1. Example: ionization of acetic acid.

HC2H3O2︸ ︷︷ ︸
acid(1)

+ H2O︸ ︷︷ ︸
base(2)

� C2H3O−2︸ ︷︷ ︸
base(1)

+ H3O+︸ ︷︷ ︸
acid(2)

.

The acetate ion C2H3O−2 is the conjugate base of the acid HC2H3O2. Here,
H2O acts as a base. Its conjugate acid is the hydronium ion H3O+.
The ionization of acetic acid can be described in the following way:

Ka = [C2H3O−2 ]eq[H3O+]eq
[HC2H3O2]eq

= 1.8× 10−5.

1An amphiprotic substance is one that can act as an acid or a base. The most common example
is water, which acts as a base in the presence of an acid:

H2O + HA� H3O+ + A−.

It also acts as an acid in the presence of a base:

H2O + B� OH− + B+.
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Figure 5.1. Both forward and backward “proton transfer” reactions
proceed because NH4 is a stronger acid than H2O and OH− is a stronger
base than NH3. NH3 is only slightly ionized.

Ka is called the acid ionization constant. See Fig. 5.2.

Figure 5.2. Weak acid.

5.1.2.2. Example: ionization of HCl. The reaction is shown in Fig. 5.3. Here
Ka is so large (about 106) so the ionization equation is written with a single
arrow

HCl + H2O→ Cl− + H3O+.

Figure 5.3. Strong acid.

5.1.2.3. Identifying Brønsted-Lowry acids and bases and their conjugates.
Chlorous acid reacts with water to give chlorine dioxide and hydronium ion:
(1) HClO2 + H2O � ClO−2 + H3O+.
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HClO2 gives up a proton, H+, to become ClO−2 , therefore, HClO2 is an acid
and ClO−2 is its conjugate base. H2O takes the proton from HClO2 and
becomes H3O+. Thus H2O is a base and H3O+ is its conjugate acid.
(2) OCl− + H2O � HOCl + OH−

OCl− is a base and gains a proton from water. OH− produced in this
reaction is the conjugate base of H2O.
Consider the reactions below; can you identify the conjugate acids and bases?
NH3 + H2PO−4 � NH+

4 + HPO2−
4

HCl + H2PO−4 � Cl− + H3PO4

HF + H2O � F− + H3O+

HSO−4 + NH3 � SO2−
4 + NH+

4
C2H3O−2 + HCl � HC2H3O2 + Cl−

5.2. Acid-Base Titrations

According to the Arrhenius definition of acid and base, an acid is a substance
that donates a proton:

HA→ H+ + A−.
whereas a base is a proton acceptor:

BOH→ B+ + OH−

OH− is a base because it accepts a proton:
OH− + H+ → H2O.

An acid-base titration reaction is one where acid is added to base (or vice-
versa) to neutralize the original species and form H2O. An example of an
acid-base titration is the reaction of nitric acid with ammonium hydroxide:
HNO3 + NH4OH→ H+ + NO3

− + NH4
+ + OH− → NO3

− + NH4
+ + H2O.

In acid-base reactions we are often asked to neutralize an acid using a base
or vice-versa. This is done by matching the number of moles.
5.2.0.1. Example Calculation (Acid-Base Titration). Suppose that we are
asked to titrate a solution which contains 10 mL of 3.0 M sulfuric acid,
H2SO4(aq), using a sodium hydroxide solution of unknown concentration.
We find that 20 mL NaOH was required. What is the molarity cNaOH of the
NaOH solution?
Solution: The reaction is:

H2SO4(aq) + 2NaOH(aq)→ 2H2O(l) + Na2SO4(aq)
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The units of molarity cNaOH are mol/L. The concentration of NaOH was
(we need to obtain nNaOH):

cNaOH = nNaOH
20 mL

The number of moles of sulfuric acid is:

nH2SO4 = cH2SO4 · 10 mL
= (3.0 M)(10 mL) = (3.0 M)(0.010 L) = 0.03 mol.

The minimum number of moles needed, nNaOH, is (according to the stoi-
chiometry of the equation, we must have 2 moles of NaOH for each mole of
sulfuric acid)

nNaOH = 2nH2SO4 = 0.06 mol.
So the concentration of NaOH is

cNaOH = nNaOH
20 mL = 0.06 mol

0.020 L = 3.0 M.

Another example (Oxtoby [1], Example 11.6, p. 484) is the titration of
acetic acid using NaOH:
CH3COOH(aq)+Na+(aq)+OH−(aq)→ CH3COO−(aq)+H2O(l)+Na+(aq).

5.3. Redox Reactions

An oxidized substance is one that gives up its electrons. Its oxidation num-
ber increases, whereas a reduced substance is one which accepts electrons.
Example:

2Mg(s) + O2(g)→ 2MgO(s)
where magnesium is oxidized: it gives up two electrons. Its oxidation number
increases from 0 (as in elemental Mg) to +2 (in MgO). Oxygen accepts these
electrons and its oxidation number decreases from 0 to -2. The transfer of
electrons can be emphasized using arrows (Fig. 5.4).

Figure 5.4. Redox reaction.



200 5. Acids and Bases

Another example is the reaction of iron(III) chloride with hydrogen iodide
(hydroiodic acid),

2FeCl3 + 2HI→ 2FeCl2 + 2HCl + I2

Which involves the following intermediate steps:
2FeCl3 + 2HI→ 2Fe3+ + 6Cl− + 2H+ + 2I− → 2Fe2+ + 6Cl− + 2H+ + I2

where the electron was transferred from I to Fe.

5.4. Lewis Acids & Bases

A Lewis acid (Gilbert N. Lewis, 1985-1946) is a chemical species that con-
tains an empty orbital which is capable of accepting an electron pair from
a Lewis base to form a Lewis adduct. A Lewis base, then, is any species
that has a filled orbital containing an electron pair which is not involved in
bonding but may form a dative bond2 with a Lewis acid to form a Lewis
adduct. For example, NH3 is a Lewis base, because it can donate its lone
pair of electrons. Trimethylborane (Me3B) is a Lewis acid as it is capable
of accepting a lone pair. In a Lewis adduct, the Lewis acid and base share
an electron pair furnished by the Lewis base, forming a dative bond. In the
context of a specific chemical reaction between NH3 and Me3B, the lone pair
from NH3 will form a dative bond with the empty orbital of Me3B to form
an adduct NH3·BMe3 (the dot here simply denotes a bond, not an electron).
Another example is shown in Fig. 5.5. See also Problem 66.

Figure 5.5. Major structural changes accompany binding of the Lewis
base to the coordinatively unsaturated, planar Lewis acid BF3.

5.4.1. For Acids & Bases, What is the Direction of the Reaction?
In an acid-base reaction, the favored direction of the reaction is from the
stronger to the weaker member of a conjugate acid-base pair. For example:

HCl︸︷︷︸
acid(1)
strong

+ OH−︸ ︷︷ ︸
base(2)
strong

→ Cl−︸︷︷︸
base(1)
weak

+ H2O︸ ︷︷ ︸
acid(2)
weak

.

2A dative bond is also known as a coordinate covalent bond.
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Likewise, the following reaction proceeds almost exclusively in reverse:
H2O︸ ︷︷ ︸
acid(1)
weak

+ I−︸︷︷︸
base(2)
weak

← OH−︸ ︷︷ ︸
base(1)
strong

+ HI︸︷︷︸
acid(2)
strong

.

In general, we need to use a table of acid and base strengths, such as the
one in Fig. 5.6, which also incidentally shows that the stronger an acid, the
weaker its conjugate base.

Figure 5.6. Strengths of acids and bases.

5.4.2. Water and the pH Scale. Pure water is nonconducting. This
is because the concentration of ions is far too low. The reaction of self-
ionization (auto-ionization, auto-protolytic)

H2O︸ ︷︷ ︸
base(1)

+ H2O︸ ︷︷ ︸
acid(2)

↔ H3O+︸ ︷︷ ︸
acid(1)

+ OH−︸ ︷︷ ︸
base(2)

.

The equilibrium constant for pure water is therefore,

KC = [H3O+]eq[OH−]eq
[H2O]2eq

.

However, it is customary to absorb the factor [H2O]2eq into the definition of
K and call this the ionic product or water-dissociation equilibrium constant,

Kw = [H3O+]eq[OH−]eq.

This is a consequence of our rules for writing down K (pure liquids are not
included in the expression). The numerical value of the ionic product is

Kw = 1.0× 10−14. (pure water, 25◦C)
Thus, the equilibrium is heavily shifted to the left, i.e., there are very few
ionized species. The stoichiometry of the equation indicates that [H3O+]eq
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and [OH−]eq are equal in pure water. Therefore,
[H3O+]eq = [OH−]eq = 10−7 M, (pure water, 25◦C)

which is exceedingly low: this means that only about 1 molecule in 200
million is ionized. This concentration is far too low for significant electrical
conductivity. The pH of a solution is:

pH stands for “potential of hydrogen ion” (Sørensen, 1909):
The pH is defined as the negative logarithm of [H+]:

pH = − log10 [H+]eq = − log10 [H3O+]eq.

The concentration of hydronium ions is a result of the ionization of water
plus any other species present that may contribute or remove H+ ions
(e.g. acids or bases).

In a solution of 0.0025 M HCl,
[H3O+]eq = 2.5× 10−3 M and pH = − log10(2.5× 10−3) = 2.60.

Conversely in a solution with pH=4.50 we have:
[H3O+]eq = 10−4.50 = 3.2× 10−5 M.

pOH: The pOH is defined as the negative of the logarithm of [OH−]eq:
pOH = − log10 [OH−]eq.

Let us take the negative log of Kw = [H3O+]eq[OH−]eq = 1.0× 10−14:
pKw =− log10 [H3O+]eq[OH−]eq = − log10 [H3O+]eq − log10 [OH−]eq

=pH + pOH.

Thus,

pKw = pH + pOH = 14.00. (25◦C)

An aqueous solution with [H3O+]eq = [OH−]eq is said to be neutral. In pure
water at 25◦C, [H3O+]eq = [OH−]eq = 1.0 × 10−7 M and pH=7.00. If the
pH is less than 7.00 the solution is acidic and if the pH is greater than 7.00
it is basic or alkaline.
The following remark reinforces the notion that an equilibrium constant is
indeed a constant. However, note that it is temperature-dependent.
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Because Kw is an equilibrium constant, the product of the molarities of
H3O+ and OH− ions is always equal to Kw. We cannot increase the mo-
larities of both hydronium and hydroxide ions. We can increase the con-
centration of H3O+ ions by adding acid, in which case the concentration
of OH− ions must decrease to preserve the value of Kw. Alternatively,
we can increase the concentration of OH− ions by adding base, but then
the concentration of H3O+ ions must decrease. The auto-protolysis equi-
librium links the molarities of H3O+ and OH− ions so that when one
goes up, the other goes down.

5.4.3. Strong Acid (Strong Base). A strong acid is one for which the
dissociation constant is very large (i.e. K � 1). At equilibrium it is com-
pletely dissociated (deprotonated). Similarly for a base, a strong base is one
which is entirely protonated at equilibrium. Let’s look at an example:

H2O(l)︸ ︷︷ ︸
base(2)

+ HCl(aq)︸ ︷︷ ︸
acid(1)

→ H3O+(aq)︸ ︷︷ ︸
acid(2)

+ Cl−(aq)︸ ︷︷ ︸
base(1)

.

In this case, the pH of this solution will be determined solely by the amount
of acid dissolved. This applies to any strong acid. In other words, a 0.10 M
solution of any strong acid that donates one proton per molecule is simply
0.10 M= 10−1 M, whose pH equals 1. The pOH is found from the equation
for Kw:

[OH−]eq = Kw

[H3O+]eq
= 1.0× 10−14

0.10 = 1.0× 10−13 M,

which gives pOH=13. Likewise a strong base means we get complete disso-
ciation to yield OH− ions:

NaOH(s)→ Na+(aq) + OH−(aq).
If we have a 0.10 M NaOH solution, we have

[OH−]eq = 0.10 M [H3O+]eq = 1.0× 10−14

0.10 = 1.0× 10−13 M.

Remark: We have neglected the autoionization of water in both cases
on the basis that the contribution of H3O+ or OH− form this process is
very small (∼ 10−7 M). When very small amounts of a strong acid or
base is added to pure water (for example, ∼ 10−7 M), we have to include
the autoionization of water to describe the concentration of hydronium
and hydroxide ions accurately.
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5.5. The pH Scale

In experiments the concentrations of hydronium ions can range from 10 M
to 10−15 M and even smaller. Thus, the range of concentrations extends
over an enormous range. This is why we define the pH scale: the scale is
compressed to a much smaller range as a result of taking the logarithm. The
logarithm is indicative of the exponent of the concentration.

Can we have negative pH values?: It is certainly possible to have a
negative pH value. For example, if the concentration of hydronium ions
is 10 M = 101 M, this corresponds to the negative value pH = -1.

5.5.1. Example: Calculating pH. What is the pH of (a) human blood,
in which the molarity of H3O+ ions is 4.0×10−8 mol/L; (b) 0.020 M HCl(aq);
(c) 0.040 M KOH(aq)?
Strategy: Apply the definition of pH. For strong acids, the molarity of H3O+

is equal to the molarity of the acid. For strong bases we must first find the
molarity of OH− then convert to molarity of H3O+ using the equation for
Kw.
Solution: (a) For a solution in which the molarity of H3O+ ions is 4.0×10−8

mol/L, we write [H3O+]eq = 4.0× 10−8 and obtain
pH = − log10(4.0× 10−8) = 7.40

(b) Because HCl is a strong acid, the molarity of H3O+ is 0.020 mol/L.
Hence,

pH = − log10 0.020 = 1.70
(c) Each formula unit of KOH (a strong base) provides one OH− ion; there-
fore the molarity of OH− is 0.040 mol/L and

[H3O+]eq = Kw

[OH−]eq
= 1.0× 10−14

0.040 = 2.5× 10−13

Hence pH = − log10(2.5× 10−13) = 12.60.

5.5.2. Example Problem: Strong Base. What are the molarities of
H3O+ and OH− in a 0.0030 M Ba(OH)2 solution at 25◦C? [Ba(OH)2 is a
hydroxide of an alkaline earth metal and is therefore a strong base.]
Strategy: Strong bases are almost entirely present as OH− in water. How
many OH− ions per formula unit? Calculate the molarity of these ions in
solution. Find molarity of H3O+ ions using the equation for Kw.
Solution: The equation

Ba(OH)2(s)→ Ba2+(aq) + 2OH−(aq)
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tells us that each Ba(OH)2 gives 2OH−. Because the molarity of Ba(OH)2(aq)
is 0.0030 mol/L, it follows that the molarity of OH− is twice that value, or
0.0060 mol/L. Then, for the molarity of H3O+ ions, we write

[H3O+]eq = Kw

[OH−]eq
= 1.0× 10−14

0.0060 = 1.7× 10−12

That is, the molarity of H3O+ ions in the solution is only 1.7×10−12 mol/L.

5.5.3. pKa and pKb. According to the Brønsted-Lowry theory of an acid
(HA), its ionization in aqueous solution is written as

HA(aq) + H2O(l)� H3O+(aq) + A−(aq)
where A− is the conjugate base of HA. The equilibrium expression for this
chemical reaction is

Ka = [H3O+]eq[A−]eq
[HA]eq

where Ka is the acid ionization constant. The negative of its log is the
pKa value of this acid:

pKa = − log10Ka.

This is a quantitative measure of the strength of the acid in a particular
solvent (here, water). Weak acids do not react completely and the concen-
trations of product are low at equilibrium and so Ka is small. By contrast,
a strong acid reacts nearly completely and Ka is large (Ka � 1).
A specific example is:

HF + H2O� H3O+ + F−

Ka = [H3O+]eq[F−]eq
[HF]eq

= 6.7× 10−4 M

where HF is a weak acid and F− is a weak base.
In general, the concept of pKa applies to two types of reactions:

HA + H2O� H3O+ + A−,
HA+ + H2O� H3O+ + A.

There is a similar concept for bases. For example, consider the reaction
involving the weak base F−:

F− + H2O� HF + OH−

Kb = [HF]eq[OH−]eq
[F−]eq

= 1.5× 10−11 M.
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Relationship between Ka and Kb: For the two reactions describing
the equilibria in water of each conjugate acid-base pair considered above:

HF + H2O� H3O+ + F−, Ka = [H3O+]eq[F−]eq
[HF]eq

and
F− + H2O� HF + OH−, Kb = [HF]eq[OH−]eq

[F−]eq
We have the product:

Ka ·Kb = [H3O+]eq[F−]eq
[HF]eq

· [HF]eq[OH−]eq
[F−]eq

= [H3O+]eq[OH−]eq = Kw.

This relationship Kw = Ka ·Kb is general and indicates an inverse rela-
tionship between the strength of a base and its conjugate acid. Taking
the logs of both sides of the equation we get:

pKw = pKa + pKb.

Note: this relationship only applies to conjugate pairs, such as HF and
F−. It does not relate pKa and pKb of, for example, HI and F−, respec-
tively, since they are not a conjugate pair.

This trend is illustrated in Fig. 5.7.

b

Figure 5.7. Acid strength vs conjugate base strength. pKa is obtained
from pKb from the relationship pKw = pKa + pKb.

We see from Fig. 5.7 that when H2O is viewed as the acid, pKa is 14. What
is the significance of this? pKa of 14 implies that Ka = 10−14. This value
of Ka is the equilibrium constant for the auto-ionization reaction of water:

H2O + H2O� H3O+ + OH−.
Here,

Ka = [H3O+]eq[OH−]eq = 10−14.
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This value indicates that H2O has a poor tendency to ionize. Why? Because
H2O is a very stable molecule and in order to ionize it, we would need to
break an O-H bond. The O-H bond dissociation energy in water is approxi-
mately 5.15 eV per bond, which is considered very strong. In order to break
this bond, the ion-dipole interaction between H+ and another H2O molecule
would need to be comparable or stronger. In Example 2.5 (see p. 73), we
calculated this interaction energy for sodium and water; we can do a similar
calculation here. The distance between nearest-neighbor water molecules in
liquid water (1.85 D) is approximately 2.8 Å. At time t = 0, this gives the
interaction energy between the ion-dipole that could potentially compete
against the O-H bond energy. This ion-dipole interaction energy is:

(9× 109 N.m2

C2 )(1.6× 10−19 C)(1.85× 3.336× 10−30 C.m)
(2.8× 10−10 m)2 = 8.9× 10−19 J,

and since 1 eV = 1.6×10−19 J, this energy is ∼ 0.7 eV, which is much weaker
than the O-H bond dissociation energy (5.15 eV). Thus, this energy is highly
unlikely to break the O-H bond of water and lead to ionization. This is why
the equilibrium favors reactants, i.e. water is an ineffective acid.
From the relationship pKw = pKa + pKb, we find that pKb = 0. The pKa

should not be confused with the pH. The pH is − log10[H3O+]. For pure
water at 25◦C the pH is 7; however, hydronium ion concentration can be
altered if other proton donors or acceptors are also present in solution. It
is best to think of pKa as a property of a given acid (proton donor in a
given solvent), whereas pH is a property of the solution (accounting for all
species present). For example, the pKa of HF in water at 25◦C will always
equal 3.18. However, the pH of the solution depends on the amount of HF
in solution (and any other combination of acids and/or bases that may be
present).
Let us now look at the acid H3O+. The pKa of H3O+ is 0. What is the
significance of pKa=0? In the reaction:

H3O+ + H2O� H2O + H3O+,

we have (by definition),

Ka = [H3O+]eq[H2O]eq
[H3O+]eq[H2O]eq

≡ 1,

which implies that pKa=0 (strong acid). In other words, a proton is donated
from one hydronium ion to a neighboring water molecule. But this is the
same as proton transfer in the reverse direction. We therefore suspect that
the energy cost of swapping the proton from one H2O to the next is minimal,
hence the reason why H3O+ is a strong acid. Can you quantitatively explain
this behavior in terms of interaction energies?
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5.5.4. Example. Suppose we have a reaction:
CH3COOH(aq) + NH3(aq)� CH3COO−(aq) + NH+

4 (aq).
Its equilibrium constant is

K = [CH3COO−]eq[NH+
4 ]eq

[CH3COOH]eq[NH3]eq
.

This reaction is the difference between two acid ionization reactions:

CH3COOH+H2O� CH3COO−+H3O+, Ka1 = [H3O+]eq[CH3COO−]eq
[CH3COOH]eq

,

NH+
4 + H2O� H3O+ + NH3, Ka2 = [H3O+]eq[NH3]eq

[NH+
4 ]eq

.

The equilibrium constant for the net reaction is the ratio of the equilibrium
constants for the separate reactions:

K = Ka1

Ka2
.

This method can be used to predict the outcome of the net reaction, provided
it can be decomposed as the difference between two elementary reactions.
Equilibrium constants for elementary acid ionization reactions can be found
in Table 5.1. Looking up values from the Table for CH3COOH and NH+

4 ,
we find:

K = 1.76× 10−5

5.6× 10−10 ≈ 31, 428.

Table 5.1. Ionization constants of acids at 25◦C. For a given conjugate
pair, pKb is obtained from pKa from the relationship pKw = pKa+pKb.

Acid HA (acid) A− (conjugate base) Ka pKa

Hydroiodic HI I− ∼ 1011 ∼ −11
Hydrobromic HBr Br− ∼ 109 ∼ −9
Perchloric HClO4 ClO−

4 ∼ 107 ∼ −7
Hydrochloric HCl Cl− ∼ 107 ∼ −7
Chloric HClO3 ClO−

3 ∼ 103 ∼ −3
Sulfuric (first ionization) H2SO4 HSO−

4 ∼ 102 ∼ −2
Nitric HNO3 NO−

3 ∼ 20 ∼ −1.3
Hydronium ion H3O+ H2O 1 0.0
Iodic HIO3 IO−

3 1.6 × 10−1 0.80
Oxalic (first ionization) H2C2O4 HC2O−

4 5.9 × 10−2 1.23
Sulfurous (first ionization) H2SO3 HSO−

3 1.54 × 10−2 1.81
Sulfuric (second ionization) HSO−

4 SO2−
4 1.2 × 10−2 1.92

Chlorous HClO2 ClO−
2 1.1 × 10−2 1.96

Phosphoric (first ionization) H3PO4 H2PO−
4 7.52 × 10−3 2.12

Arsenic (first ionization) H3AsO4 H2AsO−
4 5.0 × 10−3 2.30

Chloroacetic CH2ClCOOH CH2ClCOO− 1.4 × 10−3 2.85
Hydrofluoric HF F− 6.6 × 10−4 3.18
Nitrous HNO2 NO−

2 4.6 × 10−4 3.34
Formic HCOOH HCOO− 1.77 × 10−4 3.75
Benzoic C6H5COOH C6H5COO− 6.46 × 10−5 4.19
Oxalic (second ionization) HC2O−

4 C2O2−
4 6.4 × 10−5 4.19

Hydrazoic HN3 N−
3 1.9 × 10−5 4.72

Acetic CH3COOH CH3COO− 1.76 × 10−5 4.75
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Propionic CH3CH2COOH CH3CH2COO− 1.34 × 10−5 4.87
Pyridinium ion HC5H5N+ C5H5N 5.6 × 10−6 5.25
Carbonic (first ionization) H2CO3 HCO−

3 4.3 × 10−7 6.37
Sulfurous (second ionization) HSO−

3 SO2−
3 1.02 × 10−7 6.91

Arsenic (second ionization) H2AsO−
4 HAsO2−

4 9.3 × 10−8 7.03
Hydrosulfuric H2S HS− 9.1 × 10−8 7.04
Phosphoric (second ionization) H2PO−

4 HPO2−
4 6.23 × 10−8 7.21

Hypochlorous HClO ClO− 3.0 × 10−8 7.53
Hydrocyanic HCN CN− 6.17 × 10−10 9.21
Ammonium ion NH+

4 NH3 5.6 × 10−10 9.25
Carbonic (second ionization) HCO−

3 CO2−
3 4.8 × 10−11 10.32

Arsenic (third ionization) HAsO2−
4 AsO3

4 3.0 × 10−12 11.53
Hydrogen peroxide H2O2 HO−

2 2.4 × 10−12 11.62
Phosphoric (third ionization) HPO2−

4 PO3−
4 2.2 × 10−13 12.67

Water H2O OH− 1.0 × 10−14 14.00

5.5.5. The Meaning of Ka and Strength of the Acid. Let us clarify
the meaning of Ka. Ka is a property of an acid. Its numerical value depends
on the type of acid and solvent. It quantifies the tendency (affinity) of an
acid to give up a proton. Strong acids have large Ka values whereas weak
acids have small Ka values. The precise value of Ka reflects the strength
of intermolecular interactions binding the proton to its acid relative to the
ability (strength of interaction) of the solvent molecules to pull this proton
away from the acid. For ionization to occur, the solvent must be able to
overcome the bond dissociation energy that’s keeping this proton bound to
its acid. In the dilute limit, the Ka does not depend on acid concentration,
and does not significantly depend on other species dissolved in that solution.
For a given solvent, and keeping the concentration of an acid fixed (say, 1
M), the pH of the solution depends on Ka. For example, the pH of a 1 M
HCl aqueous solution at 25◦C will be 0. According to Table 5.1, the pKa

of HCl is -7. The pKa and pH are different: the pH will change if [HCl]
changes (the more acid we add, the lower the pH), but the pKa itself will
not change.
In contrast, a 1 M solution of CH3COOH (pKa=4.75) has a pH which is
determined from the equilibrium:

Ka = 1.76× 10−5 = [CH3COO−]eq[H+]eq/[CH3COOH]eq,

where the concentrations are equilibrium concentrations. If we start at time
t = 0 with 1 M of CH3COOH. At equilibrium, x amount of CH3COOH
will dissociate. At the same time x amount of CH3COO− and H+ will be
produced. Thus, 1.76× 10−5 = x2/(1− x) ≈ x2 since x� 1. This leads to
x =
√

1.76× 10−5 ≈ 0.0042 M. The pH is therefore,

− log10(
√

1.76× 10−5) ≈ 2.5.
Here, we had the acid concentration fixed (1 M). But the two acids (HCl vs
CH3COOH) had a different pKa. The acid with the lowest pKa (HCl at -7)
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had the lowest pH (0). The acid with the highest pKa (CH3COOH at 4.75)
had the highest pH (2.4).

5.6. “ICE” Tables

In subsequent sections, we will use the concept of an “ICE table”. The ICE
table is a convenient way to organize your equilibrium calculations. They
are used in cases where initial and final conditions are to be related to one
another. ICE stands for (I)nitial, (C)hange and (E)quilibrium. First, we
have the initial (I) conditions of a reaction. Then, these reactants react to
form products. This “change” (C) leads to a new equilibrium (E). So I, C
and E form the rows of an ICE table. The columns are the reactants and
products of a reaction. The entries of the table are the amounts (moles) or
concentrations (molar or molal), of reactants and products at a given time
(initial or final conditions). We sometimes don’t know the “extent” of the
reaction; however, it can be inferred algebraically by analyzing the ICE table
and relating initial and final conditions using known equilibrium constants.
ICE tables are frequently used in problems of acid-base titration.

5.6.1. Example 1. Suppose that we start with a mixture of 0.500 mol/L
of N2 and 0.800 mol/L H2 and allow it to reach equilibrium with the prod-
uct, ammonia. It is found that, at equilibrium at a certain temperature,
the molar concentration of NH3 is 0.150 mol/L. Calculate the equilibrium
constant for the reaction at that temperature.
Strategy: Write down an equation for the equilibrium constant. Identify
the change in concentration of one substance, use reaction stoichiometry
to calculate the implied changes in the other substances. Solve for new
concentrations and plug into equation for KC .
The reaction is

N2(g) + 3H2(g)� 2NH3(g), KC =
[NH3]2eq

[N2]eq[H2]3eq
.

where KC has units of 1/(concentration)2, due to the particular stoichiom-
etry of this reaction (2 mol on products side, 4 mol on reactants side).
The reaction implies that 1 mol N2 = 2 mol NH3 and 3 mol H2 = 2 mol
NH3. Therefore, because the molar concentration of NH3 increases by 0.150
mol/L to reach equilibrium, the concentration of N2 decreases by half that
much, 0.075 mol/L, and the concentration of H2 by 1.5 times, 0.225 mol/L.
We have:
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N2 H2 NH3
1. Initial molar concentration 0.500 0.800 0
2. Change in molar concentration -0.075 -0.225 +0.150
3. Equilibrium molar concentration 0.425 0.575 0.150

It follows that:

KC =
[NH3]2eq

[N2]eq[H2]3eq
= (0.150)2

0.425× (0.575)3 = 0.278

where the units are L2/mol2. If you are given the value of an equilibrium
constant with no units, it will either have no units (due to normalization
to 1 atm or 1 mol/L) or its units will be in terms of the concentration (or
pressure) units given in the problem.

Exercise: A sample of gaseous N2O4 with an initial partial pressure
of 3.0 atm is prepared at a certain temperature and allowed to react as
follows:

N2O4(g)� 2NO2(g)
Once equilibrium is reached, it is found that the partial pressure of N2O4
has dropped to 1.0 atm. Find the equilibrium partial pressure of NO2,
then calculate KP [Answer: PNO2 = 4.0 atm and KP=16.]

5.6.2. Example 2. Suppose that 1.50 mol PCl5 (phosphorous pentachlo-
ride) is placed in a reaction vessel of volume 500 mL and allowed to reach
equilibrium with its decomposition products phosphorous trichloride and
chlorine at 250◦C, when KC=1.80. What is the composition of the equilib-
rium mixture? All three substances are gases at 250◦C.
Strategy: Write chemical equation and expression for equilibrium constant.
Denote by x the change in molar concentration of the decomposing sub-
stance. Use reaction stoichiometry to express the molar concentrations of
the decomposition products in terms of x. Calculate the molar concentra-
tions by dividing the number of moles of each substance by the volume of
the container.
The chemical equation is

PCl5(g)� PCl3(g) + Cl2(g), KC = [PCl3]eq[Cl2]eq
[PCl5]eq

.

The initial molar concentration of PCl5 is

Molar concentration of PCl5 = 1.50
0.500 = 3.00,

and we suppose that the change in its molar concentration is −x mol/L.
Using the chemical equation above, we see that (with all concentrations in
mol/L):
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PCl5 PCl3 Cl2
1. Initial molar concentration 3.00 0 0
2. Change in molar concentration -x +x +x
3. Equilibrium molar concentration 3.00-x x x

Step 3: these values are the sums of the initial concentrations, step 1, and
the chances in concentration brought about by reaction, step 2.
Step 2: the stoichiometry of the reaction implies that if the molar concen-
tration of PCl5 decreases by x, then the molar concentrations of PCl3 and
Cl2 both increase by x.
Step 4: Substitution of these equilibrium values into the expression for the
equilibrium constant gives:

KC = [PCl3]eq[Cl2]eq
[PCl5]eq

= x× x
3.00− x,

and because we are told that KC=1.80, the equation we have to solve is

1.80 = x2

3.00− x.

This expression rearranges to the quadratic equation:
x2 + 1.80x− 5.40 = 0.

The solutions of this equation are:

x = −1.80±
√

(1.80)2 − 4(1)(−5.40)
2 = 1.59 and − 3.39.

Because the concentrations must be positive and because (from step 3) x
is the molar concentration of each of the products, we select 1.59 as the
solution. It follows that at equilibrium

[PCl5]eq = 3.00− x = 3.00− 1.59 = 1.41,
[PCl3]eq = x = 1.59,
[Cl2]eq = x = 1.59,

that is, the equilibrium concentrations of PCl5, PCl3 and Cl2 are 1.41 mol/L,
1.59 mol/L and 1.59 mol/L, respectively.

Exercise: Bromine monochloride, BrCl, decomposes into bromine and
chlorine and reaches the equilibrium 2BrCl(g) � Br2(g) + Cl2(g), for
which KC = 32 at 500 K. If initially pure BrCl is present at a concentra-
tion of 3.30×10−3 mol/L, what is its molar concentration in the mixture
at equilibrium? [Answer: 3× 10−4 mol/L.]

5.7. Weak Acids and Bases
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5.7.1. Weak Acids. A weak acid has a Ka smaller than 1. We write the
reactions as bidirectional reactions:

HA(aq) + H2O(l)� H3O+(aq) + A−(aq)
Example (Oxtoby [1], Example 15.6):

Question: Acetic acid (CH3COOH) has Ka of 1.76×10−5 at 25◦C. Sup-
pose 1.000 mol is dissolved in enough water to give 1.000 L of solution.
Calculate the pH and the fraction of acetic acid ionized at equilibrium.

Solution: The initial concentration is 1.000 M. Let’s denote our “progress
variable” as y. i.e. y can be taken to be the amount of acetic acid that
ionizes. Then our “ICE table” looks like this:

CH3COOH(aq) + H2O(l)� H3O+(aq) + CH3COO−(aq)

[CH3COOH] [H3O+] [CH3COO−]
1. Initial concentration (M) 1.000 ≈0 0
2. Change in molar concentration −y +y +y
3. Equilibrium molar concentration 1− y y y

Writing down the equation for the equilibrium constant:

Ka = 1.76× 10−5 = [H3O+]eq[CH3COO−]eq
[CH3COOH]eq

= y2

1− y
We can solve the quadratic equation or proceed by approximating 1− y ≈ 1
because we know y should be small (acetic acid is a weak acid, so only a
small fraction should ionize at equilibrium).

1.76× 10−5 = y2

1− y ≈
y2

1 y =
√

1.76× 10−5 = 4.20× 10−3 M,

which is large compared to self-ionization of water (10−7 M). The pH is
− log10(4.2× 10−3) = 2.38 and fraction ionized is y/1.000 = y = 4.2× 10−3.
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Without approximation: Suppose in the previous problem that in-
stead of dissolving 1.000 mol we dissolve 0.001 mol. Then, we can no
longer make this approximation in the denominator. Our equation is:

y2

0.001− y = 1.76× 10−5

Because y is not small compared to 0.001 we should instead solve the
quadratic equation:

y2 + (1.76× 10−5)y − (1.76× 10−8) = 0,
y = 1.24× 10−4 M = [H3O+] = [CH3COO−],

which leads to pH=− log10(1.24 × 10−4) = 3.91 and the percentage of
acid that is ionized is (100%)× 1.24× 10−4/0.001 M = 12.4%.

5.7.2. Weak Bases. A weak base is only partially protonated in water
and its Kb is less than 1:

H2O(l)+NH3(aq)� NH+
4 (aq)+OH−(aq), Kb = [NH+

4 ]eq[OH−]eq
[NH3]eq

= 1.8×10−5

Example (Oxtoby [1], Example 15.8):

Question: Calculate the pH of a solution made by dissolving 0.0100 mol
of NH3 in enough water to give 1.000 L of solution at 25◦C. The Kb for
ammonia is 1.8× 10−5.

Solution: Setup an ICE table:
H2O(l)+NH3(aq) �NH+

4 (aq) + OH−(aq)
1. Initial (M) 0.0100 ≈0 0
2. Change −y +y +y
3. Equilibrium 0.0100− y y y

We get a quadratic equation, which we can solve to get:

Kb = 1.8× 10−5 = y2

0.0100− y , y = 4.15× 10−4 M = [OH−]eq.

[H3O+]eq = Kw

[OH−]eq
= 1.0× 10−14

4.15× 10−4 = 2.4× 10−11,

pH = − log10(2.4× 10−11) = 10.64
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5.8. Buffer Solutions

The goal of a buffer solution is to maintain the pH approximately constant
with respect to small fluctuations of acids or bases. Biological systems re-
quire maintaining the pH within very narrow ranges.3 A buffer is made from
a weak acid or base. Consider a weak acid, formic acid (HCOOH), and its
conjugate base, formate ion (HCOO−). Equilibrium is established:

HCOOH(aq) + H2O(l)� H3O+(aq) + HCOO−(aq),

Ka = 1.77× 10−4 = [H3O+]eq[HCOO−]eq
[HCOOH]eq

, pKa = 3.75.

The formate ion can also be obtained by dissolving a salt such as sodium
formate (NaHCOO). To form a buffer, we also add salt for purposes of
stabilizing the pH. This is the method used to create a buffer.

5.8.1. Calculating the pH of a Buffer Solution. Example (Oxtoby [1],
Example 15.8):

Question: Suppose 1.00 mol of HCOOH and 0.500 mol of NaHCOO
are added to water an diluted to 1.00 L. Calculate the pH of the
solution.

Solution: As usual, we setup the ICE table:
HCOOH(aq) + H2O(l)� H3O+(aq) +HCOO−(aq)

1. Initial (M) 1.00 ≈0 0.500
2. Change −y +y +y
3. Equilibrium 1.00−y y 0.500+y

y(0.500 + y)
1.00− y = Ka = 1.77× 10−4,

y is small so we approximate 0.500 + y ≈ 0.500 and 1.00− y ≈ 1.00,
y(0.500)

1.00 ≈ 1.77× 10−4, y ≈ 3.54× 10−4 M = [H3O+], pH = 3.45.

5.8.1.1. How a Buffer Works. Consider the reaction for a weak acid HA:
HA(aq) + H2O(l)� H3O+(aq) + A−(aq)

Ka = [H3O+]eq[A−]eq
[HA]eq

, [H3O+]eq = Ka
[HA]eq
[A−]eq

≈ Ka
[HA]eq + δ1
[A−]eq + δ2

.

This equation holds regardless of the concentration values involved.

3Lysosome pH is in the range 4.5-5.0; blood plasma, 7.4; average pH in typical muscle cells, 6.1;
average pH in typical liver cells, 6.9; blood plasma, 7.4; mitochondria, 7.8; Golgi apparatus, 6.5;
endoplasmic reticulum, 7.0; cytosol, 7.4.
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If we make both concentrations [HA] and [A−] very large, then small pertur-
bations in each quantity (δ1, δ2) produce little change in their ratio4. Thus,
[H3O+] is relatively unaffected by these perturbations.
But if [H3O+] is unaffected, then the pH is unaffected. Thus, a buffer
stabilizes the pH of the solution against perturbations.
If both [HA] and [A−] very large, then their ratio approaches a constant, say
1. In that case, the pH ≈ pKa, according to the above equation. The buffer
therefore attempts to keep the pH near the pKa value. But other values of
the pH are possible, by selecting different concentrations for [HA] and [A−].
From a practical standpoint, it is easiest to prepare solutions for which [HA]
≈ [A−], in which case, a buffer is prepared by selecting an acid whose pKa

value is close to the desired pH value and the concentrations [HA] ≈ [A−]
are selected to “tweak” the pH to the desired value.
To make [HA] very large we simply dissolve a large amount of acid. To make
[A−] very large, we simply add salt that dissociates to yield the conjugate
base. In the first example, we used sodium formate as the salt.

5.8.2. pH Stability. Adding Strong Acid to Buffer Solution: in previous
problem suppose that we add 0.10 mole of a strong acid (e.g. HCl).

Method 1: HCl is a strong acid and will completely dissociate. The H+

ions can be assumed to react with formate ions to produce formic acid, i.e.,
HCl(aq)→ H+(aq) + Cl−(aq)

HCOOH(aq)← HCOO−(aq) + H+(aq) (∗)
For now, the reactions are assumed to proceed to completion (because HCl
is a strong acid and HCOO− is a “strong” base). Thus, the initial conditions
are such that the amount of HCOOH is 1.0 mol (from the formic acid) plus
0.1 mol (from the HCl, which leads to the formation of HCOOH in the same
amount). Thus, the initial amount of HCOOH is 1.1 mol.
Similarly, while we had 0.5 mol of HCOO− from the sodium formate, now
we have 0.4 mol of it, because 0.1 mol of it was used to form HCOOH due
to the added HCl.
That being said, only the HCl reaction truly proceeds to completion since
its Ka value is ∼ 107 (see Table 5.1). For the reaction (∗) the Ka value is
1.77 × 10−4. Thus, the reaction (∗) is not complete (for the reaction to be
complete, its value should be closer to ∼ 10−7). Thus, our progress variable
y > 0 will describe a decrease in the amount of HCOOH from 1.10 mol in
4If [HA] and [A−] are very large compared to δ1 and δ2, respectively, then adding some pertur-
bation δi (i=1 or 2) will have negligible effect on the ratio [HA]/[A−]≈ ([HA]+δ1)/([A−]+δ2). δ1
and δ2 can be thought of as a perturbation to the system introduced by the addition or removal
of substances that would normally alter the pH.
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the ICE table below (since 1.10 mol is really an overestimate of the true
amount of HCOOH that we have at equilibrium).

HCOOH(aq) + H2O(l)� H3O+(aq) +HCOO−(aq)
1. Initial (M) 1.10 ≈0 0.40
2. Change −y +y +y
3. Equilibrium 1.10−y y 0.40+y

y(0.40 + y)
1.10− y = Ka = 1.77× 10−4,

y is small so we approximate 0.40 + y ≈ 0.40 and 1.10− y ≈ 1.10,
y(0.40)

1.10 ≈ 1.77× 10−4, y ≈ 4.9× 10−4 M = [H3O+], pH = 3.31.

If these approximations are confusing, do not worry; just solve the full qua-
dratic equation instead.
As you can see, the pH did not change by much (from 3.45 down to 3.31)
even though 0.1 mol of a strong acid was added. Had this amount of acid
been added to pure water, the pH would have dropped from 7 to 1.
Method 2: There is nothing special about assuming that the H+ ions react
with formate ions to produce formic acid. We could have assumed instead
that HCl increases the number of H3O+ ions and allowed y to describe the
decrease in the number of such ions:

HCOOH(aq) + H2O(l)� H3O+(aq) +HCOO−(aq)
1. Initial (M) 1.00 ≈0.10 0.50
2. Change +y −y −y
3. Equilibrium 1.00+y 0.10−y 0.50−y

(0.1− y)(0.5− y)
1 + y

= Ka = 1.77× 10−4,

Instead of making approximations, we solve the quadratic equation:
y2 − (0.6 + 1.77× 10−4)y + 0.05− 1.77× 10−4 = 0.

This yields the same end result as Method 1 (as it should):
y = 0.099514, [H3O+] = 0.1− y = 4.9× 10−4 M, pH = 3.31.

(Recall that the pKa of the buffer was 3.45.)

5.8.3. Design of a Buffer. The normal procedure is to choose an acid
with pKa as close as possible to the desired pH. Then we adjust the con-
centrations of acid and conjugate base to give exactly the desired pH. To
see, this, note that since equilibrium concentrations of acid and base in the
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buffers are close to the initial concentrations:

Ka = [H3O+]eq[A−]eq
[HA]eq

≈ [H3O+]eq[A−]0
[HA]0

, [H3O+]eq ≈
[HA]0
[A−]0

Ka.

Taking the logs of both sides of this equation yields:

pH ≈ pKa − log10
[HA]0
[A−]0

.

This is called the Henderson-Hasselbach equation. It relates the desired pH
to the pKa of the weak acid (chosen as close a possible to the desired pH)
and the ratio of concentrations of weak acid to conjugate base. This ratio is
used to “tweak” the effects of the pKa to bring it closer to the desired pH.
We also see from this equation that the buffer will be robust to changes
in pH provided that the concentrations of weak acid to conjugate base are
chosen large enough, so that small perturbation in their values does not
affect the pH appreciably.
Let’s use this equation to design a buffer. We will need a table of pKa

values to enable us to pick the acid whose pKa is close to the desired pH
(see Table 5.1).

Design a buffer with pH 4.60:

pH ≈ pKa − log10
[HA]0
[A−]0

.

The pKa of acetic acid is 4.75, which is reasonably close to the
desired value of 4.60, so we choose CH3COOH/CH3COO− as the
buffer system. We can fine-tune the pH from 4.75 down to 4.60 by
adjusting the ratio of weak acid to conjugate base. First we write,

pH = 4.60 = pKa − log10
[CH3COOH]0
[CH3COO−]0

log10
[CH3COOH]0
[CH3COO−]0

= pKa − pH = 4.75− 4.60 = 0.15

[CH3COOH]0
[CH3COO−]0

= 100.15 = 1.4.

This can be obtained by dissolving 0.100 mol of sodium acetate
(NaCH3COO) and 0.140 mol of acetic acid in water and diluting
to 1.00 L. Other solutions are possible.

Note: While the ratio [CH3COOH]0
[CH3COO−]0 is important, the concentrations must be

high enough. The higher the initial concentrations, the higher the ability of
the buffer to resist changes in the pH.
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5.8.4. Titration of Strong Acid with Strong Base. The simplest prob-
lem involves titrating a strong acid with a strong base. It simply involves
counting number of moles to achieve neutralization:

H3O+(aq) + OH−(aq)→ 2H2O(l)

Question: Suppose a solution of 100.0 mL (0.1000 L) of 0.1000 M
HCl is titrated with 0.1000 M NaOH. What does the titration curve
look like?

Figure 5.7 shows the titration curve for titration of strong acid by a strong
base.

Figure 5.8. Titration curve (strong acid by a strong base).

This curve should be analyzed into 3 regions:
• Below the equivalence point we have acidic conditions. Adding base

will neutralize the acid, up the point where nbase = nacid, the equivalence
point. Thus, below the equivalence point we have:

pH = − log10 [H3O+] = − log10
nH3O+

Vtot
= − log10

nacid − nbase
Vacid + Vbase

= − log10
cacidVacid − cbaseVbase

Vacid + Vbase
which equals pH=1 in the limit Vbase → 0 since cacid=0.1000 M HCl.

Note: This function is of the form f(x) = − log10((1−x)/(1+x)). With a
graphing calculator or a computer you can try plotting this function over
the range x ∈ [0, 1] and compare with the shape of the titration curve
before the equivalence point.
• At the equivalence point the number of moles of base added equals the

number of moles of acid originally present. The concentrations of OH−
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and H3O+ must be equal and the pH is due solely to the auto-ionization
of water. Thus, the pH is precisely 7.00.
• Above the equivalence point we have basic conditions. Adding more

base makes it more basic. Thus, the only thing that matters is the moles
of excess OH− ions. The pH is obtained from the relation

pKw = pH + pOH.
Because the base is a strong base, it is fully protonated. Thus, if we denote
the concentration of excess OH− ions by [OH−],

[OH−] = moles of excess OH−

total volume = nbase − nacid
Vacid + Vbase

= cbaseVbase − cacidVacid
Vacid + Vbase

.

So,

pH = pKw − pOH = 14.00 + log10
cbaseVbase − cacidVacid

Vacid + Vbase
.

Note: This function is of the form log10((x−1)/(1+x)). With a graphing
calculator or a computer you can try plotting this function over the range
x ∈ [1, 4] and compare with the shape of the titration curve after the
equivalence point.

5.8.5. Titration of Weak Acid with Strong Base. Consider the titra-
tion of 100.0 mL of a 0.1000 M solution of acetic acid (CH3COOH) with
0.1000 M NaOH. So the concentrations are the same as in the previous
problem, except that the acid is a weak acid instead of a strong acid. Be-
cause we have a weak acid, the pKa should enter the picture. In what
follows, we denote the acid as [HA] and its conjugate base as [A−].
We note the following main differences:

• The titration curve (see Fig.5.9) begins at higher pH because the acid is
not completely dissociated, leading to lower concentrations of H3O+ ions
compared to the case of HCl.
• A gradually rising portion of the curve, called the buffer region, appears

before the steep rise to the equivalence point. At the midpoint, half of
the original acid has reacted.
• The pH at equivalence point is greater than 7.00. When cacidVacid =
cbaseVbase, the solution will be more basic (there will be excess OH−)
because we over-neutralize the acid, since the acid was not completely
dissociated (weak acid).

Let us examine the main elements of this titration curve:

• Initial point. Before the base is added the weak acid is partially dissoci-
ated. The pH is obtained by setting up an ICE table for the dissociation
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reaction
HA(aq) + H2O� H3O+(aq) + A−(aq),

(let x = [H3O+])

Ka = [H3O+]eq[A−]eq
[HA]eq

= x2

[HA]0 − x
≈ x2

[HA]0
, x ≈

√
Ka · [HA]0.

• Buffer region. As soon as we add NaOH, it reacts with HA to form A−.
This means that up to the equivalence point we have a buffer over much
of that interval. The pH is found from:

[H3O+]eq = Ka
[HA]eq
[A−]eq

or pH = pKa − log10
[HA]eq
[A−]eq

.

We note that at the midpoint of the buffer region, half the original HA has
reacted, so [HA]=[A−] or [A−]/[HA]=1 and pH = pKa. For the reaction
at hand, OH− is a stronger base than acetate ion, so it reacts almost
completely with the acid originally present:

CH3COOH + OH− � H2O + CH3COO−,pH ≈ pKa − log10
[CH3COOH]0
[CH3COO−]0

.

• At equivalence point the solution is more basic. You can setup an ICE
table for the reverse reaction, A− + H2O� HA + OH−, to show that

[OH−] ≈
√
Kb · [A−], [H3O+] = Kw

[OH−] , [H3O+] ≈ Kw√
Kb · [A−]

.

• After the equivalence point we have a basic solution. Its properties
are calculated based on the quantity of excess OH− ion.

See Fig. 5.9.

Figure 5.9. Buffering region.
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5.8.6. Phosphate Buffered Saline (PBS). A commonly used buffer in
biology is PBS (phosphate buffered saline). Let’s look at ways to prepare a
phosphate buffer.

Question: Prepare a “phosphate buffer” with pH of about 7.40.
Solution: From pKa tables we find the following stages of ionization of
phosphoric acid:
H3PO4(aq)� H+(aq) + H2PO−4 (aq) Ka1 = 7.5× 10−3 pKa1 = 2.12
H2PO−4 (aq)� H+(aq) + HPO2−

4 (aq) Ka2 = 6.2× 10−8 pKa2 = 7.21
HPO2−

4 (aq)� H+(aq) + PO3−
4 (aq) Ka3 = 4.8× 10−13 pKa3 = 12.32

The most suitable of the three systems is HPO2−
4 /H2PO−4 , because the

pKa of the acid H2PO−4 is closest to the desired pH. From the Henderson-
Hasselbach equation we write

pH = pKa + log10
[conjugate base]

[acid]

7.40 = 7.21 + log10
[HPO2−

4 ]
[H2PO−4 ]

log10
[HPO2−

4 ]
[H2PO−4 ]

= 0.19, [HPO2−
4 ]

[H2PO−4 ]
= 1.5

One way to prepare this buffer with pH 7.40 is to dissolve disodium
hydrogen phosphate (Na2HPO4) and sodium dihydrogen phosphate
(NaH2PO4) in a mole ratio of 1.5:1.0 in water. For example, we could
dissolve 1.5 moles of Na2HPO4 and 1.0 mole of NaH2PO4 in enough
water to make up a 1 L solution.

An actual PBS buffer is slightly different in composition. Instead of NaH2PO4,
one dissolves KH2PO4. It also contains additional salts to provide physio-
logical saline conditions.

5.8.7. Polyprotic Acids. Polyprotic acids can donate 2 or more protons.
As an example, carbonic acid dissociates to form bicarbonate:

H2CO3(aq) + H2O(l)� H3O+(aq) + HCO−3 (aq)

Ka1 = 4.3× 10−7 = [H3O+]eq[HCO−3 ]eq
[H2CO3]eq

and
HCO−3 (aq) + H2O(l)� H3O+(aq) + CO2−

3 (aq)

Ka2 = 4.8× 10−11 = [H3O+]eq[CO2−
3 ]eq

[HCO−3 ]eq
Two comments:
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• [H3O+] in the two ionization equilibria are the same. This follows from
the equivalence relation (A� E, E � B implies A� B) at equilibrium,
which follows from the principle of detailed balance. Here, E = [H3O+]
and the equations are rearranged as needed.
• Ka2 is less than Ka1 because the negative charge left behind by the loss

of a hydrogen ion in the first ionization causes the second hydrogen ion
to be more tightly bound.

The behavior of polyprotic acids is best described using a plot (Fig. 5.10).
Take for example, the case of phosphoric acid (H3PO4), which dissociates
into the ions H2PO−4 , HPO2−

4 , PO3−
4 and H3O+ with acid dissociation equi-

librium constants Ka1 = 7.1×10−3, Ka2 = 6.3×10−8 and Ka3 = 4.2×10−13.

Figure 5.10. Titration curve for a polyprotic acid.

5.9. Problems

Problem 64. Ammonia (NH3) aqueous solution has a pKa (9.25 at 25◦C)
that is convenient for the control of pH. A buffer is prepared by mixing
0.10 mol of ammonia with 0.05 mol of HCl in a volume of 1.00 L aqueous
solution. Compute the pH of the solution.

Solution. The addition of HCl converts some NH3 to its conjugate acid
NH3(aq) + HCl(aq)
 NH+

4 (aq) + Cl−(aq)
The resulting solution is a mixture of a weak acid (NH+

4 ) and its conjugate
base (NH3). It is a buffer by virtue of the reaction

NH+
4 (aq) + H2O(l)
 NH3(aq) + H3O+(aq)Ka = [NH3][H3O+]

[NH+
4 ]
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Compute the concentrations of the NH3 and NH+
4 after complete reaction

with the HCl but before the preceding equilibrium is established

[NH3]0 = (0.10− 0.05 mol)
1.00 L = 0.05 M and [NH+

4 ]0 = 0.05 mol
1.00 L = 0.05 M

The equilibrium now reduces the concentration of the NH+
4 as it forms

H3O+ and NH3 in equal amounts. If x is the equilibrium concentration
of H3O+(aq) ion, then

NH+
4 (aq) + H2O(l) 
 NH3(aq) + H3O+(aq)

Init. Conc. (M) 0.05 - 0.05 small
Change in Conc. (M) -x - +x +x
Equil. Conc. (M) 0.05 - x - 0.05 + x x

Ka = [NH3][H3O+]
[NH+

4 ]
= (0.05 + x)x

(0.05− x)
Assume that x is small compared to 0.05. Then 0.05 in the numerator
cancels out with that in the denominator

[H3O+] = Ka so that pH = pKa = 9.25
Clearly x is less than 10−9, so the assumption was justified.
Tip: The pH equals the pKa of the weak acid. This is a general result
in buffer solutions in which the acid and conjugate base concentrations are
equal (and not extremely low). �

Problem 65. A buffer solution is prepared from 100 mL of 0.1 M acetic
acid and 25 mL of 0.1 M sodium hydroxide. The pKa of acetic acid is 4.75
while the pKb of sodium hydroxide is 0.2. What is the pH of the resulting
solution? Is the acid-base reaction of NaOH a competing equilibrium that
we must include in our calculation? Explain why it is or why it is not.

Solution. Total volume is 125 mL. We have 0.01 mol acetic acid (HA) and
0.0025 mol NaOH. NaOH reacts with acetic acid to yield acetate (A−), so
the initial conditions are 0.0075 mol acetic acid and 0.0025 mol acetate

HA A− H3O+

I 0.060 0.020 0
C −x +x +x
E 0.060− x 0.020 + x +x

which gives:
(0.020 + x)(x)

0.060− x = Ka = 10−4.75.

The quadratic equation, 0 = x2 + 0.02x− 1.1× 10−6, is solved and we keep
x = 5.3 × 10−5. Therefore, pH=-log10(5.3 × 10−5)=4.3. The association
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of NaOH does not compete with the dissociation of acetic acid, as NaOH
is a strong base with a low pKb of 0.2. This means that NaOH effectively
dissociates entirely in our solution, so we do not need to consider the disso-
ciation/association reaction in our calculation of the buffer solution pH. �

Problem 66. For the following Lewis acid-base reactions below draw the
Lewis structures (of each reactant and product), relevant chemical bonds,
and indicate with arrows which bonds are formed or broken and which un-
paired electrons are shared to form the adduct. (Note: when forming the
adduct, bonds can be broken and formed apart from the sharing of elec-
trons.) Identify the acid and the base:
(a) B(OH)3 + OH− → [B(OH)4]−

(b) N2H4 + H3O+ → N2H+
5 + H2O

(c) (C2H5)2O + BF3 → (C2H5)2OBF3

(d) H2O + SO2 → H2SO3

Solution. The chemical bonding changes as follows:

Lewis bases: (a) OH−, (b) N2H4, (c) (C2H5)2O. (d) H2O �

Problem 67. Consider the Lewis acid-base reaction:
Ag+(aq) + 2 CN−(aq) 
 [Ag(CN)2]−(aq)
(a) Identify the acid and base among reactants.
(b) Many Lewis acid-base “titration reactions”, such as this one, result in
the formation of complex (polyatomic) ions. The equilibrium constant for
this reaction is called a formation constant of complexes (Kf ) (sometimes
called a stability constant). Define the formation constant of [Ag(CN)2]−.
(c) Calculate the silver ion concentration, [Ag+], of a solution that initially is
0.10 M with respect to [Ag(CN)2]−. The formation constant of [Ag(CN)2]−
is 5.3×1018 at room temperature.

Solution. (a) Lewis acid: Ag+. Lewis base: CN−
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(b)Kf = [[Ag(CN)2]−]
[Ag+][CN−]2

(c) The initial concentration of [Ag(CN)2]− is 0.10 mol/L

Ag+(aq) + 2 CN−(aq) 
 [Ag(CN)2]−(aq)
I (M) 0 0 0.10
C (M) x 2x -x
E (M) x 2x 0.10-x

Kf = 5.3× 1018 = [[Ag(CN)2]−]
[Ag+][CN−]2

= 0.10− x
x× (2x)2

Both Q and Kf are much larger than 1, so let us assume that the changes
in concentrations needed to reach equilibrium are small. Thus 0.10-x is ap-
proximated as 0.10:

x3 = 0.10
4× 5.3× 1018 =4.717× 10−21

x = [Ag+] = 1.68× 10−7 mol/L �

Problem 68. Consider the following reaction with an equilibrium constant
of 322:
Br2(g) + Cl2(g) 
 BrCl(g)
Determine the final partial pressure of each compound if a vessel of 0.0500 atm
Br2 and 0.0400 atm Cl2 is left to achieve equilibrium.

Solution. (PBrCl)2

PBr2PCl2
= K

(2x atm)2

(0.0500 atm−x atm)(0.0400 atm− x atm) = 322
318x2 − 28.98x+ 0.644 = 0
0.0768 atm BrCl
0.0116 atm Br2
0.0016 atm Cl2 �

Problem 69. Take the solubility product of CaF2 to be 4.0×10−11 and use
it to find the solubility of the compound. What can be said about trying to
dissolve CaF2 in water?

Solution. CaF2 −−⇀↽−− Ca2+ + 2 F–

Ksp = [Ca2+][F−]2 = [Ca2+][2Ca2+]2 = 4.0 × 10−1

[Ca2+] = [CaF2] = 0.000215 M
[F−] = 0.000430 M
0.000215 mol

L × 78.07 g
mol = 0.0169 g.L−1

Based on the value computed above, we would expect CaF2 to not be very
soluble in water. �
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Problem 70. Describe how you would prepare 1 liter of a buffer at pH=9.0,
using 1.0 moles NH3 and as much of any strong acid as needed.

Solution. We must look up the Ka for NH+
4

Ka = 5.67× 10−10 pKa = 9.25

pH = pKa + log10
[NH3]
[NH+

4 ]

NH3 + H+ 
NH+
4

Initial (M) 1.0 0
Change (M) −x +x

Equilibrium (M) (1.0− x) +x

∴ 9.00 = 9.25 + log10
(1.0− x)

x
Solve for x = 0.64 moles HCl added to a liter (M)
“moles HCl added = moles NH+

4 ” �

Problem 71. A 40-ml sample of a 0.10 M solution of nitric acid is added to
20 ml of 0.30 M aqueous ammonia. What is the pH of the resulting solution?

Solution.

pH =pKa + log10
[NH3]
[NH+

4 ]

=9.25 + log10

[(0.020 L)(0.30 M)− (0.040 L)(0.10 M)
(0.040 L)(0.10 M)

]
pH = 9.25 + log10(0.50) = 9.25− 0.30 = 8.95

Question: why did we not calculate the molarity of the conjugate base and
weak acid in the log10(x) in the above equation? �

Problem 72. Suppose you have a buffer at pH 5.0 that is 1.00 M in HX and
1.00 M in X−, where HX is a weak acid with Ka = 1.0× 10−5 M. Calculate
the effects of adding 50 ml of 1.0 M HCl to a 1-liter portion of this buffer
and of adding 50 ml of 1.0 M NaOH to a separate 1-liter portion. What will
the final pH be in each case?

Solution. 1st addition of the 50 mL of 1.0 M HCl

[X−] = (1.0 M)(1 L)− (1.0 M)(0.050 L)
1.050 L = 0.90 M

[HX] = (1.0 M)(1 L) + (1.0 M)(0.050 L)
1.050 L = 1.0 M

pH = pKa + log10
[X−]
[HA] = 5.00 + log10

0.90
1.0 = 4.95
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2nd addition of the 50 mL of 1.0 M NaOH

[X−] = (1.0 M)(1 L) + (1.0 M)(0.050 L)
1.050 L = 1.0 M

[HX] = (1.0 M)(1 L)− (1.0 M)(0.050 L)
1.050 L = 0.90 M

pH = pKa + log10
[X−]
[HA] = 5.00 + log10

1.0
0.90 = 5.05

�

Problem 73. What volume of 1.0 M KOH must be added to 10 ml of 1.0 M
acetic acid (CH3COOH) to give pH of 5.0? (Ka for acetic acid is 1.8×10−5

M). Is this mixture a good buffer? Why or why not?

Solution. The reaction is
CH3COOH(aq) + OH−(aq)→ CH3COO−(aq) + H2O(l)

Ka = [CH3COO−][H3O+]
[CH3COOH] = 1.8× 10−5

pH = 5.0 [H3O+] = 1.0× 10−5 M
Let x=KOH added in “liters”

[CH3COO−] = (1.0 M)(x)
0.010 L + x

[CH3COOH] = (1.0 M)(0.010 L)− (1.0 M)(x)
0.010 L+ x

Ka = 1.8× 10−5 =
(1.0 M)(x)
0.010 L+x (1× 10−5 M)

(1.0 M)(0.010 L)−(1.0 M)(x)
(0.010 L+x)

x = 6.4 mL of KOH

∴ [CH3COO−] = (1.0 M)(0.0064 L)
(0.010 L + 0.0064 L) = 0.0064 mol

0.0164 L = 0.39 M

[CH3COOH] = (1.0 M)(0.010 L)− (1.0 M)(0.0064 L)
(0.010 L + 0.0064 L) = 0.22 M

This is a good buffer system since
[CH3COO−] ≈ [CH3COOH]

�



Chapter 6

Thermodynamics

Thermodynamics provides a framework to account for exchanges (trans-
fers) of energy among different systems or subsets of a given system. En-
ergy transfers can occur in the form of heat exchanges or different types of
work. Thermodynamics is a topic that crosses many disciplines (physics,
chemistry, engineering, life sciences, etc.). This chapter only provides a
brief introduction to this vast topic. To learn more, the reader should con-
sult the more authoritative treatises by Callen [15], Kittel [16], Moran &
Shapiro [17], Atkins [14], McQuarrie & Simon [5], Ben-Amotz [18], Sonntag
& Borgnakke [19] and Honig [20].
In thermodynamics the universe is divided into two parts: the system and
its surroundings. We must then specify whether or not particles and heat
are allowed to exchange between the system and its surroundings (Fig. 6.1).

6.1. Heat vs Work

Energy is the capacity to do work. A change in energy can be thought of as
the sum of heat and work (done, say, by the system on its surroundings, or
vice-versa). Heating is the transfer of energy that makes use of disorderly
molecular motion. See Fig. 6.2.
Work is the transfer of energy that makes use of organized motion (orga-
nized, as opposed to random molecular motions). See Fig. 6.3.
An exothermic process is one that releases energy as heat to the surround-
ings.1 All combustion reactions are exothermic. An endothermic process

1Heat transfer is a process. Heat is not viewed as an entity. It is instead a process: the transfer
of energy as a result of temperature difference. Similarly to a diffusion process which is a flux Ji
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Systems

Open

Closed

Isolated

Matter

Energy

Energy

Matter

Matter

Energy

Figure 6.1. If matter can be transferred to the system, it is called
open, otherwise it is closed. An isolated system cannot exchange
mass or heat with its surroundings. Walls of the system that allow
transfer of heat are called diathermic whereas those that don’t are
called adiabatic. Energy is the capacity of a system to do work.
Energy can also be transferred as heat.

System

Surroundings

energy energy energy

Figure 6.2. When energy is transferred to the surroundings as heat,
the transfer stimulates random motion of the atoms in the surroundings.
Transfer of energy from the surroundings to the system makes use of
random motion (thermal motion) in the surroundings.

in the i-th chemical species driven by gradients in the chemical potential of that species,

Ji(particle flux) = −D
d

dx
µi(x) Fick’s law of diffusion

(D is a diffusion coefficient), heat transfer is a flux driven by gradients in temperature

q (heat flux) = −k
d

dx
T (x) Fourier’s law
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System

Surroundings

energy energy energy

Figure 6.3. When a system does work, it stimulates orderly motion in
the surroundings. For instance, the atoms shown here may be part of a
weight that is being raised. The ordered motion of the atoms in a falling
weight does work on the system.

is a process in which energy is acquired from its surroundings as heat. An
example is vaporization of water.

Heat occurs through random thermal motion. Heat transfer from a hot
to a cold body occurs through random thermal motion, so heat should be
thought of as a kind of disorderly motion. Suppose a system is in contact
with its surroundings and heat flows into the system, the system’s energy is
increased as a result of the heat transfer. In contrast, work is a transfer of
energy, but does not involve disorderly motion. Instead, it involves concerted
motion of all particles. For example, a force can be used to lift an object.
In this case, all of the molecules move together and in the same direction.
This process does not involve disorderly motion.

Universe=System+Surroundings. We should always think of a thermo-
dynamic system together with its surroundings. Heating is the energy
transfer to the system making use of thermal motion in the surroundings.
Work is the energy transfer to the system resulting from concerted motion
of atoms in the surroundings.

6.2. Heat Capacity

Suppose we transfer some amount of heat ∆Q to a system, its temperature
will increase by an amount ∆T . If you transfer double the heat 2∆Q, the
temperature will increase by double the amount, 2∆T . The proportionality
“constant” is the heat capacity, C(T ), which itself depends on tempera-
ture:

q ≡ ∆Q = C(T )∆T.

where k is the coefficient of thermal conductivity (in general, k = k(T ) is temperature dependent).
At the interface between a hot and a cold body, the temperature gradient is large, causing a transfer
of heat from the hot to the cold body. The direction hot → cold is enforced by the minus sign.
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Heat capacity is thus a kind of “resistance” or reluctance that a material
shows towards raising its temperature in response to receiving heat from its
surroundings. Suppose that we transfer 1 J of heat to the material. The
smaller the heat capacity, the larger the temperature rise. The larger the
heat capacity, the smaller the temperature rise. A closely related quantity
is thermal conductivity; the latter is proportional to the heat capacity (see
Section 6.2.1).
In thermodynamics we make the distinction between the heat capacity at
constant pressure (CP ) and at constant volume (CV ) using a subscript P or
V , respectively. This refers to the kind of experiment used to measure the
heat capacity. As we will see later, those two values are different.
The specific heat capacity (not to be confused with concentration), de-
noted by a lowercase c, is the heat capacity per unit material.

• Per unit mass: c = C/m, where m is the mass of the body. SI Units:
[J/kg.K]
• Per mole: c = C/n, where n is the number of moles. This is called the

molar heat capacity. SI Units: [J/mol.K]

Why should we care about specific heat capacity? Because without it, heat
capacity is an extensive property, i.e. it depends on the amount of material
used. q = C∆T says that for a 1◦C increase, q will double if the amount of
material doubles (because a body twice as large requires twice the amount of
heat transfer to cause this 1◦C increase), therefore C should double. Because
of this dependence, it is impossible to tabulate values of C. Dividing by the
amount of material (n or m) renders the heat capacity independent of the
amount of material. It is then an intensive property which is intrinsic to the
material type, not its quantity.
Another notation you may see for the definition of heat capacity is in terms
of infinitesimal quantities:

C(T ) = δq

dT ,

or the corresponding molar heat capacity

c(T ) ≡ 1
n
C(T ) = 1

n

δq

dT .

While this notation appears awkward, it is sometimes useful conceptually.

This notation appears to suggest that heat capacity is some type of de-
rivative (δ/dT ) of an extensive parameter (heat flow) with respect to an
intensive property (temperature). These are, however, formal definitions.
In practice, measured heat capacities are evaluated as derivatives with re-
spect to temperature while holding some other variables constant (P or V ).
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This is done as such, because the measured heat flow will depend on which
parameters are held constant. CV is the most convenient quantity for gases
and theoreticians. CP is the most common tabulated form.

6.2.1. Thermal Conductivity. If the temperature is non-uniform there
will be a transfer of heat until a steady-state is reached. Similar to the case
of particle diffusion, this transfer of heat acts to make the temperature more
spatially uniform. The rate of heat loss per unit area (A) is related to the
temperature gradient according to:2

(6.1) 1
A

∆Q
∆t = −κ∆T

∆x ,

where κ is the thermal conductivity.
For an ideal gas the heat transfer rate is proportional to the average molecu-
lar velocity (v), the mean free path (λ) of the energy carrier (average distance
traveled between consecutive scattering events, on the order of a few nm to
µm), and the specific (volume) heat capacity of the gas [c(T )].

κ = 1
3vλc(T ).

A related quantity is the thermal diffusivity, α (units: m2/s):

α = κ

c(T ) .

The units of c(T ) are J/m3.K. Those of v are m/s. This implies that κ
has units of J/m.s.K or W/m.K. The unit J/s is also known as the Watt
(W). Inspection of Eq. (6.1) reveals that the units on the right hand side
must be (J/m.s.K)×(K/m) or W/m2. For equality to hold, these must also
be the units of the left hand side. Indeed, Q has units of J, and therefore,
∆Q/(A∆t) has units of W/m2, as it should. This equation holds for each
energy carrier (e.g. electron, phonon). For electrons, v is on the order of
106 m/s; for phonons it is approximately 103 m/s.
For solids, there are two contributions to the heat capacity: phonons and
conduction elections. (For non-metallic solids, only phonons contribute.)
Atoms vibrating more energetically at one part of a solid transfer that energy
to less energetic neighboring atoms. Phonons are propagating lattice waves
that are quantized. For metals, the thermal conductivity is quite high,

2Using derivatives, this is:
1
A

dQ
dt

= −κ
dT
dx

,

where the derivative on the left, of a function Q(x, t), with respect to t holds x constant. Likewise,
the derivative on the right hand side is with respect to x while holding t constant. This is normally
denoted using partial derivatives:

1
A

∂Q

∂t
= −κ

∂T

∂x
.
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and those metals which are the best electrical conductors are also the best
thermal conductors.

6.2.2. Heat Capacity of a Solid: Dulong-Petit Law. In 1819, Dulong
and Petit measured the specific heats3 of several solids and found that the
values for the various materials differed considerably. However, their heat
capacity was close to 6 cal/K/mol (Table 6.1) or 25 J/mol.K.

Element Atomic Specific heat Heat capacity
weight (g/mol) (cal/K/g) (cal/K/mol)

Lithium 6.9 0.92 6.3
Beryllium 9.0 0.39 3.5
Magnesium 24.3 0.25 6.1
Carbon (diamond) 12.0 0.12 1.4
Aluminum 27.0 0.21 5.7
Iron 55.8 0.11 6.1
Silver 107.9 0.056 6.0
Lead 207.2 0.031 6.4
Mercury 200.6 0.033 6.6

Table 6.1. Heat capacities of some solid elements. Dulong and Petit
stated their law as: specific heat (cal/K.g) × atomic weight (g/mol) ∼=
6 (cal/K.mol). 1 calorie equals 4.18 Joules. Source: [21]

Heat capacity arises because of the many different ways (degrees of freedom)
in which molecules can absorb energy. The Law of Dulong and Petit is:

Law of Dulong and Petit. The molar specific heats of most solids
at room temperature and above are nearly the same value. (This
value is 3R ≈ 25 J/mol.K.)

We note that the Dulong-Petit heat capacity is independent of temperature
(in the high-T limit only). See Fig. 6.4.

3Here, specific heat is the number of calories (or Joules) required to raise one gram (or kilogram)
of material one degree celsius. The term heat capacity often refers to the heat required to raise one
mole of material one degree celsius. In older chemistry books (e.g. [21]), “heat capacity” refers
to “molar heat capacity”, whereas “specific heat capacity”, is also called ”specific heat”, and that
is the heat capacity per unit mass of a material. In modern chemistry textbooks (e.g. [1]), these
two notions are called “specific heat capacity”, whereas “heat capacity” refers to the total heat
capacity (of the entire volume of material). The latter, which is an extensive property, is less
useful because such values cannot be tabulated for different materials, as the numerical value
depends on the amount of material. In this section only, we use the old terminology.
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T/T
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kv
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Figure 6.4. The dimensionless heat capacity divided by three, as a
function of temperature as predicted by the Debye and Einstein models.
The horizontal axis is the temperature divided by the Debye tempera-
ture. The dimensionless heat capacity is zero at absolute zero, and rises
to a value of three as the temperature becomes much larger than the
Debye temperature. The red line corresponds to the classical limit of
the Dulong-Petit law.

Units of heat transfer. The connection between heat transfer (SI units:
Joule) and temperature change (units: Kelvin) should not be so unfamiliar
to you at this point. We have seen in the case of gases that the average
kinetic energy per molecule, K ≡ 1

2mv
2 = 3

2kBT , established a connection
between temperature and energy. Thus, a change in the kinetic energy ∆K
is proportional to a change in temperature ∆T . The two quantities (energy
and temperature) were related by the Boltzmann constant. kB and C have
the same SI units (J/K).

6.2.3. Heat Capacity of Ideal Gas. Consider an ideal monatomic gas
held at constant volume V . The internal energy of an ideal monatomic gas
is purely kinetic. There is no potential energy. From

K ≡ 1
2mv

2 = 3
2kBT

or (3/2)RT for 1 mole, we can easily derive the heat capacity of an ideal gas
by considering the change in temperature that accompanies an infinitesimal
change in internal energy, which for an ideal gas is just the kinetic energy
(U = K).
The heat capacity is obtained by taking the derivative of energy with respect
to temperature. For 1 mole of substance, the heat capacity is,

cV = 3
2R ideal gas
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Here, cV denotes the specific (molar) heat capacity at constant volume. (The
volume is constant because the gas is contained in a volume V .)
It can be shown that at constant pressure, the heat capacity of the ideal gas
is:

cP = 5
2R. ideal gas

6.2.4. Internal Energy. The internal energy of a system, U , is the sum of
total kinetic and potential energy of the molecules in the system. Potential
energy includes the energy stored in the chemical bonds. The internal energy
is a state function, meaning that it depends only on the state of the system,
not on the history or path taken to reach this state.

State function: To describe a system completely, we must indicate
its temperature, pressure and amounts of substances present. When we
have done this, we have specified the state of the system. Any property
that has a unique value for a specified state of a system is said to be a
state function. Note: Any function that depends on the history of the
system — rather than its current state — is not a state function.

For a state function, we can express changes in the state function in terms of
the final state minus the initial state, ∆U = Uf−Ui, without any mention of
the intermediate states taken to reach the final state from the initial state.

Change in internal energy: Because U is a state function, so is
∆U = Uf − Ui. Suppose that a system goes from state 1 to state 2 and
back to state 1. Its change of internal energy is U2 − U1 followed by
U1 − U2:

∆U = ∆U1→2 + ∆U2→1 = (U2 − U1) + (U1 − U2) = 0.
This says that the internal energy returns to its initial value, which it
must do, since it is a function of state.

Internal energy is an extensive property of the system (i.e. if we double
the size of the system, its internal energy doubles). The SI units of U are
Joule (J). However, the internal energy per mole, U/n, is an intensive
property of the system. The SI units of U/n are J/mol.
The change in internal energy U will contain terms which can be classified
as heat transfer or work:

∆U ≡ change in U = (heat) + (work) ≡ q + w.

In general, we do not need to enumerate all contributions to the energy
because thermodynamics is only concerned about changes in the energy
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(e.g. ∆U or dU), in which case, only the terms that are involved in the
change are needed.
In thermodynamics we are interested in dU , the total differential of the
function U . dU is the sum of “infinitesimal” heat transfer, δQ, and “infini-
tesimal” work done on the system δW :

dU is the sum of infinitesimal heat transfer and work
The change in internal energy is:

dU = δQ+ δW

The total change in heat and work is obtained by integrating the infinitesimal
expressions, q ≡ ∆Q =

∫
δQ and w ≡ ∆W =

∫
δW . For ∆U , we have:

∆U =
∫

dU =
∫
δQ+

∫
δW = ∆Q+ ∆W ≡ q + w.

Some books write q for heat transfer. We can write ∆Q to emphasize that
it is a change. We will see later that the first law of thermodynamics states
that U is a state function, or equivalently, that dU is an exact differential.
This implies that ∆U =

∫ f
i dU = Uf − Ui only depends on the state of the

system (hence the name “state function”), not on the history of changes it
undergoes between i and f . For more information about exact differentials,
see Section A.9.

6.2.5. Compression Work (Hydrostatic Pressure Work). Suppose
that we compress a gas using a piston by applying an external force (pres-
sure), as shown in Fig. 6.5.

Figure 6.5. Work accomplished when compressing a gas using a piston.
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The system is the gas inside the chamber. The surroundings is everything
else external to it. The external pressure Pext originates from the surround-
ings. The pressure is force per unit area:

Pext = Fext
A

.

6.2.6. Work Done by the Surroundings to the System is −Pext∆V . We
also know that mechanical work, ∆W , is obtained by integrating the force
over distance (let z denote the vertical direction which corresponds to the
direction of the displacement ∆h):

∆W =
∫ zf

zi

PextA dz =
∫ Vf

Vi

Pext dV.

As a matter of convention in chemistry we put a negative sign to denote
work done on the system by the surroundings. Engineers use the opposite
convention (work done by the system). For example, if a gas is compressed
(work done on the system), ∆V < 0, leading to positive values of W in the
definition below:

Compression work

∆W = −
∫ Vf

Vi

Pext dV or δW = −Pext dV

If Pext remains constant during this change (as would be the case if the sur-
roundings were atmospheric pressure, which remains essentially constant),
we can pull it out of the integral and the work done on the system is the
product of the external pressure and the change in the volume of the gas:

∆W = −Pext ∆V.
In general, depending on what you consider to be the surroundings, Pext may
not necessarily be constant, in which case you need to use δW = −Pext dV
and integrate ∆W =

∫
δW along the path of the change.

6.2.7. RECALL: Work = Force × Distance. In classical mechanics,
we learn that force times distance is the mechanical work, i.e.

w =
∫ f

i

~F · d~x,

where i and f denote the initial and final points, respectively. If the force
is in the x direction, ~F = Fx̂, we have

w =
∫ f

i
Fdx.
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The integral is taken along some path with initial point i and final point
f . The result is generally path-dependent, unless Fdx is the derivative of
some function (say) g, i.e. Fdx = dg, in which case it only depends on the
initial and final points since

∫ f
i dg = g(f) − g(i) (fundamental theorem of

calculus).
If F is constant along the path, then the work is simply F (xf −xi) = F∆x.
Now let’s return to the example from the previous section, where a gas
is compressed by a piston. Starting from Pext = Fext/A, substituting
A = ∆V/∆h yields Pext = Fext∆h/∆V . Thus, Pext∆V = Fext∆h. For
infinitesimal changes, PextdV = Fextdh. Since the work done by the sur-
roundings on the system is −PextdV ,

−dw = PextdV = Fextdh Pext
dV
dh = Fext.

The external force (force exerted on the system by its surroundings) is seen
to be related to the spatial derivative of the work Fext = −dw

dh . If h is the x
direction:

Fext = −dw
dx .

This is a general principle. The force is generally obtained by taking minus
the gradient (spatial derivative) of the (potential) energy:

Fext = −dU
dx .

(The kinetic energy does not appear because it rarely depends on position.)

6.3. Expansion (P − V ) Work

In chemistry, P − V work is important because it describes the behavior of
gases and the work arising from a change in volume. This includes the work
done by a gas as it expands and pushes against the atmosphere. Chemical
reactions generate gases. The P − V work here is the work that must be
done to make room for the gas it has produced. P − V work also describes
compression (negative changes in volume).

6.3.1. Free Expansion in Vacuum. Suppose that a gas is allowed to
expand in a vacuum. Since there is zero opposing force, Pext = 0 and the
work is zero ∆W = 0.

6.3.2. Expansion Against Constant Pressure. Suppose that a gas in-
side a piston expands, and the piston is pressing against the atmosphere.
The latter corresponds to a constant pressure Pext. Thus, it is constant and
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we can take it outside the integral:

∆W = −
∫ Vf

Vi

PextdV = −Pext
∫ Vf

Vi

dV = −Pext(Vf − Vi) = −Pext∆V.

6.3.3. Reversible Process. Reversible processes are important because
they represent the most efficient processes. They are idealizations (no pro-
cess in nature can be perfectly reversible) which enable us to do useful
calculations. A process is fully reversible if both system and surroundings
will return exactly to their initial states if the process is run in reverse. Less
efficient processes do not have this property, and so are referred to as irre-
versible. A process is said to be reversible if it remains arbitrarily close to
equilibrium with its surroundings at all times.
When a system is arbitrarily close to equilibrium with its surroundings,
we mean close in the sense of infinitesimals. If T, P, µ are the temperature,
pressure and chemical potential of the system and Text, Pext, µext are those
of the surroundings, then arbitrarily close means that they are close in the
sense of infinitesimals:

Text =T + dT
Pext =P + dP
µext =µ+ dµ

According to the rules of calculus, we can handle expressions containing
infinitesimals such as dT , dP and dµ. However, second-order quantities
such as (dT )2 or (dT )(dP ) should be neglected because the square of an
infinitesimally small quantity is so small that it is effectively zero.4 If you
don’t want to deal with infinitesimals, it is usually safe to make the following
substitutions (replace external pressure by internal pressure, etc.):

Text ≈ T, Pext ≈ P, µext ≈ µ.

4From calculus, we know that
df =

df
dx

dx. (1)

However, it is also the case that:

df(x) = f(x+ dx)− f(x).

Taylor-expanding the first term,

df =
[
��f(x) + (dx)

df
dx

+
(dx)2

2
d2f

dx2 +O((dx)3)
]
−��f(x) (2)

But for (1) and (2) to be equal we are “forced” to drop terms of order (dx)2 or higher. Thus, when
handling differential expressions we keep terms of order O(dx) only. The higher order infinitesimal
terms are negligible (too small).
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6.3.4. What Makes a Process Irreversible? Irreversibility lead to a
loss of energy. There are many different factors that make processes irre-
versible. The most common reasons are:

• FRICTION. When a system has energy which it converts into work, fric-
tion makes this conversion inefficient. Heat is lost to the surroundings.
The dissipation of heat cannot be recovered.
• UNRESTRAINED EXPANSION. Suppose that at time t = 0 a gas is

compressed inside a volume with a piston. The surroundings are evacuated
(vacuum). If we release the piston, the gas will expand. This process is
irreversible because the gas will not spontaneously return to its initial
compressed state. Work would be needed to re-compress the gas.
• HEAT TRANSFER IN A TEMPERATURE GRADIENT. Suppose we

have a hot body connected to a cold body. Heat will be transferred from
the hot body to the cold body. This process is spontaneous. Because
heat will not spontaneously flow from the cold body to the hot body, this
process is irreversible.
• MIXING SUBSTANCES. Suppose we have a volume V with two gases:

H2 and O2. The two gases are initially separated into two compartments
by a wall. We then remove the wall and allow the gases to mix. This
process is irreversible because the gases will never return to their original
locations.
• OTHER. There are many other factors leading to irreversibility. Chem-

ical reactions that move the initial concentrations towards equilibrium
are irreversible. In fact, some reactions, such as combustion reactions,
are unidirectional and obviously irreversible. Electrical current flowing in
conductors of finite resistance lead to power dissipation. The power dis-
sipated is proportional to the square of the current (Joule heating law).

6.3.5. Reversible Compression. If the mechanical compression work done
by the surroundings on a system

δW = −PextdV
is reversible, this means we can write Pext = P + dP ,

δW = −(P + dP )dV.
Noting that the product of infinitesimals dPdV is much smaller than the
term PdV , we neglect dPdV :

δW = −PdV.
The reversible work done on the system is then:

∆W rev =
∫
δW = −

∫ Vf

Vi

(P + dP )dV = −
∫ Vf

Vi

PdV.



242 6. Thermodynamics

What did we accomplish by changing δW = −PextdV to δW = −PdV ?
The difference is significant because this allows us to replace Pext by P .
In many experiments P is known, because the gas mixture is known, and
obtained from the equation of state, whereas Pext is often unknown (e.g.,
the surroundings may be out of your control).
Indeed, when computing the work done on the gas, −

∫
F dx = −

∫
Pext dV ,

the force F must be the gravitational force acting downward on all of the
mass supported by the gas at pressure P . This mass includes that of the
piston, the piston rod, the pan, any weight placed on the piston (to compress
the gas), and the atmosphere above the piston. In the case of a reversible
process this force F is never more than minutely out of balance with the
force exerted upward on the piston face by the gas and given by the product
of pressure and piston area. Thus, for all practical purposes, F = PA for
the reversible process. The volume change of the gas (system) is dV = A dx;
thus dx = dV/A and the work done on the gas is

∆W = −
∫
Fdx = −

∫
PA

dV
A

= −
∫
PdV.

For a reversible process, we replace Pext by P , which in this equation means
we set F = PA. This allows us to calculate the work using the properties of
the system rather than its surroundings. It is generally difficult to know the
exact properties of the surroundings in such calculations, especially when
the gas expansion is rapid. In a reversible process, the forces are never more
than differentially out of balance (e.g. Pext = P + dP ).
For irreversible processes this substitution is not possible because we may
not have thermal equilibrium. For example, suppose that gas expansion
takes place: when a finite weight is removed from the piston in the processes
described, the forces of gravity acting downward is overbalanced by the gas
pressure acting upward by a finite amount (i.e. Pext = P − ∆P , where
∆P is not an infinitesimal), and F does not equal PA again until a new
equilibrium position of the piston is reached. (Similarly, for gas compression
we have Pext = P + ∆P , and the internal gas pressure is overcome by the
external pressure from the weight pressing downward.) Thus PA cannot be
substituted in the integral

∫
F dx, and it is not possible to calculate the work

from a knowledge of the properties of the system (the gas). The integral∫
F dx is given by

∫
P dV only when the process is reversible; that is,

∆W rev = −
∫ V2

V1
P dV

This work for an expansion process is the maximum work which the system
can produce.
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6.3.6. Why are Reversible Processes Important? The reversible pro-
cess is unique, and important in thermodynamics, because it represents the
limit of what is possible in the real world. We cannot imagine anything
better than a reversible process. Such processes lend themselves to exact
mathematical analysis, which is not the case for other processes. In ther-
modynamics, our choice is often to do calculations for reversible processes,
or to do no calculations at all. The reasons for this is that reversible pro-
cesses are those for which the forces causing change are almost exactly in
balance. Thus the states through which the system passes during a re-
versible process are for all practical purposes equilibrium states, or more
precisely are never removed more than differentially from equilibrium states
(e.g. Pext = P + dP ).

6.3.7. Example: (Reversible Compression of an Ideal Gas). To il-
lustrate the application of this result, let’s look at a specific example. The
easiest case is an isothermal compression (T = const) for an ideal gas
(P = nRT/V ):

∆W rev =−
∫ V2

V1
P dV = −

∫ V2

V1

nRT

V
dV = −nRT

∫ V2

V1

dV
V

=nRT log(V1/V2).

6.3.8. Example: (Reversible Compression of VDW Gas). A slightly
more complicated example is the van der Waals gas. Suppose that n moles
of gas are expanded from V1 to V2 reversibly and isothermally. Calculate
∆W for a Van der Waals gas.
Solution:

P = nRT

V − nb
− n2a

V 2

∆W rev =−
∫ V2

V1
P dV = −

∫ V2

V1

nRT

V − nb
dV +

∫ V2

V1

n2a

V 2 dV

=− nRT
∫ V2

V1

dV
V − nb

+ n2a

∫ V2

V1

dV
V 2

=− nRT log
∣∣∣∣V2 − nb
V1 − nb

∣∣∣∣+ n2a

( 1
V1
− 1
V2

)
.

6.3.9. Example: (w/ numbers) Calculate the work done when 50 g of iron
reacts with hydrochloric acid to produce FeCl2(aq) and hydrogen in (a) a
closed vessel of fixed volume, (b) an open beaker at 25◦C.
Solution: For (a) the volume cannot change, so the expansion work done
is zero (∆W = 0). For (b) the gas pushes against the atmosphere, ∆W =
−Pext∆V . After production of gas, the volume changed by ∆V = Vf −Vi ≈
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Vf = nRT/Pext (the initial volume is so small compared to Vf that it can
be neglected), where n is the amount of H2 produced. Therefore,

∆W = −Pext∆V = −Pext
nRT

Pext
= −nRT.

Because the reaction is Fe(s)+2HCl(aq)→FeCl2(aq)+H2(g), we know that
1 mol H2 is generated when 1 mol Fe is consumed, and n can be taken as
the amount of Fe atoms that react. The molar mass of Fe is 55.85 g/mol.
Then,

∆W ≈ − 50 g
55.85 g/mol × (8.3145 J/K.mol)× (298 K) ≈ −2.2 kJ.

6.3.10. ENTROPY CHANGE during expansion of IDEAL GAS.
The ideal gas has PV = NkBT and U = 3

2NkBT . Let’s analyze the following
3 different expansion methods:
• FREE EXPANSION: Isolated system is a box with partition dividing it

into two parts. The gas starts in one part with the other part evacuated.
Partition is broken, allowing the gas to expand into the other part of the
box. Energy of the system is constant. No work is done and no energy is
lost/gained.
• ISOTHERMAL EXPANSION: Gas in a cylinder pushes piston doing

work. Cylinder is in a bath with fixed temperature T .
• ADIABATIC EXPANSION: Cylinder with piston, so work is done, but

system is isolated.
FREE EXPANSION. Since U = (3/2)NkBT and U is constant, so is T .
Entropy must increase when V does, because

dU = TdS − PdV,
so

∆S =
∫
P

T
dV = 1

T

∫
PdV = NkB

∫ dV
V

= NkB log(Vfinal/Vinitial).

Although the gas is not in equilibrium during a free expansion, we can still
use our equilibrium thermodynamics to find out how much quantities like T
and S change. That is because we have kept track of the total energy of the
system as well as its volume. Since ∆S depends on initial and final states
only (S is a state function), we do not care what happens between initial
and final states.
ISOTHERMAL EXPANSION. T is constant and so is U . Hence, entropy
changes by the same amount as in the case of free expansion. However,
work is done. The work comes not from the internal energy of the gas,
which remains constant, but from the bath that is keeping T constant. In
an isothermal expansion of an ideal gas, heat is extracted from the bath and
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turned into work. The work done is given by

∆W =
∫
PdV =

∫
NkBT

B
dV = NkBT log(Vfinal/Vinitial).

ADIABATIC EXPANSION. Work is also done in an adiabatic or isentropic
expansion. In this case, however, there is no external source of heat, so the
energy of the gas must decrease and so must its temperature. Isentropic
process has dS = 0 and (see Problem 77)

PV γ = constant,

where γ = cP /cV . During isothermal expansion we have PV = constant
with a different constant (equal to NkBT ) for each temperature at which an
expansion takes place. In an adiabatic expansion we have PV γ = constant
with a different constant for each entropy at which an expansion takes place.
In the adiabatic case, the temperature is decreasing as the gas expands,
causing P to fall faster than in the isothermal case as V increases. The
difference is expressed in the exponent γ. For an atomic ideal gas γ = 5/3.
For a diatomic gas, γ = 7/5.

6.3.11. Path-Dependence of Work. Work is not a state function, mean-
ing that its numerical value depends on the path taken to go from one state
to another. By path, we mean a curve (“sequence of steps”) in the P−V −T
parameter space5 (or more generally, involving any useful set of thermody-
namic variables).
As an example, take a gas in a cylinder. The volume of the gas is allowed
to expand, subject to changes in external pressure. Suppose we have 0.1
mol of gas at 300 K. The initial state has external pressure of 2 atm. The
final state has pressure of 1 atm. Since at equilibrium, the external pressure
equals the internal pressure, the initial volume is:

Vinitial = nRT

Pi
= (0.100 mol)(0.0821 L.atm/mol/K)(300 K)

2 atm = 1.2315 L.

The final volume is:

Vfinal = nRT

Pf
= (0.100 mol)(0.0821 L.atm/mol/K)(300 K)

1 atm = 2.463 L.

The change in volume is:
∆V = Vfinal − Vinitial = 2.463 L− 1.2315 L = 1.2315 L.

5A curve γ(t) is a mapping γ : [0, 1]→ R3, where γ(t) = (P (t), V (t), T (t)) and t is a parameter of
the curve. A continuous curve is one where P (t), V (t) and T (t) are continuous functions of t.
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An IRREVERSIBLE expansion6 would yield
∆W =− Pext∆V = −(1 atm)(1.2315 L)

=− 1.2315 L.atm× 101 J
1 L.atm = −124.3815 J

A REVERSIBLE expansion would yield:
∆W =− nRT log(Vi/Vf )

=− (0.100 mol)(8.31 J/mol/K)(300 K) log(1.2315/2.463)
=− 172.8 J.

Because of the negative sign, this is the work done by the system on its
surroundings. We see that the work depends on the choice of path (here,
irreversible vs reversible). The reversible work is greater than the
irreversible work.
It is also interesting to carry out the irreversible expansion in N +1 discrete
steps instead of a single step. At each step, we ramp down the pressure
(from 2 atm down to 1 atm). The pressure at each step (i = 0, . . . , N) is:

Pext,i = (2 atm)(1− i/N).
The change in volume at each step is:

∆V = (Vfinal − Vinitial)/(N + 1) = (1.2315 L)/(N + 1).
The total work is:

∆W = −
N∑
i=0

Pext,i∆V = −
N∑
i=0

(2 atm)(1− i/N)(1.2315 L)
N + 1 .

Using the closed form expression,
n∑
i=1

i =
n∑
i=0

i = n(n+ 1)
2 ,

we perform the summation:

∆W =− (2 atm)(1.2315 L)
N + 1

(
(N + 1)− 1

N

N(N + 1)
2

)
=− (2 atm)(1.2315 L)1

2 ×
101 J

1 L.atm
=− 124.3815 J.

This multi-step method makes absolutely no difference over the single-step
method.
The path-dependence of work can be explained graphically by considering
the area under the P − V graph. Consider a system which changes from
state 1 (P1, V1) to state 2 (P2, V2). The work done on the system during the

6Isothermal expansion at constant pressure.
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process is:

∆W = −
∫ V2

V1
Pext(V )dV,

where Pext(V ) denotes the external pressure, which may be a function of
volume. ∆W is equal to the area under the P − V graph, as shown in
Fig. 6.6. The magnitude of this area depends on the path taken when going
from state 1 to state 2. The connecting curve shown on this graph is the
path. On this figure, there are two paths shown: I and II. It is obvious that
∆WI −∆WII is non-zero. This difference equals to the area labeled as ‘A’
on the graph. Only in the case where the two paths are identical will this
area A be zero.

Path 2

Path 1

P2

P1

V1
V2

2

1

AREA

Figure 6.6. Work depends on path. Two paths are shown here (I and
II) connecting the same start and end points (1, 2). However, the area
under the curve (work) differs between the two paths. The difference
equals to the area enclosed by paths I and II (area is labeled A).

6.3.12. Why the Infinitesimals? In the previous sections we have been
writing down the work in terms of infinitesimal changes δW . The total work
is obtained by integrating:

∆W =
∫
δW,

where δW represents infinitesimal work. For example, the P −V work term
is

δW = −Pext dV,
or

δW = −P dV,
in the case of reversible P − V work. The total work is

∆W =
∫
δW = −

∫
P (V )dV,
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where P (V ) denotes pressure expressed in term of volume, since the variable
of integration is V . This is done using an equation of state.
You may ask, why are we working with infinitesimal expressions? This is
because the intensive quantity (e.g., the pressure) may change along the
path of integration. To get the total work ∆W , we may need to express the
intensive quantity in terms of the extensive quantity. This can be done using
an equation of state, as we did in the above examples for the reversible com-
pression of an ideal and VDW gas. The exact dependence of this intensive
quantity is problem-dependent.
Working with infinitesimal expressions reminds us that integration is the
process where infinitesimals are added along the path of integration. These
infinitesimals are not necessarily constant along the path.

6.4. Other Types of Work

Apart from P-V work (compressive mechanical work), δW = −Pext dV ,
there exists several different other types of work corresponding to the various
laws of physics available. Let us look at some examples.

6.4.1. Work Done by Gravity. Newton’s law of gravitation is:

F = G
m1m2
r2 =

(
G
m1
r2

)
m2,

where F is the gravitational force acting between two objects of mass m1
and m2 whose centers-of-masses are separated by a distance r. G is the
gravitational constant,

G = 6.674× 10−11 m3/kg/s2.

If we take m1 to be the Earth’s mass and consider displacements that are
small compared to the Earth’s radius, then r is essentially constant. Writing

g = Gm1
r2 ,

where r is the radius of the Earth (6,357 km) andm1 is its mass (5.9722×1024

kg). Then, the force can be written as (write m instead of m2):
F = mg.

The direction of F points towards the center of the Earth. The numerical
value of g is approximately 9.8 m/s2.
Suppose we lift an object of mass m from the surface of the earth (z = 0) to
a height (z = h). The gravitational force F = mg, leads to a work term of
the form ∆W =

∫ h
0 F .dz = F

∫ h
0 dz = mgh. Thus, elevating a body of mass

m to a height h from the ground requires an amount of work mgh.
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6.4.2. Work Done by a Spring. The linear restoring force F = kx
(Hooke’s law), where k is the spring constant and x is the extension of the
spring from its rest position, leads to a term of the form ∆W =

∫
F.dx =∫

kxdx = 1
2kx

2.

6.4.3. Electrostatic Work. Suppose that we add an electric charge to
an existing (static) system of charged particles {(qi, ri)}Ni=1. The charged
particles distribution is described by an electric potential φ or electromotive
force, E , which is additive (sum over all charges):

(6.2) φ(r) = 1
4πε0

N∑
i=1

qi
|r− ri|

.

This charge distribution gives rise to an electric field, which is obtained from
the spatial derivative of φ(r):

E(r) = −∇φ(r) = 1
4πε0

N∑
i=1

qi
(r− ri)
|r− ri|3

.

Suppose that we place a charge q at r. It will experience a force:
F = qE(r).

The work is force over distance. The work done in moving a charge q from
A to B is:

W = −
∫ B

A
F · dx = −q

∫ B

A
E · dx.

Here, the minus sign denotes the work done on the charge against the action
of the field. Then, using E(r) = −∇φ(r),

W = q

∫ B

A
∇φ · dx = q

∫ B

A
dφ = q(φB − φA).

We normally assume that a point charge is brought from infinity (A→∞)
to a point r in a region of localized electric fields described by the potential
φ (which vanishes at infinity). Then, qφ can be interpreted as the potential
energy of the test charge q in the electrostatic field. The integral is a line
integral along a curve C from A to B. dx is an infinitesimal line element
along the curve C.
Denote an infinitesimal charge added as dq and the associated work as δW .
The work is δW = Edq or

δW = φdq,
depending on the notation used (E vs φ). E vs φ are the same thing; some
books will use E whereas others will use φ. The units of E and φ are volt
(V), whereas those of dq are Coulomb (C). The total work is obtained by
integrating δW . Note: the meaning of dq is clear if we write ρ(r)d3r, where
ρ(r) is the charge density and d3r is a volume element centered on r. Since
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δW is to be integrated, this integral is over all space:

∆W =
∫
δW =

∫
Ω
φ(r) ρ(r)d3r.︸ ︷︷ ︸

dq

where Ω ∈ R3 is a region of space. Suppose that a charge q is centered at
the point rq. This means that ρ(r) = qδ(r− rq), where δ is the Dirac delta
function (see Section A.23). For the above-mentioned electrostatic charge
distribution (Eq. 6.2), then:

∆W =
∫

Ω
φ(r)qδ(r− rq)d3r = q

4πε0

N∑
i=1

qi
|rq − ri|

.

If the force depends on a single direction (x), we may take:

φ(x) = 1
4πε0

N∑
i=1

qi
|x− xi|

, E(x) = − d
dxφ(x) = 1

4πε0

N∑
i=1

qi
x− xi
|x− xi|3

,

δW = φ(x)dq, ∆W = q

4πε0

N∑
i=1

qi
|xq − xi|

,

where |x− xi| =
√

(x− xi)2 and d
dx

1
|x−xi| = − (x−xi)

|x−xi|3 .

6.4.4. Work Done by an Electric Field. Suppose that we have an elec-
tric field E and an object with an electric dipole moment p. If this object
is re-oriented in the presence of the electric field, work is required according
to δW = E·dp. The units of E are V/m whereas those of ~p are C·m, since
a dipole p = qd consists of two point charges +q and −q, separated by a
displacement vector d. We recall from electrostatics that E = −∇φ, so you
can see how these units also agree with the previous work δW = φdq (the
units ∇ are m−1).
As an example, consider an induced dipole moment. Recall from Sec-
tion 2.1.2 that p = ε0αE (where ε0 was absorbed into the definition of
α when using the numbers from the table). In other words, p is parallel to
E and is proportional to it. The infinitesimal work is then

δW = E · dp = αEdE = α
1
2dE2.

Suppose we turn on the electric field (ramp it up from 0 to E), the total
work is then:

∆W =
∫
δW = α

1
2

∫ E2

0
dE2 = α

2E
2.
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Suppose we have argon, whose polarizability is 1.63 in units of 1.11 ×
10−40 C2m2/J, according to Table 2.5.

∆W = (1.63× 1.11× 10−40 C2m2/J)
2 E2.

To get ∆W = 1 J, we need E = 1.05× 1020 V/m. For ∆W = 1 J, we need
E = 1.05 × 1020 V/m, which is enormous. Conversely, suppose we apply a
laboratory-scale voltage, such as 100 V, across a distance of 1 cm, the term
δW = E·dp is so small (about ∆W ≈ 10−32 J) and its contribution does
not matter compared to heats of reaction or even P − V work.

6.4.5. Work Done by a Magnetic Field. Suppose that we have a mag-
netic field B and an object with a magnetic dipole moment m. If this object
is re-oriented in the presence of the magnetic field, work is required accord-
ing to δW = B·dm. The units of B are Tesla (T) whereas those of m are
J/T=A.m2 (Ampère-meter square), since a magnetic dipole m = IA can
be described as a current I flowing around a loop whose area is A (area is
a vector pointing normal to the surface). This is shown in Fig. 6.7.

I=dq/dt

A

m

Figure 6.7. Model for magnetic moment (~m) as a current loop. The
current, I, is the charge per unit time (dq/dt). The loop has area A. ~A is
a vector pointing perpendicular to the loop surface area, in the direction
given by the right-hand rule with respect to the current direction.

As in the previous section, we could illustrate the case of linear response
(paramagnetism or diamagnetism), where the magnetization (magnetic mo-
ment per unit volume), M = m/V = (χ/µ0)B, where χ is the mag-
netic susceptibility of the medium and µ0 is the permeability of free space
(µ0 = 1.257 × 10−6 m.kg/s2/A2). We then get δW = B · d[(χ/µ0)BV ] =
V (χ/µ0)1

2dB2. Integration from B = 0 to B = 1 T gives ∆W = (1/2)
V (χ/µ0) B2. For water (χ = −9× 10−6) in a 1 cc volume, we have ∆W =
−3.6 × 10−6 J, which is a small quantity. Note: this value of δW = B·dm
is larger than the value for δW = E·dp calculated in the previous section.
However, that’s because we considered a 1 cc volume here instead of a single
molecule, as was the case in the previous section. To do a fair comparison
(over a 1 cc sample volume), suppose we had 1 cc of liquid argon, whose
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density is 1.3954 g/cc, divided by its molar mass (39.9 g/mol), gives 0.035
mol/cc. In 1 cc of liquid argon polarized with a E=(100 V)/(1 cm) electric
field,
∆W = (1 cc)(0.035 mol/cc)(6.022× 1023 mol−1)(10−32 J) = 2.11× 10−10 J.
We conclude that energies associated with both electric and magnetic work
are very small compared to enthalpies of reactions or P − V work (whose
magnitudes are typically 1-1,000 J/mol).
Physically, magnetic moments in materials can arise from nuclear spins,
unpaired electrons, or orbital moments. Let us write µ instead of m to
emphasize the atomic or molecular origin of the moment. Certain nuclei can
have non-zero moments, depending on the configuration of its constituent
protons and neutrons. For example, protons have spin I = 1/2; hence,
hydrogen nuclei have spin 1/2. The spin angular momentum is ~I, where
|I| = I. The corresponding magnetic moment is

µ = gµNI,
where g is the proton g-factor (g = 5.5856947),

µN = e~
2mp

,

is the nuclear magneton. mp is the mass of the proton, e is the elementary
charge and ~ is the Planck’s constant divided by 2π (~ = h/2π = 1.054 ×
10−34 J.s/rad). The numerical value of µ (for the proton) is:

µ =gµNI = g
e~

2mp
I = (5.585)(1.602× 10−19)(1.054× 10−34)

2(1.672× 10−27)
1
2

=1.41× 10−26 A.m2

Note: since these formulas are in SI units, we do not need to explicitly work
out or convert units as long as all the variables are stated in SI units, as was
done here.
Let’s calculate the work needed to bring this magnetic moment into a mag-
netic field of 1 T. The work is

∆W = B ·∆µ = (1 T)(1.41× 10−26 A.m2) = 1.41× 10−26 J.

Magnetic moments can come from electrons, in the form of spin or orbital
angular momentum. The proton magnetic moment is 1.521×10−3 times that
of the Bohr magneton. The Bohr magneton is a natural unit for expressing
the magnetic moment of an electron:

µB = e~
2me

,



6.4. Other Types of Work 253

where me is the electron mass. Its numerical value is 9.27401×10−24 J/T.
Electrons bound to atoms that occupy filled atomic or molecular orbitals
pair up, according to the Pauli exclusion principle, as spin-up and spin-
down (↑↓), leaving zero net moment. However, unpaired electrons (spin-
up or spin-down), have non-zero moment, leading to magnetic phenomena
(paramagnetism, ferromagnetism, ferrimagnetism). An example is dioxygen,
which is paramagnetic. The unpaired electrons in dioxygen are explained in
terms of molecular orbital theory:

https://en.wikipedia.org/wiki/Molecular_orbital_diagram#Dioxygen

Non-zero orbital angular momentum of electrons gives rise to a magnetic
moment:

µ = g~
(−e)
2me

L = −gµBL,

where ~L is the orbital angular momentum; |L| =
√
l(l + 1), where l =

0, 1, 2, . . . , n− 1 (corresponding to s, p, d, f , . . . orbitals). n is the principal
quantum number. Electrons in s orbitals have L = 0 and µ = 0.

6.4.6. Adding Molecules to a System. It requires work to add a mole-
cule to a system while keeping it at thermal equilibrium because at equilib-
rium the particle must have energy comparable to the average energy. Recall
(see Section 1.3.3) that for a monatomic gas the average kinetic energy per
molecule is related to temperature:

1
2mv

2 = 3
2kBT.

The new molecule or atom that we add must be imparted with this amount
of energy otherwise the total energy (and consequently, the temperature
T ) of the system will change. The energetic cost is given by the chemical
potential:

µi ≈
( ∆U

∆Ni

)
S,V,Nj 6=i

where the subscript S, V,Nj 6= i indicates that other variables are being held
constant. This definition holds in the limit of small ∆Ni. For those familiar
with partial derivatives (see Section A.5), the formal definition is:

µi ≡
(
∂U

∂Ni

)
S,V,Nj 6=i

.

µi is the energy required to add 1 particle to the system. You can think of
it as the resistance to adding particles. The associated work is:

δWi = µidNi.
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If there are N chemical species, the infinitesimal work is the sum:

δW =
N∑
i=1

µidNi.

In chemistry, we normally work with molar quantities:

µi =
(
∂U

∂ni

)
S,V,nj 6=i

, δW =
N∑
i=1

µidni.

The units of µi are the same (Joule) except that the amount of energy
involved is that which involves adding a mole of substance to the system.

6.4.7. The Infinitesimal Work Terms Follow a General Pattern.
We note that all types of works are of the form:

δW = (intensive quantity)× d(extensive quantity).
In the above examples, our intensive and extensive quantities were:
Intensive variable Corresp. Extensive

variable
Type of work

P (pressure) V (volume) mechanical (e.g. P − V )
work: when a system goes from
high pressure Pext to lower
pressure while changing its volume V .
The energy changes by −PextdV .

φ (electrostatic q (electric charge) electrical (e.g. electromotive force, emf):
potential) when a system goes from high emf E
or E (electromotive to low emf by transferring electric charges q
force) between the two electrodes.

The energy changes by E.dq.
~E (electric field) ~p (electric dipole electrical polarization work: the force is

moment) defined by the surroundings’ electric field
strength and the “displacement” is change of
the polarization of the medium (the sum of the
electric dipole moments of the molecules).

~B (magnetic field) ~m (magnetic dipole magnetic work: here the force is defined by
moment) by the surroundings’ magnetic field

strength and the “displacement” is the change
of total magnetic dipole moment.

mg (gravitational h (displacement) gravitational work: the force is defined by the
force) surroundings’ gravitational field and the

generalized displacement is change of the
spatial distribution of the matter within the
system. For example, the work involved when
a point particle of mass m is dropped from
height h2 to h1 is mg(h2 − h1).

kx (spring force) x (displacement) (same as above)
µ (chemical N (number of chemical: a system can go from high chemical
potential) molecules) or n potential µi to low potential by transferring

(number of moles) particles ni. The energy change by µidni.
T S thermal: a system equilibrates by going

from high T to low T while transferring
a quantity known as entropy S. If T
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depends on position, heat will flow from
regions of high T to regions of low T .
The energy of the system changes by TdS.

6.5. Laws of Thermodynamics

6.5.1. Classical thermodynamics describes systems close to equi-
librium. The laws of thermodynamics describe the behavior of systems
which are in thermal equilibrium or approaching thermal equilibrium. An
equilibrium system is defined as one whose macroscopically observable prop-
erties do not change with time.
Equilibrium implies the macroscopic properties are spatially homogeneous,
i.e. there are no gradients (spatial derivatives) in the properties. For, if
gradients were present, forces (fluxes) would be set into motion to restore
the system to equilibrium conditions, eliminating the gradients.
Thermodynamics is capable of describing changes away from equilibrium,
but only provided we are not too far from equilibrium. For example, it can
predict the direction of a chemical reaction, heat flow or mass flux.
However, if the system is far from equilibrium, equilibrium thermodynamics
will not predict its detailed behavior except to indicate the direction of
change. What it does not do is provide information about the microscopic
properties of the system. For that, we need statistical mechanics.

6.5.2. The Four Classical Laws. There are four classical laws of ther-
modynamics. The first and second laws introduce state functions, U and
S. The zeroth law introduces the existence of temperature T , whereas the
second law establishes the absolute temperature scale. The third law is
statement regarding the properties of systems in equilibrium at absolute
zero temperature.
Zeroth Law (Maxwell 1871,
Carathéodory 1909)

If two systems are in thermal equilibrium with
a third system, then they are in equilibrium
with each other. In fact, there is a single sys-
tem property (called temperature) that serves
to indicate whether systems are in thermal
equilibrium. Note: this law postulates the ex-
istence of a thermometer.

First Law (Hess 1841, Clausius & Rank-
ine 1850)

There is a system property (i.e. state function)
called energy, U , that is conserved, but can
take several different forms that can intercon-
vert. Note: this law postulates the existence
of a state function, U .
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Second Law (Clausius 1854, Kelvin
1851, Carathéodory 1909, Carnot 1824)

There is a system property (i.e. state func-
tion), S, called entropy that, if the system
is isolated from its environment, either in-
creases or (in principle) remains constant dur-
ing thermodynamic processes. Mathemati-
cally, dSuniv ≥ 0, where Suniv is the entropy
of the isolated system. Note: Suniv can be
taken to be the whole universe (system plus
surroundings) because the universe is an iso-
lated system. Note: this law postulates the
existence of a state function, the entropy.

Third Law (Nernst 1912) The entropy of a system is a universal constant
(set to zero, for a perfect crystal) at the abso-
lute zero of temperature.7 Note: S(T → 0) =
0 for a perfect crystal. The third law was first
conjectured by Walther Nernst in 1912 and
proved in 2017 by Lluis Masanes and Jonathan
Oppenheim.8

6.6. Zeroth Law

The Zeroth Law of thermodynamics states that thermal equilibrium
is an equivalence relation: If A is in equilibrium with B and B is in
equilibrium with C then A is in equilibrium with C. What is an equivalence
relation? A binary relation ∼ on the set X = {A,B,C, . . . } is an equivalence
relation if and only if it is reflexive, symmetric and transitive, i.e. for all
A,B,C in X:

• A ∼ A (reflexivity)
• if A ∼ B then B ∼ A (symmetry)
• if A ∼ B and B ∼ C then A ∼ C (transitivity)

Here, A ∼ B denotes “A is in thermodynamic equilibrium with B”. X
denotes the set of all possible thermodynamical systems. In spite of its
apparent simplicity, the zeroth law has the important consequence that it
establishes any number of possible empirical temperature scales. Each ther-
modynamic system can be labeled with a temperature, similar to a real
number system (systems with the same temperature are considered equiva-
lent). The existence of an absolute temperature scale is then a consequence
of the Second Law, which establishes the existence of the entropy. Other
physical meanings of the zeroth law include: “All heat is of the same kind”
(Maxwell) and “All diathermal walls are equivalent”.

7The entropy of degenerate systems tends to a nonzero value when T → 0. This is why the Third
Law is formulated in terms of “the entropy of a perfect crystal”. For perfect crystals, the ground
state is non-degenerate.
8Masanes and Oppenheim, A general derivation and quantification of the third law of thermody-
namics, Nature Comm. 8, 14538 (2017) https://www.nature.com/articles/ncomms14538



6.7. First Law 257

6.7. First Law

The importance of changes is embedded in the statement of the First Law
of thermodynamics,

First Law of Thermodynamics Statement 1: There is a system
property (i.e. state function) called energy that is conserved, but can
take several different forms that can interconvert.
Statement 2: For a system (open or closed), the change in internal
energy is the sum of heat transfer and work done on the system:

dU = δQ+ δW is an exact differential.
For more information about exact differentials, see Section A.9. dU is
the sum of “infinitesimal” heat transfer (from the surroundings to the
system), δQ, and “infinitesimal” work done on the system δW by the
surroundings. Here, q ≡ ∆Q =

∫
δQ and w ≡ ∆W =

∫
δW . Many

textbooks write q for heat transfer. For an open system the work δW
will contain a chemical term to describe the change in particle numbers.
We shall see in Section 6.7.2 below that for an isolated system dU=0.

6.7.1. U is a state function, meaning it is path independent. If dU is
an exact differential, its integral is independent of path, ∆U =

∫ f
i dU = Uf−

Ui (according to the fundamental theorem of calculus), and only depends
on the initial and final points. This is the definition of a state function. For
more information about exact differentials, see Section A.9.

First Law of Thermodynamics (in integral form)
∆U = ∆Q+ ∆W is independent of path.

A function U which is independent of path is called a state function in the
language of thermodynamics. This is because it only depends on the state
of the system, not on the path taken to arrive at the final state.
Some textbooks (e.g. Oxtoby [1], p.529) use a slightly different notation
(q ≡ ∆Q, w ≡ ∆W ) which writes ∆U = q + w. These definitions are
equivalent. A state function implies that the change ∆U can be written as
the difference of final and initial states, Uf − Ui. Thus, internal energy is a
state function. This is the same as saying that dU is an exact differential,
which implies that ∆U =

∫ Uf
Ui

dU = Uf −Ui. Obviously, this is independent
of path (it only depends on initial and final states).

6.7.2. First Law is a Statement on Conservation of Energy. In this
section we show that the First Law can be interpreted as a statement of
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conservation of energy.

Conservation of energy and energy transfer to the system or
its surroundings. In any process, the heat added to the system is
removed from the surroundings (q = −qext). The work done on the
system is the work done by the surroundings (w = −wext). Adding
these two equations,

q =− qext
+ w =− wext

q + w =− (qext + wext),
and invoking the first law (∆U = q + w) on both sides gives:

∆U = −∆Uext or ∆U + ∆Uext = 0.
The total energy of the universe (system plus surroundings) is Uuniv =
U + Uext. The change in Uuniv is therefore always zero in any process:

∆Uuniv = ∆U + ∆Uext = 0.
Thus, energy is conserved (even in the presence of heat exchange and
dissipation). It can only be exchanged between the system and its sur-
roundings.

The statement ∆Uuniv = 0 (“The energy of the universe is constant”) is
another formulation of the First Law. In thermodynamics, the universe is
another word for isolated system, this is equivalent to:

The energy of an isolated system is constant. (1st Law)

6.7.3. Summary of First Law: dU = δ(heat) + δ(work). The change
in the internal energy for a closed system, by any process, is defined by the
change in external variables:

dU = δQ+ δW.

Since heat, Q, and work, W , are not state functions, many alternative paths
can result in a given change dU .
As we will see in Section 6.8 below, there exists a state function S called en-
tropy. For a reversible process, the heat transfer, δQ = TdS. Together with
δW = −PdV , dU can be expressed strictly in terms of internal variables:

dU = TdS − PdV,
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where U is the internal energy of the system, T is the internal temperature
(of the system), S is the system’s entropy, P is the system’s pressure and V is
its volume. This follows from the definition of reversible process: P ≈ Pext,
T ≈ Text. Here, the change in the internal energy is expressed in terms of
state functions. The change in a state function is independent of the path
and this last equation is valid, regardless of which path the change in internal
energy was brought about. For a closed system, U is a function of S and V ;
thus dU is a total differential of internal variables.
For an open system, the internal energy is, in addition, a function of the
amount of matter, i.e. U is a function of S, V, {ni}, where ni is the amount
(moles) of component i. The change in internal energy, expressed as the
total differential of internal variables, will then be

dU(S, V, {ni}) = TdS − PdV +
∑
i

µidni,

where µi denotes the chemical potential of component i:

µi ≈
(∆U

∆ni

)
S,V,nj 6=i

or µi =
(
∂U

∂ni

)
S,V,nj 6=i

The expression on the left is valid in the limit of small ∆ni. The summation
is over all components. This latter expression for the differential dU contains
only state functions. dU is a total differential of internal variables and the
equation is generally valid for an open system. Chemical potentials have
no absolute values; the value of U for an open system is at best given with
respect to a reference state.
To summarize:

FUNDAMENTAL EQUATION: For a closed system, the First
Law for a reversible process is:

dU(S, V ) = TdS − PdV,
where U is the internal energy of the thermodynamic system. We note
that T and P are internal variables, no external. For an isolated sys-
tem, it is:

dU(S, V, {ni}) = TdS − PdV +
∑
i

µidni.

The summation runs over all chemical species present in our system. For
example, if we have a two-component system (e.g. solvent and solute),
there are two terms in this summation: one for the solvent and one for
the solute.

6.7.4. Choice of System vs Surroundings. The differential dU used
in the statement of the first law, dU = δ(heat)+δ(work), can refer to the
system, its surroundings or the whole universe. It’s up to us to decide
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what we call the system and its surroundings. For example, when writing
dU = δQ−PextdV , we could be referring to the circular region below, or its
surroundings. See Fig. 6.8.

Figure 6.8. The universe is divided into a system and its surroundings.
This division is largely arbitrary and a matter of convenience.

On the left, we have a system and its surroundings. The union of these two
is the universe. On the right, we have the inverted situation: the system
what used to be the surroundings, and the surroundings is what used to be
the system. This inverted configuration is also possible. On the left, dU
refers to the circular region, δQ is the heat transferred into it, dV refers to
its volume change, Pext refers to the external pressure acting on it from the
surroundings. On the right, dU refers to the change in internal energy of
the grey region, dV refers to the change in volume of the grey region and
Pext refers to the pressure exerted on the grey region by the colored region.

6.8. Second Law

If you take a cup of hot tea outside in cold weather, the tea will cool and
heat will be transferred to the surroundings. Heat is transferred from the
hot body (tea cup) to a cold body (surroundings). Energy is conserved: the
heat lost by the cup is gained by its surroundings. Likewise, if heat were
transferred to the cup from the surroundings, energy would be conserved
as well. However, even though energy is conserved in both cases, the latter
never happens: heat only flows from a hot body to a cold body, never
the other way around. Thus, the First Law is not sufficient to describe
thermodynamic processes. We need to introduce the idea of a spontaneous
process, which is the subject of the Second Law. All spontaneous processes
are irreversible. Most of the processes in nature are irreversible.
Natural processes are irreversible. They cannot be reversed without produc-
ing some change in the surroundings or in some other system. Examples of
natural adiabatic processes are:
• Adiabatic transformation of work into internal energy of a system (Joule’s

experiment).
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• Transfer of energy in the form of heat from a hotter to a colder body, both
systems being enclosed in an adiabatic enclosure.
• Free expansion of a gas from one-half of an adiabatically enclosed system,

to fill the entire system.
• Mixing of two dissimilar gases in an adiabatically enclosed system.
• Spontaneous phase change, or chemical reaction, occurring in an adiabat-

ically isolated system.

These processes are irreversible: none of these processes taken in reverse
violate the First Law. However, such reverse processes are never found in
nature. Hence, the need for a state function that dictates the direction of
natural processes.
There is an extensive thermodynamic state function called entropy, S,
which can be used to indicate the direction in which systems may spon-
taneously evolve. S also dictates the maximum amount of work that can be
obtained from a given chemical transformation or maximum efficiency for
extracting work out of a heat engine.
To operate at maximum efficiency, a process must be fully reversible. Clau-
sius defined change in entropy of a system9 dS in terms of the quantity of
heat δQrev that is reversibly added to the system at a given temperature T :

Thermodynamic definition of entropy: The infinitesimal change
dS in entropy of a system S in terms of the quantity of heat δQrev that
is reversibly added (to the system) at a given temperature T :

dS ≡ δQrev

T
.

We comment on T in Remark 6.3 below. If heat δQrev is transferred
from a reservoir (with temperature Text) to a system, then the contribu-
tion to the entropy of the system is δQrev/Text. If a system dumps heat
to another reservoir, then T refers to the temperature of that reservoir.

Remark 6.1. A process for which dS = 0 is called isentropic. A process
for which δQ = 0 is called adiabatic. The two notions are equivalent when
the process is reversible (δQ = δQrev = TdS).

9In the definition of entropy, dS = δQrev/T , the 1/T factor is an integrating factor. This
integrating factor is analogous to integrating factors in the theory of differential equations, which
are used to transform the differential equation into an exact differential equation. The reversible
heat transfer, δQrev , by itself is not an exact differential. However, when multiplied by 1/T , it
is. Another way to say this is that while dS is exact differential, the product TdS is no longer
exact. An example is the exact differential df = ydx + xdy (which we verified was exact using
Euler’s test). When multiplying by another function, df may no longer be exact. For example,
ω = ydf = y2dx+ xydy is no longer an exact differential even though df was exact.
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Remark 6.2. S refers to the entropy of the system, not its surroundings.
dS is a total differential which can be positive, zero or negative (since heat
can be added or removed from the system). δQrev by itself is not an ex-
act differential, but when multiplied by 1/T it becomes exact. For more
information about exact differentials, see Section A.9.

Remark 6.3. T is the temperature at which the heat is supplied to
the system. Thus, to denote the temperature of the surroundings with our
notation, we should write Text. Only when the source of heat is in thermal
equilibrium with the system as a whole does it become the temperature of
the system also (since T ≈ Text for reversible process). When a system
draws heat from a reservoir A and dumps heat into another reservoir B,
Text refers to TA and TB, which are the temperatures of reservoirs A and B,
respectively.

6.8.1. (System coupled to) HEAT BATH: Entropy of System vs
Surroundings. In thermodynamics, we often deal with a thermodynamic
system coupled to a heat bath. The heat bath is much larger than the
system. In the thermodynamic definition of entropy, dS = δQrev/T , T is
the temperature of the surroundings because the heat transferred to the
system originates from the surroundings:

dS ≡ δQrev

Text
,

where Text is the temperature of the surroundings, S is the entropy of the
system. Since the thermodynamic definition of the entropy invokes the no-
tion of reversible heat transfer, T ≈ Text.
The above discussion concerns the entropy of the system. What about the
entropy change of the surroundings? Suppose that heat, δQ, is transferred
to the surroundings. The surroundings, if much bigger than the system, is
often called reservoir or heat bath. A reservoir has:

• Constant temperature (dTbath = 0),
• Constant volume (dV = 0).

This means that
dUbath = δQbath = TbathdSbath

since the PdV term is zero (constant volume). Since dUbath is an exact
differential, the total change in internal energy

∆Ubath =
∫ f

i
dUbath = Ubath,f − Ubath,i

is independent of how the change is brought about and in particular, is inde-
pendent of whether the process is reversible or irreversible. Our statements
about dUbath also apply to δQbath, to which it is equal. Therefore, we can
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remove the constraint of reversibility:

dSbath = δQbath,rev
Tbath

= δQbath
Tbath

.

Because the temperature of a bath is constant (dTbath = 0), we can integrate
dSbath while pulling Tbath outside the integral, leaving:

∆Sbath = ∆Qbath
Tbath

.

This formula is important because it allows us to calculate the entropy
change of the bath regardless of how the transfer takes place (reversibly vs
irreversibly).

Heat transfer from system to heat bath: Suppose we have a chem-
ical reaction taking place in a volume V . This is our system. 1.00 mol of
H2O(l) is formed from its elements under standard conditions at 298 K
The ∆H of the reaction is -286 kJ/mol (reaction is exothermic). The
energy released as heat is supplied to the surroundings, now regarded
as being at constant pressure, so δQbath=+286 kJ/mol. Therefore,

∆Sbath = 2.86× 105 J
298 K = +960 J/K.

This strongly exothermic reaction results in an increase in the entropy
of the surroundings as energy is released as heat into them.

6.8.2. Total Entropy Change is the sum of Infinitesimal Changes.
Let S be the entropy of a system. To find the entropy change in the system,
we need to find a reversible path and integrate or sum over the sequence of
steps from initial to final state. (In practice, a reversible path is one that
involves slow changes.) It will yield a state function which depends on initial
and final point:

∆S =
∫ f

i
dS = Sf − Si =

∫ f

i

δQrev

Text
=
∫ f

i

δQrev

T
,

where in the last step, we have invoked the property T ≈ Text of reversible
processes.
The problem is further simplified if the process is isothermal, in which case
temperature is a constant and can be taken out of the integral:

∆S = 1
T

∫ f

i
δQrev ≡ ∆Qrev

T
, where ∆Qrev ≡

∫ f

i
δQrev.

The total entropy is Suniv = S + Sext. Its change is:
dSuniv = dS︸︷︷︸

entropy change
in system

+ dSext︸ ︷︷ ︸
entropy change
in surroundings

.
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The second law states that the total entropy change (of the universe) must
be nonnegative:

Second Law of Thermodynamics (Clausius inequality):
The entropy of the universe is a nondecreasing function of time:

dSuniv = d(S + Sext) = dS + dSext ≥ 0.

Moreover, dSuniv is an exact differential. The entropy of the universe is
Suniv = S + Sext.

The equality holds at thermal equilibrium when processes become re-
versible, in which case, dS = δQrev/T . This statement applies to an
isolated system (“the entropy of an isolated system is nondecreasing”),
not only the universe. The universe, of course, is an isolated system. We
often use the terms “universe” and “isolated” (system) interchangeably.

6.8.3. Internal vs External Entropy Change. The entropy is an ex-
tensive property and the entropy of a system is the sum of the entropies of
its parts. It is convenient to split dS into two contributions:

dS = deS + diS,
where dS is the increase of the entropy of the system, deS is the part of this
increase due to interaction with the surroundings and diS denotes the part
of this increase due to changes taking place inside the system.
The entropy increase deS due to interaction with the surroundings is related
to the heat δQ absorbed by the system from its surroundings by

deS = δQ

Text

where Text is a positive quantity called the absolute temperature (of the
bath). Text is the temperature at which the heat is supplied to the system:
if the heat flows from the heat bath to the system, this is the temperature
of the heat bath. Only when the source of heat is in thermal equilibrium
with the system as a whole does it become the temperature of the system
also.
The entropy increase diS due to changes taking place inside the system is
positive for all natural changes (spontaneous and/or irreversible processes),
is zero for all reversible changes and is never negative:

diS > 0 (spontaneous change)
diS = 0 (reversible change)
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Thus, we get dS ≥ δQ/T . This is another version of the Second Law of
thermodynamics. For spontaneous changes:

dS > δQ

T
For reversible changes:

dS = δQ

T
.

Note: S here is the entropy of a system, not the universe.

6.8.4. Multi-Part Systems. Systems consisting of multiple subsystems
can be analyzed using the First and Second Laws as follows. The First Law
is applied to each subsystem. The Second Law is then applied to the overall
isolated system (all subsystems plus any surroundings, if applicable). This
is illustrated in the example below for the case of two subsystems.

System Consisting of Two Parts: Consider a thermally insulated
system consisting of two parts, A and B at uniform temperatures TA
and TB, respectively. The volumes of subsystems A and B are fixed.
The entropy S of the whole system is equal to the sum of SA the entropy
of A and SB the entropy of B:

S = SA + SB.

Consider now the flow of an infinitesimal positive quantity δQ of heat
from A to B. There are no chemical reactions and no internal entropy
changes here (diS=0). Then, the reversible change can be expressed as:

deSA = −δQ
TA

, deSB = δQ

TB
.

The increase in the entropy of the whole system due to this flow of heat
is therefore

(6.3) deSA + deSB = −δQ
TA

+ δQ

TB
= δQ

( 1
TB
− 1
TA

)
.

For a natural process, if positive heat δQ flows from A to B, this ex-
pression should be positive. This will be the case if

TA > TB.

Heat flows naturally from a higher to a lower absolute temperature.

Remark 6.4. If each of the phases A and B is in internal equilibrium then
there are no changes in entropy other than that due to the flow of heat
from A to B. If on the other hand, either phase, or both, is not in internal
equilibrium there may be other entropy changes diSA or diSB in addition
to the heat flow. These additional contributions can only be positive, so
that the increase in entropy of the whole system will then be greater than
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the expression (6.3). If TA = TB (zero temperature gradient), there is no
entropy increase associated with heat flow, implying that the heat flow at
thermal equilibrium is reversible.

Remark 6.5. The relations

deSA = −δQ
TA

, deSB = δQ

TB
,

follow from the fact that when the volumes are fixed (dV = 0 and δW = 0),
the fundamental equation reads dUA = δQA = TAdSA and dUB = δQB =
TBdSB for subsystems A and B, respectively. (Write the fundamental rela-
tion separately for A and B, and we get the above relations for deSA and
deSB.)

6.8.5. Clausius Inequality. Heat added to the surroundings is opposite
in sign to the heat added to the system

δQrevext = −δQrev.
For a reversible process, T ≈ Text, dS = δQrev/T ,

dSuniv = dS + dSext = δQrev

T
+ δQrevext

Text
≈ δQrev

T
− δQrev

T
= 0.

This is the case dSuniv = 0 (reversible process).
The remaining case is dSuniv > 0 (irreversible process). First we note that
the work done reversibly is always greater than the work done irreversibly,
i.e. |δW rev| ≥ |δW |. This was shown in Section 6.3.11. Since δW and
δW rev are negative when energy leaves the system as work, this expression
is the same as −δW rev ≥ −δW , and hence δW − δW rev ≥ 0. Because the
internal energy is a state function, its change is the same for irreversible and
reversible paths between the same two states, so we can also write:

dU = δQ+ δW = δQrev + δW rev.

It follows that
δQrev − δQ = δW − δW rev ≥ 0,

or
δQrev ≥ δQ,

and therefore that
δQrev

T
≥ δQ

T
.

Using the thermodynamic definition of entropy (dS = δQrev/T ), we get the
Clausius inequality:

dS ≥ δQ

T
.
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Often we call the following expression the Clausius inequality:

δQrev ≥ δQ.

In either case, δQ is the amount of heat absorbed by the system from its
surroundings (in a process that can be irreversible), whereas δQrev is the
heat added to the system in a reversible process. The equality holds in the
reversible case.

Remark 6.6. There are many different formulations of the Clausius in-
equality. See, for example:
http://www.eoht.info/page/Clausius+inequality

Consider the transfer of energy as heat from one system (the hot source)
at a temperature Th to another system (cooler reservoir) at temperature
Tc. This is illustrated in Fig. 6.9. When |δQ| leaves the hot source (so
δQh < 0), the Clausius inequality implies that dS ≥ δQh/Th. When
|δQ| enters the cold sink, the Clausius inequality implies that dS ≥
δQc/Tc (with δQc > 0). Therefore, since S = Shot + Scold we have:

dS = d(Shot + Scold) = dShot + dScold ≥
δQh
Th

+ δQc
Tc

However, δQh = −δQc, so

(6.4) dS ≥ −δQc
Th

+ δQc
Tc

=
( 1
Tc
− 1
Th

)
δQc

which is positive (because δQc > 0 and Th > Tc). Hence, cooling
(transfer of heat from hot to cold) is spontaneous. When you read
Chapter 8, compare Eq. (6.4) to the first term in (8.6), the equation of
entropy balance.

6.8.6. Uncompensated Heat of Clausius. We have seen in Section 6.8.3
that it is convenient to decomposed entropy change into a sum of two terms:

dS = deS + diS.
The term deS, also called the “entropy flow”, describes the entropy change
due to exchange of matter and energy with the exterior. This quantity can
be positive or negative. The term diS describes irreversible increases in
entropy due to chemical reactions.
It is also convenient to distinguish the change in number of moles dnk as
the sum of two terms:

dnk = dink + denk,
where dink is the change due to irreversible chemical reactions and denk is
the change due to exchange of matter with the exterior.
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Th

Tc

dS=-δQc/Th

dS=δQc/Tc

δQc>0

Hot
Reservoir

Cold
Reservoir

Figure 6.9. Energy leaves the hot reservoir, decreasing its entropy.
When the same quantity of energy enters the cool reservoir, the entropy
increases by a larger amount. Overall, entropy increases and the process
is spontaneous.

The Fundamental equation (also known as the “Gibbs equation”),

dU = TdS − PdV +
N∑
k

µkdnk,

describes reversible exchange of heat and matter. Because this corresponds
to deS, we may use

deS = dU + PdV
T

+ (deS)matter and diS ≥ 0,

where (deS)matter is the entropy change due to matter flow. We can then
write

deS = dU + PdV
T

−
∑N
k µkdenk
T

.

deS can be positive or negative. If the change in number of moles
dnk were due to irreversible chemical reactions, then the resulting entropy
production diS could be written as

diS = −
∑N
k µkdink
T

> 0,

which is always positive. This is the “uncompensated heat” of Clausius
for chemical reactions. Chemical reactions occur in such a way that diS is
always positive in accordance with the Second Law.
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6.8.7. Clausius Theorem. For a general irreversible process, the change
in entropy of the system is:

∆S =
∫ B

A
dS = SB − SA =

∫ B

A

δQrev

T︸ ︷︷ ︸
dS≡ δQrev

T

≥
∫ B

A

δQ

T
.

For any cyclic process (process which begins and ends at the same state)
SB − SA = 0

so that ∫ B

A

δQrev

T
≡
∮
δQrev

T
= 0.

Therefore, ∮
δQ

T
≤ 0. Clausius’ theorem (1854)

The symbol
∮

denotes that the process is carried out along a path that is
cyclic (end point = start point).
The integral

∮ δQ
T normally describes a system coupled to a large number of

heat baths at carefully chosen temperature Ti (i = 1, 2, 3, . . . ):∮
δQ

T
≈

N∑
i=1

δQi
Ti

(= 0 if reversible)

where N is the number of heat baths. For a reversible process, this sum-
mation equals zero. The integral is carried out along a full cycle. In the
summation, the elementary isothermal processes are chosen to match the
path of the arbitrary cycle as closely as possible. This equation makes no
reference to the temperature of the system. It only describes the entropy
changes due to heat transferred to/from the multiple heat baths.
To learn about the Carnot engine, see, e.g., Oxtoby [1], Section 13.4, “Carnot
cycles, efficiency and entropy”.

6.8.8. Applications of the Clausius Theorem. REVERSIBLE PRO-
CESS, PATH INDEPENDENCE. Let us start with a reversible process.
Referring to the P − V diagram of Fig. 6.6, the integral

∮
δQ/T along a

closed path going from 1 to 2 (along path 1), then from 2 to 1 (along path
2) is: ∮

δQ

T
=
∫ 2

1, path 1

δQ

T
+
∫ 1

2, path 2

δQ

T
= 0.

Since
∫ 2

1 ω = −
∫ 1
2 ω (along any path), the last equation reads:∫ 2

1, path 1

δQ

T
=
∫ 2

1, path 2

δQ

T
.
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This tells us that the integral of δQ/T from state 1 to state 2 is independent
of path. It depends only on the points 1 and 2.
IRREVERSIBLE CYCLE. In a less efficient (irreversible) cycle, a small
fraction of ∆QH (heat absorbed from a hot reservoir) is converted into
work. This means the amount of heat delivered to the cold reservoir by an
irreversible cycle, ∆QirrL , is greater than10 ∆Q2. We therefore have

∆Q1
T1
− ∆Qirr2

T2
< 0.

Since the cycle engine returns to its initial state, whether it is reversible or
irreversible, there is no change in its entropy. On the other hand, since heat
transferred to the reservoirs and the irreversible engine have opposite sign,
the total change of entropy of the reservoirs is

(6.5) (−∆Q1)
T1

− (−∆Qirr2 )
T2

> 0

if the reservoir temperatures can be assumed to be the same as the tem-
peratures at which the engine operates. In fact, for heat to flow at a finite
rate, the reservoir temperatures T ′1 and T ′2 must be such that T ′1 > T1 and
T ′2 < T2. In this case, the increase in entropy is even larger than (6.5).
GENERALIZATION TO SYSTEM OR EXTERIOR. We can generalize
these identities for a system that goes through an arbitrary cycle, with the
equalities holding for a reversible process, we have∮

δQ

T
≤ 0. (system)

For the “exterior” with which the system exchanges heat, since δQ has the
opposite sign, we have ∮

δQ

T
≥ 0. (exterior)

At the end of the cycle, be it reversible or irreversible, there is no change
in the system’s entropy because it has returned to its original state. For
irreversible cycles it means that the system expels more heat to the exte-
rior. This is generally a conversion of mechanical energy into heat through
irreversible processes. Consequently, the entropy of the exterior increases.

10Recall that the Clausius inequality, δQrev ≥ δQ, where δQ is the amount of heat absorbed
by the system from its surroundings (in a process that can be irreversible), whereas δQrev is
the heat added to the system in a reversible process. On the other hand, if those quantities are
negative, the sign changes: δQrev ≤ δQ. Here, δQ is the heat delivered to the cold reservoir in an
irreversible process.



6.8. Second Law 271

This may be summarized as follows:

Reversible cycle: dS = δQ

T

∮
dS =

∮
δQ

T
= 0

Irreversible cycle: dS > δQ

T

∮
dS = 0,

∮
δQ

T
≤ 0.

This statement can be made more precise by expressing the entropy change
dS as a sum of two parts:

dS = deS + diS.
Here deS is the change of the system’s entropy due to exchange of energy
and matter and diS is the change in entropy due to irreversible processes
within the system. For a closed system that does not exchange matter,
deS = δQ/T . The quantity deS could be positive or negative, but diS can
only be non-negative. In a cyclic process that returns the system to its
initial state, since the net change in entropy must be zero, we have∮

dS =
∮

deS +
∮

diS = 0.

Since diS ≥ 0, we must have
∮

diS ≥ 0. For a closed system, we obtain the
previous result: ∮

deS =
∮
δQ

T
≤ 0.

This means that, for the system to return to its initial state, the entropy∮
diS generated by the irreversible processes within the system has to be

discarded through the expulsion of heat to the reservoir. There is no real
system in nature that can go through a cycle of operations and return to its
initial state without increasing the entropy of the exterior, or more generally,
the universe. The increase in entropy distinguishes the future from the past.

C

A BT
a

T
b

T
c

Q
a

W
a

W
b

W
c

Figure 6.10. Here, we partition the universe into 3 subsystems: A,
B and C. C can be thought of as the surroundings. Heat and work is
exchanged between A↔B, B↔C and A↔C.
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SETTING UP THE PROBLEM. When solving problems in thermodynam-
ics, it is important to properly setup the equations. Those equations are
the First and Second Laws, which need to be satisfied at all times we have
thermal equilibrium. Let’s take the universe and partition it into 3 different
subsystems: A, B and C (Fig. 6.10). Let us simplify the notation here and
write Wa for ∆Wa, Qa for ∆Qa, etc. The system as a whole (A+B+C) is
isolated (“universe”). However, heat and work can exchange between the
subsystems. The internal energy of each subsystem changes as follows:

∆UA ≡ (U2 − U1)A =Qa −Wa −Qb +Wb

∆UB ≡ (U2 − U1)B =Qb −Wb −Qc +Wc

∆UC ≡ (U2 − U1)C =Qc +Wa −Qa −Wc

We can check that the First Law is fulfilled (energy of the universe is con-
served):

∆U =∆UA + ∆UB + ∆UC = (U2 − U1)A + (U2 − U1)B + (U2 − U1)C
=Qa −Wa −Qb +Wb +Qb −Wb −Qc +Wc +Qc +Wa −Qa −Wc

=0.

The Second Law should also be verified. First we write down the entropy
change of each subsystems, applying the Clausius theorem to each subsys-
tem. We must compute integrals of the form:∫

δQa
Ta

, etc.

However, if the heat transfer and temperature are constant during transfer,
these types of integrals can be written as:

∫ δQa
Ta

= (1/Ta)
∫
δQa ≡ ∆Qa

Ta
, or

in our abbreviated notation, Qa
Ta

, etc., where Qa stands for
∫
δQa, the total

heat transfer to subsystem A from C during a given step. In that case, we
have:

∆SA ≡ (S2 − S1)A ≥
Qa
Ta
− Qb
Tb

∆SB ≡ (S2 − S1)B ≥
Qb
Tb
− Qc
Tc

∆SC ≡ (S2 − S1)C ≥
Qc
Tc
− Qa
Ta
.

The inequality reminds us that the equal sign holds for reversible process,
and in other cases the process is irreversible. Combining these (entropy is
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additive) to get the entropy of the universe:
∆S =∆SA + ∆SB + ∆SC = (S2 − S1)A + (S2 − S1)B + (S2 − S1)C

≥Qa
Ta
− Qb
Tb

+ Qb
Tb
− Qc
Tc

+ Qc
Tc
− Qa
Ta

= 0,

since all the heat transfer terms cancel. Thus, we verified that ∆S ≥ 0, the
Second Law is satisfied.

6.8.9. Isentropic vs Adiabatic Process. From the thermodynamic def-
inition of entropy dS ≡ δQrev

T , we have that the heat transferred to the
system in a reversible process is δQrev = TdS. A process for which dS = 0
is called isentropic. A process for which δQ = 0 is called adiabatic. The two
notions are equivalent when the process is reversible (δQ = δQrev = TdS).

6.8.10. Reversible Process, Fundamental Equation of Thermody-
namics. For a reversible process the heat transferred is δQrev ≡ TdS. The
infinitesimal change in energy is then

dU = TdS − PdV +
∑
i

µidNi

This equation is so important that it is called the fundamental equation of
thermodynamics. It is valid for a reversible process. For the case of P − V
work only,

dU ≈
(∆U

∆S

)
V

dS +
(∆U

∆V

)
S

dV

or, in the language of calculus,

dU ≡
(
∂U

∂S

)
V

dS +
(
∂U

∂V

)
S

dV = TdS − PdV.

The differential element dU , and the two terms [(·)dS and (·)dV ] giving
rise to this infinitesimal change are plotted in Fig. 6.11. The last equation
implies that:

T =
(∆T

∆S

)
V
, P = −

(∆U
∆V

)
S
,

in the limit of small ∆S and ∆V , respectively. Or,

T =
(
∂T

∂S

)
V
, P = −

(
∂U

∂V

)
S
.

6.8.11. Inequality for First Law, Irreversible Process. For a general
process we have δQ ≤ TdS, according to the Clausius inequality

δQrev ≥ δQ.
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Figure 6.11. An overall change in U , which is denoted dU , arises when
both V and S are allowed to change. If second-order infinitesimals
are ignored, the overall change is the sum of changes for each variable
separately.

Therefore, the Clausius inequality implies that

dU ≤ TdS − PdV +
∑
i

µidNi. (First Law)

On the left hand side, dU refers to a general (not necessarily reversible)
process. This inequality is true for a general process.

Note: we have not changed the First Law, which is still “dU = δQ + δW
is an exact differential”. All we have done is express dU as an inequality
because δQ ≤ δQrev = TdS.

The equality δQrev = TdS, of course, follows from the thermodynamic def-
inition of entropy dS = δQrev/T .

6.8.12. Proof of Second Law. A proof of the Second Law can be found
in the articles [22, 23]. By examining the second law in the context of a
finite system evolving over a short time period, the authors show from first
principles that random fluctuations in the behavior of a non-equilibrium sys-
tem can appear to violate the second law of thermodynamics over isolated
periods of time, and that these local violations become more probable expo-
nentially as we decrease either the size of the system or the time over which
we measure the entropy. The mathematical form of this result is known as
the fluctuation theorem. Remarkable, at the same time that the fluctuation
theorem shows that the total entropy can decrease over very short periods
of time in small systems, it also shows that in the limit of long times and
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macroscopic systems the entropy must increase, providing a mathematical
proof of the second law.

6.9. Third Law

The entropy, S(T ), is a function of temperature. According to the Third
Law of thermodynamics (Nernst), the absolute entropy of a perfect crystal
exists and the crystal’s entropy equals zero at absolute zero:

lim
T→0

S(T ) = 0.

Combining dS = δQ
T , with δQ = CV dT (heating at constant volume),

S(T ) = S0 +
∫ T

0

CV (T )
T

dT.

S0 is the entropy at absolute zero. An analogous formula exists at constant
pressure:

S(T ) = S0 +
∫ T

0

CP (T )
T

dT.

Note that since the heat capacity is always positive, the entropy increases
with increasing temperature.
If S0 is known, the absolute entropy S(T ) can be obtained at any tempera-
ture T through measurements of the heat capacity versus temperature from
0 up to T .
Invoking the third law, S0 = 0, and

S(T ) =
∫ T

0

CV (T )
T

dT.

The heat capacity must be zero at zero temperature for this integral not
to yield an infinite absolute entropy, which would violate the Third Law.
The Debye theory of heat capacity gives the correct limit as absolute zero
temperature is approached. For more information, see:

https://en.wikipedia.org/wiki/Debye_model
http://vallance.chem.ox.ac.uk/pdfs/EinsteinDebye.pdf
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6.9.1. Plausibility of the Third Law. The plausibility of the Third Law
can be appreciated from the Boltzmann entropy:11

S = kB log Ω,
where Ω is the number of microstates (system configurations or degeneracy)
consistent with a given total energy of the system. As an example, take a
pure solvent frozen into a crystal. We are interested in the ground state of
the system (the crystalline state). Its structure may look like this:

◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦

.

Here, Ω = 1 because there is only 1 such configuration. Any rearrange-
ment of the solvent molecule correspond to the same configuration, as the
molecules are indistinguishable from each other. Therefore, for a pure crys-
tal (no solvent), Ω = 1 and S = 0, because at T = 0 K (ground state) the
system is in its unique ground state configuration. Although this is not a
rigorous proof, it provides a kind of verification for the Third Law.
Recall that the Third Law is a statement about perfect crystals. An example
where the Third Law is not applicable as stated above is a non-perfect
crystal: replace a solute particle by 1 solvent particle. A configuration may
look like:

• ◦ ◦
◦ ◦ ◦
◦ ◦ ◦

,

or
◦ • ◦
◦ ◦ ◦
◦ ◦ ◦

.

11(Optional) A related concept is the Gibbs-Shannon entropy,

S = −kB
∑
i

pi log pi.

Consider the case where there is only 1 possible configuration for the ground state. The in-
dex i labels all possible configurations in some parameter space. This situation corresponds to
p0 = 1 (where 0 denotes the ground state, i.e. the only allowed configuration) and pi 6=0 = 0
(other configurations are not allowed). But this implies that S = 0. Even if the ground state
is degenerate, their probability would be pi = 1/N for each of these eigenstates of the ground
state. Then, S = −kB

∑N

i=1
1
N

log 1
N

= kB logN , where N denotes the number of states (not the
number of particles). Suppose that the degeneracy is as large as Avogadro’s number (6 × 1023),
kB = 1.38× 10−23, so S = (1.38× 10−23) log(6× 1023) ≈ (1.38× 10−23) · 55 ≈ 10−21 J/K, which
is vanishingly small (well below a measurable value of S). Note: The Third Law is formulated in
terms of “the entropy of a perfect crystal”. This is because in a perfect crystal the ground state is
unique and non-degenerate. When the ground state is degenerate, the entropy tends to a nonzero
value when T → 0.
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In fact, there are N such possible configurations that correspond to the same
total energy, where N is the number of lattice sites (allowed coordinates). If
3 solvent particles are replaced by 3 solute particles, there will be

(N
3
)

such
configurations and the degeneracy is Ω =

(N
3
)
. In general, the degeneracy

is Ω =
(N
n

)
, where n is the number of solute particles replacing n solvent

particles.

6.9.2. Absolute Zero. The third law is equivalent to the statement that
“It is impossible by any procedure, no matter how idealized, to reduce the
temperature of any system to zero temperature in a finite number of finite
operations” (Guggenheim, 1967).

6.9.3. Proof of Third Law. A proof of the Third Law can be found
in [24].

6.10. Thermodynamic Potentials

In classical thermodynamics, we often use thermodynamics potentials, such
as U , H, A and G, depending on the experimental situation. They are all
energies, and serve the same purpose of calculating changes in the energy
of the system. Except that which one we should use depends on the experi-
mental conditions. U depends on S, V, {Ni}. This may not be a convenient
representation to use in many situations, because it may be difficult to keep
S and V constant. It may be easier, for example, to keep T and P constant
instead, as is the case for many chemistry experiments. In which case, we
prefer to use G, the Gibbs free energy.

6.10.1. Internal Energy. The change in internal energy is

dU(S, V, {Ni}) = TdS − PdV +
∑
i

µidNi

if there is more than one chemical species. The differential form dU is exact,
according to the First Law.

6.10.2. Enthalpy. The enthalpy is defined as:
H(S, P, {Ni}) = U + PV.

Differentiating:
dH(S, P, {Ni}) = dU+(PdV+V dP ) = (TdS−PdV+

∑
i

µidNi)+(PdV+V dP ).

This gives:
dH(S, P, {Ni}) = TdS + V dP +

∑
i

µidNi.
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The enthalpy is useful for processes carried out at constant entropy and
pressure, such as chemical reactions. Constant pressure because the reac-
tion is often exposed to atmospheric pressure. The entropy is constant if
there is no heat transferred to the system, since δQrev = TdS = 0 (for a
reversible process).

A calorimeter is a device that measures the heat flow during a process.
They are the chief diagnostic tool in thermodynamics. Many calorime-
ters operate with the sample at fixed volume. We can design a calorime-
ter to maintain a constant temperature (using a suitable temperature
control system, such as water bath or heating mantle) and constant
pressure (by exposure to the atmosphere). Keeping certain variables
fixed is important because it isolates the ones of interest. During a
process, the enthalpy change is:

∆H =
∫

dH =
∫

(TdS + V dP ).

If the pressure is fixed during a process (dP = 0), then the enthalpy
change is equal to the heat transferred:

(∆H)P =
∫
TdS =

∫
δQ = ∆Q.

The subscript P indicates that the pressure is held constant. The en-
thalpy was invented to make this relationship true.

6.10.3. Helmholtz Free Energy. The Helmholtz free energy is denoted
as A or F , depending on the textbook. It is defined as:

A(T, V, {Ni}) = F = U − TS.
Applying the same ideas as above, you can verify that

dA(T, V, {Ni}) = −SdT − PdV +
∑
i

µidNi.

The differential form dA is also exact because it was obtained by differen-
tiating A. The Helmholtz free energy is useful for processes carried out at
constant temperature and volume (e.g., such as solids, whose volumes don’t
change).
Note: here, F denotes Helmholtz free energy, not force. In the section below,
we will use F to denote force. While F is widely used in the literature to
denote Helmholtz free energy, we will use A in these notes to avoid confusing
the Helmholtz potential with the force F .
The definition A = U−TS shows that A is determined by a balance between
internal energy and entropy. At low temperatures, the energy dominates.
At high temperatures, the entropy dominates.
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6.10.4. Gibbs Free Energy. The Gibbs Free energy is defined as:
G(T, P, {Ni}) = U + PV︸ ︷︷ ︸

H

−TS.

Similarly,
dG(T, P, {Ni}) = −SdT + V dP +

∑
i

µidNi.

The differential form dG is exact because it was obtained by differentiating
G. The Gibbs free energy is useful in chemistry for processes carried out
at constant temperature and pressure. Notice that H = U + PV and G =
U + PV − TS are related by G = H − TS.
By integrating dG at constant temperature (dT = 0) we have the famous
formula:12

∆G = ∆H − T∆S.

Notice that at constant T, P (dT = 0, dP = 0), the Gibbs free energy
is simply a measure of the energy exchanged through chemical transfor-
mation:

dG(T, P, {Ni}) =
∑
i

µidNi. (constant T, P )

The Gibbs energy was invented with this experimental situation in mind.
Many chemistry experiments are carried out at constant T, P .

By its construction, G = H−TS, the Gibbs free energy describes the balance
between enthalpy and entropy (enthalpy dominates at low temperatures;
entropy dominates at high temperatures). In a system held at constant P, T ,
the Gibbs energy will be at a minimum. The system can exchange energy
with the surroundings by volume changes and heat transfer. Equilibrium
is the state at which the entropy of the system plus surroundings is at a
maximum. However, for the system itself, at constant P, T,N , equilibrium
occurs when G is at a minimum.

6.10.5. Landau Potential (Grand potential). The grand potential is
a quantity used in statistical mechanics, especially for irreversible processes
in open systems. The grand potential is the characteristic state function for
the grand canonical ensemble.

Ω(T, V, {µi}) = U − TS −
∑
i

µiNi,

dΩ(T, V, {µi}) = −PdV − SdT −
∑
i

Nidµi.

12Take G = H −TS and differentiate to get dG = dH −TdS−SdT = dH −TdS (since dT = 0).
Integrating gives ∆G = ∆H − T∆S, where ∆G =

∫
dG, ∆H =

∫
dH and ∆S =

∫
dS.
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6.10.6. Meaning of Free Energy. The term “free energy” refers to any
thermodynamic potential that has T as its independent variable instead of
S. We know that the entropy of an isolated system can never decrease,
however, an isolated system is of little experimental interest. We consider
instead a system connected to a much larger system (heat bath) whose
properties do not change significantly. For example, a bath may be chosen
with T, P constant. Chemical reactions are rarely studied under conditions
of constant entropy or constant energy. Usually, the chemist carries out
reactions at constant temperature and pressure (T, P ), or constant volume
and temperature (V, T ).
Examples of “free energies” include the Gibbs free energy, G ≡ G(T, P, {Ni}),
and the Helmholtz free energy, A ≡ A(T, V, {Ni}). Per this definition, the
Landau potential is also a type of free energy, since Ω ≡ Ω(T, V, {µi}). On
the other hand, H and U are not free energies, since they depend on S not
T .
The free energies include:

A(T, V, {Ni}) =U − TS,
G(T, P, {Ni}) =H − TS,

Ω(T, V, {µi}) =A−
∑
i

µiNi.

The thermodynamic potentials that are not free energies include:
U(S, V, {Ni}), S(U, V, {Ni}), H(S, P, {Ni}) = U + PV.

6.10.6.1. Meaning of Free Energy. First law, dU = δQ + δW and second
law, dS ≥ δQ/T , combined: TdS ≥ dU − δW . (When changes are slow13,
and the process is reversible, the equality holds, TdS = dU − δW .) Thus,
δW ≥ dU − TdS. Since A = U − TS, at constant temperature, dA =
dU − TdS, we have that δW ≥ dA or ∆W ≥ ∆A. In a reversible process,
the equality holds and the total work done is equal to the free energy change.
For an irreversible process, the work done on the system by its surroundings
is always greater than the increase in free energy. An equivalent formulation
is obtained: the work done by the system to the surroundings is always less
than or equal to the decrease in its free energy. Thus, the free energy of
a system determines the maximum amount of work that the system can do.

6.10.7. Any (“Create-Your-Own”) Potential. There are situations where
other choices of thermodynamic variables may be more convenient than the

13This relation holds for closed systems (closed to particle exchange). When particles can transfer,
TdS = dU − δW − µdN .
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ones given above. For example, consider the following potential:
Φ(S, P, {µi}) = U + PV −

∑
i

µiNi

dΦ(S, P, {µi}) = TdS + V dP −
∑
i

Nidµi

dΦ has the units of work. In classical mechanics infinitesimal work is of the
form Fdx.14

Suppose that the variables S, P and µi are all spatially-dependent, i.e.
S = S(x) [or S = S(~x) in 3D]. Dividing through by dx gives the force:15

F = dΦ
dx = T

dS
dx︸ ︷︷ ︸

entropic

+ V
dP
dx︸ ︷︷ ︸

mechanical

−
∑
i

Ni
dµi
dx︸ ︷︷ ︸

chemical

where T dS
dx is interpreted as an entropic force.16

Fentropic = T
dS
dx .

The three terms are:

• T dS
dx is the entropic force. Entropic force is an emergent force that re-

flects a system’s tendency to reach equilibrium by increasing entropy (in
accordance with the Second Law).

• V dP
dx is the force of P − V work originating from a pressure gradient

(spatially non-uniform pressure). Pressure gradients drive flow.

• Ni
dµi
dx is the force corresponding to the chemical work.

6.10.8. Multi-Phase Systems. Suppose that a system consists of multi-
ple phases (e.g. gas, liquid, solid). Denoting the phase by α, the fundamental

14(Optional) ~F · d~x in 3D.
15We are not really dividing through by dx but rather invoking the chain rule, i.e. since S = S(x),
dS(x) = S′(x)dx = dS

dx dx.
16(Optional) In 3D, the analogous expression is:

~F · d~x = ∇Φ · d~x = T∇S · d~x+ V∇P · d~x−
∑
i

Ni∇µi · d~x.

where ∇S = ∂S
∂x
x̂ + ∂S

∂y
ŷ + ∂S

∂z
ẑ is the gradient of S, ∇S · d~x is the dot product of ∇S and

d~x = dx x̂+ dy ŷ + dz ẑ, i.e. ∇S · d~x = ∂S
∂x

dx+ ∂S
∂y

dy + ∂S
∂z

dz, etc.
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relations take the form:
dU =

∑
α

TαdSα −
∑
α

PαdV α +
∑
α

∑
i

µαi dnαi

dA =−
∑
α

SαdTα −
∑
α

PαdV α +
∑
α

∑
i

µαi dnαi

dH =
∑
α

TαdSα +
∑
α

V αdPα +
∑
α

∑
i

µαi dnαi

dG =−
∑
α

SαdTα +
∑
α

V αdPα +
∑
α

∑
i

µαi dnαi

where
∑
i denotes summation over the components and

∑
α denotes sum-

mation over the phases. An example of multi-phase system is the example
of phase equilibrium, discussed in Section 6.11.21.

6.10.9. Entropy Representation, Fundamental Equation. It is some-
times convenient to treat S (rather than U) as the dependent variable, so
that S(U, V,Ni) leads to the following entropy representation of the funda-
mental equation

dS(U, V,Ni) =
(
∂S

∂U

)
V,Ni

dU +
(
∂S

∂V

)
U,Ni

dV +
∑
i

(
∂S

∂Ni

)
U,V,Nj 6=Ni

dNi,

whose coefficients can be read out from the Fundamental Equation by iso-
lating dS:

Entropy Representation of the Fundamental Equation:

dS(U, V,Ni) =
( 1
T

)
dU +

(
P

T

)
dV −

∑
i

(
µi
T

)
dNi.

(reversible process, P = Pext)

Matching the coefficients we get:
1
T

=
(
∂S

∂U

)
V,Ni

,
P

T
=
(
∂S

∂V

)
U,Ni

,
µi
T

= −
(
∂S

∂Ni

)
U,V,Nj 6=Ni

.

The entropy representation gives a natural decomposition of the entropy as
the sum of two terms: heat (dU/T ) + work (here, PV + chemical term).
When dV = 0, we are left with heat transfer dU/T plus chemical terms.
The chemical term can describe transport of chemical species in and out of
the system, or it can describe spontaneous (irreversible) chemical transfor-
mations within the system. The heat term can be positive, zero or negative.
It can describe reversible or irreversible heat transfer. Spontaneous chemi-
cal reactions are irreversible and lead to “entropy production”. The latter is
nonnegative (≥ 0).
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6.10.10. Gibbs Free Energy, Criteria for Spontaneity. The criterion
for spontaneity is given by the Second Law (dSuniv ≥ 0):

Spontaneity Criterion (Entropy, dSuniv ≥ 0):
dSuniv >0 spontaneous (irreversible)
dSuniv =0 reversible
dSuniv <0 not spontaneous (“forbidden”)

In terms of the Gibbs energy G = H − TS, this becomes (fixed T and P ):

Spontaneity Criterion (Gibbs energy, dGuniv ≤ 0):
dGuniv <0 spontaneous (irreversible)
dGuniv =0 reversible
dGuniv >0 not spontaneous (“forbidden”)

Thus, maximizing the entropy of the universe is equivalent to minimizing
the Gibbs energy. Note that spontaneity does not imply that the reaction
will necessarily occur at a detectable rate. See Chapter 7 for further details
of reaction rates. The maximum principle is discussed in Section 6.11.12.

6.10.11. Euler Relation. Since U is extensive and is also a function of
extensive variables S, V,Ni, if these variables are all multiplied by λ, then
U will also change by the same factor:

U(λS, λV, {λNi}) = λU(S, V,Ni).
Differentiating both sides with respect to λ gives:

d
dλλU(S, V,Ni) = U(S, V,Ni).

and
d

dλ

∣∣∣∣
λ=1

U(λS, λV, {λNi}) =∂U

∂S
· d(λS)

dλ + ∂U

∂V
· d(λV )

dλ +
∑
i

∂U

∂Ni
· d(λNi)

dλ

=∂U

∂S
· S + ∂U

∂V
· V +

∑
i

∂U

∂Ni
·Ni

by the chain rule. Here, d
dλ

∣∣∣
λ=1

denotes the derivative with respect to λ

evaluated at the point λ = 1.
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Thus, U obeys

U =
(
∂U

∂S

)
︸ ︷︷ ︸

T

S +
(
∂U

∂V

)
︸ ︷︷ ︸
−P

V +
∑
i

(
∂U

∂Ni

)
︸ ︷︷ ︸

µi

Ni.

Recall17 that T ≡ (∂U/∂S), P ≡ −(∂U/∂V ), µi ≡ (∂U/∂Ni). Then, we get
the Euler relation:

U = TS − PV +
∑
i

µiNi,

which can also be expressed in the entropy representation as:

S = U

T
+ PV

T
−
∑
i

µiNi

T
.

6.10.12. Gibbs-Duhem Relation. Differentiating the Euler relation (re-
versible process, P = Pext):18

U = TS − PV +
∑
i

µiNi,

we obtain
dU = TdS + SdT − PdV − V dP +

∑
i

µidNi +
∑
i

Nidµi.

Comparing with the First Law:
dU = TdS − PdV +

∑
i

µidNi,

we see that for both to be correct we must have:

SdT − V dP +
∑
i

Nidµi = 0. (Gibbs-Duhem)

Note: Writing the heat term as TdS implicitly assumes reversibility of the
process. Therefore, we wrote P instead of Pext. The Gibbs-Duhem equation
shows that three intensive variables are not independent; if we know two
of them, the value of the third can be determined from the Gibbs-Duhem
equation.

17From dU = TdS − PdV + µdN we get T = ∂SU , P = −∂V U and µ = ∂NU .
18Reversibility is assumed because the expression for dU (First Law) makes use of δQ = TdS,
which is true for a reversible process. For an irreversible process we have δQ ≤ TdS. (See
Clausius inequality below.) Incidentally, you can see that this Clausius inequality also implies
that dU ≤ TdS − PdV +

∑
i
µidNi.
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6.10.13. Application: (Chemical Potential of Ideal Gas). Write down
Gibbs-Duhem19 for a single component system:20

dµ =
(
V

N

)
dP −

(
S

N

)
dT.

If we assume that the temperature is constant (dT = 0) and integrate:

∆µ =
∫

dµ = µ(T, P )− µ◦(T ) =
∫ P

P0

(
V

N

)
dP.

Substituting V/N = kBT/P from the ideal gas law:

µ(T, P ) =µ◦(T ) + kBT log
(
P

P0

)
= µ◦(T ) + kBT log

(
ρ

ρ0

)
=µ◦(T ) + kBT log

( [c]
[c]0

)
(6.6)

where ρ = N/V and [c] = n/V = ρ/NA.

6.11. Multi-Component Gas

Suppose we have a mixture of gases. Such an expression holds for each
component:

µi(T, P ) = µ◦i (T ) + kBT log
(
Pi
P0

)
For ideal gases, Dalton’s law holds, Pi = XiP , where P is the total pressure
and Xi is the mole fraction of component i. P0 is a reference pressure,
often taken to be 1 atm. Substituting Dalton’s law and collecting the terms
independent of composition into the square bracket:

µi(T, P ) = [µ◦i (T ) + kBT log(P/P0)]︸ ︷︷ ︸
µ∗i

+kBT logXi

The term in square bracket (labeled µ∗i ) is the chemical potential of the pure
substance under some reference conditions (P, T ). P0 can be regarded as the
unit of pressure used. When Xi = 1 (pure substance of type i), the log term
is zero and only the square bracket remains. If our pure substance were
an ideal gas, U = 3

2NkBT . Taking the derivative with respect to N gives
3
2kBT , which is the energy cost of adding a molecule to a gas at temperature
T .

6.11.1. Gibbs Free Energy (Integrated Form, using Euler’s For-
mula).

19An easy trick to remember this equation is to start from the First Law for a reversible chemical
process, dU = TdS − PdV +

∑
i
µidNi, and reverse the roles of the intensive and extensive

variables, then set dU = 0.
20Gibbs-Duhem assumes reversibility because its derivation involved a TdS term; hence we may
write P = Pext.
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Definition of Gibbs energy. The Gibbs energy is defined as21

G(P, T, {Ni}) = U + PV︸ ︷︷ ︸
H

−TS,

where the transformation from U swaps the roles of V in favor of P and S in
favor of T . In chemistry it is common to work at constant T and P. With
dU = TdS − PdV +

∑
i µidNi (for a reversible process, δQ = TdS),

dG = −SdT + V dP +
∑
i

µidNi.

Constant T, P. At constant T, P (dT = 0, dP = 0)

dG =
∑
i

µidNi.

6.11.1.1. Integrated Form. Combining G = U − TS + PV with the Euler
formula22 U = TS − PV +

∑
i µiNi

G =
∑
i

µiNi.

Thus, the Gibbs free energy is equal to the sum of all the chemical potentials
of the molecules in any system, regardless of any assumptions of constant T
or P. (Here we did not impose any restrictions such as constant temperature
or pressure23.)
6.11.1.2. Single-Component, Ideal Gas. For a single component24, G = µN
and substituting Eq. (6.6) yields:

G = G◦+kBTN log
(
P

P0

)
= G◦+kBTN log

(
ρ

ρ0

)
= G◦+kBTN log

( [c]
[c]0

)
.

or in terms of molar Gibbs energy G/n,

G

n
= µ◦ +RT log

(
P

P0

)
= µ◦ +RT log

(
ρ

ρ0

)
= µ◦ +RT log

( [c]
[c]0

)
.

6.11.2. At Equilibrium, dG = 0. For a chemical reaction (usually, T, P
are constant), dG =

∑
i µidNi. The second law states that dG = 0 at

21Note: we have assumed reversibility because of the presence of the TdS term. In this case, we
write P in place of Pext.
22An easy way to remember the Euler formula is to start with the First Law for a reversible
chemical process, dU = TdS − PdV +

∑
i
µidNi, and remove the ’d’ in the differentials.

23The only two elements that were used to derive this formula were the definition of the Gibbs
energy and the Euler relation. The latter was derived using the extensively property of the
thermodynamic variables. Thus, the result was obtained without assuming constant P or T .
24We often write P , ρ and [c] instead of P/P0, ρ/ρ0 and [c]/[c]0, where P , ρ and [c] are expressed
in units of P0, ρ0 and [c]0, respectively.
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equilibrium. Thus,
∑
i µidNi = 0. Integration of dG gives:

∆G =
∫ prod.

react.
dG = G(prod.)−G(react.) =

∑
i

µi

∫
dNi =

∑
i

µi∆Ni.

We built up ∆G by starting with an elementary mass {dNi} and adding to
it elementary masses of the same pressure, temperature and composition as
the first. By adding infinitesimal values of G we build a finite value of ∆G.
Since the chemical potentials are intensive properties and the intensive state
is fixed by pressure, temperature and relative composition of substances, the
values of µi remain constant throughout the process of accretion.
We therefore have the equilibrium condition (∆G = 0) is equivalent to∑

i

µi∆Ni = 0.

However, ∆Ni (and also dNi) is proportional to the stoichiometric coefficient
νi. Thus, the equilibrium condition is∑

i

µiνi = 0.

There is a sign convention that we must follow for the stoichiometric coeffi-
cients: the products are positive, the reactants are negative. Let’s look at a
simple example:

aA+ bB 
 cC + dD

is written in the more general form
0 =

∑
i

νiAi,

where Ai denotes the i-th chemical species and νi is the associated stoi-
chiometric coefficient (taken negative for a reactant species or positive for
a product species) in the balanced chemical equation. For this reaction, we
have: ν1 = −a, ν2 = −b, ν3 = c, ν4 = d and A1 = A, A2 = B, A3 = C and
A4 = D.

6.11.3. Chemical Potential, Activity. Activities are used as a way to
account for non-idealities of solutions. Chemical potentials can be written
in terms of activities (ai), as follows:

µi = µ◦i +RT log ai.
This can be taken as the definition of activity:

ai ≡ exp
(
µi − µ◦i
RT

)
.
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The equilibrium condition
∑
i µiνi = 0 becomes

0 =
∑
i

µ◦i νi +RT
∑
i

νi log ai,eq.

The values µ◦i can be found tabulated for different (pure) chemical species i
and some standard conditions. The above definition of activity is not intu-
itive. The newcomer may instead want to consider the simpler description:

ai = γX,iXi ai = γc,i
c, i

c0
ai = γP,i

Pi
P0
,

where the γ’s are “activity coefficients” (equal to 1 for an ideal substance),
Xi is mole fraction of i, ci is concentration of i and Pi is the partial pressure
of i. c0 is a reference concentration (e.g. 1 M) and P0 is a reference pressure
(e.g. 1 atm).

Thus, for ideal substances, you can think of ai as either:

ai = Xi or c, i

c0
or Pi

P0
,

where c0 and P0 are reference concentrations and pressures, respectively.
Typically, we choose c0 = 1 M and P0 = 1 atm.

6.11.4. Gibbs Free Energy of Reaction. To recap what we have done,
we just calculated ∆G of the reaction, by integrating dG from reactants to
products. Let’s use a subscript “rxn” to emphasize this:

∆Grxn =
∫ prod.

react.
dG = G(prod.)−G(react.)

=
∑
i

µiνi =
∑
i

µ◦i νi︸ ︷︷ ︸
∆G◦rxn

+RT
∑
i

νi log ai.

At equilibrium ∆Grxn = 0. (Obviously, this is only valid at constant T, P .)

6.11.5. Standard Gibbs Free Energy of Reaction. The first term is
a collection of constants describing an energy change going from reactants
to products: ∑

i

µ◦i νi = G◦prod. −G◦react. = ∆G◦rxn

which depends only on the properties of the unmixed species. The quantity
∆G◦rxn is known as the standard Gibbs free energy of the reaction. Its value
can be obtained from tables.
The second term is rewritten as

RT
∑
i

νi log ai = RT
∑
i

log aνii = RT log
[∏
i

aνii

]
.
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Then we have, at equilibrium,

∆G◦rxn +RT log
[∏
i

aνii,eq

]
= 0.

The quantity in the brackets can be identified as the reactant quotient, Q,
the ratio of product and reactant activities, each raised to its stoichiometric
power. For example, for the symbolic reaction:

aA+ bB 
 cC + dD

Q =
∏
i

aνii = products

reactants
= acCa

d
D

aaAa
b
B

.

I will not be using activity here. Thus, we replace activity by concentrations
(in units of 1 M) and pressures (in units of 1 atm):

∆G◦rxn = −RT logK = −RT log
[∏
i

([ci]eq)νi
]

or −RT log
[∏
i

(Pi,eq)νi
]
.

6.11.6. Reaction Constant. At equilibrium ∆G◦rxn and T are constants,
Q = K and we have the central equation of chemical equilibrium theory:

∆G◦rxn = −RT logK

where K = acCa
d
D

aaAa
b
B

(activities are equilibrium values). When dealing with

solutions, KC = [C]ceq[D]deq
[A]aeq[B]beq

. Here, the concentrations are equilibrium values.
Note that ai ∝ [Ai] = ni/V and the proportionality constants have been
absorbed into the definition of KC . Similarly, for gaseous mixtures, ai ∝ Pi
and KP = P cC,eqP

d
D,eq

PaA,eqP
b
B,eq

.

6.11.7. What is the Meaning of the Standard Gibbs Free Energy?
We saw that chemical reactions can be written in the general form,∑

i

νiAi = 0,

where Ai denotes the i-th chemical species and νi is the associated stoi-
chiometric coefficient (taken negative for a reactant species or positive for a
product species) in the balanced chemical equation. For example, with the
reaction

aA+ bB 
 cC + dD,

we have that ν1 = −a, ν2 = −b, ν3 = c, ν4 = d and A1 = A, A2 = B, A3 = C
and A4 = D. At chemical equilibrium we have that dG = 0 (constant T, P ),
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where dG =
∑
i µidni. Integrating from reactants to products gives

∆Grxn = G(prod.)−G(react.) =
∑
i

µiνi,

since ∫ prod.

react.
dni = ∆ni = νi

(with the above sign convention). Thus,
∑
i µiνi = 0. Finally, we note that

the combination of G = U − TS + PV and the Euler formula,
U = TS − PV +

∑
i

µini,

leads to G =
∑
i µini, which implies that Gi/ni = µi (µi, the chemical

potential, is also the molar Gibbs energy). We have seen that substitution
of the ideal gas expression for µi into

∑
i µiνi = 0 leads to

∆Grxn = ∆G0
rxn +RT logQ,

where ∆G0
rxn =

∑
i µ
◦
i νi. It is important to note that ∆Grxn and ∆G◦rxn

are two different things.
∆G◦rxn is computed as follows:

∆G◦rxn =
∑
i

νi(∆G◦f )i,

where νi are the stoichiometric coefficients of species i in the reaction (prod-
ucts are positive, reactants are negative) and ∆G◦f are standard Gibbs ener-
gies of formation (i denotes the i-th chemical species in the reaction). These
values are found in tables. The symbol ◦ attached to ∆Grxn means “stan-
dard” Gibbs energy, which has a single value for a particular reaction at a
given temperature and pressure. We can obtain the value of ∆G◦rxn from
tables (such as Appendix D of Oxtoby [1]). It corresponds to the free energy
change for a process that never really happens: the complete transformation
of pure reactants into pure products at a constant pressure of 1 atm (or
whatever the reference conditions happen to be; but usually 1 atm). In the
case of the reaction:

C(s, graphite) + 2O2(g)→ CO2(g),
∆G◦rxn is the free energy change for the complete transformation of pure
graphite and O2 into pure CO2 at a constant pressure of 1 atm.
In contrast to ∆G◦rxn, which is a constant for a given reaction, ∆Grxn varies
continuously as the composition changes, finally reaching zero at equilib-
rium. ∆Grxn is the “distance” (in free energy) from the equilibrium state
of a given reaction. The two are related by:

∆Grxn = ∆G◦rxn +RT logQ,
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where Q is the reaction quotient, which would be, for a reaction
aA+ bB → cD + dD

Q = P cCP
d
D/(P aAP bB) or Q = [C]c[D]d/([A]a[B]b). At equilibrium we have

∆Grxn = 0 and the above equation gives ∆G0
rxn = −RT logK (because

Q = K at equilibrium).
The change in standard Gibbs free energy for the above reaction is the sum
of standard Gibbs energies of formation:

∆G◦rxn = c(∆G◦f )C + d(∆G◦f )D − a(∆G◦f )A − b(∆G◦f )B.

The equation, ∆G0
rxn = −RT logK, is important because it relates the equi-

librium composition of a chemical reaction system to measurable physical
properties of the reactants and products. If you know the entropies (S◦) and
the enthalpies (∆H◦f ) of formation of a set of substances, you can predict
(since ∆G◦rxn = ∆H◦rxn−T∆S◦rxn at constant temperature) the equilibrium
constant of any reaction involving these substances without the need to know
anything about the mechanism of the reaction. We may find tables of ∆G◦f ,
S◦ and ∆H◦f for different substances in chemistry handbooks (e.g., [12]) or
textbooks (e.g., [1]).
The standard enthalpy of formation or standard heat of formation of a com-
pound is the change of enthalpy during the formation of 1 mole of the sub-
stance from its constituent elements, with all substances in their standard
states, and at a pressure of 1 atm. There is no standard temperature. It is
usually denoted ∆H◦f . The superscript ◦ on this symbol indicates that the
process has occurred under standard conditions at the specified temperature
(usually 25◦C).
The standard Gibbs free energy of formation of a compound is the change of
Gibbs free energy that accompanies the formation of 1 mole of a substance
in its standard state from its constituent elements in their standard states
(the most stable form of the element at 1 atm of pressure and the specified
temperature, usually 25◦C).

6.11.8. Where to Find Values for ∆H◦f , ∆G◦f and S◦. Values of ∆H◦f ,
S◦ and ∆G◦f can be found tabulated in most chemistry textbooks (usually, in
appendices), and on the internet. In chemistry books, we do not find ∆G◦rxn
values for all possible chemical reactions, because it would be impossible to
list all possible chemical reactions (there are too many of them). Instead,
we will find tables of the energy of formation of various compounds, which
may be involved in your reaction. Textbooks often denote these energies of
formation as ∆G◦f .
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Standard enthalpies of formation can be found at
https://en.wikipedia.org/wiki/Standard enthalpy of formation

Standard Gibbs free energies of formation can be found at
https://en.wikipedia.org/wiki/

Standard Gibbs free energy of formation

Appendix D of Oxtoby [1], entitled “Standard Chemical Thermodynamic
Properties”, contains tabulated values for enthalpies, entropies and Gibbs
energies of formation. Please note that Oxtoby [1] writes S◦ and not ∆S◦f .
This is because the Third Law guarantees the existence of an absolute en-
tropy scale. So what is being tabulated here is the absolute entropy S◦ for
each substance. On the other hand, there exists no absolute scale for ∆H◦f
and ∆G◦f , hence the ∆ notation.
Table 6.4 is an excerpt from page 1 of the Appendix D of Oxtoby [1]. Ox-
toby [1] prefaces the table as follows: “This table lists standard enthalpies
of formation ∆H◦f , standard third-law entropies S◦, standard free energies
of formation ∆G◦f , and molar heat capacities at constant pressure, cP , for
a variety of substances, all at 25◦C (298.15 K) and 1 atm. [...] Note that
the solution-phase entropies are not absolute entropies but are measured
relative to the arbitrary standard S◦(H+(aq)) = 0. Consequently, some of
them (as well as some of the heat capacities) are negative.”

Table 6.4. Excerpt from Appendix D of Oxtoby [1].

Substance ∆H◦
f (25◦C) S◦(25◦C) ∆G◦

f (25◦C) cP (25◦C)
units kJ/mol J/K/mol kJ/mol J/K/mol
H(g) 217.96 114.60 203.26 20.78
H2(g) 0 130.57 0 28.82
H+(aq) 0 0 0 0
H3O+(aq) -285.83 69.91 -237.18 75.29
Li(s) 0 29.12 0 24.77
Li(g) 159.37 138.66 126.69 20.79
Li+(aq) -278.49 13.4 -293.31 68.6
LiH(s) -90.54 20.01 -68.37 27.87
Li2O(s) -597.94 37.57 -561.20 54.10
LiF(s) -615.97 35.65 -587.73 41.59
LiCl(s) -408.61 59.33 -384.39 47.99
LiBr(s) -351.21 74.27 -342.00 —
LiI(s) -270.41 86.78 -270.29 51.04
Na(s) 0 51.21 0 28.24
Na(g) 107.32 153.60 76.79 20.79
Na+(aq) -240.12 59.0 -261.90 46.4
Na2O(s) -414.22 75.06 -375.48 69.12
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NaOH(s) -425.61 64.46 -379.53 59.54
NaF(s) -573.65 51.46 -543.51 48.86
NaCl(s) -411.15 72.13 -384.15 50.50

6.11.9. The Standard States. When writing ∆G◦f , the ◦ indicates that
all components (reactants and products) are in their standard states. This
concept of standard states is especially important in the case of the free
energy. For most practical purposes, the following definitions are used
(see https://en.wikipedia.org/wiki/Standard enthalpy of formation)
• Gases: 1 atm partial pressure (i.e., the hypothetical state it would have

assuming it obeyed the ideal gas equation at a pressure of 1 atm).
• Pure liquids: for a solute present in an ideal solution, a concentration of

exactly 1 M at a pressure of 1 atm.
• Solutes: an effective concentration of 1 mol/L. (“Effective” concentrations

approach real concentrations as the latter approach zero; for practical
purposes, these can be considered identical at real concentrations smaller
than about 10−4 molar.)
• Solids: for a pure substance or a solvent in a condensed state (a liquid or

a solid), the standard state is the pure liquid or solid under a pressure of
1 atm.
• For an element: the form in which the element is most stable under 1

atm of pressure. One exception is phosphorus, for which the most stable
form at 1 atm is black phosphorus, but white phosphorus is chosen as the
standard reference state for zero enthalpy of formation.
• All elements in their standard states (oxygen gas, hydrogen gas, nitrogen

gas, solid carbon in the form of graphite, etc.) have a standard enthalpy of
formation (∆H◦) of zero, as there is no change involved in their formation.
• There is no “standard temperature” in thermodynamics, but one often

uses 25◦. (Thermodynamic standard state is different from STP used in
gas law calculations.)
• Some texts will use 1 atm as the reference pressure; others may use 1 bar.

6.11.10. Example Calculation. Find the standard Gibbs energy change
for the reaction

CaCO3(s)→ CaO(s) + CO2(g)
where the following values of standard Gibbs energies of formation are found
from tables: CaCO3(s): -1128 kJ/mol, CaO(s): -603.5 kJ/mol, CO2(g): -
137.2 kJ/mol.
Solution: Substitute these values into the equation for ∆G◦rxn, we find:

∆G◦rxn = [(−603.5− 137.2)− (−1128)] kJ/mol = +387.3 kJ/mol.
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A positive value for ∆G◦rxn means that the process is not spontaneous (under
standard conditions), i.e. solid calcium carbonate will not form solid calcium
oxide and CO2 at 1 atm at 25◦. Note: This reaction is carried out on a large
scale to manufacture cement, so obviously the process can be spontaneous
under different conditions.
Recall the relationship between K and ∆G◦rxn:

K = exp
(
−∆G◦rxn

RT

)
.

Here, since ∆G◦rxn is positive, K < 1, meaning the equilibrium favors the
reactants, meaning that CaCO3 wants to remain in its solid form.
The practical importance of the Gibbs energy is that it allows us to make
predictions based on the properties (∆G◦rxn values) of the reactants and
products themselves, eliminating the need for experiment.

6.11.11. What about Mechanical Work? So far we have only discussed
energies stored in a chemical bond in the context of enthalpy. When we think
of a chemical reaction, we want to know the energies involved when forming
products or reactants. This helps determine the reaction conditions that
favor a given process.
If a reaction is carried out in a fixed volume vessel, the change in internal
energy equals the heat of the reaction. If the volume is allowed to expand,
we also have a PdV term to worry about in the expression for the internal
energy change. Does this term matter in practice?
Consider the following reaction:

LiH(s)→ Li(g) + H(g)
From the data of Table 6.4, we find for ∆H:
∆H = ∆HH(g) +∆HLi(g)−∆HLiH(s) = (217.96+159.37− (−90.54)) kJ/mol

= 467.87 kJ/mol.
Thus, the reaction is endothermic and requires about half a megaJoule per
mole of energy to move forward. To carry out this reaction on a mole of
substance, we supply this energy. The stoichiometry shows that 2 moles of
gas are produced (1 mol of H(g) and 1 mol of Li(g)) for each mole of LiH(s)
consumed. If the volume is allowed to expand, the work carried out on its
surroundings is:

w = −P∆V = −(∆n)RT = −(2 mol)(8.31 J/K/mol)(300 K)
= −4.986 kJ/mol.

This energy related to mechanical work is about 1% of the energy of the
reaction. Thus, it can be safely neglected in calculations. Moreover we note
that at 300 K, the value of RT (molar thermal energy) is 2.5 kJ/mol. This
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says that the thermal energy (molecular fluctuations) is comparable to, and
therefore nearly indistinguishable from, the mechanical work.

6.11.12. Maximum Principle, Reaction Analysis w/ Helmholtz Free
Energy. The maximum principle refers to the entropy that reaches a max-
imum at equilibrium (dS = 0). When entropy reaches a maximum, the en-
ergies reach a minimum. Depending on the conditions of your experiment,
analysis of chemical equilibrium can be done using any thermodynamic po-
tential:

dU =TdS − PdV +
∑
i

µidni

dS = 1
T

dU + P

T
dV − 1

T

∑
i

µidni

dH =TdS + V dP +
∑
i

µidni

dA =− SdT − PdV +
∑
i

µidni

dG =− SdT + V dP +
∑
i

µidni

At equilibrium, these differentials are zero:
dU = 0, dS = 0, dH = 0, dA = 0, dG = 0,

or in integrated form
∆U = 0, ∆S = 0, ∆H = 0, ∆A = 0, ∆G = 0.

Entropy is “concave down” meaning that spontaneous processes drive it
towards a maximum:

dS > 0 (spontaneous process, away from equilibrium).
By that we mean that if A is an equilibrium state and B is another state
away from equilibrium, we should always have S(B) ≥ S(A). The system
goes from state B to state A; S will continue to increase until it can’t get
any bigger, at which point equilibrium has been reached.
Conversely, energies are all “concave up” functions, meaning that sponta-
neous processes drive them towards a minimum:

dU <0 (spontaneous process, away from equilibrium)
dH <0 (spontaneous process, away from equilibrium)
dA <0 (spontaneous process, away from equilibrium)
dG <0 (spontaneous process, away from equilibrium).
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This is justified by the Second Law and the definitions of the thermodynamic
potentials. For example, the First and Second Laws combined give
(6.7) dU ≤ TdS − PdV +

∑
i

µidni.

Suppose that we have a mixture of substances in a box. First, we consider
the case where S, V, {ni} are fixed. Equation (6.7) gives:

dU ≤ 0, where S, V, {ni} constant.
Or in integrated form,

(∆U)S,V,{ni} ≤ 0.

Next we assume that T, V, {ni} are fixed. Then, dU ≤ TdS or d(U −TS) ≤
0. Since A = U − TS, this translates to

dA ≤ 0, where T, V, {ni} constant.
Or in integrated form,

(∆A)T,V,{ni} ≤ 0.
Thus, A must be a minimum at equilibrium.
Suppose that instead of T, V, {ni} fixed, we have T, P, {ni} constant. Then
Eq. (6.7) becomes

d(U − TS + PV ) ≤ 0
or, in other words,

dG ≤ 0, where T, P, {ni} constant.
In integrated form:

(∆G)T,P,{ni} ≤ 0.
Therefore, under these conditions, G must be a minimum.
Finally, suppose that S, P, {ni} are constant. Equation (6.7) becomes d(U+
PV ) ≤ 0. Since H = U + PV , this means:

dH ≤ 0, where S, P, {ni} constant.
In integrated form:

(∆H)S,P,{ni} ≤ 0.

Any of these thermodynamic potentials can be bused to analyze chemical
reactions. Which one to use depends on the conditions of the reactions.
Chemists often use the Gibbs energy because most chemical reactions are
carried out at constant T, P . There are, however, circumstances where other
variables are held constant. For example, gas-phase reactions done in a con-
tainer of fixed volume (e.g. gas cylinder) are more appropriately described
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using the Helmholtz energy:
dA = −SdT − PdV +

∑
i

µidni.

At constant T, V , this becomes:
dA =

∑
i

µidni. (constant T, V )

The condition for equilibrium is dA = 0, which yields the same condition
for equilibrium as that given by the Gibbs energy:

0 =
∑
i

µidni. or 0 =
∑
i

µiνi. (constant T, V )

The same chemical reaction analysis can be carried out with A instead of
G.

6.11.13. Heat Transfer at Constant Volume and Pressure. For a
closed system (dNi = 0) under constant volume,

dU = δQ− Pext dV︸ ︷︷ ︸
dV = 0

= δQV = CV (T )dT,

which implies that

CV (T ) =
(
∂U

∂T

)
V

If the temperature dependence of CV over some temperature range of inter-
est is negligible, CV (T ) = CV , the expression for dU can be integrated to
give:

∆U = CV ∆T.
For a closed system at constant pressure,

dH = δQ+ V dPext︸ ︷︷ ︸
dPext = 0

= δQP = CP (T )dT,

which implies that

CP =
(
∂H

∂T

)
P
.

If CP is independent of temperature we can integrate dH to get:
∆H = CP∆T.

6.11.14. Relationship Between Specific Heats. Take the derivative of
H = U + PV (definition of enthalpy)
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with respect to temperature:
∂H

∂T︸︷︷︸
CP

= ∂(U + PV )
∂T

= ∂U

∂T︸︷︷︸
CV

+∂(PV )
∂T

CP = CV + ∂(PV )
∂T

.

For an ideal gas, PV = nRT , so the second term equals nR, and we obtain:
CP = CV + nR.

Dividing through by n we get a relationship between the specific heats:
cP = cV +R. (Mayer’s relation)

A look at the term ∂(PV )
∂T reveals that it is always positive because as tem-

perature increases, PV also increases. Thus, CP > CV .
The situation is illustrated in Fig. 6.11.

Adiabatic walls

No particle change

V = constant

All energy goes into heating gas

Volume can expand

Some energy goes into heating gas

Some goes into P-V Work

Figure 6.12. Difference between heating at constant pressure vs volume.

Thus, (
∂U

∂T

)
V
≡ CV < CP ≡

(
∂H

∂T

)
P
.

The enthalpy accounts for energy transfer to the environment through the
expansion of the system.

6.11.15. Latent Heat. Latent heats are associated with phase transitions,
such as the melting of solids or vaporization of liquids and solids. It is the
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heat absorbed or released by a thermodynamic system as it undergoes a
phase transition.
At the microscopic level, this heat serves to break or form bonds. Such heats
are also called heat of fusion (melting), heat of vaporization, etc. There are
entropy changes associated with such phase transitions, namely, the entropy
of fusion, entropy of vaporization, etc. Entropy changes because there is
a spatial rearrangement of the molecules in the system (e.g. from ordered
crystal to disorder in a liquid). See Fig. 6.13.

Figure 6.13. Difference between heating at constant pressure vs volume.

For a reversible process,
dS = δQrev

T
Consider a small temperature interval [TC−ε, TC+ε] centered on TC (critical
temperature), with ε so small that the temperature is essentially constant.
The system undergoes a phase transition at TC . The latent heat associated
with this transition is

δQlat = TC dSlat, or ∆Qlat = TC ∆Slat,
where ∆Slat is called the entropy of fusion or vaporization, if the process is
one of melting or evaporation, respectively.
We can also express it in terms of the enthalpy change dH = TdS + V dP
at constant pressure (dP = 0) gives

∆S =
∫ TC+ε

TC−ε

dH
T

across the phase transition (see Fig. 6.14).
and

∆Slat = ∆Hlat

TC
,
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Figure 6.14. Latent heat.

where TC is the phase transition temperature (critical temperature) and
∆Hlat is the latent heat. Since we assumed constant P , ∆Hlat is the same
as ∆Qlat. This formula gives the entropy change ∆Slat corresponding to
latent heat ∆Hlat of a phase transition at constant P .
Remarks:
• ∆Slat and ∆Hlat represent discontinuous changes between two phases of

the same substance occurring at the transition temperature TC .
• Latent heats are tabulated as specific latent heats, L, which is an intensive

property: L ≡ ∆Qlat/m, where m is the mass of the substance. The
common units are kJ/kg.

6.11.16. Application of First and Second Laws: Equilibrium Es-
tablishes a Common Temperature. Suppose that A denotes the system
and B denotes the surroundings (see Fig. 6.15) and that A and B are sepa-
rated by a thermally conductive wall. Assume that the volumes of A and B
do not change. The combined system is the universe and it is isolated. Be-
cause entropy is an extensive property, SA and SB added yields the entropy
of the universe:

S = SA + SB.

Figure 6.15. Two closed, constant-volume, sub-systems are separated
by a thermally conducting partition. The second law requires that at
thermal equilibrium the temperatures of the two subsystems will neces-
sarily become equal (TA = TB).
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First, we rewrite the fundamental equation
dU = TdS − PdV +

∑
i

µidni

in the entropy representation:

dS =
( 1
T

)
dU +

(
P

T

)
dV −

∑
i

(
µi
T

)
dni.

The entropy of the isolated system (“universe”) is the sum of entropies of A
and B, S = SA+SB (entropy is additive). Then, we invoke the fundamental
equation in the entropy representation (with dV = 0 and dNi = 0),

dS = dSA + dSB =
( 1
TA

)
dUA +

( 1
TB

)
dUB

where we have invoked the First Law twice, once for SA and once for SB.
Since energy is conserved (A+B is an isolated system) dUA = −dUB:

dS =
[( 1
TA

)
−
( 1
TB

)]
dUA.

Since VA, VB, NA, NB are all constant, there can be no mechanical or chemi-
cal work exchanged between the system and its surroundings and so dUA =
δQ.

(6.8) dS =
[( 1
TA

)
−
( 1
TB

)]
δQ

where δQ is the heat transferred to the system (or to the surroundings
if δQ < 0). At thermal equilibrium, entropy of the system is maximized
dS = 0. So a nonzero infinitesimal heat exchange δQ 6= 0 implies that the
temperatures of A and B must be equal:

TA = TB. (A and B in thermal equilibrium)

Note: Suppose that TA (the system) is higher than TB. Then we expect
heat to flow from the system into the surroundings. The second law dS ≥ 0
and Eq. (6.8) imply that dUA = δQ < 0 and indeed heat flows out of the
system. So the Second Law correctly predicts the direction of the heat
exchange.

6.11.17. When is Heat Transfer Reversible? We have previously seen
that reversibility is defined as a process for which the surroundings have
intensive variables that are arbitrarily close to those of the system, i.e.
P = Pext + dT , P = Pext + dP , µ = µext + dµ. We’ve also seen that
dS = 0 when a process is reversible. Let us check that these two condi-
tions imply each other. Using the notation from the previous section, we
would expect that if TA is vastly different than TB, the process would not
be reversible. Let TB = T and TA = T − dT so that the process is truly
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reversible. Then,

dS =
[( 1
T − dT

)
−
( 1
T

)]
δQ

Factoring out 1/T and invoking the geometric series, 1/(1 − r) = 1 + r +
r2 + . . . with r = dT/T , we have:

dS =
[(

1 + dT
T

+ dT 2

T 2 + . . .

)
− 1

]
δQ

T
≈ δQdT

T 2 ≈ 0,

since δQdT is an infinitesimal of the second order. Thus, the entropy change
dS is zero when the process is reversible.

6.11.18. Can we Have Isothermal Heat Transfer? Isothermal means
dT = 0 or T = constant. From dS = δQrev/T , a heat transfer δQrev to
the system corresponds to a change in its energy in the amount of TdS.
Thus, it describes a change in entropy, i.e. given ∆Qrev > 0, we must
have ∆S > 0. This can happen, for example, during the course of a phase
transition. Some amount of heat (latent heat) is transferred to the system
at constant temperature while the entropy changes.

6.11.19. Application of First and Second Laws: Chemical Equilib-
ria. In a similar way, we can use the Second Law to predict that at ther-
mal equilibrium the chemical potentials of the reactant and product species
should be equal to each other. Consider a chemical a system in which one
chemical component (A) may react to form another component (B). For
example, A and B could be the gauche and trans conformational isomers
of n-butane, or they could be the native and denatured states of a protein.
See Fig. 6.16.

Figure 6.16. A closed, insulated, constant-volume, system contains
molecules that can inter-convert between two different chemical states
(A and B). The second law requires that the chemical potentials of the
two compounds must become equal (A = B) at equilibrium.



6.11. Multi-Component Gas 303

We will also assume that the container which holds the system is insulated
and sealed (so neither heat nor matter can enter or leave), and that the
volume of the container is constant. Thus, no work or heat exchange can
take place between the system and its surroundings (so it is isolated).
Now imagine that we initially put some amounts of A and B into the sys-
tem which are not equal to their equilibrium concentrations. The entropy
representation of the fundamental equation implies that the total entropy
change is

dS(U, V,Ni) =
( 1
T

)
dU +

(
P

T

)
dV −

∑
i

(
µi
T

)
dNi,

and since energy and volume are constant dU = dV = 0,

dS = −
(
µA
TA

)
dNA −

(
µB
TB

)
dNB.

At thermal equilibrium TA = TB = T . Moreover, stoichiometric balance
requires that dNB = −dNA,

dS = −
[(
µA
T

)
−
(
µB
T

)]
dNA.

At equilibrium dS = 0 and (provided dNA 6= 0),
µA = µB.

Away from equilibrium dS > 0, so if µA > µB then we must have dNA < 0
(reactants are consumed), as would be expected. Thus, the Second Law
correctly predicts the direction of change in a chemical reaction.

6.11.20. Generalization to Arbitrary Reactions. The above result
may be extended to chemical reactions involving more complex stoichiome-
try,

nR∑
i=1

aiAi 

nP∑
i=1

biBi

where ai and bi are stoichiometric coefficients for the reactant Ai and product
Bi species, respectively. nR is the number of reactants. nP is the number
of products.
The chemical reaction can be written as an equation, where {Ai} denote the
set of all reactants and products, {νi}, the set of stoichiometric coefficients
with the convention that νi are positive numbers for the reactants (νi = ai)
and negative numbers for the products (νi = −bi),

nS∑
i=1

νiAi = 0,

with nS = nR + nP .
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For any such reaction one may use the following equation to express the
relationship between the chemical potentials of the reacting species at equi-
librium:

Chemical Equilibrium:
nS∑
i=1

νiµi = 0 at equilibrium.

This result follows from the same analysis as in the previous section. There,
we would also have that at thermal equilibrium, all temperatures are the
same, Ti = T for all i.
The dNi are parametrized by a new variable t, i.e. so that dNi(t) = N ′i(t)dt,
where t ∈ [0, 1] is a variable that denotes the “extent of the reaction”. Then
t = 0 the reaction begins and when t = 1, it ends. N ′i(t) is the speed at which
species i is produced or depleted; it is proportional to the stoichiometric
coefficient νi, so we write N ′i(t) = ανi, where α is a constant.25

Under those conditions, the chemical term in dS reads:

dS = −
[
nS∑
i=1

(
µi
Ti

)
ανi

]
dt = −α

T

[
nS∑
i=1

µiνi

]
dt.

At equilibrium, dS = 0 (provided dt 6= 0), from which it follows that the
coefficient of dt must vanish, i.e.

∑nS
i=1 νiµi = 0.

6.11.21. Application of First and Second Laws: Phase Equilib-
rium. In thermodynamics, phases are treated as separate components. Con-
sider a system composed of two sub-systems whose boundary allows the ex-
change of molecules, as well as heat and mechanical work. For example, one
sub-system could be a vapor phase A and the other a liquid phase B, as
shown in Fig. 6.17. In such a situation, we may again invoke the Second
Law to obtain general relations between all of the intensive variables of the
two sub-systems at equilibrium.
For simplicity we will assume there is only one chemical component in the
system (such as water). We assume that the number of water molecules in
the vapor phase is NA and in the liquid phase is NB.
Note that when molecules are exchanged between the two phases the volumes
VA and VB, as well as the energies UA and UB, of each phase will also change.
We further assume that both phases are enclosed by a sealed and insulated
container of fixed total volume (so the entire system is isolated from its
surroundings).

25If t is time, then dNi denotes the change in number of molecules of species i whereas N ′i(t)dt
denotes the rate of change in Ni times dt.
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Figure 6.17. A closed, insulated, constant-volume, system contains
two phases (A and B). The second law requires that at equilibrium the
temperature, pressure and chemical potentials of the two phases will
necessarily become equal (TA = TB , PA = PB and µA = µB).

When we apply the fundamental equation to each phase we obtain the fol-
lowing expressions.

dSA =
( 1
TA

)
dUA +

(
PA
TA

)
dVA −

(
µA
TA

)
dNA

dSB =
( 1
TB

)
dUB +

(
PB
TB

)
dVB −

(
µB
TB

)
dNB.

The entropy change of the entire system is again dS = dSA + dSB. Since
the total energy, volume and number of molecules are all conserved, we may
equate dUA = −dUB = dU , dVA = −dVB = dV , and dNA = −dNB = dN .
Thus, an infinitesimal entropy change of the whole system, resulting from the
transfer of some molecules between phase A and phase B, may be expressed
as follows.

dS =
( 1
TA
− 1
TB

)
dU +

(
PA
TA
− PB
TB

)
dV −

(
µA
TA
− µB
TB

)
dN.

At equilibrium dS = 0 when dU 6= 0 and dV 6= 0 and dN 6= 0, so all
three quantities in parentheses must equal to zero. Thus implies that all
three of the following intensive variables of the two phases must be equal at
equilibrium:

TA = TB, PA = PB, µA = µB.

In fact, you can check that
TA = TB + dT, PA = PB + dP, µA = µB + dµ,

leads to equilibrium (dS = 0).
In any two phase equilibrium all of the intensive variables of the two phases –
temperatures, pressures and chemical potentials – must be in perfect balance
with each other.
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If the system contained more than one chemical species then similar expres-
sions would hold for each chemical species. Moreover, if the system contained
molecules that can chemically react with each other, then

∑
i νiµi = 0 would

impose an additional equilibrium condition which must hold for any such
reactive species.

6.11.22. Application of Chemical Potential, Various Equilibria.
Gibbs energy of mixing. Suppose that we have two perfect gases, A and

B, in two containers, in the amounts nA and nB, respectively. Both are at
temperature T and pressure P . The chemical potentials of the two gases
have their “pure” values,

µ(T, P ) = µ◦(T ) +RT log(P/P0)
where µ◦ is the standard chemical potential (standard conditions for a gas
often means pure gas at 1 bar). See Fig. 6.18. We can take P0 to be 1 bar
and take P to be the pressure in units of 1 atm. For substance A we have:

µA = µ◦A +RT log(P ).
For B we have:

µB = µ◦B +RT log(P ).
Setting P = 1 atm in those expressions (pure gas at 1 atm) leads to µA = µ◦A
and µB = µ◦B (in each respective container), as it should.

Figure 6.18. Arrangement for calculating the thermodynamic functions
of mixing of two perfect gases.

Gibbs energy of the total system is (before mixing):
Gi = nAµA + nBµB = nA(µ◦A +RT logP ) + nB(µ◦B +RT logP ).

After mixing, the partial pressures are PA and PB (PA + PB = P ). The
total Gibbs energy changes to:

Gf = nA(µ◦A +RT logPA) + nB(µ◦B +RT logPB)
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The difference, Gf −Gi, the Gibbs energy of mixing, ∆Gmix, is therefore
∆G = Gf −Gi = nART log(PA/P ) + nBRT log(PB/P ).

Replacing nA by XAn, where n is the total number of moles of A and B,
and using Dalton’s law, PA = XA · P , we have:

∆Gmix = nRT (XA logXA +XB logXB).

Because 0 ≤ XA, XB ≤ 1, the logs are negative and ∆Gmix < 0. Thus,
perfect gases mix spontaneously in all proportions. And from dG = −SdT+
V dP , S = −(∂G/∂T ), the entropy of mixing is:

∆Smix = −nR{XA logXA +XB logXB}.
Note: since ∆G = ∆H −T∆S, it follows that ∆Hmix = 0. This is expected
for a system in which there are no interactions between the molecules forming
the gaseous mixture. It follows that the driving force for mixing comes from
the increase in entropy of the system because the entropy of the surroundings
is unchanged.
6.11.22.1. Example: (Gibbs energy of mixing). A container is divided into
two equal compartments (Fig. 6.19). One contains 3.0 mol H2(g) at 25◦C.
The other contains 1.0 mol N2(g) at 25◦C. Calculate the Gibbs energy of
mixing when the partition is removed. Assume perfect behavior.

Figure 6.19. The initial and final states considered in the calculation
of the Gibbs energy of mixing of gases at different initial pressures.

Solution: The formula from the previous section cannot be used directly
because the initial gas pressures are different. Given that the pressure of
nitrogen is P and the pressure of hydrogen is 3P , the initial Gibbs energy is
Gi = (3.0 mol){µ◦(H2) +RT log 3P}+ (1.0 mol){µ◦(N2) +RT logP}

When the partition is removed and each gas occupies twice the original
volume, the partial pressure of nitrogen falls to 1

2P and that of hydrogen
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falls to 3
2P . Therefore, the Gibbs energy changes to

Gf = (3.0 mol){µ◦(H2) +RT log 3
2P}+ (1.0 mol){µ◦(N2) +RT log 1

2P}
Taking the difference gives the Gibbs energy of mixing:

∆Gmix = Gf −Gi =(3.0 mol)RT log
( 3

2P

3P

)
+ (1.0 mol)RT log

( 1
2P

P

)
=− (3.0 mol)RT log 2− (1.0 mol)RT log 2
=− (4.0 mol)RT log 2 = −6.9 kJ

Here, ∆Gmix < 0, however, the negative sign does not necessarily indicate
spontaneity. dG < 0 indicates spontaneity only at constant temperature
and pressure. (Here, the pressure dropped from 4P to 2P when opening the
partition.)

Problem. Suppose that 2.0 mol H2 at 2.0 atm and 25◦C and 4.0 mol
N2 at 3.0 atm and 25◦C are mixed at constant volume. Calculate ∆Gmix.
What would be the value of ∆Gmix had the pressures been identical initially?
[-9.7 kJ, -9.5 kJ]

Figure 6.20. At equilibrium, the chemical potential of the gaseous form
of a substance A is equal to the chemical potential of its condensed
phase. The equality is preserved if a solute is also present. Because
the chemical potential of A in the vapor depends on its partial vapor
pressure, it follows that the chemical potential of liquid A can be related
to its partial vapor pressure.

6.11.23. Ideal Solutions & Raoult’s Law. Suppose we have an ideal
solution made up of two components, A and B (Fig. 6.20). Let us denote
with a ∗ the quantities relating to pure substances. Let µ∗A(l) denote the
chemical potential of pure A (liquid). Vapor pressure of the pure liquid is
P ∗A. Chemical potential in the vapor is µ◦A+RT logP ∗A. These two chemical
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potentials are equal at equilibrium:
µ∗A(l)︸ ︷︷ ︸
liquid

= µ◦A +RT logP ∗A.︸ ︷︷ ︸
gas

(pure A)

If another substance, a solute, is also present in the liquid, the chemical
potential of A in the liquid is changed to µA(l) and its vapor pressure is
changed to PA. The vapor and solvent are still in equilibrium, so we can
write

µA(l) = µ◦A +RT logPA. (add some B)
Next, we combine these two equations to eliminate the standard chemical
potential of the gas. To do so, we solve for µ◦A in both equations an equate
the two results to obtain

µA(l) = µ∗A(l)−RT logP ∗A +RT logPA = µ∗A(l) +RT log(PA/P ∗A).
Substituting Raoult’s law, PA = XA · P ∗A, we get:

µA(l) = µ∗A(l) +RT logXA.

This important equation can be used as the definition of an ideal solution
(so that it implies Raoult’s law rather than stemming from it) and is better,
because it does not assume that the vapor is a perfect gas.

6.11.24. Liquid Mixtures: Ideal Solutions. Suppose that we mix two
liquids A and B. Before mixing, we have:

Gi = nAµ
∗
A + nBµ

∗
B.

When they are mixed, the individual chemical potentials are modified, and
the total Gibbs energy is,

Gf = nA{µ∗A +RT logXA}+ nB{µ∗B +RT logXB}.
Consequently, the Gibbs energy of mixing, Gf −Gi is

∆Gmix = nRT{XA logXA +XB logXB}.
And from dG = −SdT + V dP , S = −(∂G/∂T ), the entropy of mixing is:

∆Smix = −nR{XA logXA +XB logXB}.

6.11.25. Elevation of Boiling Point. The vapor pressure of a pure liq-
uid represents a balance between the increase in disorder arising from va-
porization and the decrease in disorder of the surroundings. See Figs. 6.21
and 6.22.
The heterogeneous equilibrium of interest when considering boiling is be-
tween the solvent vapor and the solvent in solution at 1 atm. We denote
the solvent by A and the solute by B. The equilibrium is established at a
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Figure 6.21. (a) Liquid is represented by the blue space. (b) When
solute (red circles) is present, the disorder of the condensed phase is
increased, and there is decreased tendency to acquire the disorder of the
vapor.

Figure 6.22. The heterogeneous equilibrium involved in the calculation
of the elevation of boiling point is between A in the pure vapor and A
in the mixture, A being the solvent and B an non-volatile solute.

temperature for which
µ∗A(g) = µ∗A(l) +RT logXA.

(The pressure of 1 atm is the same throughout and is not written explicitly.)
This equation implies26 that the presence of a solute at a mole fraction XB

causes an increase in normal boiling point from T ∗ to T ∗ + ∆T , where

∆T = K ·XB, K = RT ∗2

∆vapH
.

26From Atkins [14]: Rearranging the equation to logXA = µ∗
A(g)−µ∗

A(l)
RT

= ∆vapG
RT

, where
∆vapG is the Gibbs energy of vaporization of the pure solvent (A). Differentiating both sides
with respect to T gives: d logXA

dT = 1
R

d(∆vapG/T )
dT = −∆vapH

RT2 , where use was made of the
Gibbs-Helmholtz equation, (∂(G/T )/∂T )P = −H/T 2. Multiplying both sides by dT and in-
tegrating from XA = 1 (boiling point T = T ∗ of pure solvent) to XA (boiling point T ),∫ logXA

0 d logXA = − 1
R

∫ T
T∗

∆vapH
T2 dT . The left hand side integrates to logXA = log(1 − XB).

For constant enthalpy of vaporization, log(1 − XB) = −∆vapH
R

∫ T
T∗

1
T2 dT , and therefore,

log(1 − XB) = ∆vapH
R

(
1
T
− 1
T∗

)
. We now suppose that the amount of solute present is so

small that XB � 1. We can write log(1 − XB) ≈ −XB and obtain XB = ∆vapH
R

(
1
T∗ − 1

T

)
.

Finally, because T ≈ T ∗, it follows that 1
T∗ − 1

T
= T−T∗

TT∗ ≈ ∆T
T∗2 , with ∆T = T − T ∗.

PROOF of Gibbs-Helmholtz: on one hand, −S = (∂G/∂T )P = (G − H)/T , on the other hand,(
∂(G/T )
∂T

)
P

= 1
T

(
∂G
∂T

)
P

+G
d(1/T )

dT = 1
T

(
∂G
∂T

)
P
− G
T2 = 1

T

{(
∂G
∂T

)
P
− G

T

}
. In the curly bracket,

we substitute
(
∂G
∂T

)
P
− G

T
= G−H

T
− G

T
= −H

T
. Gibbs-Helmholtz follows.
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Figure 6.23. Heterogeneous equilibrium involved in the calculation of
the lowering of freezing point is between A in the pure solid and A in
the mixture, A being the solvent and B a solute that is insoluble in solid
A.

6.11.26. Depression of Freezing Point. The heterogeneous equilibrium
now of interest is between pure solid solvent A and the solution with solute
present at a mole fraction XB (Fig. 6.23). At the freezing point, the chemical
potentials of A in the two phases are equal:

µ∗A(s) = µ∗A(l) +RT logXA

The calculation is the same as in the previous section, and the result is

∆T = K ′ ·XB, K ′ = RT ∗2

∆fusH
,

where ∆T is the freezing point depression, T ∗−T , and ∆fusH is the enthalpy
of fusion of the solvent. Larger depressions are observed in solvents with
low enthalpies of fusion at high melting points. When the solution is dilute,
the mole fraction is proportional to the molality of the solute, b, and it is
common to write the last equation as

∆T = Kf · b.
where Kf is the empirical freezing-point constant.

6.11.27. Solubility. When a solid solute is left in contact with a solvent,
it dissolves until the solution is saturated. Saturation is a state of equilib-
rium, with the undissolved solute in equilibrium with the dissolved solute.
Therefore, in a saturated solution the chemical potential of the pure solid
solute, µ∗B(s), and the chemical potential of B in solution, µB, are equal
(Fig. 6.24).
Because the latter is µB = µ∗B(l) +RT logXB, we can write

µ∗B(s) = µ∗B(l) +RT logXB.

This expression is the same as the starting expression in the last section,
except that the quantities refer to the solute B, not the solvent A. It leads
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Figure 6.24. Heterogeneous equilibrium involved in the calculation of
the solubility is between pure solid B and B in the mixture.

to:
logXB = ∆fusH

R

(
1
Tf
− 1
T

)
.

6.11.28. Example: (Ion transport Across Cell Membrane). There
are ions (e.g. Na+, Ca2+, K+, etc.) found in the intra and extra-cellular
spaces at different concentrations. Cell membrane proteins participate in
the transport of such ions. As an example, let us analyze the chemical
equilibrium of K+ ions using the first two laws of thermodynamics. Recall
that for a chemical reaction:

∆Grxn = ∆G◦rxn +RT logQ
where ∆G◦rxn = −RT logKeq. This is valid when a chemical reaction is the
only “work” done. However, there may be other terms in the expression for
∆G that need to be accounted for. Consider the “chemical reaction” where
a potassium ion is shuttled in and out of the cell cytoplasm:

K+
0 
 K+

i

Chemical reaction equilibrium alone would state that

µi − µ0 = RT log
(

[K+]i
[K+]o

)
Where [K+]i is the potassium ion concentration inside the cell and [K+]o is
its concentration found outside (in the extracellular matrix). The difference
µi − µ0 represents gradient (difference) in the chemical potential across the
cell membrane. This chemical potential gradient acts as a driving force to
shuttle ions in and out of the cell (depending on whether [K+]i > [K+]o or
[K+]i < [K+]o). See Fig. 6.25.
However, this cannot be the only force because if we shuttle all ions out of
the cell (for instance), the electrostatic repulsion among potassium ions in
the extracellular matrix will be large enough to drive some of these ions to
re-enter the cytoplasm. Thus, we must include electrostatic repulsions.
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Figure 6.25. Potassium pump.

Electrostatic repulsions can be accounted for by adding electrostatic work.
Recall that the electrostatic work is of the form δWel. = φdq where dq is the
charge added or removed, and φ is the local electrostatic potential. Here we
write φo for the electrostatic potential in the extracellular matrix and φi for
the potential inside the cytoplasm. The total work is obtained by integrating
from reactants to products. As far as the integral ∆Wel. =

∫ products
reactants φdq is

concerned, going from reactants to products means we subtract a charge Q
from the extracellular space (work = −Qφ0) and add it to the intracellular
space (work = +Qφi).

The total integral along this path yields the sum of these two terms: one
from the extracellular matrix, and one for the cytoplasm:

∆Wel. = Q(φi − φo),
where φ0 acquires a negative sign because we are removing an ion of charge Q
from the extracellular matrix (and add it to the cytoplasm). The difference
φi − φo is the potential difference across the cell membrane (units: volts).
When the electrostatic force balances out the chemical force, ∆G = 0 and
these two terms are equal:

∆φ ≡ φi − φo = RT

Q
log

(
[K+]i
[K+]o

)
.

This potential difference, ∆φ ≡ φi − φo (in volts), is called the Nernst
potential. Inspection of this equation shows that Q must be specified in
units of Coulomb per mole; Q in these units is often called the Faraday’s
constant, F ≡ 9.65× 104 C/mol. (Otherwise, replace RT by kBT and Q is
then specified in units of Coulomb.)
Please note that the above analysis is valid in thermal equilibrium (steady
state) and does not describe dynamics, such as those observed in cardiac
tissues or neuronal networks.
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There are ways to directly measure ion concentrations and voltages. For a
discussion of Ca2+ and voltage sensing via specially-designed fluorophores,
see the paper [25].

6.11.29. Affinity of Reaction and Reaction Enthalpy. General chem-
ical reactions are represented by an equation,

∑
i νiAi = 0, where the stoi-

chiometric coefficients νi are negative for reactants and positive for products.
For example:

0 = −N2 − 3H2 + 2NH3.

The extent of reaction ξ is defined by:

ξ = ni(ξ)− ni(0)
νi

,

where ni(ξ) is the amount of substance Ai present when the extent of reac-
tion is ξ. ni(0) is the amount of Ai present when ξ = 0, corresponding to
the specified initial conditions. The units of ξ are moles. For example, if 1
mol of N2 and 3 mol of H2 are converted completely into 2 mol of NH3

ξ = nNH3(ξ)− nNH3(0)
νNH3

= 2 mol− 0 mol
2 = 1 mol

ξ = nN2(ξ)− nN2(0)
νN2

= 0 mol− 1 mol
−1 = 1 mol

ξ = nH2(ξ)− nH2(0)
νH2

= 0 mol− 3 mol
−3 = 1 mol

ξ is independent of which chemical is used to compute it. Note also that

dξ = dni
νi
.

Using this notation, the fundamental equation
dG = −SdT + V dP +

∑
i

µidni,

becomes:
dG = −SdT + V dP +

∑
i

µiνidξ.

If we define the reaction affinity by:

A = −
∑
i

µiνi.

Then dG is written:
dG = −SdT + V dP −Adξ.
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From this, we see that

A = −
(
∂G

∂ξ

)
T,P

.

For the special case of constant T, P , we see that dG = −Adξ. Since G is a
state function, integrating from ξ = 0 to ξ = 1 mol yields:

A = −∆Grxn = −
∑
i

νiµi ≥ 0.

(This assumes that A is independent of ξ.)
In a similar manner, the fundamental equations for the thermodynamic po-
tentials U , S, H, A:

dU = TdS − PdV +
∑
i

µidni → dU = TdS − PdV −Adξ

dS = 1
T

dU + P

T
dV − 1

T

∑
i

µidni → dS = 1
T

dU + P

T
dV + A

T
dξ

dH = TdS + V dP +
∑
i

µidni → dH = TdS + V dP −Adξ

dA = −SdT − PdV +
∑
i

µidni → dA = −SdT − PdV −Adξ

dG = −SdT + V dP +
∑
i

µidni → dG = −SdT + V dP −Adξ

6.11.30. Enthalpy is the “Heat Content”. Recall the second law, dSuniv =
dS + dSext ≥ 0, where S is the system and Sext is the surroundings. Now
consider the system S; the total entropy production for this system can be
decomposed into two terms:

dS = deS + diS.
The first term, deS, is the entropy produced by the interaction of the system
with its surroundings, e.g.

deS = δQ

T
. (if process is reversible)

The second term, diS, is the entropy produced by irreversible processes
going on inside the system (for example, chemical reactions). When the
only interaction with a system’s surroundings is the absorption of
heat δQ, and the only irreversible process going on within the system is a
chemical reaction, we can write explicit expressions for deS and diS:
The fundamental equation for dS reduces to:

dS = δQ

T︸︷︷︸
deS

+ A
T

dξ︸ ︷︷ ︸
diS

.
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Thus,

deS = δQ

T
, diS = Adξ

T
.

These two contributions describe the measurable heat transfer and the irre-
versible heat (absorbed or released) of the reaction. We note that the term
diS can describe a bona fide chemical reaction or the transfer of matter to
another subsystem (essentially, any process that can be described using
chemical potentials). When matter is transported, this causes a transfer of
heat.
Consider the complete transformation of stoichiometric amounts of reactants
at T, P into products at T, P , so that ∆ξ = 1 mol. Because H is a function
of the state of the system, the enthalpy change due to the reaction

∆H◦rxn = (∆Q)P
is equal to the heat absorbed at constant pressure. This quantity was for-
merly called the heat of reaction at constant pressure, but is now called the
reaction enthalpy. Another historic name for enthalpy is heat content. The
superscript ◦ denotes its value under standard conditions (typically, 1 atm,
1 M, 25◦) The subscript rxn tells us that this is the enthalpy change during
the reaction. ∆H◦rxn is the change in an extensive property, but numerical
data always refer to ∆ξ = 1 mol so that the units of ∆H◦rxn are J/mol, or
more commonly kJ/mol.
The idea that enthalpy is the heat transfer at constant pressure is illustrated
by the fundamental equation for H:

(dH)P = TdS +���V dP −Adξ = TdS −Adξ
which, at constant pressure, features two terms, TdS, the measurable heat
transfer and −Adξ, the enthalpy associated with mass transport or irre-
versible chemical reaction. It is because of this property that enthalpy is
called heat content.

6.11.31. Forces and Fluxes. The fundamental equation in the entropy
representation is particularly important because of its special structure:

dS =
( 1
T

)
dU +

(
P

T

)
dV −

∑
i

(
µi
T

)
dni.

It has the structure of a sum of terms, each of which represents a force times
a flux. The forces are:

• 1
T : tendency for heat flow

• P
T : tendency for volume change

• µ
T : tendency for particle exchange
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Figure 6.26. A closed, insulated, constant-volume, system contains
two phases (A and B). The second law requires that at equilibrium the
temperature, pressure and chemical potentials of the two phases will
necessarily become equal (TA = TB , PA = PB and µA = µB).

Recall our previous analysis of phase equilibrium (Fig. 6.26), which begins
by writing down the First Law for each subsystem dS = dSA + dSB in the
entropy representation (A + B is a closed system, so that dU = dUA =
−dUB, dV = dVA = −dVB, dn = dnA = −dnB):

dS =
( 1
TA
− 1
TB

)
dU +

(
PA
TA
− PB
TB

)
dV −

(
µA
TA
− µB
TB

)
dn.

dS is called the dissipation function because dS > 0 indicates an irreversible
process where energy is dissipated (cannot be converted into useful work).
Notice that all the terms in the expression for dS are of the form of a gradient
in intensive property (1/T, P/T, µ/T ) times the differential of an extensive
property (U, V, n). The former is called a force; the latter is called a flux:

dissipation function = force × flux = X · J

6.11.32. Internal vs External Variables: Heat Transfer Only. A
system with only heat transfer can be exemplified as consisting of two pieces
of metal at different absolute temperatures, T1 and T2, where T1 > T2. A
small quantity of heat, δQ, is allowed to pass from subsystem 1 to subsystem
2 in course of a short time interval, dt (Fig. 6.27).
The quantity of heat is so small that changes in the temperatures of the
subsystems can be disregarded: Since there is no transfer of matter, each
subsystem behaves as a closed system. The transfer of δQ leads to the
following changes in the subsystems:

dU1 = T1dS1 − P1dV1 dU2 = T2dS2 − P2dV2,
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Figure 6.27. Only heat can transfer.

or with the equations solved with respect to entropy change:

dS1 = dU1
T1

+
(
P1
T1

)
dV1 dS2 = dU2

T2
+
(
P2
T2

)
dV2.

When P−V work is the only work carried out, dU1 and dU2 can be expressed
by the external variables, which are measurable quantities,

dU1 = δQ1 − P1dV1 dU2 = δQ2 − P2dV2.

The total system is adiabatic,
δQ = −δQ1 = δQ2,

so that
dU1 + dU2 = −P1dV1 − P2dV2.

Total entropy production is:

dS = dS1 + dS2 = −δQ
T1

+ δQ

T2
=
( 1
T2
− 1
T1

)
δQ = ∆(1/T )δQ,

or
dS
dt = ∆(1/T )δQdt .

Multiplying by T2 gives the dissipated energy

T2
dS
dt = T2∆(1/T )δQdt ,

where δQ/dt is the rate of transport of heat. The units of T2
dS
dt and δQ/dt

are Watts (1 W=1 J/s).

6.11.33. Internal vs External Variables: Heat Transfer + Matter
Transport. A system with transfer of heat and matter can be exemplified
by two gas containers at different absolute temperatures, T1 and T2, where
T1 > T2 (Fig. 6.28).
A small quantity of heat, δΦ, and small quantities of the different gas com-
ponents, dni, are allowed to pass from subsystem 1 to subsystem 2 in course
of the time dt. The total heat transferred, δΦ, is composed of a measurable
heat and the enthalpy of the transferred matter. Since the total system is
adiabatic, the total heat removed from subsystem 1 is equal to the total
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Figure 6.28. Both heat and matter can transfer.

heat received by subsystem 2. The enthalpy of the transferred matter, how-
ever, may be different in the two subsystems, and thus the measurable heat
change will be different in the two subsystems.
The changes in the subsystems are:

δΦ = δΦ2 = −δΦ1.

In terms of internal variables,
dU1 = T1dS1 − P1dV1 +

∑
i

µi,1dni,1 dU2 = T2dS2 − P2dV2 +
∑
i

µi,2dni,2.

Solving for dS,
(6.9)
dS1 = dU1

T1
+P1
T1

dV1−
1
T1

∑
i

µi,1dni,1, dS2 = dU2
T2

+P2
T2

dV2−
1
T2

∑
i

µi,2dni,2.

In terms of external variables, when we only have P − V work:
(6.10) dU1 = δΦ1 − P1dV1 dU2 = δΦ2 − P2dV2,

dU1 + dU2 = −P1dV1 − P2dV2.

Since δΦ = δΦ2 = −δΦ1. Then, plugging Eq. (6.10) into (6.9),

(6.11) dS1 = −δΦ
T1

+ 1
T1

∑
i

µi,1dni, dS2 = dΦ
T2
− 1
T2

∑
i

µi,2dni.

The production of entropy in the total system is dS = dS1 + dS2 and
therefore

dS =
( 1
T2
− 1
T1

)
dΦ +

∑
i

(
µi,2
T2
− µi,1

T1

)
dni,

(6.12) dS = ∆(1/T )δΦ−
∑
i

∆(µi/T )dni.

Multiplying by T2 and dividing by time (dt), we have the dissipated energy
(J/s)

T2
dS
dt = T2∆(1/T )δΦdt − T2

∑
i

∆(µi/T )dni
dt .
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It is possible to develop Eq. (6.12) further and put it in a more useful form
(see Section 6.11.34):

dS = ∆(1/T )δQ1 −
1
T

∑
i

∆µi,Tdni.

6.11.34. Algebraic Details. Starting from Eq. (6.11),

dS1 = −δΦ
T1

+ 1
T1

∑
i

µi,1dni, dS2 = δΦ
T2
− 1
T2

∑
i

µi,2dni,

and solving for δΦ, we have:
δΦ = −T1dS1 +

∑
i

µi,1dni,1 = T2dS2 +
∑
i

µi,2dni,2.

The entropy of an open system can be expressed as a function of temper-
ature, pressure and amounts of substances, S = S(T, P, {ni}). The ex-
periment can be arranged such that the pressure within each subsystem is
kept constant. The change in entropy with temperature and amounts of
substances for subsystem 1 can be written,

dS1 =
(
∂S1
∂T

)
P,ni

dT +
∑
i

(
∂S1
∂ni,1

)
P,T,nj 6=i

dni,1

=(CP,1/T1)dT +
∑
i

Si,1dni,1,

and in a similar way for subsystem 2. The heat capacity of the system
multiplied by the change in temperature is equal to the measurable heat
absorbed by the system, CP,1dT = −δQ1 where δQ1 is the heat removed
from subsystem 1. Here it is assumed that dT is so small that changes in
CP,1 can be neglected. When the amounts of substances transferred from
subsystem 1 to subsystem 2 are small, the change in partial molar entropy,
Si,1 can be neglected. Thus, for subsystem 1,

dS1 = −δQ1/T1 −
∑
i

Si,1dni.

This equation combines with Eq. (6.11) for dS1 to give

δΦ = δQ+
∑
i

(µi,1 + T1Si,1)dni,

or, since G = H − TS, the partial molar quantity at constant T is:

Gi ≡ µi =
(
∂G

∂ni

)
T

=
(
∂H

∂ni

)
T
− T

(
∂S

∂ni

)
T
≡ Hi − TSi.

Or Hi = µi + TSi,
(6.13) δΦ = δQ1 +

∑
i

Hi,1dni.
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In a similar way, we can express dΦ by the heat absorbed by subsystem 2,
δQ2, and the enthalpy added to subsystem 2 by the transfer of dni moles of
substance:
(6.14) dΦ = δQ2 +

∑
i

Hi,2dni.

Comparing Eq. (6.13) and (6.14) we see that the difference in δQ values
corresponds to a difference in the H values:

δQ2 − δQ1 =
∑
i

(Hi,1 −Hi,2)dni.

For gases, Hi,1 −Hi,2 ≈ 0.
The enthalpies, Hi, do not have absolute values, and therefore δΦ does not
have an absolute value. We shall choose subsystem 1 as the reference state,
and replace δΦ in Eq. (6.12) by the expression given in Eq. (6.13). The sec-
ond term in Eq. (6.12),

∑
i ∆(µi/T )dni, can also be referred to subsystem

1 as the reference state. The chemical potentials are functions of tempera-
ture, pressure and composition, and for small differences in these parameters
between the two subsystems, we have by the rules of derivation

∆(µi/T ) = ∆(1/T )µi,1 + 1
T1

(∂µi,1/∂T )P,ni∆T + 1
T1

∆µi,T ,

where ∆µi,T gives the variation in µi with changes in composition and pres-
sure.
Since (from Hi = µi + TSi)

(∂µi,1/∂T )P,ni = −Si,1,
and

∆(1/T ) =
( 1
T + ∆T −

1
T

)
≈ −∆T

T 2 ,

and
T1 ≈ T.

Therefore,

(6.15)
∑
i

∆(µi/T )dni = ∆(1/T )
∑
i

(µi,1 + TSi,1)dni + 1
T

∑
i

∆µi,Tdni.

Introducing Eq. (6.13) and (6.15) into (6.12) we obtain

dS = ∆(1/T )δQ1 −
1
T

∑
i

∆µi,Tdni.

This form may be better because it explicitly separates the two contribu-
tions to the entropy production originating from heat transfer and particle
transport.
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6.11.35. Gibbs Free Energy: Ideal Gas Equilibria. We have seen that
the progress of a chemical reaction

∑
i νiAi = 0 can be described using the

extent of the reaction, ξ = ni(ξ)−ni(0)
νi

. From this, dξ = dni/νi or dξ/dt =
(1/νi)dni/dt. The fundamental equation, dG = −SdT + V dP +

∑
i µidni,

can be rewritten as dG = −SdT+V dP+
∑
i νiµidξ, or dG = −SdT+V dP−

Adξ, where A = −
∑
i µiνi or A = −

(
∂G
∂ξ

)
T,P

. Finally, A = −∆Grxn =
−
∑
i νiµi.

Consider a gas-phase reaction A
 B. If the pressures are low enough, the
gases can be considered ideal gases. Recall that for ideal gases, the chemical
potentials are:

µA(T, P ) = µ◦A(T ) +RT log(PA/1 atm)
µB(T, P ) = µ◦B(T ) +RT log(PB/1 atm)

where PA and PB are partial pressures in units of 1 atm.
Inserting these expressions into the expression for

(
∂G
∂ξ

)
gives:(

∂G

∂ξ

)
= µB−µA = (µ◦B+RT logPB)−(µ◦A+RT logPA) = ∆G◦rxn+RT log PB

PA
,

where ∆G◦rxn = µ◦B − µ◦A. Writing Q = PB/PA, this is
∆Grxn = ∆G◦rxn +RT logQ.

At equilibrium ∆Grxn = 0, Q is denoted by K, and we have:

∆Grxn = −RT logK +RT logQ = RT log(Q/K).
This expression, together with the second law ∆Grxn ≤ 0, allows us to study
the direction of a reaction.
For a general chemical reaction of the form

∑
i νiAi = 0,, the quantity

∆Grxn ≡
(
∂G
∂ξ

)
=
∑
i µiνi, is the Gibbs free energy change of the reaction.

Then, (
∂G

∂ξ

)
=∆Grxn =

∑
i

[
µ0
i +RT log(Pi/P ◦)

]
νi

=∆G0
rxn +RT

∑
i

νi log(Pi/P 0),

where P ◦ is a reference pressure (usually 1 atm or 1 bar). Then,

∆Grxn = RT log(Q/K),

where
Q =

∏
i

(Pi/P ◦)νi , K =
∏
i

(Pi,eq/P ◦)νi , ∆G0
rxn =

∑
i

νiµ
0
i = −RT log(K).
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Recall that although Q has the form of an equilibrium constant, the pres-
sures are not necessarily at equilibrium.
The quantity ∆G◦rxn(T ) is the change in standard Gibbs energy for the
reaction between unmixed reactants in their standard states at temperature
T and a pressure of one bar to form unmixed products in their standard
states at the same temperature T and a pressure of P0 (usually, taken to
be 1 atm or 1 bar). If all pressures are referenced to 1 bar (or 1 atm), Q is
unitless.
From the previous equation,

∆Grxn(T ) = −RT log(K) +RT log(Q) = RT log(Q/K).
We see that:

• At equilibrium, Q = K.
• If Q < K then Q must increase as the system moves toward equilibrium.

Partial pressures of the products must increase and those of reactants must
decrease. The reaction proceeds from left to right. In terms of ∆Grxn,
if Q < K, then ∆Grxn < 0, indicating that the reaction is spontaneous
from left to right as written.
• If Q > K, then Q must decrease as the reaction proceeds to equilibrium.

Pressures of products must decrease and those of reactants must increase.
Equivalently, if Q > K then ∆Grxn > 0, indicating that the reaction is
spontaneous from right to left as written.

6.11.36. Enthalpy and Entropy Contribute to ∆G◦rxn. We know that
at constant temperature we have:

∆G◦rxn = ∆H◦rxn − T∆S◦rxn.
Consequently, we may express the equilibrium constant as a product of two
contributions, one from enthalpy and one from entropy:

(6.16) K = exp
(
−∆G◦rxn

RT

)
= exp

(
−∆H◦rxn

RT

)
exp

(∆S◦rxn
R

)
.

6.11.37. Example 1: Three Components Reaction. The above for-
mula states that the change in standard Gibbs energy for a reaction is related
to the equilibrium constant. But the latter depends on equilibrium partial
pressures. For example,

3NO(g)
 N2O(g) + NO2(g)
has

K = (PN2O)eq · (PNO2)eq
(PNO)3

eq
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so (taking P0=1 atm and expressing pressures in units of P0),

∆G◦rxn = −RT log (PN2O)eq(PNO2)eq
(PNO)3

eq
.

6.11.38. Example 2: Four Components Reaction. For a reaction of
the type:

νAA(g) + νBB(g)
 νY Y (g) + νZZ(g),
we have:

∆Grxn =νY µY + νZµZ − νAµA − νBµB
=νY µ◦Y (T ) + νZµ

◦
Z(T )− νAµ◦A(T )− νBµ◦B(T )

+RT

(
νY log PY

P0
+ νZ log PZ

P0
− νA log PA

P0
− νB log PB

P0

)
,

which can be written in the form:
∆Grxn(T ) = ∆G◦rxn(T ) +RT logQ,

where
∆G◦rxn(T ) = νY µ

◦
Y (T ) + νZµ

◦
Z(T )− νAµ◦A(T )− νBµ◦B(T ),

and
Q = (PY /P0)νY (PZ/P0)νZ

(PA/P0)νA(PB/P0)νB .

6.11.39. Standard Gibbs Energies of Reactions (Using Tabulated
Values). Standard entropies (∆S◦rxn) and enthalpies (∆H◦rxn) of reactions
can be combined to obtain the standard Gibbs energy of a reaction, ∆G◦rxn =
∆H◦rxn − T∆S◦rxn (valid for constant temperature). The standard Gibbs
energy of a reaction is the difference in standard molar Gibbs energies of the
products and reactants in their standard states at the temperature specified
for the reaction as written.
In Oxtoby [1], what we denote here as µ0

i is called standard Gibbs energy
of formation and denoted ∆G◦f . Appendix D of your book can be used to
calculate equilibrium constants; e.g.

νAA+ νBB → νY Y + νZZ

has
∆G◦rxn = νY ∆G◦f [Y ] + νZ∆G◦f [Z]− νA∆G◦f [A]− νB∆G◦f [B].

where the values for the ∆G◦f [Y ] can be looked up in tables.
The standard Gibbs energy of formation of a compound is the change
of Gibbs free energy that accompanies the formation of 1 mole of a sub-
stance in its standard state from its constituent elements in their standard
states (the most stable form of the element at 1 bar of pressure and the



6.12. Electric and Magnetic Work 325

specified temperature, usually 298.15 K or 25◦C). Standard Gibbs energies
of formation are tabulated. See Appendix D of Oxtoby [1] for such a list.
In terms of the standard Gibbs energies of formation, ∆G◦f :

∆G◦rxn =
∑

I∈prod.
νI(∆G◦f )I −

∑
J∈react.

νJ(∆G◦f )J .

Example: To calculate the standard Gibbs energy of the reaction
CO(g) + 1

2O2(g)→ CO2(g)
at 25◦C. Looking up tabulated values for each substance in Appendix
D, we write:

∆G◦rxn =∆G◦f (CO2, g)−
{

∆G◦f (CO, g) + 1
2∆G◦f (O2, g)

}
=− 394.4 kJ/mol−

{
(−137.2) + 1

2(0)
}

kJ/mol
=− 257.2 kJ/mol

6.11.40. Adiabatic Decompression. The process of adiabatic decom-
pression is used for cooling gases. The principle is illustrated in Fig. 6.29.
In the equations below, ‘1’ refers to the ‘initial’ state and ‘2’ refers to the ‘fi-
nal’ state. Step 1 uses the law for isothermal compression (see Section 6.3.7):

∆W = −nRT log
(
V2
V1

)
with ∆U = 0 for an ideal gas (isothermal process), so that ∆Q = ∆W . The
second step uses the law for adiabatic expansion:

T1V
γ−1

1 = T2V
γ−1

2 ,

where γ is a constant (γ = cP /cV ). Equivalently, TV γ−1 = constant.
Problem: Derive the above law for reversible adiabatic expansion of an
ideal gas. (See Problem 77 for solution.)
Problem: Show that this is equivalent to PV γ = constant.
Problem: Explain how this leads to cooling.

6.12. Electric and Magnetic Work

Can electric and magnetic fields generate work? In this section we look at the
case of electrical charges subjected to the influence of electric and magnetic
fields. This material is standard and can be found in most textbooks of
electrodynamics, e.g. see Griffith [26] or Jackson [27]. In electrodynamics,
the electric field is denoted E. There is an associated quantity called the
electric displacements, denoted D. An applied electric field gives rise to a
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Figure 6.29. Adiabatic decompression leads to cooling of gas.

polarization P (molecules develop an induced dipole moment). These three
fields are related by:

D = ε0E + P.
In linear media, D = εE, where ε is the dielectric constant of the lin-
ear medium. The corresponding magnetic quantities are B (magnetic in-
duction), H (magnetic field) and M magnetic polarization or magnetiza-
tion. Magnetic polarization is magnetic moment (~m) per unit volume:
~m = vol ·M. Similarly, ~p = vol · P for the electric dipole moment. The
magnetic moments align when an external magnetic field is applied. These
three fields are related by:

H = 1
µ0

B−M.

In linear media, we have H = 1
µB, where µ is the magnetic permeability of

the medium. E and B are the fundamental fields because they determine
the force on electric charges according to the Lorentz force law:

F = q(E + v×B).
H and D are called auxiliary fields.
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6.12.1. Derivation. Upon first reading, you may skip this section, which
is provided for completeness and whose details are not essential to the de-
velopment of thermodynamical relations. We start with the Lorentz force,

F = q(E + v×B).
Take the dot product27 with dl, an element of length:

F · dl = q(E + v×B) · dl.
We replace dl by vdt, where v is the velocity of electric charges, then divide
by dt to get dW/dt, the rate of change in the work (why we use the rate of
change will be clear later, as the Poynting vector emerges). Also, because
electric charge is possibly distributed elsewhere in space, we really should
replace q by a charge density, ρ, and integrate over volume to get the total
work (and use J = ρv):
(6.17)

dW
dt = −

∫
vol
ρ(E + v×B) · v d3r = −

∫
vol
ρE · v d3r = −

∫
vol

E · J d3r.

The negative sign appears because we are calculating the work done on the
charge against the action of the field (see Jackson [27], Chapter 1).
The magnetic force term dropped out because the triple product28 (v×B) · v
vanishes, as two of its vectors are parallel. However, this does not mean that
the magnetic field does not play a role. Let us look at the current density,
J. We can obtain an expression for E · J by invoking Ampère’s law:

∇×H = J + ∂D
∂t

.

Take the dot product with E:

(6.18) E · J = E · (∇×H)−E · ∂D
∂t

.

Next, we use the identity,29

H · (∇×E)−E · (∇×H) = ∇ · (E×H),
in which we substitute Faraday’s law

∇×E = −∂B
∂t
,

27The dot product is defined in Section A.3.
28A triple product, (A×B) · C, is a scalar (number) which equals to the volume generated by
the three vectors A,B,C. When any two vectors are parallel, the volume is zero.
29This can be verified as follows:

∇ · (E×H) = ∂i(εinmEnHm) = εinm(∂iEn)Hm + εinmEn(∂iHm) = H · (∇×E)−E · (∇×H),

where in the second term we have used εinm = εnmi = −εnim.



328 6. Thermodynamics

to get

(6.19) −H · ∂B
∂t
−E · (∇×H) = ∇ · (E×H).

In Eq. (6.18), we replace E · (∇×H) by Eq. (6.19), to get:

E · J = −H · ∂B
∂t
−∇ · (E×H)−E · ∂D

∂t
.

Substituting this expression into Eq. (6.17), we get:

(6.20) dW
dt = −

∫
vol

(
−H · ∂B

∂t
−∇ · (E×H)−E · ∂D

∂t

)
d3r.

The middle term can be converted to a surface integral using the Gauss
divergence theorem:

(6.21) dW
dt =

∫
vol

(
H · ∂B

∂t
+ E · ∂D

∂t

)
d3r +

∫
∂vol

(E×H) · ds.

In linear media, B = µH and D = εE, and we can write this as:

(6.22) dW
dt = d

dt

∫
vol

1
2 (H ·B + E ·D) d3r +

∫
∂vol

(E×H) · ds.

The first integral is the total energy stored in the electromagnetic fields.
The first term represents the rate of change in the total energy stored. The
quantity

WEH = 1
2 (H ·B + E ·D)

is the energy density of the electromagnetic field. The second term describes
the transport of energy in and out of the volume (vol), through the surface
∂vol. The vector S ≡ E×H is called the Poynting vector. The Poynting
vector is relevant in cases where electromagnetic radiation is present.
The first term in Eq. (6.22) can also be written as (for linear media):
(6.23)

dW =
∫
vol

d1
2
(
B2/µ+ εE2

)
d3r =

∫
vol

1
2
(
µ−1B · dB + εE · dE

)
d3r.

If the fields E and B are spatially uniform (over the volume vol), integration
over the volume yields a factor vol. Then, the total energy differential is:

dW = vol
(
µ−1B · dB + εE · dE

)
.

This is often written as:
(6.24) dW = vol (H · dB + E · dD) .

Note: some authors go directly from Eq. (6.21) to

dW =
∫
vol

(H · dB + E · dD) d3r + dt
∫
∂vol

(E×H) · ds.
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This implies elimination of the time parametrization

(6.25) ∂B
∂t

dt→ dB, ∂D
∂t

dt→ dD.

Since B and D are functions of position and time, their total derivatives
are:

dB = ∂B
∂r · dr + ∂B

∂t
dt, dD = ∂D

∂r · dr + ∂D
∂t

dt.

Thus, the substitution (6.25) can only be justified if spatial variations of B
and D are small (i.e. ∂B

∂r ≈ 0 and ∂D
∂r ≈ 0) or if vol is sufficiently large

so that edge effects (spatial non-uniformities) contribute negligibly to the
volume integral.

6.12.2. Magnetic and Electric Polarizations. In Eq. (6.24), namely
dW = vol (H · dB + E · dD), only the fields E,D,B,H appear. When we
derived Eq. (6.24), we could have just as easily written instead (reader should
check this):30

dW = vol (B · dH + D · dE) .
It would be desirable to decompose the contributions of the external and
internal fields. Since B = µ0H + M and D = ε0E + P, we have:

dW =vol ((µ0H + M) · dH + (ε0E + P) · dE)
=vol [(µ0H · dH + ε0E · dE) + M · dH + P · dE]

A useful approximation can be obtained by decomposing the fields E,H as
the sum of externally applied fields (subscript 0) and any additional fields
(subscript dm)31 arising after introduction of the sample in the external
field:

H = H0 + Hdm, E = E0 + Edm.

The dm fields are usually very small compared to the externally applied
fields: ‖Hdm‖ � ‖H0‖ and ‖Edm‖ � ‖E0‖. In this approximation the

30Check also that substituting, B = µ0H + M and D = ε0E + P into dW =
vol (H · dB + E · dD) yields:

dW =vol (H · d(µ0H + M) + E · d(ε0E + P))

=vol [(µ0H · dH + ε0E · dE) + H · dM + E · dP]

=vol
[1

2
d
(
µ0H

2 + ε0E
2
)

+ H · dM + E · dP
]

It’s a matter of convenience which set of independent variables one uses. However, ~m = vol ·M
and ~p = vol ·P are extensive variables whereas H and E are intensive. We recall from Section 6.4.7
that work differentials are of the form δW = (intensive quantity) × d(extensive quantity). Thus,
the correct form is:

dW = vol

[1
2

d
(
µ0H

2 + ε0E
2
)]

+ H · d~m+ E · d~p.

31An example of field perturbation is the demagnetizing field associated with magnets.
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expression for work reduces to:32

(6.26) dW = vol

[1
2d
(
µ0H

2
0 + ε0E

2
0

)
+ M · dH0 + P · dE0

]
.

The advantages of this expression are two-fold:

(1) The terms are broken down into two parts: the energy required to
create33 the external field (the µ0H

2
0 + ε0E

2
0 term), and the energy

required to realign the external fields (the M ·dH0 +P ·dE0 term).
(2) For the M · dH0 + P · dE0, we see that the external fields (H0

and E0) are the control parameters. This is better representative
of real experimental conditions, where the experimentalist controls
the external fields rather than the polarization fields inside the
material.

6.12.3. Linear Media, Curie’s Law. The internal energy differential
with electromagnetic work, Eq. (6.26), reads:

dU = δQ+ vol

[1
2d
(
µ0H

2
0 + ε0E

2
0

)
+ M · dH0 + P · dE0

]
.

In paramagnetic materials, the Curie-Weiss law holds,

M = χH, χ = C

T
,

where C is a material-dependent constant. In dielectric materials a similar
law often holds,

P = χeε0E = αE,
where α is a material-dependent constant called the polarizability (see Sec-
tion 2.1.2 and Table 2.5). Under these circumstances34, we have:

dU =δQ+ vol

[1
2d
(
µ0H

2
0 + ε0E

2
0

)
+ 1

2d
(
C

T
H2

0 + αE2
0

)]
=δQ+ vol

2 d
[
(µ0 + C

T
)H2

0 + (ε0 + α)E2
0

]
The term C/T is much larger than µ0;35 thus, we neglect the µ0 term.

32The factor of 1
2 arises because we used HdH = 1

2 dH2.
33Energy is required to bring the charges and currents required to create the fields.
34The conditions include: Curie law, linear media, and approximating H ≈ H0 and E ≈ E0.
35For those interested in a justification of this approximation: The Curie constant is given by
µ0µ

2
B

3kB
Ng2J(J+1), where J is the total angular momentum quantum number of the paramagnetic

atoms, g is the Landé factor, g = 1+ J(J+1)+S(S+1)−L(L+1)
2J(J+1) (S: spin, L: orbital, J : total angular

momenta). For an electron spin, g ≈ 2. N is the density of magnetic atoms (10-100 ×1027

atoms/m3 for solids). µB is the Bohr magneton (9.274 ×10−24 J/T). Plugging these typical
values at room temperature gives C/T ≈ 103µ0, which is much larger than µ0. In adiabatic
demagnetization experiments, the temperature is typically much lower (liquid helium), so the
approximation is well justified.
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6.12.4. Adiabatic Demagnetization. Adiabatic demagnetization (W.F.
Giauque) can be used for cooling (Fig. 6.30) in a process that is analogous
to adiabatic decompression (Section 6.11.40) but instead involves the spin
degrees of freedom of paramagnetic salts.36 Adiabatic demagnetization37 of
a paramagnetic salt is a two-steps sequence that enables cooling below 1 K.
Temperatures around 1 mK have been reached. The steps are: (1) isother-
mal magnetization followed by (2) adiabatic demagnetization (Fig. 6.30):

(1) Isothermal magnetization (thermal contact with cold He gas).
At time zero, spins in the paramagnetic salt are randomly oriented
(disordered state). The system undergoes isothermal demagnetiza-
tion in the presence of a strong magnetic field. The entropy of the
spin system decreases, as the spins align with the magnetic field
(ordered state). While the final temperature is unchanged, heat is
lost to the surroundings in order to dissipate the entropy. (Lowering
the temperature would also lead to alignment of the spins.)

(2) Adiabatic demagnetization (He gas pumped away; no thermal
contact with He). Next, heat transfer is stopped (paramagnetic salt
is insulated) and the external field is turned off, leading the spins
to randomly reorient. However, the temperature has decreased.
While heat transfer outside the system is not allowed, heat can be
transferred between spin and lattice. However, the lattice entropy
is much lower than the spin entropy. The total entropy of the
isolated system (paramagnetic salt) has not changed much, since
heat was not allowed to transfer (dS=δQ/T ≈ 0).

Let us see how this two-step process could possibly work (Fig. 6.31). Our
starting point is Eq. (6.26). Let us take the “system” as the paramagnetic
salt plus electromagnetic coils as well as the surrounding helium (liquid
helium bath plus helium gas in contact with the salt). This forms an isolated
system. For isolated systems, the change in internal energy is zero (dU = 0).
During isothermal magnetization, heat is allowed to exchange between the
helium and the salt in order to maintain the salt temperature constant:

δQHe = −δQsalt.

36The isothermal compression of a gas (we apply pressure and the entropy decreases) is analogous
to the isothermal magnetization of a paramagnet or a soft ferromagnet: we apply an external
magnetic field and the magnetic entropy decreases. The subsequent adiabatic expansion of a
gas (we lower pressure at constant entropy and temperature decreases) is equivalent to adiabatic
demagnetization (we remove the external field, the total entropy remains constant and temperature
decreases since the magnetic entropy increases).
37Giauque Nobel prize lecture:
http://www.nobelprize.org/nobel prizes/chemistry/laureates/1949/giauque-lecture.pdf
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B=0

B=1

Isothermal process (T=constant)

Adiabatic process (S=constant)

B=1

B=0

S=high S=low

T=high T=low

Figure 6.30. Adiabatic demagnetization. The first step involves turn-
ing on a magnetic field at constant temperature. The spins align with
the magnetic field, reducing the entropy. In the second step, the entropy
is held constant while the field is turned off. Since the entropy remains
constant, the only possible outcome left to compensate for the loss of
magnetic field is for the temperature to decrease.

If the process is reversible and isothermal,
THedSHe = −TsaltdSsalt,

we have THe = Tsalt ≡ T and dSHe = −dSsalt. The entropy in the context of
heat transfer is the lattice entropy (random atomic motions). The param-
agnetic salt also has spin entropy, which does not exchange with the helium
in any way because no exchange mechanism exists38.
The total salt entropy should be viewed as the sum of lattice (L) and spin
(S) contributions:

dSsalt = dSLsalt + dSSsalt.
Our previous statement δQHe = −δQsalt refers to the lattice contribu-
tions because heat can only be transferred via lattice motions. We are left
with a non-vanishing TdSSsalt term describing changes in the spin entropy.
(TdSSHe = 0 because helium is not magnetic.) The physical origin of dSSsalt
is the alignment of the magnetic moments of the paramagnetic salt due to
the ramping up of the magnetic field.

38For spin entropy to exchange, we would need a spin-spin coupling mechanism, which does not
exist here.
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S

0 T

H=0

H≠0

Figure 6.31. Process of adiabatic demagnetization. During isothermal
magnetization, the entropy of the spins is lowered. During adiabatic
demagnetization, entropy remains constant but temperature decreases.

The first law then reads (with E0 = 0 and neglecting the µ0 term):

dU = 0 = TdSSsalt + vol

2 d
[
C

T
H2

0

]
.

During isothermal magnetization, the field is ramped up from 0 to some
value H. The spin entropy decreases by an amount proportional to (H/T )2:

∆SSsalt =
∫

dSSsalt = SSsalt(H)− SSsalt(0) = −vol2 C

(
H

T

)2
.

During adiabatic demagnetization, the entropy remains constant since δQ =
TdS = 0. The field is ramped down from H to Hint, where Hint is the
internal magnetic field due to coupling to neighboring magnetic moments.
If the entropy is proportional to (H/T )2, the condition of the initial entropy
to equal the final entropy:

SSsalt(initial) = const×
(
H

Ti

)2
= SSsalt(final) = const×

(
Hint

Tf

)2

,

leads to:

Tf = Ti

(
Hint

H

)
.

The internal field is typically on the order of a few Gauss (10−4 T). The
external field (H) is on the order of a Tesla. Therefore, cooling by 3-4
orders of magnitude is possible.
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6.13. Problems

Problem 74. Write down an expression for the absolute entropy of a sub-
stance at constant temperature, constant number of moles, with temperature-
dependent heat capacity, cP ≡ cP (T ), at any temperature. (You may assume
a reversible process or any other reasonable assumptions.)

Solution. Absolute entropy begins at T = 0. Let us choose the enthalpy
because heats of fusion and vaporization are tabulated as enthalpies. The
differential element of H is:

dH = TdS + V dP +
∑
i

µidni.

At constant pressure and number of moles, the last 2 terms vanish. We
are left with dH = TdS. Moreover, we know that for a reversible process,
(dH)P = TdS = (δQ)P = ncPdT . Let us work with molar entropy, so
we divide by n (or equivalently, take n = 1 mol). Thus, dS = cPdT/T .
Integration from 0 to T gives:

S(T ) = S(0)+
∫ Tf

0

cP (T )
T

dT+∆fusH

Tf
+
∫ Tf

Ti

cP (T )
T

dT+∆vapH

Tb
+
∫ T

Tb

cP (T )
T

dT.

Here, ∆fusH and ∆vapH denote the enthalpies of fusion and vaporization,
respectively. Tb and Tf are the boiling and freezing points, respectively. �

Problem 75. The specific heat of a monatomic ideal gas per mole is cV =
3R/2. Find its Helmholtz free energy A as a function of number of moles
n, volume V and temperature T . (You can assume a reversible process, or
any other reasonable assumptions.)

Solution. Let’s assume that we have a fixed number of moles n. For an
ideal gas we have

dU = ncV dT
and

U = ncV T + U0

where U0 is the internal energy of the system when T = 0. Now, we need an
expression for S as function of n, V and T . Thus, we view S ≡ S(n, V, T ):

dS(n, V, T ) =
(∆S

∆n

)
V,T

dn+
(∆S

∆V

)
n,T

dV +
(∆S

∆T

)
V,n

dT.

The first term is zero because n is fixed (dn = 0). The second term is
(P/T )dV , as is known from the Fundamental Equation. The last term, the
change in entropy with respect to temperature can be obtained from δQrev =
TdS = ncV dT , which, after rearrangement gives dS = ncV dT/T . Thus, the
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change in entropy with respect to temperature is ncV /T . Therefore,

dS = ncV
T

dT + P

T
dV.

For the ideal gas, cV = (3/2)R and P/T = nR/V . Integrate from (V0, T0)
to (V, T ):

S = 3nR
2 log(T/T0) + nR log(V/V0) + S0,

where S0 is an integration constant. Then,

A = U − TS = 3nRT
2 −

(3nRT
2 log(T/T0)− nRT log(V/V0)

)
+ F0

where
F0 = U0 − T0S0.

�

Problem 76. The VDW eq. of state for 1 mol of gas is:(
P + a

V 2

)
(V − b) = RT

The gas undergoes an isothermal expansion from volume V1 to V2. Calculate
the change in the Helmholtz free energy.

Solution. The eq. of state is rearranged as:

P = RT

(V − b) −
a

V 2 .

Recall that
dA = −SdT − PdV +

∑
i

µidni.

During an isothermal process,

∆A =−
∫ V2

V1
PdV = −

∫ V2

V1

(
RT

V − b
− a

V 2

)
dV

=−RT log
∣∣∣∣V2 − b
V1 − b

∣∣∣∣+ a

( 1
V1
− 1
V2

)
�

Problem 77. Show that the pressure of an ideal gas undergoing reversible
adiabatic expansion from volume Vi to volume Vf is related to its initial
pressure by

Pf = V γ
f = PiV

γ
i ,

where γ = cP /cV , the ratio of molar specific heats at constant pressure and
volume. Another way to write this result is PV γ = constant.

Solution. For a reversible process, Pext ≈ P . The expansion work is then
δW = −PdV . We also have that for an ideal gas dU = CV dT . On the other
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hand, for an adiabatic process, δQ = 0 and dU = δW . This gives:
CV dT = −PdV.

For an ideal gas, we can replace P by nRT/V :
CV dT
T

= −nRdV
V

.

Integrate from initial to final state, assuming that CV is independent of
temperature:

CV

∫ Tf

Ti

dT
T

= −nR
∫ Vf

Vi

dV
V
.

Integration gives:

CV log Tf
Ti

= −nR log Vf
Vi

= nR log(Vi/Vf ).

Writing c = CV /nR = cV /R, we get:
log(Tf/Ti)c = log(Vi/Vf ),

which implies that (Tf/Ti)c = (Vi/Vf ) and

Ti
Tf

=
(
Vf
Vi

)1/c
=
(
Vf
Vi

)γ−1
,

where γ = cP /cV and cP − cV = R. From the ideal gas law, PiVi
PfVf

= Ti
Tf

and
this becomes:

Pi
Pf

= Vf
Vi
×
(
Vf
Vi

)γ−1
=
(
Vf
Vi

)γ
,

which gives PiV γ
i = PfV

γ
f , the sought expression. �

Problem 78. We have seen that the standard Gibbs free energy of a reac-
tion, ∆G◦rxn, is given as a sum of standard Gibbs energy of formation, for
each reactant and products (with reactants taken as negative):

∆G◦rxn =
∑
i

νi(∆G◦f )i

where the sum i runs over all reactants and products. (a) Prove that this
formula follows from the fact that dG is an exact differential. (b) Using only
the formula from (a) and the relationship between G, H and S, prove also
that:

∆H◦rxn =
∑
i

νi(∆H◦f )i, ∆S◦rxn =
∑
i

νiS
◦
i

where S◦i and (∆H◦f )i are the entropies (absolute) and enthalpies of forma-
tion for species i, respectively. ∆H◦rxn and ∆S◦rxn are the standard enthalpy
and entropy changes for the reaction.
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Solution. (a) ∆G◦rxn =
∑
i νi(∆G◦f )i follows from the fact that G is a state

function, i.e. ∆G =
∫ products
reactants dG. Integrate along the following path: De-

stroy all reactants one by one (order is unimportant) and Form all the prod-
ucts one by one (order is unimportant). Each molecule destroyed and formed
contributes a term in the summation (with appropriate sign).

(b) First we have the basic relationship from thermodynamics (constant
T ), ∆G◦rxn = ∆H◦rxn − T∆S◦rxn. Each term in the summation ∆G◦rxn =∑
i νi(∆G◦f )i, we view (∆G◦f )i as a small increment dGi that contributes

to the integral, for which we apply the following decomposition dGi =
dHi − TdSi. Let’s write dHi ≡ (∆H◦f )i and dSi ≡ S◦i . This gives the
decomposition

∆G◦rxn =
∑
i

νi(∆G◦f )i =
∑
i

νi(∆H◦f )i − T
∑
i

νiS
◦
i .

And since ∆G◦rxn = ∆H◦rxn − T∆S◦rxn, in the limit T → 0, the second term
vanishes, we have ∆G◦rxn = ∆H◦rxn and ∆G◦rxn =

∑
i νi(∆H◦f )i. Therefore,

∆H◦rxn =
∑
i

νi(∆H◦f )i.

Taking the limit T →∞, the first term is negligible compared to the second
term, leaving only ∆G◦rxn = −T∆S◦rxn and ∆G◦rxn = −T

∑
i νiS

◦
i . It follows

that:
∆S◦rxn =

∑
i

νiS
◦
i .

�

Problem 79. Hess’s law states that the total enthalpy change during the
complete course of a reaction is the same whether the reaction is made in
one step or in several steps. Mathematically, the statement of Hess’s law,
as pertains to the net or overall reaction, is:

∆H◦rxn =
∑

I∈products
νI(∆H◦f )I −

∑
J∈reactants

νJ(∆H◦f )J ,

where the reaction is the net reaction. The summation is over all reactants
(products) in the net equation. (∆H◦f )I is called enthalpy of formation (of
species I) and νI is the stoichiometric coefficient of species I. (Here, νI
and νJ are all positive.) When the conditions are standard, the enthalpy of
formation is denoted as (∆H◦f )I (standard enthalpy of formation).
(a) Prove that Hess’s law is a consequence of the fact that H is a state
function (dH is an exact differential), i.e. it does not depend on the path
taken to get from the reactants to the products. Prove that the above
statement for the net reaction is entirely equivalent to summing up reaction
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enthalpies from individual reactions:

∆H◦rxn =
∑

i∈reactions
∆H◦rxn(i),

where ∆H◦rxn(i) denotes the net (overall) reaction enthalpy of the i-th re-
action. The sum runs over all reactions that make up the net reaction.
Suppose that we have two concurrent reactions taking place:

C(s, gr) + O2(g)→ CO2(g), ∆H◦rxn(1) = −393.5 kJ
CO2(g)→ CO(g) + 1

2O2(g) ∆H◦rxn(2) = +283.0 kJ.
(b) Apply Hess’s law to obtain ∆H◦rxn for the net reaction.

Solution. (a) Hess’s law follows from ∆H◦rxn =
∫ products
reactants dH◦rxn and choos-

ing a path in the net reaction that destroys all reactant molecules regard-
less of order (destruction implies a negative sign) and creates all product
molecules (without regards to order). This is equivalent to summing over
all reactions: because H is a state function, the value of ∆H◦rxn is the same,
regardless of the choice of path. Here, we choose a different path, which
takes us through all reactions one by one. This is entirely equivalent, be-
cause the chemical reaction is treated as an equation; multiple reactions are
added to give the net reaction. The integral is a linear operator, hence,
it is applied to each term in the summation (and the summation is iden-
tical whether we look at the net reaction or the sum of individual reactions).

(b) The net reaction (and net enthalpy change) is the sum:
C(s, gr)+1

2O2(g)→ CO(g) ∆H◦rxn = ∆H◦rxn(1)+∆H◦rxn(2) = −110.5 kJ.
�

Problem 80. METHOD OF BOND ENTHALPIES. In chemical reactions,
bonds are broken and new ones are formed. Think about reactants: one
way to consume reactants is to destroy all the chemical bonds of all reac-
tants, until atoms are separate. On the products side: to form the product
molecules, we assemble the atoms together and create a number of chemi-
cal bonds. There is an energy associated with breaking and forming these
bonds. It is possible to use this information to estimate the enthalpy change
∆H◦rxn of a reaction, which can be calculated from:

∆H◦rxn =
∑

I∈bonds
broken

∆H◦I −
∑

J∈bonds
formed

∆H◦J ,

where ∆H◦I is the energy absorbed when a particular bond is broken and
∆H◦J is the energy released when a bond is formed. (a) Prove that this
restatement of Hess’s law is entirely equivalent to the one in Problems 1
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and 2. (b) Prove also that this new statement follows from the fact that
H is a state function (and dH is an exact differential). (c) Consider the
following example on cracking of propane (thermal decomposition, ∆H◦rxn >
0 endothermic) to make ethene (Fig. 6.32).

C C C HH

H

HHH

HH

+C C

H

H

H

H

C

H

H
H

H

Figure 6.32. Method of bond enthalpy illustrated.

Here is some data on average bond enthalpy (units are kJ/mol)

C−H bond: +415
C− C bond: +345
C = C bond: +611

Add up all the energies of the broken bonds; add up all the energies of
the bonds that are reformed and subtract one from the other. Show that
∆H◦rxn = 4, 010 − 3, 931 = 79 kJ/mol. (Hint: 10 bonds must be broken
on the reactants side to consume the reactants, whereas 9 bonds must be
formed on the products side to synthesize the needed products.)

Solution. (a) This reformulation of Hess’s law is justified by the choice of
path, which here involves destroying molecules or forming them, one chem-
ical bond at a time. (This is longer, and involves more steps, but the end
result is the same, i.e. the value of ∆H◦rxn is identical.)

(b) This follows from the fact that dH is an exact differential because the
original Hess’s law is also based on this fact. And since the two are equiva-
lent, the proof follows.

(c) We have, for the left hand side (bonds broken):
2 C− C 2× 345 =690 kJ/mol
8 C−H 8× 415 =3, 320 kJ/mol

These energies add up to a total of 4,010 kJ/mol.

For the right hand side (bonds formed),
1 C = C 1× 611 =611 kJ/mol
8 C−H 8× 415 =3, 320 kJ/mol
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for a total of 3,931 kJ/mol. The net difference between reactant bonds
destroyed and product bonds formed is:

∆H◦rxn = 4, 010− 3, 931 = 79 kJ/mol.
�

Problem 81. METHOD OF BOND ENTHALPIES. In Problem 80, is it
really necessary to completely break down all bonds and reform them or can
you find a short-cut to computing ∆H of the reaction without having to
completely take apart all molecules and reform them (including reforming
the same bonds that were broken!)? Reformulate the statement for the
method of bond enthalpies with this short-cut in mind.

Solution. No, it is not necessary to break ALL the bonds and reform them.
When we break a bond and reform it, there is no net change in this particular
bond, so why bother breaking and reforming it? Such pairs of events can
be discounted because they cancel each other out. In other words, for a
given reaction (reactants + products), the initial conditions (reactants) and
final conditions (products) are fixed regardless of the path (from reactants
to products) we choose. Instead of the “long path” (that involves breaking
ALL bonds), we can instead choose a shorter path that does not involve
destroying ALL bonds. Instead we may limit the breaking and forming of
bonds to the bare minimum necessary. In real reactions, not all bonds in all
reactants are broken; only a small number of bonds are broken. �

Problem 82. Prove the following formula
d(∆G) = (∆V )dP − (∆S)dT,

which allows us to calculate how ∆G varies with temperature and pressure.
∆G =

∫
dG denotes a change in G, for example, ∆G = G(products) −

G(reactants) being one possible application.

Solution. Apply the fundamental equation, dG = V dP −SdT , twice, once
to all the reaction products collectively, G(products), and once to all the
reactants collectively, G(reactants):

dGprod = VproddP − SproddT, dGreact = VreactdP − SreactdT

dGprod − dGreact =d(Gprod −Greact) = d(∆G)
=(Vprod − Vreact)dP − (Sprod − Sreact)dT
=(∆V )dP − (∆S)dT.

�

Problem 83. Consider the reaction CuBr2(s)
 CuBr(s) + 1
2 Br2(g, 1 atm).

In what direction does this reaction proceed at 300 K and 1 atm pressure?
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At 300 K, 1 atm, the following data is available from tables:

∆H◦f kcal/mol S◦300 K cal/mol/K
CuBr2(s) -33.2 30.1
CuBr(s) -25.1 21.9
Br2(g, 1 atm) +7.34 58.64

Solution. The favored direction of reaction will be indicated by the sign of
∆G◦300, to calculate which we need only determine ∆H◦300 and ∆S◦300 for the
reaction.

∆H◦300 =(∆H◦f )CuBr + 1
2(∆H◦f )Br2 − (∆H◦f )CuBr2

=− 25.1 + 3.67− (−33.2) = +11.8 kcal/mol.

∆S◦300 =(S◦300)CuBr + 1
2(S◦300)Br2 − (S◦300)CuBr2

= + 21.9 + 29.32− 30.1 = +21.1 cal/mol.
∆G◦300 = ∆H◦300 − T∆S◦300 = 11, 800− (298)(21.1)

= 5, 500 cal/mol = 5.5 kcal/mol.
Not rightward, but rather, leftward progress of the reaction is thus strongly
favored at 300 K, and will reduce the Br2 pressure far below 1 atm. Recall
that the equilibrium constant K = RT exp(−∆G◦rxn/RT ). A positive value
of ∆G◦rxn means that K < 1 and the equilibrium is towards reactants. �

Problem 84. For the reaction of Problem 83, at what temperature will the
three substances coexist at equilibrium under a pressure of 1 atm?

Solution. At whatever temperature (T ) the three substances coexist at 1
atm pressure, we will have ∆H◦T − T∆S◦T = ∆G◦T = 0. Noting that ∆H◦
and ∆S◦ are the same in sign, we essay the approximation in which the
two terms are treated as substantially constant over the temperature range
concerned. In that case,

∆H◦T ≈ ∆H◦300 = 11.8 kcal/mol
∆S◦T ≈ ∆S◦300 = 21.1 cal/mol.K

and then
11, 800− T (21.1) = ∆G◦T = 0, T = 11, 800/21.1 = 560◦ K.

�

Problem 85. (a) Which is the more stable form of carbon at 300 K and 1
atm pressure, diamond or graphite? (b) At 300 K, what pressure would be
required to form diamond (density, 3.5 g/ml) from graphite (density, 2.25
g/ml)? (c) How can you be confident of the soundness of this entire mode
of analysis? Some relevant data are as follows:
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Heat capacity data yield for diamond (300 K), S◦300 = 0.58 cal/mol.K, where
S = −(dG/dT )P and G is the molar Gibbs free energy.
Heat capacity data yield for graphite (300 K), S◦300 = 1.37 cal/mol.K
For C(graphite) → C(diamond), ∆S◦300 = -0.79 cal/mol.K
On combustion: C(graphite) + O2 
 CO2, ∆H◦300 = -94.03 kcal.
On combustion: C(diamond) + O2 
 CO2, ∆H◦300 = -94.48 kcal.
For C(graphite) → C(diamond): ∆H◦300 = +450 cal/mol.
And the given densities imply:
For diamond: gram-atomic volume = 12/3.5 = 3.4 ml/gr-atom. (Note:
Gram atomic mass is another term for the mass, in grams, of one mole
of atoms of that element. “Gram atom” is a former term for a mole of
substance (expressed in grams). Example: gram atomic mass of Hydrogen
is mass of 1 mole atoms =1.008 grams.)
For graphite: gram-atomic volume = 12/2.25 = 5.3 ml/gr-atom.
For C(graphite) → C(diamond): ∆V 300 = -1.9 ml/gr-atom, where V =
(dG/dt)T .

Solution. (a) For the reaction C(graphite) → C(diamond),
∆G◦300 = ∆H◦300 − T∆S◦300 = 450− 300(−0.79) = +685 cal/mol

At room temperature and atmospheric pressure, the favored direction of
reaction is thus the inverse change of diamond into graphite. Under ordi-
nary conditions diamond is therefore a thermodynamically unstable species,
which exists only because of the extreme slowness of its conversion into the
more stable graphite.

(b) At atmospheric pressure the reaction C(graphite)→ C(diamond) is char-
acterized by ∆G◦300 > 0. But with ∆V < 0 in this reaction, a sufficient rise
of pressure should change the sign of ∆G and, hence, the favored direction
of reaction at 300 K. For consider that the effect of a change of pressure at
constant temperature will be given by the following reduced form

d(∆G) = ∆V dP.
If we approximate by treating ∆V as constant (=-0.0019 lit) over the entire
pressure range involved, the last equation can easily be integrated. For
the upper limit we choose that pressure (P ∗) at which ∆G◦300 = 0, i.e.
the pressure under which diamond and graphite stand in equilibrium with
each other at 300 K. For the lower limit we use the standard pressure of
1 atm, at which we have just found ∆G◦300 = +685 cal/mol. However,
with ∆V in liters and pressure in atmospheres, the appropriate unit for
∆G is not calories but lit-atm (1 lit-atm = 101.325 J). Multiplication by
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the factor 0.0413 converts a-figure in calories to one in lit-atm, so that
∆G◦300 = 0.0413(685) = 28.3 lit atm. We have then,∫ 0

28.3
d(∆G) = −0.0019

∫ P ∗

1
dP,

0− 28.3 = −0.0019(P ∗ − 1),
P ∗ ≈ 15, 000 atm.

At 25◦C diamond and graphite would stand in equilibrium under a pressure
of 15,000 atm. At still higher pressures graphite becomes thermodynami-
cally unstable, and its conversion into diamond is then possible in principle,
though so slow in practice as to be wholly undetectable.

(c) Since at room temperature no equilibrium of graphite with diamond
ever is attained in practice, there remains room for skepticism that we have
correctly calculated what would be the equilibrium condition. But, given
expressions for ∆H and ∆V as functions of temperature and pressure, by in-
tegration of equation d(∆G) = ∆V dP , we can calculate that the equilibrium
pressure is of the order of 75,000 atm at 1500◦K. And here the soundness of
our calculation is attested by an unmistakable production of diamond from
graphite at pressures that exceed the equilibrium pressure. �

Problem 86. Iron has a heat capacity of 25.1 J K−1 mol−1, approximately
independent of temperature between 0◦C and 100◦C.
(a) Calculate the enthalpy and entropy change of 1.00 mol iron as it is cooled
at atmospheric pressure from 100◦C to 0◦C.
(b) A piece of iron weighing 55.85 g and at 100◦C is placed in a large
reservoir of water held at 0◦C. It cools irreversibly until its temperature
equals that of the water. Assuming the water reservoir is large enough that
its temperature remains close to 0◦C, calculate the entropy changes for the
iron and the water and the total entropy change in this process.

Solution. a)
∆HFe =ncP∆T = (1.00 mol)(25.1 J K−1 mol−1)(273.15− 373.15 K)

=− 2510 J = −2.51× 103 J

∆SFe = ncP log Tf
Ti

= (1.00 mol)(25.1 J K−1 mol−1)log273.15
373.15 = −7.83 J K−1

b) The entropy S is a function of state, and the initial and final states of
the piece of iron are the same as in part a). Therefore, ∆SFe = -7.83 J K−1.
The reservoir of water gains the 2510 J of heat from the piece of iron at a
constant temperature of 273.15 K. Therefore ∆Swater = 2510 J/273.15 K =
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+9.19 J K−1.
∆Stotal = ∆SFe + ∆Swater = 1.36 J K−1

�

Problem 87. (a) Use data from Appendix D from Oxtoby [1] to calculate
∆H◦ and ∆S◦ at 25 ◦C for the reaction

2CuCl2(g)
 2CuCl(s) + Cl2(g)
(b) Calculate ∆G◦ at 590 K, assuming ∆H◦ and ∆S◦ are independent of
temperature.
(c) Careful high-temperature measurements show that when this reaction
is performed at 590 K, ∆H◦590 is 158.36 kJ and ∆S◦590 is 177.74 J K−1.
Use these facts to compute an improved value of ∆G◦590 for this reaction.
Determine the percentage error in ∆H◦590 that comes from using the 298-K
values in place of the 590-K values in this case.

Solution. a) The reaction of interest is
2CuCl2(s)→ 2CuCl(s) + Cl2(g)

Appendix D supplies ∆H◦f and S◦ values at 298 K for the computation of
∆H◦298 and ∆S◦298

∆H◦298 = 2(−137.2) + 1(0)− 2(−220.1) = 165.8 kJ
∆S◦298 = 2(86.2) + 1(222.96)− 2(108.07) = 179.2 J K−1

b)
∆G590 ≈ ∆H◦590 − T∆S◦590 = 165.8 kJ− (590 K)(0.1792 kJ K−1) = 60.1 kJ
c) Use the experimental values at 590 K instead of the values at 298.15 K
∆G590 = ∆H◦590−T∆S◦590 = 158.36 kJ−(590 K)(0.17774 kJ K−1) = 53.5 kJ
The answer using ∆H◦298 and ∆S◦298 is about 12 % larger than the actual
∆G590. Tip. The temperature dependence of ∆H◦ and ∆S◦ should not
always be neglected. Taking it into consideration becomes important when
the temperature differs a lot from 298.15 K. �

Problem 88. Find the Gibbs free energy and the entropy associated with
mixing 10 g of liquid water, 5 g of liquid ethanol, and 1 g of liquid methanol
at 298 K?

Solution.
Gi = nH2Oµ

∗
H2O + nEtOHµ

∗
EtOH + nMeOHµ

∗
MeOH

Gf = nH2O(µ∗H2O +RT log(XH2O)) + nEtOH(µ∗EtOH +RT log(XEtOH))
+ nMeOH(µ∗MeOH +RT log(XMeOH))
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Gmix = Gf −Gi = nRT (XH2O log(XH2O) +XEtOH log(XEtOH)
+XMeOH log(XMeOH))

Smix = −nR(XH2O log(XH2O) +XEtOH log(XEtOH) +XMeOH log(XMeOH))
nH2O = 0.555 mol, nEtOH = 0.108 mol, nMeOH = 0.0312 mol, n = 0.694 mol

XH2O = 0.800, XEtOH = 0.156, XMeOH = 0.0450
Gmix = −454 J
Smix = 1.52 J/K

�

Problem 89. Find the reaction affinity at constant pressure and tempera-
ture for the following reaction going to completion:

CH3COOH(g) + 2O2(g)→ 2CO2(g) + 2H2O(g)
Data: G◦f (CO2(g)) = −394.36 kJ/mol, G◦f (H2O(g)) = −228.59 kJ/mol,
G◦f (CH3COOH(g)) = −374.1 kJ/mol

Solution. ∆Grxn = Gf (products)−Gf (reactants) = 2×G◦f (CO2(g))+2×
G◦f (H2O(g))−G◦f (CH3COOH(g)) = −871.8 kJ/mol
Affinity = −(∂G∂ξ )T,P
Affinity = −∆Grxn = −871.8 kJ/mol �

Problem 90. For the reaction 2 Ca(s) + O2(g)→ 2 CaO(s) find the equilib-
rium constant at 300 K given that µ◦CaO = -604.17 kJ mol−1 at that temper-
ature. What can you conclude about the reaction based on the magnitude
of the equilibrium constant?

Solution. ∆µ◦ = µ◦CaO(2) - µ◦O2
(1) - µ◦Ca(2) = -1208.34 kJ mol−1

∆µ◦ = -RT log K
K = exp[−∆µ◦

RT ]
K = 2.5 × 10210 �

Problem 91. Assume the reaction N2(g) + 3 H2(g)→ 2 NH3(g) has taken
place in a 2 L container and has reached equilibrium. There are 0.1 mole of
H2(g), 0.15 mole of N2(g), and 1.5 moles of NH3(g) present at a tempera-
ture of 500 K. Find the change in chemical potential for the reaction if the
equilibrium constant is 0.1744 under the stated conditions.

Solution.
µi = µ◦i +RT log(Pi)

∆µ = µ◦NH3(2)− µ◦H2(3)− µ◦N2(1) +RT log(
P 2

NH3

P 3
H2
PN2

)

Let
∆µ◦ = µ◦NH3(2)− µ◦H2(3)− µ◦N2
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∆µ◦ = −RT log(K) = 7260 J.mol−1

If we treat the gases as ideal then we have:
PH2 = nRT/V = (0.1 mol)(0.08312 L.bar.mol−1K−1)(500 K)/(2 L) = 2.0786 bar

PN2 = 3.1179 bar
PNH3 = 31.179 bar

RT log(
P 2

NH3

P 2
H2
PN+2

) = (4157.24 J.mol−1)(3.55) = 14758 J.mol−1

∆µ = 22018 J.mol−1

�

Problem 92. Suppose we have an ideal gas. We double the gas volume
by an isothermal expansion that proceeds (1) reversibly and (2) irreversibly
into a vacuum. What is the change in entropy during this process (1 and
2)?

Solution. (1) For the reversible expansion
∆S = nR log(V2/V1) = (2.30)(1)(1.99) log 2 = +1.38 cal/mol.K.

(2) For the irreversible expansion to the same final state, the entropy change
in the gas must again by +1.38 cal/mol.K. �

Problem 93. What is the change in entropy of the surroundings when the
volume of an ideal gas is doubled by an isothermal expansion that proceeds
(1) reversibly or (2) irreversibly?

Problem 94. When the volume of an ideal gas is reduced two-fold by a
reversible isothermal compression, what is the change of entropy of (1) the
gas and (2) the surroundings?

Problem 95. Under 1 atm pressure at 279 K, the reversible crystallization
of benzene from its melt is accompanied by an entropy change of -8.53
cal/mol.K. What is the molar heat of fusion of benzene at its melting point?

Problem 96. The heat capacity at constant pressure (cP ) for carbon monox-
ide is 7.0 cal/mol.K (ignore temperature dependences). What is the entropy
change when a mole of CO is (1) heated from 100 K to 200 K, or (2) cooled
from 1500 K to 750 K?

Problem 97. At 1000 K, 4.49 × 10−2 as many molecules in a sample of
carbon monoxide (CO) are in the first excited vibrational-energy state as in
the ground state. How far above the ground state is the first excited state,
in kJ/mol?

Solution. Given T = 1000 K, molecule=CO (carbon monoxide) andN1/N0 =
4.49× 10−2 (vibrational energy). Let x=number of molecules in the ground
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state (vibrational) and 4.49×10−2x = number of molecules in the 1st excited
vibrational state. Using the equation

Ni

Nj
e−(εi−εj)/kBT = e−∆ε/kBT

N1
N0

= 4.49× 10−2x

x
= e−∆ε/(1.38×10−23 J/K)(1000 K)

log(4.49× 10−2) = −∆ε
1.38× 10−20 J

(−3.10)(1.38× 10−20 J) = −∆ε
∆ε = 4.28× 10−20 J

Now, to convert to the final units of kJ/mol.

(4.28× 10−20 J)
( 1 kJ

1000 J

)(6.022× 1023

1 mol

)
= 25.8 kJ/mol

�

Problem 98. Molecular nitrogen has a vibrational energy hν = 2230 cm−1.
A sample of nitrogen is heated in an electric arc. Spectroscopic methods are
used to determine the relative populations of excited vibrational levels. The
results are presented in the table below

Vibrational level (v) 0 1 2 3 4 . . .

Nv/N0 1.000 0.200 0.040 0.008 0.002 . . .

Use these results in combination with the information about the spacing of
vibrational energy levels to determine whether the nitrogen is in thermody-
namic equilibrium with respect to vibrational energy. In other words, does
the vibrational population obey the Maxwell-Boltzmann distribution law?
If so, what is the vibrational temperature of the gas? Is this value neces-
sarily the same as the translational temperature of the gas? Why or why
not? Hint: try to rearrange the Maxwell-Boltzmann equation appropriate
for this problem so that there is a linear relationship between v and some
function of NV /N0. Then plot the data and calculate the slope.

Solution. We are given: molecule is N2(g) and hν = 2230 cm−1. Relative
populations of the first four excited state to the ground state. One way to
approach this problem is to rearrange the Maxwell-Boltzmann distribution
(equation) to look like a linear function, graph the function and calculate
T from the slope. We are looking at vibrational energy, so we use: εv =
(v + 1/2)hν and Nv/N0 = e−(εv−ε0)/kBT = e−((v+1/2)hν−(1/2)hν)/kBT , where
the second term in the exponent is from ε0 = (0 + 1/2)hν. Therefore,
NV /N0 = e−vhν/kBT Linearize this equation by taking the log of both sides:
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log(Nv/N0) = −nkν/kBT or log(NV /N0) = −v(hν/kBT ) which is of the
form y = mx.

V 

log(Nv/N0)

The slope of this line is m = −1.5649 = −kν/kBT . Note: depending on
your program and graphing the data, the slope value may differ from mine.
Solving for T , we get: T = 2050K, which becomes T = 2000 K (1 sig. fig.).
The Tv is usually the same as Ttranslational but doesn’t have to be under
certain conditions. �

Problem 99. In thermodynamics, the partial derivatives of physical quanti-
ties are related to one another by application of the commutativity property
of partial derivatives, ∂x∂yf(x, y) = ∂y∂xf(x, y), which follows from the
equality of mixed partial derivatives for sufficiently smooth functions. For
example, if the internal energy is expressed as

dU = TdS + µdN
it follows that

T = ∂U

∂S

∣∣∣∣
N

and µ = ∂U

∂N

∣∣∣∣
S

The joint second derivative of U is then given by
∂2U

∂S∂N
= ∂2U

∂N∂S
= ∂T

∂N

∣∣∣∣
S

= ∂µ

∂S

∣∣∣∣
N

Since (∂y/∂x) = (∂x/∂y)−1, the above equation can be inverted to give
∂S

∂µ

∣∣∣∣
N

= ∂N

∂T

∣∣∣∣
S
.
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Similar identities can be obtained from the variations of other state func-
tions. Show that:

+
(
∂T

∂V

)
S

= −
(
∂P

∂S

)
V

= ∂2U

∂S∂V

+
(
∂T

∂P

)
S

= +
(
∂V

∂S

)
P

= ∂2H

∂S∂P

+
(
∂S

∂V

)
T

= +
(
∂P

∂T

)
V

= − ∂2A

∂T∂V

−
(
∂S

∂P

)
T

= +
(
∂V

∂T

)
P

= ∂2G

∂T∂P

Recall that U = U(S, V ), H = H(S, P ), A = A(T, V ) and G = G(T, P ).

Solution. These “Maxwell relations” are all derived the same way. Take
the third one, for example, A(T, V ) = U − TS and dA = −SdT − pdV lead
to

S = − ∂A

∂T

∣∣∣∣
V

and P = − ∂A

∂V

∣∣∣∣
T

Equating the second partial derivatives (∂2A/∂T∂V ) we get
∂S

∂V

∣∣∣∣
T

= ∂P

∂T

∣∣∣∣
V

similarly for all other relations. �

Problem 100. The reaction
1
2O2(g) + H2(g)→ H2O(l)

is used to produce an electrical current. The details of the production of
electrical current are not important for solving this problem; we only need to
assume that the free energy can be converted into current (electrical work)
through some process.
From tables of thermodynamic data, we find the following information in
J/mol.K for the standard entropies of formation (∆S◦f ): O2(g): 205.0, H2(g):
130.6, H2O(l): 70.0. Standard enthalpy of formation for water, ∆H◦f=-285.9
kJ/mol; those for H2 and O2 are zero.
Use this information to find:
a) The amount of heat released if the reaction were to take place by direct
combustion (of oxygen and hydrogen)
b) The amount of electrical work the same reaction can perform when carried
out in a fuel cell at 298K under reversible conditions
c) The amount of heat released under the same conditions (when electrical
current is produced)
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Solution. First, we need to find ∆H◦rxn and ∆S◦rxn for the process. Re-
calling that the standard enthalpy of formation of the elements is zero,
∆H◦rxn = H◦f (products)−H◦f (reactants) = −285.9 kJ mol−1 − 0 = −285.9
kJ mol−1. Similarly, ∆S◦rxn = S◦f (products)−S◦f (reactants) = (70.0)− (1

2 ×
205.0 + 130.6) = −163 JK−1mol−1.
a) When the hydrogen and oxygen are combined directly, the heat released
will be ∆H◦rxn = -285.9 kJ mol−1.
b) The maximum electrical work the fuel cell can perform is given by
∆G◦rxn = ∆H◦rxn − T∆S◦rxn = -285.9 kJ mol−1 - (298 K)(-163 JK−1 mol−1)
= -237.2 kJ mol−1.
c) The heat released in the reaction is the difference between the enthalpy
change (the total energy available) and the reversible work that was ex-
pended: ∆H◦rxn − ∆G◦rxn = T∆S◦rxn = (298 K)(−163 J.K−1mol−1) = -
48800 J mol−1 = -48.8 kJ mol−1. �

Problem 101. Two ideal gases at constant temperature and pressure are
separated by a partition. There are 0.07 mol of gas A and 0.12 mol of gas
B. Find the entropy change of the system after the partition is released and
the two gases are allowed to mix. It is useful to know that entropy is a
state function and that the entropy of a system is given by S = kB log Ω
where Ω is the number of accessible microstates to the system and log is the
natural logarithm. For an ideal gas, Ω ∝ V N where V is the volume of the
gas and N is the number of gas particles. Since S depends on N through
Ω, S is an extensive property. To find the entropy change, you will want to
consider the system as two subsystems, one consisting of gas A and the other
consisting of gas B, and then calculate the entropy of the system before and
after the gases mix. The change is equal to the difference between pre- and
post-mixing.

Solution. Since entropy is a state function, the entropy change is equal to
the entropy of the mixture subtracted by the entropy of the two gases prior
to mixing.

∆S = Smixture − SA − SB
Smixture = kB log(C(VA + VB)NA+NB )

where C is some constant of proportionality.
Smixture − SA − SB =kB(NA +NB) log(C(VA + VB))− kBNA log(CVA)

− kBNB log(CVB)

=kBNA log
(VA + VB

VA

)
+ kBNB log

(VA + VB
VB

)
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Since we are dealing with ideal gases, we can relate the volumes to moles.
VA + VB
VA

= nA + nB
nB

Next we insert kB = R/NAvogadro and XA = nA+nB
nA

.

∆S = R(nA logXA + nB logXB)

= 8.314 J K-1
[
0.07 log

(0.19
0.07

)
+ 0.12 log

(0.19
0.12

)]
= 1.04 J K-1

�

Problem 102. A non-uniform chemical potential (dµ/dx 6= 0) leads to a
mass flux from regions of high concentration to regions of low concentration.
Let’s see how we can relate this gradient (slope, dµ/dx) to the diffusion of
particles. We know that the chemical potential for an ideal gas is of the
form

µ = µ0 + kBT log(c/c0)
where µ0 is a reference chemical potential (only depends on T , but otherwise
a constant), c(x, t) is the concentration ([M ]) of a chemical species of interest
at position x and time t, and c0 is a reference concentration (say, 1 M).
Let’s first establish the principle of “conservation of mass”. Let us consider
a 1D flow of particles along the x direction and a “volume element” of
length dx centered at x+dx

2 . Since we are working in 1D we may take the
concentration c(x, t) to have units of particles per unit length. The flow of
particles can be described in terms of the particle flux, J = c(x, t)v, where
v is the velocity of particles. J has units of particles per unit time. Of
course, J represents a net flux, meaning that J = 0 describes equal number
of particles moving to the left as to the right. Thus, when J = 0, there is
no change in the number of particles in the volume element dx. Therefore,
its rate of change is zero: ∂c/∂t = 0. Moreover, even when J = constant,
we still have ∂c/∂t = 0 because even though there may be a net flux of
particles, the number of particles that enter dx equals the number that
leaves dx during some time interval dt. The only way that ∂c/∂t can be
nonzero is if J is not spatially uniform. If there is a slope in J , there will
be a change in c over time.
In a time interval dt, the increase in concentration with time, ∂c/∂t, will
equal the excess of molecules diffusing into the region at position x over
those diffusing out at position x+ dx, divided by the volume (dx):

∂c

∂t
= 1

dx [J(x)− J(x+ dx)]
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(a) Show that ∂c/∂t = −∂J/∂x. This is a statement of the conservation of
mass. Explain why/how this equation amounts to mass conservation.39

Next we must deal with the particle flux J = c(x, t)v. What should v be? It
turns out that according to linear response theory, systems near equilibrium
have currents proportional to the first derivative (gradient) of their prop-
erties. The examples given in class are Fourier’s law, J = k(∂T/∂x) (heat
flow proportional to temperature gradient), and Fick’s law, J = −D(∂µ/∂x)
(particle flux proportional to the chemical potential gradient). Other exam-
ples include Ohm’s law (electrical current proportional to the gradient of
the electromagnetic potential) and in viscous fluids, where the shear rate is
proportional to the shear stress.
Thus, we set v = −γ(∂µ/∂x), where γ is a coefficient of mobility. This gives
J ∝ ∂µ/∂x. Namely, J = −γc(x, t)∂µ/∂x.
b) Insert the ideal gas expression for µ into J = −γc(x, t)∂µ/∂x to find
J = −γkBT∂c/∂x. Then use the expression found in part (a) to arrive at
a diffusion equation where D = γkBT . Confirm that this diffusion equation
is identical to the one derived in class using Einstein’s method.
(c) Consider two solutes, A and B, dissolved in solution. Write an expression
to describe the diffusion of the sum of A and B and call cAB(x, t) = cA(x, t)+
cB(x, t). (Hint: no work is needed here, just borrow the result you derived
in the previous question.)

Solution. a) Taylor expansion of J(x+ dx) gives

J(x+ dx) = J(x) + dx
(
∂J

∂x

)
+O(dx2)

where O(dx2) are terms of order equal to or higher than dx2. Hence, in the
limit dx→ 0:

∂c

∂t
= 1

dx

[
��
�J(x)−���J(x)− dx

(
∂J

∂x

)
+O(dx2)

]
= −∂J

∂x

b) Inserting the expression for µ for the ideal gas, we find:

J = −γc(x, t)∂µ
∂x

= −γc(x, t)∂(kBT log(c(x, t)/c0))
∂x

= −γc(x, t)kBT
c

∂c

∂x
= −γkBT

∂c

∂x

39Hint: Taylor expand J(x + dx). Recall from calculus that the Taylor expansion of f(x) at x
is the series

∑∞
i=0

f(n)(a)
n! (x− a)n, where f (n) denotes the n-th derivative of f evaluated at the

point a. In practice (i.e. in the physical sciences), only the lowest order terms are needed when x
is close to a. In that case, we only need Taylor’s theorem, f(x) = f(a)+f ′(a)(x−a)+O((x−a)2),
where O((x− a)2) is a term that tends to zero as (x− a) goes to zero.
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and thus the rate of change of c(x, t) is given by the diffusion equation
∂c

∂t
= −∂J

∂x
= γkBT

∂2c

∂x2

where D = γkBT .
c) The above treatment is for ideal solutions by choice of µ = µ0+kBT log(c/c0).
Thus, solutes A and B are non-interacting and the diffusion of the sum,
cAB(x, t), is the sum of the parts, cA(x, t) and cB(x, t).

cAB(x, t) = cA(x, t) + cB(x, t)
∂cAB
∂t

= ∂cA
∂t

+ ∂cB
∂t

= γAkBT
∂2cA
∂x2 + γBkBT

∂2cB
∂x2

�

Problem 103. Thermodynamic relationships can be used to accurately
describe the slopes of phase diagram coexistence curves. Specifically, the
Clapeyron equation can be used to characterize the discontinuous phase
transition of a single material.
a) Show that at constant temperature T and pressure P , the infinitesimal
change in Gibbs free energy can be written as

dG = (µg − µl)dng

Note that for a liquid-gas phase change, dnl = −dng, the Gibbs free energy
of a liquid-gas mixture is given by G = Gl +Gg, and the chemical potential
µ can be defined as

µ =
(
∂G

∂n

)
P,T

b) Derive the Clapeyron equation (subscript t=phase transition),
dP
dT = ∆tH

T∆tV

by taking the total derivative∗ of both sides of the following expression
µα(T, P ) = µβ(T, P )

where α and β represent two states of a phase transition at equilibrium.
You may find the following relationships useful, where the overline indicates
the intensive molar quantity(

∂µ

∂P

)
T

=
(
∂G

∂P

)
T

= V and
(
∂µ

∂T

)
P

=
(
∂G

∂T

)
P

= −S

∆tS = ∆tH

T
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∗The total derivative df is best explained by an example: consider a function
f(x, y). Its total derivative is

df =
(
∂f

∂y

)
x

dy +
(
∂f

∂x

)
y

dx.

c) How much does the melting point of benzene increase per atmosphere of
pressure (within the vicinity of 1 atm)? Take ∆fusH (at 278.7 K) to be 9.95
kJ mol−1 and ∆fusV (at 278.7 K) to be 10.3 cm3 mol−1.

Solution. a) Take the derivative of G = Gl + Gg with respect to n at
constant T and P .

dG =
(
∂Gg

∂ng

)
P,T

dng +
(
∂Gl

∂nl

)
P,T

dnl

Since dnl = −dng,

dG =
[(
∂Gg

∂ng

)
P,T

−
(
∂Gl

∂nl

)
P,T

]
dng

dG = (µg − µl)dng (constant T and P )

b) Take the total derivative(
∂µα

∂P

)
T

dP +
(
∂µα

∂T

)
P

dT =
(
∂µβ

∂P

)
T

dP +
(
∂µβ

∂T

)
P

dT

Evoking the relationships(
∂µ

∂P

)
T

=
(
∂G

∂P

)
T

= V and
(
∂µ

∂T

)
P

=
(
∂G

∂T

)
P

= −S

results in
V
αdP − SαdT = V

βdP − SβdT
Since this expression is in equilibrium, it is appropriate to evoke

∆tS = ∆tH

T
where it follows that

dP
dT = ∆tH

T∆tV

c) dP
dT evaluates to:

9950 J mol−1

(278.68 K)(10.3 cm3 mol−1)

(10 cm
1 dm

)3(0.08206 dm3 atm mol−1 K−1

8.314 J mol−1 K−1

)
= 34.2 atm K−1
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Taking the reciprocal
dT
dP = 0.0292 K atm−1

�

Problem 104. A chemical reaction is at equilibrium, according to its equi-
librium constant, K. It is possible to estimate the equilibrium constant
at temperatures other than standard conditions by using the enthalpy of
reaction ∆H◦rxn and the van’t Hoff equation.
a) First, show that the expression

∆Grxn = ∆G◦rxn +RT log(Q)
follows from the definition

dG =
∑

J
µJdnJ

Recall that µJ = µ◦J +RT log(aJ) where µJ and aJ are the chemical potential
and activity of species J, respectively. Furthermore, the extent of reaction ξ
can be defined by the expression dnJ = νJdξ where νJ is the stoichiometric
number of species J.

b) Derive the van’t Hoff equation
d(logK)
d(1/T ) = −∆H◦rxn

R

by taking the derivative with respect to temperature of ∆Grxn = ∆G◦rxn +
RT logQ at equilibrium standard conditions. Use the Gibbs-Helmholtz equa-
tion

d(∆G◦rxn/T )
dT = −∆H◦rxn

T 2

in your derivation.

c) Consider the synthesis of ammonia at 298 K
N2(g) + 3H2(g)
 2NH3(g) K = 6.1× 105

and using the van’t Hoff equation, estimate the equilibrium constant at
500 K. Take ∆H◦rxn = −92.2 kJ mol−1 and assume it is constant over this
temperature range.

Solution. a) Express the infinitesimal change in Gibbs free energy in terms
of extent of reaction ξ

dG =
∑

J
µJdnJ =

(∑
J
νJµJ

)
dξ
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It follows that
∆Grxn =

(
∂G

∂ξ

)
P,T

=
∑

J
νJµJ

Substituting the chemical potential of species J

∆Grxn =
∑

J
νJµ
◦
J +RT

∑
J
νJ log(aJ) = ∆G◦rxn +RT

∑
J

log(aνJ
J )

where the identity a log x = log xa has been used. Finally, evoking the
identity log x + log y + ... = log(xy . . . ) results in

∆Grxn = ∆G◦rxn +RT
∏
J
aνJ

J = ∆G◦rxn +RT log(Q)

where
Q =

∏
J
avJ

J

b) Taking the derivative with respect to T of the following

logK = −∆G◦rxn
RT

which results in
d logK

dT = − 1
R

d(∆G◦rxn/T )
dT

Substitute the Gibbs-Helmholtz equation
d logK

dT = ∆H◦rxn
RT 2

The required form of the van’t Hoff equation can be obtained by substituting
the following identity

d(1/T )
dT = − 1

T 2 so dT = −T 2d(1/T )

c) Integrate the result of part (b) assuming constant standard enthalpy of
reaction

logK2 − logK1 = − 1
R

∫ 1/T2

1/T1
∆H◦rxnd(1/T ) = −∆H◦rxn

R

( 1
T2
− 1
T1

)

logK2 = log(6.1×105)− (−92.2× 103 J mol−1)
8.3145 J K−1 mol−1

( 1
500 K −

1
298 K

)
= −1.71

Thus
K2 = 0.18

�

Problem 105. Consider the chemical equilibrium reaction under standard
conditions

H2(g)
 H(g) + H(g)
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By what factor is the rate of the reverse reaction greater than that of the
forward? Take the chemical potential of monatomic hydrogen gas µ◦H to be
203.26 kJ/mol.

Solution.
∆Grxn(T, P ) =

∑
J
νJµJ

2(203.26 kJ/mol)− 1(0) = 406.52 kJ/mol
∆G◦rxn(T, P ) = −RT logKeq = 406.52× 103 kJ/mol

Keq = K+
K−

= 5.5× 10−72

The reverse reaction occurs at a rate on the order of 1072 times faster (under
standard conditions). �

Problem 106. Consider the following situation: (a) LetK = exp
(
−∆G◦rxn
kBT

)
.

If Kw = 10−14 at RT, will Kw be greater or less than 10−14 at T = 0◦C?
(b) At a different temperature Kw = 6.3× 10−13. Find pH of neutral water
at this temperature. (c) Relate pH and pOH using the value of Kw given in
the previous step.

Solution. (a) K ∝ 1
ex , so it will be lower since the argument of the expo-

nential will be larger.
(b) Kw = [H+][OH−] = [H+]2
pH =-log[

√
6.3× 10−13] = 6.10

(c) pH + pOH = 12.2 �

Problem 107. Liquid helium and liquid argon are both cryogenic fluids;
He(l) boils at 4.21 K, and Ar(l) boils at 90.2 K. The specific heat of liquid
helium near its boiling point is 4.25 J.K−1.g−1, and the specific heat of liquid
argon near its boiling point is 1.12 J.K−1 g−1. The enthalpy of vaporization
of He(l) is 25.1 J.g−1, and the enthalpy of vaporization of Ar(l) is 161.1 J.g−1.
Discuss which is a better coolant near its boiling point and which is better
at its boiling point.

Solution. Near the boiling point, the larger the specific heat the better the
coolant. It takes more energy from whatever is cooled in order to raise its
temperature, thus better cooling the other substance. Thus, He is the better
coolant near its boiling point.
At the boiling point, the larger the enthalpy of vaporization the better the
coolant as it takes more energy from whatever is cooled for it to vaporize.
Therefore, Ar is the better coolant at its boiling point. �

Problem 108. Find the ∆H◦f and ∆U◦f for SiH4(g) from its elements at
298 K, if 0.17 L of the compound at 298 K and P=0.981 bar is burned in a
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constant-volume calorimeter in an excess of oxygen and causes the evolution
of 9.757 kJ of heat. The reaction is:

SiH4(g) + 2O2(g)→ SiO2(s, quartz) + 2H2O(l)
and the formation of silane from its elements is:

Si(s) + 2H2(g)→ SiH4(g)

Solution.

n = PV

RT
= (0.968 atm) · (0.17L)

(0.082057 L.atm/mol.K)(298 K) = 0.00673 mol

9.757 kJ / 0.00673 mol = 1450 kJ/mol = ∆H◦C

∆H◦C = 2∆H◦f (H2O(l)) + ∆H◦f (SiO2(s, quartz))−∆H◦f (SiH4(g))
∆H◦f (SiH4(g)) = (2×−285.83 kJ/mol)+(−910.94 kJ/mol)−(−1450 kJ/mol)
∆H◦f (SiH4(g)) = −32.8 kJ/mol
∆H◦f = ∆U◦f + ∆nfRT , ∆nf = 1− 2 = −1
∆U◦f = ∆H◦f −∆nfRT = −32.8 kJ/mol− (−1× 8.314 J/mol.K× 298 K×
(1 kJ/1000 J)) = −30.3 kJ/mol �

Problem 109. A container with 3 moles of ideal gas initially has a pressure
and temperature of 5 atm and 300 K, respectively. Through an isothermal
irreversible expansion against a constant pressure of 1 atm its final volume
becomes 62 L. (a) Find the work done in the process. (b) Find the work
done if the expansion had been done reversibly. (c) Why are (a) and (b)
different?

Solution. We start with dw = −PextdV . For a reversible process, Pext = P
(a)

wirrev = −Pext∆V = -(1 atm)(62 L - 14.8 L) = -47.2 atm L
(b)

wrev = −nRT log(V2/V1) = −105.8 atm.L
(c) Work is not a state function. The reversible work will always be greater.

�

Problem 110. (a) If an ideal gas is reversibly heated in such a way that its
volume is exponentially dependent on the temperature (V = [1.3 L]e(0.01 K−1)T),
what is the relationship between pressure and temperature? Find the work
done by the system during an isothermal expansion from V1 to V2. (b)
What is the change in the internal energy of a system with 3 moles that is
heated from 100 K to 250 K? Would it be different or equal if the heating
had been done through a non-reversible process?
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Solution. (a)

P = nRT

V
= nRT

1
[1.3 L]e(0.01 K)T = nRT

1.3 e−(0.01 K−1)T .

In this case, dT = 0 implies dV = 0 so the expansion work is zero.
(b)

dU = CvdT = (3/2)nRTdT,

∆U =
∫ 250

100
(3/2)(3)RTdT = (9/2)R(250 K− 100 K) = 5612.3 J.

The change in U would be the same for both paths. �

Problem 111. Calculate ∆H◦ and ∆G◦ at 25◦C for the reaction:
3Fe2O3(s)→ 2Fe3O4(s) + (1/2)O2(g)

Which of the two oxides is more stable at 25◦ C and PO2=1 atm?

Solution.
Kp = (PO2)1/2

∆G◦
[
(1
2 mol)(0) + (2 mol)(−1014.2 kJ/mol)

]
−[(3 mol)(−741.0 kJ/mol)]

= 195 kJ > 0
The process is not spontaneous as written. Therefore, Fe2O3(s) is the more
”stable” of the two iron oxides. �

Problem 112. The molar enthalpy of fusion of ice at 0◦C is 6.02 kJ/mol.
The molar heat capacity of supercooled water is 75.3 J/mol/K. One mole
of supercooled water at -10◦C is induced to crystallize in a heat-insulated
vessel. The result is a mixture of ice and water at 0◦C. What fraction of
this mixture is ice? What is ∆S for the system?

Solution. The freezing of metastable supercooled water is certainly a spon-
taneous and irreversible process. The transformation can be thought of as
two separate reversible processes.
1. l(-10◦ C) → l(0◦ C) “heat is required”
2. l(0◦ C) → s(0◦ C) “heat is evolved”

Because the system is thermally isolated from the surroundings, Q = 0.
Therefore, the heat required to raise the temperature of the liquid from
-10◦ C to 0◦ C equals the heat evolved from the fusion of the ice. i.e.
q1 = −q2. Therefore,

q1 = nC̃p∆T = (1.00 mol)(75.3 J/K.mol)(10 K) = 733 J
q2 = n∆H̃fus
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but the magnitude of q1 and q2 are equal. So,

n = q2

∆H̃fus

= 753 J
6.02× 103 J/mol = 1.25× 10−1 mol

(amount of ice formed)

%ICE = 1.25× 10−1 mol frozen
1.00 mol total × 100 = 13%

∆S1 = nC̃p log Tf
Ti

= (1.00 mol)(75.3 J/mol) log
(273

263

)
= 2.81 J/K

∆S2 = −(n)∆H̃fus

Tfus
= −(1.25× 10−1 mol)(6.02× 103 J/K.mol)

273 K
= −2.76 J/K

∆Stotal = 2.81 J/K + (−2.76 J/K) = 5× 10−2 J/K
Small, but still greater than zero. �

Problem 113. At 1200 K and in the presence of solid carbon, an equilib-
rium mixture of CO and CO2 contains 98.3 mol percent CO and 1.69 mol
percent CO2 with the total pressure at 1 atm. What are PCO and PCO2 ,
what is the equilibrium constant, and what is ∆G◦ associated with the re-
action CO2(g) + C(graphite)
 2CO(g) at 1200 K?

Solution.

Kp = P 2
CO

PCO2

= (0.983 atm)2

(1.69× 10−2 atm) = 57.2 atm

∆G◦ = −RT logKp = −(8.315)(1200) log(57.2) J/mol = 40, 376 J/mol
= 40.4 kJ/mol

�

Problem 114. Part (1): Calculate the standard free-energy change and the
equilibrium constant for dimerization of NO2 to N2O4 at 25◦ C.
Part (2): Calculate ∆G for this reaction at 25◦ C when the pressure of NO2
and N2O4 are each held at 0.01 atm. Which way will the reaction tend to
proceed?

Solution. Part (1):

∆G◦ = [(1 mol)(98.3 kJ/mol−1)]− [(2.00 mol)(51.8 kJ/mol)]
= −5.3 kJ/mol of N2O4

Kp = e−∆G◦/RT = e−(5.3 kJ/mol)(1000 J/kJ)/(8.315 J/K.mol)(298 K) = 8.50
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Part (2):

Q = PN2O4

P 2
NO2

= (0.01 atm)
(0.01 atm)2 = 100 atm−1

∆G = ∆G◦ +RT log Q

1 atm = −5.3× 103 J/mol + (8.315)(298) log(100)

= 6.1 kJ/mol > 0
not spontaneous! Reaction shifts back toward reactants. �





Chapter 7

Chemical Kinetics

Chemical reactions proceed at different rates, depending on the chemical
species reacting together and on the conditions of the reaction. The study
of chemical kinetics involves the construction of models of chemical reac-
tions and the validation of such models against experiments. A model for a
chemical reaction consists of the following parts:

• A mechanism. This is a set of elementary chemical reactions to describe
how reactants form intermediates, intermediates combine with one an-
other and reactants, and ultimately products are produced.

• A set of rate equations. These are differential equations corresponding to
the reaction mechanism and giving the rates of change of all reactants,
intermediates, and products.

• A set of integrated rate equations. These show the concentrations as
functions of time for reactants, intermediates, and products. They are
obtained by integrating the rate (differential) equations.

The criterion for an acceptable theoretical model is that it agrees with ex-
perimental observations of measured time varying concentrations. When a
theoretical chemist finds an acceptable model he says he “understands” the
reaction.
If we know the reaction mechanism (i.e. the elementary steps of a reaction)
we can write down the rate law. Otherwise, we may not have the reaction
mechanism but instead only a net reaction; in this case, the rate law must
be determined experimentally.

363
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7.1. Order of Reaction

Many chemical reactions you will encounter are net reactions. For example,
5Fe2+(aq) + MnO−4 (aq) + 8H3O+(aq)→ 5Fe3+(aq) + 12H2O(l) + Mn2+(aq)
is a net reaction because the left hand side appears to imply that 5 ions
Fe2+ collide with 1 ion MnO−4 simultaneously to form the stated products.
This is not possible. Usually, collisions are binary. Many-body collisions are
rarely observed due to their unlikely occurrence1; at most, 3-body collisions
are observed experimentally. Reactions involving only 1 body are possible
in the case of a decomposition reaction or radioactive decay.
From knowledge of a net reaction we cannot determine the order of the
reaction by inspection of the balanced equation. Instead, experiments must
be carried out to determine its order. The rate of the reaction will be
proportional to

rate of forward reaction ∝ [Fe2+]α[MnO−4 ]β[H3O+]δ,
rate of backward reaction ∝ [Fe3+]γ [Mn2+]ζ [H2O]ξ,

where α, β, δ, γ, ζ, ξ are non-negative constants (not necessarily integers)
which are determined from experimental data. The order of the reaction
is the sum α + β + δ or γ + ζ + ξ. Sometimes we speak of the order with
respect to a particular species. For example, the reaction is of order α with
respect to [Fe2+].
The above reaction instead proceeds through a series of elementary steps
(path) involving binary collisions (sometimes elementary steps can involve
3-body collisions). Some of these steps include (this list is not complete):

Fe2+(aq) + MnO−4 (aq)→ Fe3+(aq) + MnO2−
4 (aq)

MnO2−
4 (aq) + H3O+(aq)→ HMnO−4 (aq) + H2O(l)

HMnO−4 (aq) + Fe2+(aq)→ HMnO2−
4 (aq) + Fe3+(aq).

A series of elementary steps is called the reaction mechanism. It is generally
quite challenging to determine the nature of the reaction mechanism because
these involve reaction intermediates that are produced and consumed im-
mediately. In the above reaction mechanism the ions MnO2−

4 and HMnO−4
are reaction intermediates. The short-lived nature of reaction intermediates
poses a problem from the standpoint of experimental techniques. Currently,
chemists employ a combination of experimental techniques together with
results from ab initio calculations to provide insights into reaction mecha-
nisms.

1Such reactions are unlikely because they required the simultaneous collision of many different
molecules, which is much less likely to occur than binary collisions.
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7.2. Reaction Order from Experiments

The order of the reaction can be determined from experiments by plotting
reaction rate vs concentration of reactants or products. If a reaction is
known to be an elementary step, then its order can be read off from the
stoichiometric coefficients by writing down these coefficients as exponentials
(similarly to the procedure we use for writing down equilibrium constants).
Some decomposition reactions are first order:

N2O5(g)→ 2NO2(g) + 1
2O2(g).

It is found from experiments that the rate of the forward reaction is k[N2O5],
where k (the rate constant) is determined from the slope of a reaction rate
vs concentration plot, so it is first order. The rate constant, k, is a quantity
that depends on temperature, as we will see in the next lecture.
In general, a reaction that depends on a single reactant, aA → products,
has a rate proportional to the reactant concentration raised to a power n:

rate = k[A]n,
where n may be different from a. n must be determined from experiments.
For example, the rate of C2H6(g)→ 2CH3(g) is found to be k[C2H6]2 from
experiments. This is a second order reaction. Some reactions are indepen-
dent of reactant concentrations (rate=k). Fractional order is also possible.
An example is the decomposition of CH3CHO which is found from experi-
ments to be of order 3/2, i.e., rate=k[CH3CHO]3/2.

Reaction Order is Derived from Experimental Data: In
the simplest cases (e.g. reaction rate depends on only 1 reactant),
it is easy to determine the reaction order from a small number of
data points. See, for example, Oxtoby [1], Example 18.1. In the
general case, you need to fit the reaction rate expression as func-
tion of concentration for each reactant (or product) concentration.
The measurement of reaction rates involves measuring reactants as
function of time. The “rate” d[A]/dT is the time derivative of the
concentration of [A] and is obtained from a plot of [A] vs time.

If there is more than 1 chemical species involved, such as aA + bB →
products, the rate depends on more than one exponent, namely rate =
−(1/a)d[A]/dt = k[A]m[B]n, where m,n are exponents to be determined
experimentally. The overall order of the reaction is m+ n.
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7.3. The Reaction Rate

Suppose we have a reaction of the type
∑
i νiAi = 0, where νi are the

stoichiometric coefficients (negative on the reactant side, and positive on
the products side) and Ai are the chemical species. IUPAC defines the “rate
of reaction” as ξ̇ ≡ dξ

dt = 1
νi

dni
dt , where ni is the number of moles of species

Ai and ξ is called the “extent of the reaction”. For example,
N2 + 3H2 
 2NH3

The reaction rate is:

ξ̇ = 1
2

d[NH3]
dt = −d[N2]

dt = −1
3

d[H2]
dt .

7.3.1. First order reaction: example. A first order reaction is a reac-
tion whose rate law is of the form:

−d[A]
dt = k[A]

where k is a rate coefficient.
For example, the following reaction

2N2O5 → 4NO2 + O2

has a rate law that is found to be:

−1
2

d[N2O5]
dt = k[N2O5]

The rate law can be integrated if we rewrite it in the form (constants such
as ‘2’ can be absorbed in the definition of k):

d[A]
[A] = −kdt

to get ∫ [A](t)

[A]0

d[A]
[A] = −k

∫ t

0
dt ⇒ log[A](t)− log[A]0 = −kt

⇒ log
( [A](t)

[A]0

)
= −kt ⇒ [A](t) = [A]0e−kt

In Fig. 7.1, the concentration as function of time (left) and log concentration
vs time (right) are shown. On a semilog plot,

log[A](t) = log[A]0 − kt

the graph of log[A](t) vs t is a straight line with slope −k and intercept
log[A]0.
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Thus, an experimental measurement of [A](t) vs time will yield the initial
concentration [A]0 by extrapolating to t = 0 and the rate constant k from
the slope. The rate constant is a basic property of every chemical reaction.

Figure 7.1. A first order reaction leads to exponential decay of initial
reactant concentrations with time (left). On a semi-log plot (right), the
exponential decay appears as a straight line.

The half-life is defined by the time t for which [A](t)/[A]0 = 1
2 . That is,

1/2 = e−kt, or
t1/2 = log(2)/k.

7.3.2. Second Order Reaction: Examples. An example of a second-
order reaction is

2ClO− → 2Cl− + O2(g)
which is found experimentally to obey the rate law:

−d[ClO−]
dt = k[ClO−]2.

This is an equation of the form:

−d[A]
dt = k[A]2, or − d[A]

[A]2 = kdt.

Integrating,

−
∫ [A](t)

[A]0

d[A]
[A]2 = k

∫ t

0
dt.

which gives:
1

[A](t) = 1
[A]0

+ kt.

Plotting 1
[A](t) vs time gives a straight line with slope k and intercept 1

[A]0 ,
as shown in Fig. 7.2.
Another type of second-order reaction is a reaction

aA + bB→ products.
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Figure 7.2. For second order reactions, the inverse of [A](t) decays
linearly with time from some initial concentration [A]0.

whose rate is of the form
rate = k[A][B]

i.e.
−1
a

d[A]
dt = −1

b

d[B]
dt = k[A][B].

For example,
S2O2−

8 + 2I− → 2SO2−
4 + I2

whose rate law is found experimentally to be:
d[S2O2−

8 ]
dt = −k[S2O2−

8 ][I−]

7.4. Measurement Methods

In order to study reaction kinetics we need analytical techniques that will
report on concentrations of different chemical species as function of time.
In general, we may not know what the stoichiometry of the overall reaction
is (which is the sum of all the steps in the reaction mechanism). When
the stoichiometry is known, we can write down the equilibrium constant.
Sometimes, we don’t know what all the products are.
Chemical analysis can be done using gravimetric or volumetric techniques,
which can be made specific to one or more reactants or products. Chemical
analysis is generally slow and can perturb the reaction itself, as it involves
withdrawing a physical sample from the system. Separation of chemicals can
be done via chromatography, gel electrophoresis, or capillary electrophoresis,
followed by analysis of the separated species.
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Physical methods, such as pressure or volume measurements (without sam-
ple extraction and analysis), can be much more rapid than chemical meth-
ods. Suppose that a reaction is carried out in a vessel of fixed volume:

2NO2 → 2NO + O2.

The reaction (in the forward direction) produces two moles of product for
every mole of reactant, leading to an increase in the pressure inside the
vessel. If the gas mixture is ideal, we may invoke the ideal gas law to relate
the concentration of chemical species to the pressure inside the vessel:

d[O2]
dt = 1

2
d[NO]

dt = −1
2

d[NO2]
dt = 1

V

dntotal
dt = 1

RT

dP
dt .

The last equality follows from the ideal gas law. The previous equality
follows from:

ntotal = nO2 + nNO + nNO2 ,

stoichiometry
∆nNO2 = −1

2∆nO2 and ∆nNO = 1
2∆nO2 ,

and
dntotal

dt = dnO2

dt + dnNO
dt + dnNO2

dt = dnO2

dt (1 + 1
2 −

1
2) = dnO2

dt .

Pressure measurements (e.g., with strain gauges) take on the order of a
millisecond, so while the method is faster than chemical methods, it is slower
than optical methods. We can also work at constant pressure by allowed the
gas in a vessel expand through a piston and monitor volume changes. The
total volume is the sum of the partial volumes of the species present.
Electrochemical methods can also be used to monitor the course of a reac-
tion. For example, the electrical conductivity of the following solution will
vary as the reaction proceeds:

C2H5Cl + 2H2O→ C2H5OH + H3O+ + Cl−.
Finally, spectroscopic methods are commonly used to monitor reactions:
electron spin resonance (ESR), nuclear magnetic resonance (NMR), mass
spectrometry, and optical spectroscopy (ultraviolet, IR and visible). Other
methods such as light scattering, optical rotation, flash photolysis, pulse
radiolysis and relaxation have been used. Spectroscopic methods are chem-
ically selective and report on the various chemical species. ESR, NMR and
optical methods rely on the absorption of radiation (microwave, radiofre-
quency, optical photons) at different wavelengths to probe various chemical
groups. Optical methods are generally the fastest ones (down to picoseconds
and femtoseconds).
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7.4.1. Steady State, Elementary Reactions of the Type aA + bB

cC + dD. In general, “steady state” and “equilibrium” are not equivalent.
The term steady state means that time derivatives of observable quantities
are zero. Steady state often implies equilibrium. However, some steady
states are not equilibrium states. For example, a fluid flowing at constant
velocity is by no means an equilibrium state. However, it is a steady state
because the velocity, an observable quantity, is constant. Equilibrium refers
to thermal equilibrium, which is the point where the differential of G is zero.
Let’s look at an example of a steady state. Suppose we have the elementary
reaction

aA + bB
kf



kr
cC + dD.

Its rate is the sum of two terms. The first term describes the rate of depletion
of A while the second term describes the rate of production of A:

−ξ̇ = 1
a

d[A]
dt = 1

b

d[B]
dt = −1

c

d[C]
dt = −1

d

d[D]
dt = −kf [A]a[B]b + kr[C]c[D]d.

At steady-state (ξ̇=0), the rates of the forward and backward reactions are
equal:

kf [A]aeq[B]beq = kr[C]ceq[D]deq.

This is also known as the principle of detailed balance. And sinceK ≡ kf/kr,

K ≡ kf
kr

=
[C]ceq[D]deq
[A]aeq[B]beq

.

An example of such an elementary reaction is:

H2 + I2

kf



kr
2HI.

Its rate is:
−ξ̇ = d[I2]

dt = −kf [H2][I2] + kr[HI]2.

At equilibrium, d/dt=0, the steady-state gives the equilibrium constant:

K ≡ kf
kr

=
(

[HI]2

[H2][I2]

)
eq

.

7.4.2. Reaction Order, From Elementary Reactions. If the elemen-
tary steps are known, then the reaction order is known. For example, the
elementary step

N2O5
∗(g)

k
→NO2(g) + NO3(g)
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is first order (asterisk denotes an excited state) and its rate is k[N2O5
∗]1.

Likewise, the elementary step

NO(g) + O3(g)
k
→NO2(g) + O2(g)

yields a second order reaction whose rate is k[NO]1[O3]1. It is second order
because the exponents add up to 1 + 1 = 2.

7.4.3. Net Reactions vs Reaction Mechanism: Example 1. As a
reminder, the reactions we usually write are net reaction, e.g.,

NO2(g) + CO(g)→ NO(g) + CO2(g), (*)
whose order is unknown without data from experiments. However, if the
elementary steps are know, we can determine the order. In this particular
case, the reaction mechanism is known. It involves the following steps:

NO2(g) + NO2(g)→ NO3(g) + NO(g) (slow)
NO3(g) + CO(g)→ NO2(g) + CO2(g) (fast).

You can check that adding these two reactions yields the net reaction (∗).
NO3 is a reaction intermediate because it is produced then consumed in the
subsequent step and does not show up in the net reaction.

7.4.4. Net Reactions vs Reaction Mechanism: Example 2. Suppose
we have an overall reaction:

2NO(g) + 2H2(g)
 N2(g) + 2H2O(g)
whose elementary steps describe a series of binary collisions shown below.
You can check that adding these 3 equations together yields the overall
reaction (we indicate which terms cancel out - those are the reaction inter-
mediates).

NO(g) + NO(g)
k1



k−1
��

���N2O2(g)

��
���N2O2(g) + H2(g)

k2



k−2
���

�N2O(g) + H2O(g)

���
�N2O(g) + H2(g)

k3



k−3
N2(g) + H2O(g)

At equilibrium, we take the rate laws and set ξ̇ = 0. This results in detailed
balance:

k1[NO]2eq =k−1[N2O2]eq

k2[N2O2]eq[H2]eq =k−2[N2O]eq[H2O]eq

k3[N2O]eq[H2]eq =k−3[N2]eq[H2O]eq
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We also know that the equilibrium constants are equal to the ratio of the
forward and reverse reaction rate constants:

K1 = [N2O2]eq
[NO]2eq

= k1
k−1

, K2 = [N2O]eq[H2O]eq
[N2O2]eq[H2]eq

= k2
k−2

,

K3 = [N2]eq[H2O]eq
[N2O]eq[H2]eq

= k3
k−3

.

We also know that adding reactions together leads to the multiplication of
its equilibrium constants. Let’s verify that this gives the correct equilibrium
constant for the overall reaction:

K = K1K2K3 = k1k2k3
k−1k−2k−3

=��
���[N2O2]eq

[NO]2eq

���
�[N2O]eq[H2O]eq

���
��[N2O2]eq[H2]eq

[N2]eq[H2O]eq

���
�[N2O]eq[H2]eq

=
[H2O]2eq[N2]eq

[NO]2eq[H2]2eq

as it should.
This suggests that the rate of the forward net reaction is the product (or at
least, proportional to the product) of forward rates of the elementary reac-
tions, k1k2k3, whereas the rate of the backward net reaction is the product
k−1k−2k−3.

7.4.5. Elementary Reactions: Single Reactions. When writing down
rates of reactions for a chemical species, we first need to identify which
reactions this species is involved in, and add a term describing the production
or depletion of this species according to the rate constant. In other words,
every arrow that points towards or away from the species will correspond
a term in the rate equation. This is best explained by looking at many
examples.
The rate of the reaction

A
k
→ B,

which describes the unidirectional depletion of A is:

−ξ̇ = d[A]
dt = −k[A].

There is only one term because the reaction is unidirectional. There is
only 1 arrow that points away from A and no arrows that point toward A.
Thus, only 1 term is needed. This term, −k[A], describes the depletion of
A (conversion of A to B). It is proportional to the rate constant k, and to
[A] (the concentration of A), because this elementary reaction describes a
“1-body collision” (i.e. this could describe the decay of a molecule from an
excited state to a ground state, or the folding of a protein). Hence, the
negative sign.
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If the reaction were two-sided,

A
k1



k2
B,

we would need 2 terms in the rate equation. One term describing the deple-
tion of A, with a negative sign and rate constant k1, and one term describing
the production of A, with a positive sign and rate constant k2:

−ξ̇ = d[A]
dt = −k1[A] + k2[B].

The first term is proportional to the concentration of A because this ele-
mentary reaction describes a “one-body collision” involving only 1 molecule
of A. Also, if there were no amount of A, we wouldn’t be producing any
B; similarly, the second term is proportional to B, as we need a nonzero
concentration of B in order to produce A in the reverse reaction.
A unidirectional reaction

A + B
k
→ C + D,

only describes the depletion of A. In order to deplete A, we need a “two-body
collision” involving 1 molecule of A colliding with 1 molecule of B. Thus, the
rate should be proportional to the product [A][B], since the concentrations
describe the probabilities of finding a molecule of A (or B) within a given vol-
ume element, and the product of [A] and [B] describes the joint probability
of finding 1 molecule of A and 1 molecule of B in the same volume.
The rate contains only 1 term. This term has a negative sign, because it
describes the depletion of A:

d[A]
dt = −k[A][B].

A bidirectional reaction
A + B

kf



kr
C + D,

now describes both the depletion of A (in the forward reaction) and the
production of A (in the reverse reaction). The first event proceeds at a rate
kf [A][B] while the second event happens at the rate kr[C][D]. The rate law
is:

d[A]
dt = −kf [A][B] + kr[C][D].

7.4.6. Elementary Reactions: Simultaneous Reactions. Suppose we
have two simultaneous reactions:

A
k1
→ B and A

k2
→ C,
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Both reactions describe the depletion of A. The rate of the reaction is:

−ξ̇ = d[A]
dt = −k1[A]− k2[A].

7.4.7. Elementary Reactions: Reversible Reactions. A reversible re-
action

A + B
kf



kr
C + D.

can be viewed as two simultaneous unidirectional forward reactions:

A + B
kf
→ C + D,

C + D
kr
→A + B.

We can write down the rate for each reaction. The first reaction describes
the depletion of A at a rate kf [A][B] while the second reaction describes the
production of A at a rate kr[C][D]. Summing up these two rates gives:

d[A]
dt = −kf [A][B] + kr[C][D].

7.4.7.1. Elementary Reactions: Consecutive Reactions. Consider the con-
secutive elementary reactions:

A
k1
→ B

k2
→ C,

A rate analysis yields:
d[A]
dt = −k1[A], d[B]

dt = k1[A]− k2[B] and d[C]
dt = k2[B].

Consider the following variant:

A
k1
→ B

k2



k−2
C,

The rate laws would be:
d[A]
dt = −k1[A], d[B]

dt = k1[A]−k2[B]+k−2[C] and d[C]
dt = k2[B]−k−2[C].

Another variant of the above reaction could be:

A
k1



k−1
B

k2



k−2
C.
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The rate laws would be:
d[A]
dt =− k1[A] + k−1[B],

d[B]
dt =k1[A]− k2[B]− k−1[B] + k−2[C]

d[C]
dt =k2[B]− k−2[C].

7.4.8. Series of Unidirectional Steps. We have to be slightly careful
when the same chemical species appears on both sides of the same reaction.
Suppose we have the following reaction mechanism:2

A + X
k1
→ 2X (step 1)

X + Y
k2
→ 2Y (step 2)

Y
k3
→ Z (step 3)

The rate laws are:
d[A]
dt =− k1[A][X],

d[X]
dt =k1[A][X]− k2[X][Y],

d[Y]
dt =k2[X][Y]− k3[Y],

d[Z]
dt =k3[Y].

In the rate equation for [X], there are two terms. The first term follows
from step 1 (forward direction) and describes the production3 of X from
the reactants of step 1. The production of X enters with a positive sign.
The second term describes the depletion of X as a result of step 2 (forward
direction). The depletion of X enters with a negative sign. Notice that there
is no term of the form −k−1[X]2 because step 1 is unidirectional.
In the rate equation for [Y], there are two terms, k2[X][Y] and −k3[Y]. These
follow by inspection of steps 2 and 3: step 2 describes the production of Y,

2This mechanism normally assumes that the concentration of reactant A is much larger than its
equilibrium value. Another assumption is that the forward rates are much larger than the reverse
rates. Thus, the reverse rates are negligible.
3It should be clear that step 1, A+X→ 2X, describes the production of X. This reaction describes
the transformation of A into X, so X is indeed being produced. Another way to think about it is to
manipulate the chemical reaction as an equation: subtracting 2X on both sides gives, A−X→ 0,
whose negative sign on the reactants side reminds us that A isn’t being consumed in the forward
direction, but produced instead.
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which depends on the forward reaction. This leads to the term k2[X][Y].
Note that there is no term of the form −k−2[Y]2 because the reaction is in
the forward direction only. The second term −k3[Y] describes the depletion
of Y as a result of its transformation into Y and follows from step 3. Notice
that there is no term of the form +k−3[Z] because step 3 is unidirectional
(forward direction only).
The lesson here is to be careful when you see a species appear on both sides
of a reaction. Make sure you get the sign right, depending on whether the
species is depleted or produced. Another example is:

A + 2X
k
→ 3X

Again, this reaction describes the production of X in a 3-body collision.
This sign can be seen by subtracting 3X on both sides (so that X shows
up only on 1 side of the equation, but not on the other);4 the X appears
with a negative sign on the reactants side, implying that X is produced not
depleted. The reactants side, A+2X, shows that this is a 3-body collision
involving 1 molecules of A and 2 molecules of X; thus, its rate is proportional
to +k[A][X]2, not −k[A][X]2.

7.5. Tricks for Writing Down Rate Laws

Let’s look at some techniques that help us write down rate laws when given a
reaction mechanism. Examples are given below. This is far from a complete
survey of all techniques. In general, we must look at the reaction mechanism
(if it is available to us) and analyze it on a case-by-case basis.

7.5.1. Rate-Determining Steps. In many reactions, there is often one
step that is significantly slower than all other steps. In this case, the rate
of the reaction can be taken to be equal to the rate of the slowest step.
Suppose that an overall reaction is:

2NO2(g) + F2(g)→ 2NO2F(g)
and suppose that the reaction mechanism is:

NO2(g) + F2(g)
k1
→ NO2F(g) + F(g) (slow)

NO2(g) + F(g)
k2
→ NO2F(g) (fast)

4The purpose of this is simply to see if X is produced or depleted. Alternatively, you can also
subtract 2X on both sides to get A→ X, which shows that X is produced. This does not imply
that the rate is k[A] instead of k[A][X]2.



7.5. Tricks for Writing Down Rate Laws 377

The first step is the slow step (suppose that we know this from experiments).
It is called the rate-limiting step. The rate of the overall reaction is deter-
mined by this slow step, k1[NO2][F2]. Note: the rate is not obtained from
the net reaction as ∝ [NO2]2[F2] because the net reaction does not allow us
to determine the rate or order.

7.5.2. Fast Equilibrium. In the above section, the elementary steps were
unidirectional. Suppose we have bidirectional steps. If one of the reactions
happens to be in “fast equilibrium”, we can use this information to solve for
concentrations. For example, the overall reaction

2NO(g) + O2(g)→ 2NO2(g)
proceeds according to the mechanism:

NO(g) + NO(g)
k1



k−1
N2O2(g), (fast equilibrium)

N2O2(g) + O2(g)
k2



k−2
2NO2(g). (slow)

Since the slow step determines the overall rate we have:
rate = k2[N2O2][O2].

However, N2O2 doesn’t appear in the net reaction. We can express this in-
termediate’s concentration in terms of NO concentration using the condition
for fast equilibrium. The fast equilibrium condition is:

K1 = k1
k−1

= [N2O2]
[NO]2 , [N2O2] = K1[NO]2, rate = k2K1[NO]2[O2].

We note that the order here is the same as that of the net reaction. This is
a coincidence and may not be the case in general.

7.5.3. Steady-State Approximation. If there is no step that is much
slower than the others, another trick we can use is the steady-state approx-
imation. This requires a reaction intermediate and we assume that this
intermediate’s concentration remains constant through the reaction. This
assumption is reasonable because intermediates are rapidly produced and
consumed. Therefore, they rapidly reach a steady-state concentration, which
enables us to assume their concentration is constant.

Suppose that the net reaction
N2O5 → 2NO2 + 1

2O2
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proceeds according to the mechanism:

N2O5(g) + M(g)
k1



k−1
N2O∗5(g) + M(g) (step 1)

N2O∗5(g)
k2
→ NO3(g) + NO2(g) (step 2)

NO3(g) + NO2(g)
k3
→ NO(g) + NO2(g) + O2(g) (step 3 - fast)

NO3(g) + NO(g)
k4
→ 2NO2(g) (step 4 - fast)

A reaction intermediate is N2O∗5. Shortly after the start of the reaction,
the concentration of the intermediate reaches a steady state. (Since they
don’t appear in the net reaction, intermediates can’t be easily detected,
mainly because they are short-lived, as they are rapidly consumed after
being produced.) This means we can set its time derivative equal to zero:

d[N2O∗5]
dt = k1[N2O5][M]− k−1[N2O∗5][M]− k2[N2O∗5] = 0.

This gives an algebraic equation which enables us to solve for the steady
state concentration:

[N2O∗5] = k1[N2O5][M]
k2 + k−1[M]

Using the rate law for step 2, we can write the rate of the overall reaction
as:

rate = 1
2

d[NO2]
dt = k2[N2O∗5] = k1k2[N2O5][M]

k2 + k−1[M] .

We note that the factor of 1/2 here has been absorbed in the definition of
k2 (this is how the textbook of Oxtoby [1] does it).

7.5.4. Steady State, Elementary Reactions of the Type A
B. Con-
sider the simple reaction,

A
kf



kr
B,

where kf is the rate constant of the forward reaction and kr is the rate
constant of the backward reaction.
Suppose that we start with only species A present at time t = 0. Thus,
there is a relationship between the concentrations of A and B at all times:

[B](t) + [A](t) = [A]0.
If this is an elementary reaction, the rate of the reaction is the sum of two
terms. The first term describes the rate of depletion of A while the second
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term describes the rate of production of A:

−ξ̇ = d[A]
dt = −kf [A] + kr[B] = −kf [A] + kr ([A]0 − [A])︸ ︷︷ ︸

[B]

.

At equilibrium, the time derivative is zero, as the reaction has reached a
steady state,

0 = kf [A]eq − kr ([A]0 − [A]eq) .
This is the same as saying that at steady-state (d/dt=0), the rates of the
forward and backward reactions are equal:

kf [A]eq = kr ([A]0 − [A]eq) .
We have a relationship between equilibrium concentration, initial concen-
tration and the rate constants:

[A]eq = kr[A]0
kf + kr

.

7.6. Reaction Rates From Kinetic Theory

Suppose we have an elementary reaction
A + B→ P,

whose rate is
rate = k[A][B],

so far we have not said anything about the value of k and how it depends on
the parameters of the molecules involved in the reaction. Simple arguments
from kinetic theory can be invoked to explain the behavior of k.
k should depend on the frequency of molecular collisions, and therefore the
mean speed of the molecules, ∝

√
T/M , where T is temperature and M

is molar mass of the molecules. We also expect it to be proportional to
the collision cross-section, σ and to the number densities of A and B (and
therefore, their concentrations):

rate ∝ σ

√
T

M
[A][B].

However, not all collisions will lead to reaction. Only those whose kinetic
energy exceeds a minimum value Ea (activation energy) will succeed. Thus,
the rate should be proportional to a Boltzmann factor of the form e−Ea/RT :

rate ∝ σ

√
T

M
e−Ea/RT [A][B]; k ∝ σ

√
T

M
e−Ea/RT .
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Not every collision will lead to reaction even if the energy requirement is
satisfied because the reactants may need to collide in certain relative orien-
tations, as illustrated in Fig. 7.3. This “steric requirement” can be accounted
for using another factor P ,

k ∝ Pσ

√
T

M
e−Ea/RT .

(Note: M is a type of effective or “reduced mass”, i.e. m1m2/(m1 + m2),
when molecular collisions between pairs of molecules are involved.)

Figure 7.3. Steric requirement for a reaction to proceed. (b) Not all
collisions will lead to a reaction. (a) Only a fraction of them may: those
with the correct orientation.

7.7. Arrhenius Law and Activation Energy Barriers

The activation energy, Ea, may be different if you go in the forward or
reverse direction. Thus when stating k we must also state whether this
refers to the forward or reverse direction.
The expression bears close resemblance to the Arrhenius law, which is usu-
ally expressed in the form:

k(T ) = A(T )e−Ea/RT ,
where A(T ) is the pre-exponential factor and Ea is the activation energy.
The activation energy is the height of the barrier required to reach the
“transition state” (‡ symbol in Fig. 7.4). Of course, the value of Ea depends
on whether we are referring to the forward or reverse (backward) reaction.
We denote these two values as Ea,f and Ea,r. These two values can be very
different, as seen in Fig. 7.4.
The standard Gibbs free energy change of a reaction is related to the equi-
librium constant K through

K = e−∆G0
rxn/RT .

The rate of the forward reaction, kf , is

kf = A(T )e−Ea,f/RT ,
where Ea,fwd is the difference between Gibbs free energy of the activated
complex and that of the reactants (i.e. the barrier height of the forward



7.8. Effect of Catalyst 381

NH
3 

+ CH
3
I 

(reactants) 

* 

Reaction Path 

+ -

CH
3
NH 

3
+ I 

(products) 

△Go
rxn

Figure 7.4. Activation energy barrier separates reactants from products.

reaction). Similarly for the reverse direction we write

kr = A(T )e−Ea,r/RT ,
from which we find:

K = kf
kr

= e−(Ea,f−Ea,r)/RT = e−∆G0
rxn/RT , ∆G0

rxn = Ea,f − Ea,r.

In the above diagram, we see that ∆G0
rxn < 0, so the reaction is spontaneous

in the forward direction. Its speed in the forward direction, however, is
determined by Ea,f , not ∆G0

rxn.
These expressions for kf and kr are called Arrhenius laws. They give the
temperature dependence of the reaction rates. It also states that the rates
depend on the activation energy. This activation energy is the energy re-
quired to reach the transition state (top of the energy barrier), either from
the reactant side or the product side.
The standard free energy change of the reaction is the energy difference
between reactants and products. Thus, we see how the free energy does not
tell the whole story: it says nothing about the energy barrier, hence, it is
not expected to predict the reaction rates. The reaction rates are predicted
instead by the activation energy barrier.

7.8. Effect of Catalyst

In the previous section we have seen that the equilibrium constant of an
uncatalyzed reaction is:

K = kf
kr

= e−(Ea,f−Ea,r)/RT .
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Suppose that we add a catalyst. The effect of a catalyst is to lower the
“activation energy barrier” by some amount C, as illustrated in the Fig. 7.5.

Figure 7.5. A catalyst has the effect of lowering the activation energy
barrier. This accelerates the rate of the reaction (which depends on
Ea,f or Ea,r), but does not affect the equilibrium (which depends on
the different ∆G◦rxn = Ea,f − Ea,r).

In this case, we have:
k′f = A(T )e−(Ea,f−C)/RT , k′r = A(T )e−(Ea,r−C)/RT ,

and

K ′ =
k′f
k′r

= e−(Ea,f−C−Ea,r+C)/RT = e−(Ea,f−Ea,r)/RT = e−∆G0
rxn/RT = K,

which is the same equilibrium constant as the uncatalyzed reaction (K =
K ′). The equilibrium constant depends only on the difference between the
energies of the reactants and the products. Thus, while the introduction of
a catalyst speeds up both forward and reverse reactions by the same amount,
it does not change the equilibrium.

7.9. Origin of the Boltzmann Factor, e−ε/RT

The Boltzmann distribution gives the statistical distributions of the energy
levels of atoms/molecules in a gas at thermal equilibrium at some tem-
perature T . It is a purely “classical” distribution, and does not describe
quantum (boson, fermion) statistics. Our derivation is based on the First
Law of thermodynamics and the Boltzmann definition of entropy.
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Suppose that a system and a reservoir, are together isolated from their
surroundings, i.e. think of the system and reservoir together as the universe.
The system is in contact with the reservoir as shown in Fig. 7.6.

Figure 7.6. System in contact with reservoir. Heat is allowed to ex-
change, but not particles. The system is taken to be a few molecules.

The system can be anything we want, but here we shall take the system to
be a single atom or molecule from the gas. The energy of the reservoir is
denoted Uext and the energy of the system, U .
Consider two states (e.g. eigenstates) of our atom/molecule: state s1 and
state s2. They are assigned energies U(s1) and U(s2), respectively. To these,
correspond probabilities P (s1) and P (s2).
For an isolated system (e.g., here, the system plus reservoir), all accessible
microstates are equally probable. This assumption is reasonable because
in thermodynamics we do not have any knowledge about the microscopic
state of the system: any state that is degenerate is (from our point of view)
no different than any other eigenstate of the same energy. The system can
freely hop between eigenstates of the same energy, since there is no energy
cost to doing so.
Their probabilities are then proportional to the degeneracy (multiplicity) of
the reservoir: Ωext(s1) and Ωext(s2). Ωext(si) is the number of microstates
of the reservoir that are consistent with the system being in state si, and the
total energy (system + reservoir) fixed. We need not be concerned about
the actual value of Ωext because we will invoke the First Law to relate it
to the macroscopic properties of the reservoir temperature (T ) and entropy
(Sext).5

7.9.1. Ratio of Probabilities. In this section we will show that the ra-
tio of probabilities P (s2)/P (s1) is a function of the energy difference ∆ =
U(s2) − U(s1) and identify the precise functional form for this dependence
on ∆. We shall assume no particle exchange between the system and the

5This is the usefulness of the Boltzmann definition of entropy, which relates the microscopic world
(Ω) to the macroscopic world (S).
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reservoir. We will also assume that the volume of the reservoir does not
change significantly when the atom/molecule goes into an excited state.
Invoking the Boltzmann definition of entropy S = kB log Ω,

P (s2)
P (s1) = Ωext(s2)

Ωext(s1) = eSext(s2)/kB

eSext(s1)/kB
= e[Sext(s2)−Sext(s1)]/kB

In the exponent, we have the change in entropy of the reservoir as the
system goes from state 1 to state 2. This is an infinitesimal change from the
reservoir’s point of view. Thus we invoke the First Law and apply it to the
reservoir (subscript ext):

Sext(s2)− Sext(s1) ≈dSext = 1
T

(dUext +����PdVext −����µdNext)︸ ︷︷ ︸
First Law

≈ 1
T

[Uext(s2)− Uext(s1)].

with dVext = 0 (the P−V term is negligible compared to the dU term, when
the atom goes into an excited state) and dNext = 0 (no particle exchange).
Then, since the energy lost by the reservoir is the energy gained by the
system (∆Uext = −∆U):

Sext(s2)− Sext(s1) = 1
T

[Uext(s2)− Uext(s1)] = − 1
T

[U(s2)− U(s1)],

where U is the energy of the system (atom/molecule). Then,

P (s2)
P (s1) = e−[U(s2)−U(s1)]/kBT .

Thus, we have derived the famous result “P (s2)
P (s1) = e−∆E/kBT ”, where ∆E is

the energy separation between states 1 and 2.

7.9.2. Canonical Distribution, No Particles Exchanged. In this sec-
tion we will derive an exact expression for P (s2) [not the ratio P (s2)/P (s1)]
including the proper normalization factor.
Let us rewrite the previous equation as:

P (s2)
P (s1) = e−[U(s2)−U(s1)]/kBT = e−U(s2)/kBT

e−U(s1)/kBT
.

This can be rearranged as follows: P (s2)
e−U(s2)/kBT

= P (s1)
e−U(s1)/kBT

, where the left
hand side depends on s2 and the right hand side depends on s1. The only
way this can happen is if both sides are equal to a constant. With proper
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normalization, we obtain the Boltzmann factor:

P (s) = 1
Z
e−U(s)/kBT

where Z =
∑
s′ e
−U(s′)/kBT and

∑
s′ is a sum over all states. This Boltzmann

distribution is also called the canonical distribution.
7.9.2.1. Sum Over Energies. Because many states may correspond to the
same energy, we can also express this in terms of a sum over energies, rather
than a sum over states. Let g(ε) denote the degeneracy of energy level ε and
P (ε) (degeneracy = number of quantum states corresponding to the same
energy ε) the probability of the system being found in energy ε. Then,

P (ε) = 1
Z
g(ε)e−ε/kBT ,

where Z =
∑
ε′ g(ε′)e−ε′/kBT (summation over energy levels, not over quan-

tum states).

7.9.3. Degeneracy. In case you forgot what quantum state degeneracy
means, you can refresh your memory at:

https://en.wikipedia.org/wiki/Degenerate energy levels

You may have seen the case of the “particle in a box” or the “hydrogen
atom” in Chem 20A. Both are famous examples illustrating quantum state
degeneracy. For example, hydrogen atom energy levels only depend on n.
The degeneracy of level n is determined by the quantum number l (angular
momentum), ml (z-projection of angular momentum) and ms (spin). l is an
integer ranging from 0 to n−1 (so n different values of l). Similarly, for given
values of n and l, ml is an integer ranging from −l to +l (so 2l+ 1 different
values of ml). Thus, the degeneracy of level n is

∑n−1
l=0 (2l+1) = n2. If we add

spin (ms = −1/2, 1/2), the degeneracy is multiplied by 2, i.e. g(n) = 2n2.

7.9.4. Particles Allowed to Exchange: the Grand Canonical distri-
bution. Now let’s repeat the steps from the previous sections but allow for
exchange of particles between the system and the reservoir. Suppose now
that particles are allowed to be exchanged between the system and reservoir.
Our starting point is the same as before:

P (s2)
P (s1) = Ωext(s2)

Ωext(s1) = eSext(s2)/kB

eSext(s1)/kB
= e[Sext(s2)−Sext(s1)]/kB

In the exponent, we have the change in entropy of the reservoir as the
system goes from state 1 to state 2. This is an infinitesimal change from the
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reservoir’s point of view. Thus, we invoke the identity

dSext = 1
T

(dUext +����PdVext − µdNext).

We throw away the PdV term because it is so small, but keep the chemical
term:6

Sext(s2)− Sext(s1) = 1
T

[Uext(s2)− Uext(s1)︸ ︷︷ ︸
∆Uext

−µNext(s2) + µNext(s1)︸ ︷︷ ︸
−µ∆Next

]

=− 1
T

[U(s2)− U(s1)︸ ︷︷ ︸
∆U

−µN(s2) + µN(s1)︸ ︷︷ ︸
−µ∆N

]

Here, U and N refer to the small system, hence the overall minus sign.
The sign change is a consequence of conservation of energy, ∆Uext = −∆U
(energy lost by reservoir is gained by the system) and conservation of mass
∆Next = −∆N (# particles lost by reservoir is gained by the system). Then,

P (s2)
P (s1) = e−[U(s2)−µN(s2)]/kBT

e−[U(s1)−µN(s1)]/kBT
.

The Gibbs factor is

P (s) = 1
Ξe
−[U(s)−µN(s)]/kBT .

where the normalization factor, Ξ, viewed as a function of temperature T ,
Ξ(T ) =

∑
s′

e−[U(s′)−µN(s′)]/kBT

is the grand partition function or Gibbs sum.

7.10. Problems

Problem 115. The rate constant of the elementary reaction

BH−4 (aq) + NH+
4 (aq) → BH3NH3(aq) + H2(g)

is k = 1.94× 10−4 L mol-1 s-1 at 30.0◦C, and the reaction has an activation
energy of 161 kJ mol-1.

(a) Compute the rate constant of the reaction at a temperature of 40.0◦C.

(b) After equal concentrations of BH−4 (aq) and NH+
4 (aq) are mixed at 30.0◦C,

1.00 × 104 s is required for half of them to be consumed. How long will it
take to consume half of the reactants if an identical experiment is performed
at 40.0◦C?

6We do not bother to write µext because at equilibrium, µ = µext; just like temperature, T = Text.
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Solution. (a) Recall the Arrhenius equation
k = A exp(−Ea/RT )

Given k = 1.94× 10−4 L mol-1 s-1 at 30.0◦C and Ea = 161 kJ mol-1,

A = 1.94× 10−4 L mol-1 s-1

exp(−161 kJ mol-1/(8.314× 10−3 kJ mol-1 K-1)(303 K))
A = 1.106× 1024 L mol-1 s-1

At 40.0◦C
k = A exp(−161 kJ mol-1/(8.314× 10−3 kJ mol-1 K-1)(313 K))

= 1.49× 10−3 L mol-1 s-1

b) This reaction is second order, but the following reasoning applies to re-
actions of an order. The larger the rate constant, the more rapid is the
reaction. Fast reactions require less time to reach any designated point in
their progress. Increasing the temperature of this reaction from 30.0◦C to
40.0◦C increases k from 1.94× 10−4 L mol-1 s-1 to 1.49× 10−3 L mol-1 s-1,
which is a factor of 7.68. The 50% conversion requires only 1.30× 103 s at
40.0◦C instead of 10000 s it requires at 30.0◦C. �

Problem 116. The first-order reaction X→Y has a half-life of 10 min-
utes. Determine the percentage of the reactant remaining after one hour
has elapsed.

Solution.
k = log(2)/t1/2 = log(2)/(10 ∗ 60 s) = 0.0011552 s−1

[X]
[X]0

= exp[−kt] = exp[−(0.0011552 s−1)(3600 s)] = 0.0156275

�

Problem 117. For a first-order reaction the time needed for the concen-
tration of the reactant to be [X] = (1/e)[X]0 is called the relaxation time
and is equal to the inverse of the rate constant. Show that this relaxation
time is the average lifetime of the reactant population.

Solution. The concentration at time t is given by [X] = [X]0 e−kt
The fraction of molecules present at a time between t and t + dt is E(t) =

[X]∫∞
0 [X]dt ∫ ∞

0
[X]dt =

∫ ∞
0

[X]0e−ktdt = [X]0/k

E(t) can be used as a PDF, so: t̄ =
∫∞
0 tE(t)dt

E(t) = ke−kt
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t̄ =
∫∞

0 tE(t)dt = k
∫∞

0 te−ktdt = k/k2 = 1/k. �

Problem 118. DTBP [(CH3)3COOC(CH3)3] decomposes into acetone and
ethane by the following reaction:

(CH3)3COOC(CH3)3(g)→ 2(CH3)2CO(g) + C2H6(g)
Given the table of data below which begins with a sample of pure DTBP,
what is the approximate order of the reaction with respect to DTBP?

Time (min) Ptot (atm)
0 0.2362
2 0.2466
6 0.2613
10 0.2770
14 0.2911
18 0.3051
20 0.3122
22 0.3188
26 0.3322
30 0.3449
34 0.3570
38 0.3687
40 0.3749
42 0.3801
46 0.3909

Solution. PDTBP(t = 0) = Ptot(t = 0), PEthane(t = 0) = 0, PAcetone(t =
0) = 0
Ptot(t) = PDTBP(t) + PEthane(t) + PAcetone(t)
Because of stoichiometric constraints: Ptot(t) = PDTBP(0)−x+PEthane(0)+
x+ PAcetone(0) + 2x
Ptot(t) = PDTBP(0)− x+ x+ 2x
x = (Ptot(t)− PDTBP(0))/2
PDTBP(t) = PDTBP(0)− x = Ptot(0)− x = 3

2Ptot(0)− 1
2Ptot(t)

So finding the partial pressures of DTBP gives us the following table:

Time (min) PDTBP (atm)
0 0.2362
2 0.2310
6 0.2237
10 0.2158
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14 0.2088
18 0.2018
20 0.1982
22 0.1949
26 0.1882
30 0.1819
34 0.1758
38 0.1700
40 0.1669
42 0.1643
46 0.1589

Since the partial pressure changes the reaction can’t be 0th order by DTBP.
The following table tests first order with log(PDTBP):

Time (min) log(PDTBP) log(atm)
0 -1.443
2 -1.465
6 -1.497
10 -1.533
14 -1.566
18 -1.600
20 -1.618
22 -1.635
26 -1.670
30 -1.704
34 -1.738
38 -1.772
40 -1.790
42 -1.806
46 -1.839

This yields a linear relation with a slope of about 0.089, so the reaction is
first order relative to DTBP. �

Problem 119. What activation energy would result in a doubling of the
rate of a reaction when the temperature is increased by 10◦C near room
temperature? Compare your answer with typical bond energies.

Solution. From the Arrhenius equation k = Ae−Ea/RT we obtain the van
t’ Hoff equation:

log k2
k1

= −Ea
R

( 1
T2
− 1
T1

)
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Since the rate constant is independent of concentration we can say:
k2 = 2k1

when a reaction rate doubles (and we assume the concentration of reactants
do not change). So,

log 2k1
k1

= −Ea
R

( ∆T
T1T2

)
where ∆T = T2 − T1 (in this form of equation).

Ea = R log(2)(T1T2)
∆T = (8.315 J/mol/K)(0.693)(308 K)(298 K)

10 K
− 52, 885 J/mol = 52.9 kJ/mol

Typical bond energies are 300-800 kJ/mol. So, this “Ea” is small compared
to typical bond energies. Remember that Ea is the energy required to get
to the transition state of a reaction and bonds are generally not completely
broken in this transition state. �

Problem 120. The rate constant for the disappearance of chlorine in the
third-order reaction of NO with Cl2 to form NOCl is 4.5 M−2s−1 at 0◦ C
and 8.0 M−2s−1 at 22◦ C. What is the activation energy for this reaction?

Solution. Write the reaction
2NO(g) + Cl2(g)
 2NOCl(g)

We are told the reaction is third order so we can infer the rate law:

−d[Cl2(g)]
dt = k[NO(g)]2[Cl2(g)]

Use the equation:
log k2

k1
= Ea

R

( ∆T
T1T2

)
where ∆T = T2 − T1.

log 8.0 M−2s−1

4.5 M−2s−1 = Ea
8.3145 J/mol/K

( 22 K
(273.15 K)(293.15 K)

)
solve for Ea to get Ea = 18 kJ/mol. �

Problem 121. Reaction (I) from Problem 61 is endothermic. Suppose that
an equilibrium mixture of the three gases is heated. How will the degree of
dissociation of COCl2 change?

Solution. We can rewrite the reaction as follows:
(heat) + COCl2(g)
 CO(g) + Cl2(g)

to denote an endothermic reaction. A simple way to view the question is to
look at the revised chemical reaction and realize that ”heat” is a reaction
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reactant (as opposed to a product). If we add heat, the reaction will be out
of equilibrium and shift to the right toward more products. The best way
to approach this question is to find the dependence of K on T

K = Af
Ab
e−∆H◦/RT

We assume Af/Ab is temperature independent. ∆H◦ > 0 (endothermic).
Therefore, as T goes up, e−∆H◦/RT goes up, and K goes up. (As T ↑, K ↑).
The degree of dissociation of the reactant COCl2(g) increases. �

Problem 122. In relation to Problem 61, predict the effects on the amount
of CO of a decrease in volume for reaction (I) and of a decrease in amount
of FeO(s) in reaction (II).

Solution. Decrease in volume for reaction (I)
COCl2(g)
 CO(g) + Cl2(g)

1 mole gas 2 moles of gas
The decrease in volume will increase the total pressure and the system will
relieve this stress by reducing the number of moles of gaseous species. Since
there are 2 moles of gas on the product side for every 1 mole of gas on the
reactant side, the reaction will shift to the left and the amount of CO(g)
will decrease.
Decrease in amount of FeO(s) for reaction (II)
Since FeO(s) is a pure substance, it is not in the equilibrium equation and
therefore any change in the amount of FeO(s) does not affect the equilibrium
constant, K (or Kp) and the amount of CO(g) would not change. �

Problem 123. At high temperature, nitrogen dioxide decomposes into NO
and O2: 2NO2 → 2NO + O2 by the second order rate law d[NO2]/dt =
−k[NO2]2. At 592 K, the rate constant is 5.0× 10−1 liter/mol/s and at 656
K it is 4.7 liter/mol/s. Calculate the activation energy for this process.

Solution.
log K(T2)

K(T1) = −Ea
R

(
T1 − T2
T1T2

)
Therefore

Ea = −RT1T2
∆T log K(T2)

K(T1) = −(8.314)(592)(656) 1
−64 log 4.7× 10

5.0× 10−1 kJ/mol

= 113 kJ/mol
�

Problem 124. Regarding Problem 123, what is the activation energy for
the reverse reaction? Make a sketch of energy versus reaction coordinate



392 7. Chemical Kinetics

illustrating your answer. [Note that the rate equation and the equilibrium
equation differ by a factor of 2.]

Solution. 1st calculate ∆H◦ for NO2(g)→ NO(g) + (1/2)O2(g)

log K(T2)
K(T1) = −∆H◦

R

( 1
T2
− 1
T1

)

∆H◦ = −RT1T2
∆T log K(T2)

K(T1)

= −(8.314 J/mol/K)(592 K)(700 K)
−108 K log 0.358 atm1/2

0.0604 atm1/2 = 56.7 kJ/mol

Now, ∆H◦ = 2(∆H◦′) = 2(56.7 kJ/mol) = 113 kJ/mol
Ea,b = Ea,f −∆Ea

and ∆Ea ≈ ∆H◦. Therefore,
Ea,b ≈ 113 kJ/mol− 113 kJ/mol = 0

�

Problem 125. Regarding Problem 123, the equilibrium constant for the
reaction NO2 
 NO + (1/2)O2 is 0.0604 atm1/2 at 592 K and 0.358 atm1/2

at 700 K. What is the rate for the reverse reaction, 2NO + O2 → 2NO2 at
592 K?

Solution. First reaction has Kp. Second reaction has K ′p = (Kp)2. When
you multiply a chemical reaction equation by n you must raise its equilibrium
constant to the power of n. The rate law is given in terms of molarity so
convert the K ′p to K ′ as follows:

K ′p = K ′(RT )∆ng ∆ng = 3 mol(gas)− 2 mol(gas)

K ′p = K ′(RT )′

K ′ =
K ′p
RT

= (Kp)2

RT
= (0.0604 atm1/2)2

(0.08206 L.atm/mol/K)(592 K) = 7.51× 10−5 M

K ′ = kf
kb
→ kb = kf

K ′

kb = 5.0× 10−1 L/mol/s
7.51× 10−5 mol/L = 6.658× 103 L2/mol2/s = 6.7× 103 L2/mol2/s

�

Problem 126. The gas phase decomposition of ozone, O3 (i.e. 2 O3 → 3
O2) is second order with respect to ozone:

−d[O3]
dt = k[O3]2
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This “constant” k can be a function of the concentration of other species, and
in fact, at 100◦C, k is found to depend on the partial pressure of molecular
oxygen according to the following table:

PO3/torr PO2/torr k/M−1s−1

6.0 800 0.16
6.0 600 0.22
6.0 400 0.35

(Note that the data presented above involves a low percentage of O3 in O2.)

(a) What is the rate law for the O2 concentration under these conditions?

(b) What is the value (with units) of the rate constant in the rate law that
includes the dependence on [O2]?

(c) If the table presented above was obtained by measuring [O3] as a func-
tion of time, what graphs might you construct to obtain the k values?

(d) Why does the O2 produced by the decomposition of O3 not seriously
affect the accuracy of the graphs?

(e) The half-life of a reaction is the time required for the concentration to
fall to half its initial value. What would be the half-life of the ozone in each
of the above experiments, i.e. for each of the initial conditions in the table
presented above?

Solution. (a) In general, k = 2k′[O2(g)]α, where k′ is a constant. Now,
from the experimental data, choose two experiments to compare. k1 =
2k′[O2(g)]α1 and k2 = 2k′[O2(g)]α2

k1
k2

= 2k′[O2(g)]α1
2k′[O2(g)]α2

=
( [O2(g)]1

[O2(g)]2

)α
taking logs

log(k1/k2) = α log([O2(g)]1/[O2(g)]2)
we can solve for α

α = log(k1/k2)
log([O2(g)]1/[O2(g)]2) =

log
(

0.16 M−1s−1

0.22 M−1s−1

)
log

(
0.034 M
0.026 M

)
= log(0.727)

log(1.308) = −0.319
0.268 = −1.1
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The rate law can be expressed as

−d[O3(g)]
dt = 2k′[O3(g)]2[O2(g)]−1.1.

(b) Since [O2(g)]� [O3(g)], we can use rate = 2k′[O2(g)]−1.1 only to calcu-
late the rate constant k′.

0.16 M−1s−1 = 2k′(0.034 M)−1.1

k′ = 1.9× 10−3 s−1

(c) Graph 1/[O3(g)] vs. time for the three experiments.

(d) The [O2(g)] is so much larger than the [O3(g)] that any O2(g) produced
from O3(g) would not appear to change the overall [O2(g)]. In other words,
since [O2(g)] is so large, we can treat it as a constant compared to [O3(g)].
(e) Using [A]/[A]0 = e−kt1/2 and appropriate initial concentration and rate,
calculate the half-life for each experiment. Setting [A] = [A]0/2 per the
definition of half-life we obtain log(1/2) = −kt1/2, [A]0 goes away and t1/2 =
0.693/k. Plug in ”k” and solve for t1/2.
Experiment 1 t1/2 = 0.693/0.16 s−1 = 4.3 s
Experiment 2 t1/2 = 0.693/0.22 s−1 = 3.2 s
Experiment 3 t1/2 = 0.693/0.35 s−1 = 2.0 s
Why did we drop the M−1 part from the units of k designated in the table?

�

Problem 127. The following data have been obtained for the instantaneous
rate of the following reaction occurring in solution: 3A + 2B → A3B2.
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[A]/M [B]/M −(d[A]/dt)/(M.s−1)
0.10 0.10 6.0×10−4

0.30 0.30 5.4×10−3

0.50 0.10 1.5×10−2

0.50 0.50 1.5×10−2

(a) Calculate the order of the reaction with respect to A and with respect
to B, and calculate the value of k (including its units).

(b) Suppose that you have 2.0 liters of a solution that is 0.50 M in A and
0.50 M in B. How many moles of A3B2 are formed in the first second of
reaction?

(c) How long will it take for the concentration of A to fall to 0.05 M from
the initial conditions described in (b)?

(d) A reaction proceeds by the following mechanism: mA + nB + pC →
products, with m,n and p all positive integers. Doubling the concentration
of A, B and C increases the overall rate of reaction by a factor of 16. Tripling
the concentration of C has the same effect as tripling the concentration of
A. An increase in the concentration of B has a larger effect than an increase
in the concentration of A. What are m,n and p? What is unrealistic about
this mechanism?

Solution. (a) In general the rate is
k[A]α[B]β

Increasing [A] by 5× (0.10 M → 0.50 M) while holding the [B] constant at
0.10 M, the rate increases by 25x (6.0× 10−4 M/s → 1.5× 10−2 M/s)

∴ α = 2.
Increasing [B] by 5× (0.10 M → 0.50 M) while holding the [A] constant at
0.50 M, the rate remains constant at 1.5× 10−2 M/s.

∴ β = 0.
Thus,

rate = k[A]2.
Now, to calculate k we will use the rate law determined with one set of
experimental data (your choice). However, for the calculation of k and for
the number of moles of A3B2 formed (part b) there are a number of possible
approaches (two answers). It is unclear that the “rate” data refers to the
“reaction rate” and includes the 1/3 factor for “A” or if the “rate” data
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should be corrected by multiplication. i.e.,

rate = −1
3

d[A]
dt

The table gives us d[A]/dt. So, the most correct way to view the data is
that a reaction rate must be calculated from the change in concentration of
A with time data. If you assumed the data included the 1/3 factor you will
receive full credit. Thus,

k = (1/3)(6.0× 10−4 M/s)
(0.10 M)2 = 0.020 M−1s−1.

(b) [A] = [B] = 0.5 M. rate = 1.5×10−2 M/s for−d[A]/dt. But−(1/3)d[A]/dt =
+d[A3B2]/dt and

d[A3B2]
dt = 1

3(1.5× 10−2 M/s) = 5.0× 10−3 M/s.

So, (5.0×10−3 M/s)(1 s) = 5.0×10−3 mol/L and (5.0×10−3 mol/L)(2.0 L) =
1.0× 10−2 mol A3B2 produced.
(c) From [A] = [A]0e−kt we have log([A]/[A]0) = −kt and t = −(1/k) log[A]/[A]0.
Plug in the values given

t = −
( 1

0.020 M−1s−1

)
log

(0.05 M
0.50 M

)
= 115 s ≈ 120 s

(d) 1st step: setup the general rate law
k[A]m[B]n[C]p

Why can we represent the rate law by using the reaction coefficients?
1nd ste: determine m,n, p
Doubling all concentrations results in a 16x increase in the rate

(2)x = 16, x = 4
Thus, the overall order of this reaction is 4th order. Tripling [A] or [C]
results in the same rate increase

m = p

Then,
m+ n+ p = 4, with m = p

m = p = 1, n = 2
Thus, we have that the rate is

k[A][B]2[C]
Why is this mechanism unrealistic: Remember, this is a mechanism (ele-
mentary step) and the collision of four molecules is very unlikely. �



Chapter 8

Entropy Production,
Chemical Kinetics and
Irreversibility

In the context of chemical reactions we have stated that the reaction rate, ξ̇,
can be written down by inspection of the reaction mechanism (elementary
reactions) as a sum of terms describing various molecular collision events
times a reaction rate. We also previously stated, in the context of the Sec-
ond Law, that differences in the chemical potential, ∆(µ/T ) give rise to a
driving force for chemical transformations (or mass transport, if the prop-
erties are spatially inhomogeneous). The method of molecular collisions
for determining ξ̇ agrees with experiments and molecular dynamics simula-
tions. On the other hand, ξ̇ should also depend on ∆(µ/T ). But exactly
how? An arbitrary function of ∆(µ/T ) could be expressed as a power series
in ∆(µ/T ). For small deviations from equilibrium, the affinity is very low
and only the first power matters. Thus, ξ̇ should depend linearly on ∆(µ/T )
in this near-equilibrium regime.
This chapter is a very short introduction to a vast subject. To learn more
about non-equilibrium phenomena in the context of thermodynamics, see [5,
7, 6]. Our presentation follows Chapter 14 of McQuarrie [5]. We use both
upper and lower case letters for the state variables, with the latter referring
to “per unit volume” quantities, i.e. u ≡ U/V is the internal energy per unit
volume.

397
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About notation: we consider the case of two variables (time, t, and space,
x) and write d/dx for the spatial derivative, where it is understood that
when differentiating we keep t constant (i.e. it means partial differentiation,
∂/∂x). In several spatial dimensions, ∂/∂x is replaced by the gradient
operator, ∇. (And of course, an equation that involves d/dx and d/dt
implies that both are partial derivatives: ∂/∂x and ∂/∂t, respectively.)

8.1. Entropy Production

The change in the entropy of a system, dS, can be decomposed into two
terms,

dS = deS + diS,
where deS is the entropy supplied to the system by its surroundings (e, ex-
ternal), and diS is the entropy produced inside the system (i, internal).

The Second Law states that diS = 0 for a reversible process and positive
for irreversible transformations of the system, i.e.

diS ≥ 0.
This statement is true regardless of the nature of the system. We are
thus led to the following alternative statement of the Second Law: dS ≥
deS. Because of the constraint diS ≥ 0, the term diS is called entropy
production, and describes the various irreversible phenomena which may
occur inside the system.

It will be convenient to divide S by V to get the specific entropy s, i.e.
the entropy per unit volume. We are also interested in its rate of change
with respect to time. Division of ds by dt will be called the rate of entropy
production:

ṡ = ds
dt = d

dt
S

V
.

Furthermore, we shall assume that the fundamental equation of thermody-
namics (also known as the Gibbs equation) holds at every point in space,
and even away from equilibrium:

dU = TdS − PdV +
∑
i

µidni.

This equation was previously assumed to hold for a reversible process. Here,
we assume that it holds for an irreversible process as well. This assumption
may be justified in a volume element that is sufficiently small. We will write
it in terms of specific quantities, u = U/V , s = s/V , [Xi] = ni/V . For
constant volume (dV = 0),

du = Tds+
∑
i

µid[Xi].
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Dividing by dt, and solving for ds/dt, we get the rate of change in the
entropy:

(8.1) ṡ ≡ ds
dt = 1

T

du
dt −

∑
i

µi
T

d[Xi]
dt .

The first term is the heat transfer (can be positive or negative). The sec-
ond term, which always non-negative1 (≥ 0), is entropy production, an ir-
reversible process. Entropy production describes the thermodynamic lost
work. It quantifies irreversibility, and is therefore a measure of inefficiency.
d[Xi]

dt is discussed in the next section.

8.2. Chemical Reaction Away From Equilibrium

Suppose that we have a reversible first-order elementary chemical reaction

X
kXY



kYX
Y.

The reaction rate is:

(8.2) ξ̇ = −d[X]
dt = d[Y]

dt = kXY [X]− kY X [Y].

Close to equilibrium, ξ̇ should be a linear function of A (lowest order term in
a power series in A). Indeed, according to Eq. (8.2), ξ̇ should be a function
of A because it depends on the differences in concentrations of X and Y .
Close to equilibrium, where A is small, we expect ξ̇ to depend linearly on
A:

(8.3) ξ̇ = L

(A
T

)
= L

(
µX − µY

T

)
,

where L is a coefficient to be determined.
At equilibrium, ξ̇ = 0, and we have kXY [X]eq = kY X [Y]eq, or kXY =
kY X [Y]eq/[X]eq. In the first term, let’s substitute this relationship for kXY ;
in the second term, let’s multiply it by 1 = [Y]eq/[Y]eq:

ξ̇ = kY X ·
[Y]eq
[X]eq︸ ︷︷ ︸

kXY

·[X]− kY X · [Y] ·
[Y]eq
[Y]eq︸ ︷︷ ︸

1

= kY X · [Y]eq

(
[X]

[X]eq
− [Y]

[Y]eq

)
.

On the other hand, consider the affinity, µX − µY , in the case where we
have ideal solutions. Choosing the reference conditions to be the chemical

1This term is also equal to ξ̇(−∆Grxn/T ). If a reaction proceeds from left to right, ∆Grxn < 0,
and ξ̇ > 0. (And conversely, if the reaction proceeds from right to left, ∆Grxn > 0, ξ̇ < 0.) At
equilibrium, of course, ∆Grxn = 0. Thus, the term can never be negative.
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equilibrium concentrations:

µX = µ◦X +RT log [X]
[X]eq

, µY = µ◦Y +RT log [Y]
[Y]eq

.

Then,
µX − µY

T
= R

(
log [X]

[X]eq
− log [Y]

[Y]eq

)
,

Adding and subtracting the same quantity is like adding zero; a given term
does not change. Thus, we rewrite

[X]
[X]eq

=
([X]− [X]eq) + [X]eq

[X]eq
=

[X]− [X]eq
[X]eq

+ 1,

and similarly for Y . The term [X]−[X]eq
[X]eq

now is a small parameter if we are
close to equilibrium. Thus, the logs are now of the form log(1 + x), where x
is small. Taylor expansion for small x gives log(1 + x) ≈ x and

µX − µY
T

≈ R
(

[X]
[X]eq

− [Y]
[Y]eq

)
.

Thus,

ξ̇ = kY X · [Y]eq

(
[X]

[X]eq
− [Y]

[Y]eq

)
=
kY X · [Y]eq

R︸ ︷︷ ︸
L

·
(
µX − µY

T

)
︸ ︷︷ ︸

A/T

= L

(A
T

)
.

This is an example of a flux-force term. L is the flux and A/T is the force.
Therefore, we have established the following equivalence close to equilbrium:

ξ̇ = −d[X]
dt = d[Y]

dt = kXY [X]− kY X [Y] ≈
kY X · [Y]eq

R︸ ︷︷ ︸
L

·
(
µX − µY

T

)
︸ ︷︷ ︸

A/T

.

8.2.1. Entropy Production. For the previous reaction (consider the sys-
tem to be isolated), at constant u the Gibbs equation is

ṡ = −
∑
i

µi
T

d[Xi]
dt = −µX

T

d[X]
dt −

µY
T

d[Y ]
dt = −d[X]

dt

(
µX
T
− µY

T

)
= ξ̇

(A
T

)
,

where A is called the affinity. Recall that A = −∆Grxn, where ∆Grxn ≡(
∂G
∂ξ

)
T,P

=
∑
i νiµi, with the convention that νi is negative for reactants and

positive for products. Thus, differences in chemical potential drive entropy
production. Since entropy production describes the evolution of the reaction
toward equilibrium, affinity is a driving force of the chemical reaction.
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8.2.2. Example with Three Components. Consider the reaction:
X + Y 
 Z.

Let’s check that the affinity is:
A
T

= µX + µY − µZ
T

.

The flow of reaction from left to right is:

ξ̇ = −d[X]
dt = −d[Y ]

dt = +d[Z]
dt

so the equation for ṡ is

ṡ = −µX
T

d[X]
dt −

µY
T

d[Y ]
dt −

µZ
T

d[Z]
dt = −d[X]

dt

(
µX
T

+ µY
T
− µZ

T

)
= ξ̇

(A
T

)
,

where A/T =
(µX
T + µY

T −
µZ
T

)
.

8.3. External vs Internal Variables

As mentioned previously, the change in the entropy of a system, dS, can be
decomposed into two terms,

dS = deS + diS,
where deS is the entropy supplied to the system by its surroundings (e, ex-
ternal), and diS is the entropy produced inside the system (i, internal).
The second law states that diS = 0 for a reversible process and positive for
irreversible transformations of the system, i.e.

diS ≥ 0.
The entropy supplied, deS, however, may be positive, zero or negative, de-
pending on the interaction of the system with its surroundings. Thus, for
an adiabatically insulated system (i.e. a system which can exchange neither
heat nor matter with its surroundings), deS is equal to zero, and it follows
that

dS ≥ 0. (for an adiabatically insulated system)
For a so-called closed system, which may only exchange heat with its
surroundings, we have

deS = δQ

T
, (Carnot’s theorem)

where δQ is the heat supplied to the system by its surroundings and T is
the absolute temperature at which heat is received by the system. It then
follows that

dS = deS + diS = δQ

T
+ diS︸︷︷︸

diS≥0

→ dS ≥ δQ

T
(for a closed system)
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For open systems (heat+matter exchange allowed w/surroundings), deS con-
tains also a term connected with the transfer of matter. The theorem of
Carnot-Clausius, deS = δQ/T , does not apply to such systems (we will see
later how to correct it). However, dS = deS+diS and diS ≥ 0 remain valid.

8.3.1. General Form of Entropy Production. Previously, we used the
first law (fundamental equation for dS) to write down an equation for the
time-derivative of the entropy:

ṡ ≡ ds
dt = 1

T

du
dt −

∑
i

µi
T

d[Xi]
dt .

The first term, 1
T

du
dt , is associated with heat transfer (can be positive or

negative). The last term can be rewritten as ξ̇(A/T ) or ξ̇(−∆Grxn/T ), using
ξ̇ = 1

νi

d[Xi]
dt , since A = −

∑
i µiνi and A = −∆Grxn. This term is also equal

to ξ̇(−∆Grxn/T ). If a reaction proceeds from left to right, ∆Grxn < 0, and
ξ̇ > 0. And conversely, if the reaction proceeds from right to left, ∆Grxn > 0,
ξ̇ < 0. At equilibrium, ∆Grxn = 0. Thus, the term can never be negative.
This nonnegative (≥ 0) term, is called entropy production, and describes an
irreversible process. We obtain a restatement of the Clausius theorem,

ṡ ≥ 1
T

du
dt .

We have seen in the specific case of a reaction X 
 Y that the reaction
term is equal to2

ξ̇(A/T ) = −d[X]
dt

(
µX − µY

T

)
.

We have also found that for that particular reaction (X 
 Y ),

ξ̇ = kY X [Y ]eq
R

(
µX − µY

T

)
= L

(A
T

)
where L = kY X [Y ]eq/R = kXY [X]eq/R. Thus, ṡ has the form

ṡ = L

(A
T

)(A
T

)
= LXX,

where X =
(
A
T

)
is a force. LX is a flux. The flux, often denoted J = LX,

is proportional to the force (no forces, no fluxes).

2The form ξ̇(A/T ) of the chemical term is generally true for any reaction. A/T is a driving force
for the chemical reaction (i.e. differences in chemical potential lead to transformation, whereas
equilibrium is reached when the chemical potentials are equal). ξ̇ is a flux.
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This turns out to be a general principle. In the general case there may be
several forces (and fluxes) acting on the system. Then, ṡ will be of the form:

ṡ =
N∑
i=1

N∑
j=1

LijXiXj ,

where the Lij are called Onsager coefficients and the Xi’s are the thermo-
dynamic forces. The quantities

Jj = L1jX1 + L2jX2 + L3jX3 + · · ·+ LNjXN

are called fluxes. We can think of the fluxes as the leading terms of a Taylor
expansion of Jj as a power series in X1, X2, . . . , XN . Close to equilibrium,
only the first order term is needed. Also, there are no constant terms because
the fluxes all vanish if all the forces vanish. The Onsager coefficients are
reciprocal, Lij = Lji.
Some examples of commonly encountered fluxes and forces can be found in
Table 8.1.

Table 8.1. Fluxes and forces.

Flux, J Force, X

Heat Ju
d(1/T )

dx = − 1
T 2

dT
dx

Matter Ji −T d(µi/T )
dx

Electric current density JI = I/A − 1
T

dφ
dx (voltage/T )

Chemical reaction ξ̇ A = −
∑
i νiµi

8.4. Particle Flux and Heat Flux

So far we have looked at chemical reactions localized in the same volume
element. These chemical reactions are driven by differences in the chemical
potential. Now let’s look at spatially dependent processes. For simplicity,
we consider at processes that vary along a single dimension (x). The system
is subdivided into slices of thickness ∆x = x2 − x1, as shown in Fig. 8.1.
∆x is small enough so that T, P, µ are constant over the volume element and
so that local thermodynamic equilibrium can be assumed.
Recall (see section 6.11.21) that in the case of two volume elements A and
B adjacent to each other (setting dV = 0), we found that

dS = (T−1
A − T−1

B )dUA −
(
µA
TA
− µB
TB

)
dnA,
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Figure 8.1. Flux of heat (JU ) and particles (Jn).

where µA/B are in molar units. (This equation was obtained by applying the
fundamental equation of thermodynamics in the entropy representation.)
Now take A and B to be thin slices centered around x1 and x2 in the above
diagram. Dividing by dt gives the equation for entropy production:

Ṡ = dU1
dt

( 1
T1
− 1
T2

)
+ dn1

dt

(
µ2
T2
− µ1
T1

)
≥ 0.

which can be written in the form,
Ṡ = JUXU + JnXn,

where

JU = dU1
dt = −dU2

dt , Jn = dn1
dt = −dn2

dt , XU = 1
T1
− 1
T2
, Xn = µ2

T2
− µ1
T1
.

XU is the thermal force and Xn is the chemical force.
Writing ∆(1/T ) = 1/T2 − 1/T1, ∆(µ/T ) = µ2/T2 − µ1/T1, and dividing by
the volume V = A∆x gives:

ṡ = − 1
A

dU1
dt

∆(1/T )
∆x + 1

A

dn1
dt

∆(µ/T )
∆x .

Taking the limit of small ∆x gives:

ṡ = − 1
A

dU1
dt

d(1/T )
dx − 1

A

dn1
dt

d(−µ/T )
dx ,

which can be written as

(8.4) ṡ = Ju
d(1/T )

dx + Jn
d(−µ/T )

dx ,

where the derivatives are called gradients of 1/T and −µ/T , respectively,
and

Ju = − 1
A

dU1
dt , Jn = − 1

A

dn1
dt

are fluxes.
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8.5. Conservation of Mass

In the case of diffusion and reaction taking place simultaneously, the flow of
the reaction from reactant to product is:

dtot[Xj ]
dt︸ ︷︷ ︸

total rate

= −dJj
dx︸ ︷︷ ︸

mass transport

+ νj ξ̇,︸︷︷︸
ξ̇= 1

νj

d[Xj ]
dt

j = 1, . . . , n

where [Xj ] = nj/V , Jj are the component fluxes (n: number of components),
all directed along the x axis, i.e. νj are the stoichiometric constants in a
chemical reaction, and ξ̇ is its rate in the volume element. This is merely
the addition of two terms: the component flux term −dJj/dx due to mass
transport, plus the chemical reaction term which we know from chemical
kinetics, by writing down the rate law, ξ̇ = (1/νj)d[Xj ]/dt, for the reaction.
Our convention was to take νj as negative for the reactants and positive for
the products. Since νj are dimensionless, ξ̇ has units of mol/m3/s.
This is the total rate of change, which is the sum of two terms. The second
term (ξ̇) we have seen already. But where does the first term come from?
Consider a volume V = A·dx of length dx and transport along the x di-
rection. The volume has cross-sectional area A and length beginning at x
and ending at x+dx. The change in the number of moles of a component,
nj , in a small volume V , is due to the difference between the flux of the
components in and out of the volume. We have

dnj
dt = −A [Jj(x+ dx)− Jj(x)]

where A is the cross sectional area of the volume orthogonal to the flux
direction. Positive fluxes Jj indicate particles flowing toward positive x.
The flux −Jj(x+ dx) denotes a decrease in nj , as particles leave the volume
dx at x+dx. +Jj(x) denotes particles entering dx at x.
The fluxes have units of moles per area per unit time. The area is equal to
the volume divided by dx. In the limit of small dx, we therefore have

dnj
dt = −V [Jj(x+ dx)− Jj(x)]

dx = −V dJj(x)
dx .

By dividing this equation left and right by the (constant) volume, one ob-
tains the desired result for ξ̇ = 0

d[Xj ]
dt = −dJj(x)

dx
where [Xj ] = nj/V . This equation describes the conservation of moles
(mass) within the volume.
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The total rate of change, dtot[Xj ]/dt, is then formed by adding this mass
transport term, −dJj

dx , to the chemical reaction term, νj ξ̇.

The mass transport term, −dJj
dx , is called a surface term because it describes

particle flux entering and leaving the volume element (by crossing its sur-
face). The chemical reaction term, νj ξ̇ is called a volume term because
the chemical reaction takes place everywhere inside the volume (with zero
influence from the surroundings).

8.6. Conservation of Energy

Similarly, we have a conservation law
du
dt = − d

dxJu.

Here u = U/V is the internal energy density, Ju is the energy flux (e.g. heat
flow). Here, there is no “volume term” because energy is not created within
the volume unless a “heat source” is added. This equation expresses the fact
that energy can only be transferred, never created.
On the other hand, if there is a “heat source” is placed within the volume,
then a volumetric term is added:

du
dt = − d

dxJu + q̇V ,

where q̇V is a volumetric heat source (units: W/m3).

8.7. Entropy Balance

The entropy balance equation is
dS
dt = −A [Js(x+ dx)− Js(x)] + V σ

where σ is the entropy production per unit volume. Since A = V/dx, we
have, in the limit of small dx

dS
dt = −V [Js(x+ dx)− Js(x)]

dx + V σ = −V dJs(x)
dx + V σ.

Dividing by volume V :

(8.5) ds
dt = −dJs(x)

dx + σ.

Let’s see if we can find explicit forms for Js and σ. Substituting d[Xj ]
dt =

− d
dxJj + νj ξ̇ and du

dt = − d
dxJu into

ṡ ≡ ds
dt = 1

T

du
dt −

∑
i

µi
T

d[Xi]
dt ,
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and comparison with Eq. (8.5) enables us to identify Js and σ:
ds
dt = 1

T

du
dt −

1
T

∑
j

µj
d[Xj ]

dt = 1
T

(
−dJu

dx

)
− 1
T

∑
j

µj

(
− d

dxJj + νj ξ̇

)

=− d
dx

 1
T

Ju − n∑
j=1

µjJj


︸ ︷︷ ︸

entropy flux, Js

+ Ju
d

dx( 1
T

) +
n∑
j=1

Jj
d

dx(−µj
T

) + ξ̇

(
−∆Grxn

T

)
︸ ︷︷ ︸

entropy production rate, σ

(8.6)

where ∆Grxn =
∑
i νiµi, with the convention that νi is negative for reactants

and positive for products. In the second line we have twice used the product
rule for differentiation: d(fg)/dx=f ·dg/dx + g·df/dx.
The surface term, -dJs/dx, is given in terms of the entropy flux,

Js =

 1
T

Ju − n∑
j=1

µjJj

 .
It describes two phenomena: the measurable heat flux (“reduced” heat flow
Ju/T ) and the enthalpy of matter transfer (heating due to flows of matter).
The enthalpy flux is carried by the component fluxes, Jj . The entropy flux
term is a “surface term” which describes changes in entropy of the system
due to inputs from the surroundings.
The volume term, which is also called “entropy production”,

σ = Ju
d

dx( 1
T

)︸ ︷︷ ︸
heat conduction

+
n∑
j=1

Jj
d

dx(−µj
T

)

︸ ︷︷ ︸
mass diffusion

+ ξ̇

(
−∆Grxn

T

)
︸ ︷︷ ︸

chemical reaction

has 3 contributions. The first term arises from heat conduction (temperature
gradients), since d(1/T )/dx=(-1/T 2)dT/dx. The second term is connected
to diffusion, which is driven by gradients in the chemical potential; here,
(d/dx)(µj/T ). The third term is due to chemical reactions.

The entropy flux term describes external contributions from the sur-
roundings. It can be positive, negative or zero. This is the deS term. The
entropy production term is non-negative, σ ≥ 0. Entropy production is
the diS term.
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8.8. Entropy Production vs External Entropy Flow

We recall that dS ≥ 0 for an isolated system S. If the system is not isolated,
we have the decomposition dS =deS+diS. Some books write dSexch in lieu
of deS and dSprod =diS. Thus, dS consists of two parts. One part is
the entropy created in the system by any spontaneous processes occurring
within it, and the other part is the change in entropy resulting from the
exchange of energy as heat between the system and its surroundings. We
always have diS ≥ 0. deS can be positive, zero or negative. This quantity
is given by deS = δQ/T , where T is the temperature of the surroundings.
If the exchange is carried out reversibly, δQ = δQrev; if it is irreversible,
δQ = δQirr. For any process (reversible or irreversible),

dS = diS + deS = diS + δQ

T
.

For a reversible process, diS=0 and δQ = δQrev, so that we have dS =
(δQrev/T ). For an irreversible process, diS > 0 and δQ = δQirr, so that
dS > (δQirr/T ). Combining these two relations together we obtain the
Clausius statement of the second law, dS ≥ (δQ/T ).

8.8.1. Fluxes Depend Linearly on Forces. Consider two systems, 1 and
2 in contact with teach other. Particles and heat can be exchanged between
them. The two combined systems are isolated from their surroundings, thus
explaining the term deS=0. We are left with the entropy production, diS,
as the only contribution to the entropy:3

diS
dt = dU1

dt

( 1
T1
− 1
T2

)
+ dn1

dt

(
µ2
T2
− µ1
T1

)
= JUXU + JnXn ≥ 0.

where XU = 1/T1−1/T2, Xn = µ2/T2−µ1/T1, JU = dU1/dt = −dU2/dt and
Jn = dn1/dt = −dn2/dt. The fluxes and forces are related to each other.
Experimentally, the relation is often linear. For example, Fourier’s law of
heat conduction says that the flux of energy as heat is directly proportional
to the temperature difference,

JU ∝ T2 − T1.

But T2 − T1 ∝ (T2 − T1)/T1T2 = 1/T1 − 1/T2 = XU , so we write JU ∝
1/T1 − 1/T2 = XU . Similarly, Fick’s law of (isothermal) diffusion says that
the flux of matter is directly proportional to the concentration difference,

Jn ∝ c2 − c1

3The right hand side was explained previously. It is obtained from the fundamental equation in
the entropy representation.



8.8. Entropy Production vs External Entropy Flow 409

which can be expressed4 in the form Jn ∝ µ2 − µ1 (constant T ). Finally,
we have Ohm’s law, V = RI, which states that the electrical current, I, is
proportional to the potential difference, V = φ2 − φ2. Thus, in all cases,
J ∝ Xi (fluxes linearly depend on the forces).

8.8.2. From Discrete to Continuous Case. In the continuum case, it
is gradients of thermodynamic quantities that determine the forces (not
differences). We have seen that

diS
dt = dU1

dt

( 1
T1
− 1
T2

)
+ dn1

dt

(
µ2
T2
− µ1
T1

)
≥ 0.

We take the continuum limit by dividing by V = A ·∆x and taking the limit
∆x→ 0:

σ ≡ 1
V

diS
dt =

(
− 1
A

dU1
dt

) ∆(1/T )
∆x + 1

A

(dn1
dt

) ∆(µ/T )
∆x ,

where ∆(1/T ) = 1/T2 − 1/T1, ∆(µ/T ) = µ2/T2 − µ1/T1. Thus,

σ = Ju
d(1/T )

dx + Jn
d(−µ/T )

dx ≥ 0,

where Ju = − 1
A

dU1
dt and Jn = − 1

A
dn1
dt .

8.8.3. Application to Isothermal Diffusion. As an example of the ap-
plication to continuous systems, we will consider diffusion in an isothermal
system (isothermal diffusion). Let T be constant, so it can be factored out
of each term. The entropy production is:

σ = 1
T

n∑
i=1

Ji

(
−dµi

dx

)
P,T

,

where n is the number of components in the system. The chemical potentials
are not all independent of each other because of the Gibbs-Duhem equation
(
∑
i nidµi+SdT−V dP = 0), which for constant T, P reads,

∑n
i=1 nidµi = 0.

Dividing by V and dx gives,
∑n
i=1 ci

(
−dµi

dx

)
= 0. Solving for dµ1/dx,

dµ1
dx = − 1

c1

n∑
i=2

ci

(dµi
dx

)
P,T

.

4The proof is similar to our previous discussion. c1 and c2 are different concentrations of the
same substance. Write µ1 = µ◦ +RT log(c1/c◦) and µ2 = µ◦ +RT log(c2/c◦), so that µ2 − µ1 =
RT (log c2/c◦ − log c1/c◦). Write c2/c◦ = [(c2 − c◦) + c◦]/c◦ = (c2 − c◦)/c◦ + 1 and similarly for
c1, and Taylor expand in the small parameter (c2 − c◦)/c◦. Then, µ2 − µ1 ≈ RT

c◦ (c2 − c1).
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Then,

Tσ =J1

(
−dµ1

dx

)
+

n∑
i=2

Ji

(
−dµi

dx

)
= J1
c1

n∑
i=2

ci

(dµi
dx

)
+

n∑
i=2

Ji

(
−dµi

dx

)

=
n∑
i=2

(
Ji −

ci
c1
J1

)
︸ ︷︷ ︸

Jdi

(
−dµi

dx

)
,

where Jdi =
(
Ji − ci

c1
J1
)

= ci
(
Ji
ci
− J1

c1

)
= c(vi − v1), since particle flux

equals concentration times velocity (Ji = civi). (If vi = v1, then entropy
production is zero.) Thus, Jdi is the flux of solute i relative to solvent (1).

8.8.4. Example of Binary Solution. Let’s consider a binary solution,
such as sucrose in water or sodium chloride in water. In such cases, there is
only 1 independent flow:

Tσ = Jd2

(
−dµ2

dx

)
T,P

.

The force is X = dµ2
dx . There is just one flux force equation J = LX:

Jd2 = L22

(
−dµ2

dx

)
T,P

= −L22

(
−dµ2

dx

)
.

Using µ2 = µ◦2(T, P ) +RT log c2 (c2 in units of mol/L). Then,
dµ2
dx = dµ2

dc2
· dc2

dx = RT

c2

(dc2
dx

)
. (chain rule)

So that

Jd2 = −L22
RT

c2

dc2
dx .

We get Fick’s law of diffusion, which gives the concentration flux as Jc =
−D dc

dx , where D = L22RT/c.

From the conservation of mass,
dc
dt = − d

dxJc,

where Jc is the concentration flux (particle flux, Jn, divided by V ), substi-
tution of Jc = −D dc

dx gives the diffusion equation

dc
dt = D

d2c

dx2 ,

which we derived in Section 1.5.1 using Einstein’s method.
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8.9. Diffusion Leads to Entropy Production

Diffusion is an irreversible process. This is obvious from experiments: re-
leasing a gas in the corner of the room leads to its spreading across the room
until the concentration is uniform. The gas will never return to its original
position. This can be seen also from the diffusion equation, which is not
time-reversal invariant: the transformation t → −t leads to a sign change.
That diffusion leads to entropy production can be seen by computing the
flow of entropy.
Recall from Section 1.5.1 that the solution to the diffusion equation for initial
conditions, c(x, 0) = nδ(x), is:

c(x, t) = n√
4πDt

e−x/4Dt.

8.9.1. Entropy Production and the Gibbs-Shannon Entropy. It can
be shown that Boltzmann entropy, S = kB log Ω is a special case of the more
general Gibbs-Shannon entropy: for a discrete probability distribution p on
the countable set {x1, x2, . . . }, with pi = p(xi), the Gibbs-Shannon entropy
is defined as

S = −kB
∑
i≥1

pi log pi.

Indeed, taking pi = 1/Ω (the uniform distribution,
∑Ω
i=1

1
Ω = 1), we get:

S = kB

Ω∑
i=1

1
Ω log Ω = kB log Ω.

For a continuous probability density function p(x), the Shannon entropy is

S = −kB
∫
R
p(x) log p(x)dx.

The entropy of the Gaussian density is seen to be:

S = −kB
∫
R

1√
2πσ2

e−x
2/2σ2

(
− log(

√
2πσ2)− x2

2σ2

)
dx = kB

2 (1+log(2πσ2))

where σ2 = 2Dt for the solution to the diffusion equation. Differentiation
of S with respect to t gives:

dS
dt = d

dt
kB
2 (1 + log(4πDt)) = kB

2
1

4πDt · 4πD = kB
2t > 0,

which is positive for all times t > 0, meaning that diffusion leads to entropy
production. Note that dS/dt decreases with time as the steady state is
approached, eventually reaching 0 asymptotically.

Now, a slightly more general proof. We can still show that dS/dt > 0
without assuming a Gaussian distribution, but instead only invoking the
form of the diffusion equation (and not its solution). Take the time derivative
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of S, then substitute the right hand side of the diffusion equation, dρ
dt =

D d2ρ
dx2 , for each instance of dρ/dt:

dS
dt =− kB

∫ [dρ
dt log ρ(x) + ρ(x) 1

ρ(x)
dρ
dt

]
dx

=− kBD
∫ [d2ρ

dx2 log ρ(x) + d2ρ

dx2

]
dx.

Integration by parts eliminates the second term. Integration by parts of the
first term leads to:

dS
dt = −kBD

∫ dρ
dx(−1)1

ρ

dρ
dxdx,

which is a non-negative quantity:
dS
dt = kBD

∫ (dρ
dx

)2 1
ρ

dx ≥ 0,

because the integrand is the product of two positive quantities: (dρ/dx)2 ≥ 0
and ρ−1 > 0.

8.10. Heat Conduction Leads to Entropy Production

We have seen that the heat conduction term

σ = Ju
d

dx( 1
T

) = −Ju ·
1
T 2

dT
dx

leads to entropy production. From this equation, we see that the force
X = dT

dx . There is a flux-force relation, J = LX, of the form:

Ju = −Lqq
dT
dx .

where Lqq is a “constant” (Onsager coefficient; the subscript qq refers to
heat), which we will call α in a moment. Starting from the equation for
energy conservation (with no heat source term),

du
dt = − d

dxJu.

Inserting the flux-force relation, invoking du = d(U/V ) = δQ/V (dV = 0,
so no work, change in internal energy is due to heat transfer) and (δQ/V ) =
ρcV dT (ρ: density, cV : specific heat capacity, C/ρV ), we obtain the famous
Fourier’s heat conduction equation

(8.7) dT
dt = α

d2T

dx2 ,

where α = k/ρcV is the thermal diffusivity of the medium where heat flows
and k is the thermal conductivity (units: W/m.K). Its functional form is
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identical to that of the diffusion equation. Therefore, heat conduction also
leads to entropy production.

8.11. Summary: Onsager’s Formulation of the Second Law

The Second Law can be formulated in terms of the entropy production σ,
namely, σ ≥ 0. In Onsager’s formulation, the entropy production is given
by the product sum of so-called conjugate fluxes, Ji, and forces Xi, in the
system. The second law becomes
(8.8) σ =

∑
i

JiXi ≥ 0

where σ is larger than or equal to zero. Each flux is taken to be a linear
combination of all forces,
(8.9) Ji =

∑
j

LijXj

and the reciprocal relations
Lij = Lji

apply. They are called Onsager’s reciprocal relations. In order to use the
theory, one first has to identify a complete set of extensive independent
variables, αi. The resulting conjugate fluxes and forces are

Ji = dαi
dt , and Xi =

(
∂S

∂αi

)
αj 6=i

,

respectively. Here t is the time and S is the entropy of the system. The
three equations above contain then all the information on the behavior of
the system. Accurate expressions for the fluxes are required to model real
systems. The simplest descriptions of heat, mass, charge, and volume trans-
port are the equations of Fourier, Fick, Ohm, Darcy and Newton. Fourier’s
law expresses the measurable heat flux in terms of the temperature gradient
by:

J ′q = −λdT
dx

where λ is the thermal conductivity, T is the absolute temperature, and x
is the direction of transport. Fick’s law gives the mass flux of one of the
components in terms of the gradient of its molar concentration c:

J = −D dc
dx

where D is the diffusion coefficient. Ohm’s law gives the electric current in
terms of the gradient of the electric potential:

JI = −κdφ
dx
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where κ is the electrical conductivity, and φ is the electric potential. Darcy’s
law says that the volume flow Jv in a tube is proportional to the pressure
gradient dP/dx via the coefficient Lp:

Jv = −Lp
dP
dx .

The fluxes are all caused by a gradient, or driving force. Fick’s law, for
instance, says that there is no mass flux if there is no concentration gradi-
ent. We know from experiments that a temperature gradient and an electric
potential gradient also can give rise to a mass flux. To neglect such effects
can have severe consequences. In general situations, we must take all driv-
ing forces into account. Equations (8.8) and (8.9) form the second law of
thermodynamics

(8.10) σ ≡ dS
dt =

∑
i

JiXi =
∑
i

∑
j

LijXjXi ≥ 0.

In a stationary state there is no accumulation of internal energy, mass or
charge. This means that the heat, molar and electric fluxes are independent
of position. The derivative of the above equations with respect to x are then
zero. For the first equation, we have:

− d
dxJ

′
a = d

dxλ
dT
dx = 0.

Equations like these can be used to calculate the temperature, concentration,
electric potential and pressure as a function of the position, when their values
on the boundaries of the system and λ, D, κ, Lp and η are known.

8.12. Problems

Problem 128. Suppose that we have a metal rod whose two end points are
held at different temperatures. This is a non-equilibrium situation because
thermodynamic equilibrium would imply that the entire rod is at the same
temperature. Instead, the temperature is a function of position along the
length of the rod. It is a steady state situation because the temperature
does not vary with time (i.e. each point along the rod is at a fixed tem-
perature). Use the concepts of non-equilibrium thermodynamics (namely,
the heat conduction equation) to calculate the temperature as a function of
position between the two end points of the rod. The rod is 10 cm long. The
walls are kept at constant temperature, 4 and 25◦ C, respectively. Assume
that the thermal conductivity is constant.

Solution. The heat conduction equation is Eq. 8.7. In the steady state, we
have d2T/dx2 = 0. Thus, T is of the form, T (x) = a + bx. The constants
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a and b follow from the boundary conditions. We have T (0)=278 K and
T (10)=298 K. It follows that T (x) = (278 + 2x/cm) K. �

Problem 129. Indoor ice rinks employ a cooling system placed underneath
a concrete slab (similar to radiant floor cooling systems, but lower temper-
atures). On top of the concrete slab is the ice. Suppose that we place a
temperature sensor d = 8 cm under the concrete slab. Calculate the en-
tropy production per surface area due to the heat transport through the
concrete slab. The temperature sensor reads 243 K. This is the temperature
of the radiant cooling system. The concrete is in contact with ice (273 K).
The thermal conductivity of the pavement is 0.7 W/K.m (λ parameter in
the Fourier’s law). Note: this is a 1D problem with depth as the relevant
spatial variable.

Solution. Fourier’s law for heat conduction is Ju = −λ(dT/dx), where x
is the depth coordinate. The entropy production per surface area is (let
∆T = Ttop − Tbelow):∣∣∣∣∣
∫ d

0
σdx

∣∣∣∣∣ =
∣∣∣∣∣
∫ d

0
Ju

d
dx( 1

T
)dx

∣∣∣∣∣ =
∣∣∣∣∣λ∆T

d

(
1
Ttop

− 1
Tbelow

)∣∣∣∣∣
=
∣∣∣∣0.7(30)

0.08

( 1
273 −

1
243

)∣∣∣∣ = 0.12 W
K.m2 .

�

Problem 130. For the previous problem, calculate the lost work per surface
area near the top of the concrete slab (at the interface of ice and concrete).
Lost work is the work lost due to entropy production (a type of T∆S term,
where ∆S is due to entropy production).

Solution. The lost work (A: area)

∆Wlost = Ttop ·A
∫ d

0
σdx

per surface area A is ∆Wlost/A=273 K · 0.12 W/K.m2=33 W/m2. It is
typical for heat conduction around room temperature that the entropy pro-
duction is large. �

Problem 131. Suppose that a closed 1D system (ideal gas in a pipe) does
not undergo any irreversible changes (σ = 0) and its temperature is spatially
uniform [d(1/T )/dx = 0] and equal to 300 K everywhere, but that there is
an enthalpy flux driven by particle flow. Moreover, the entropy of the system
does not change ds/dt = 0 (isentropic process). There is flow in the pipe
which we measure to have an average local velocity of 10 m/s at x = 0 and
12 m/s at x = 1 m. (Such an acceleration is possible if the pipe diameter
narrows slightly; you can assume that the velocity increases uniformly from
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10 to 12 m/s over this distance.) The concentration of the substance in
the pipe is 1 mol/m3 and uniform everywhere. Then, because of the nature
of this enthalpy flux, we expect the heat flux to be spatially non-uniform.
Calculate the gradient in the measurable heat flux, dJu/dx.

Solution. Since the particle flux J = cv, at x = 0 we have
J(0) = (1 mol/m3)(10 m/s)

and
J(1) = (1 mol/m3)(12 m/s).

This gives a gradient dJ/dx of (1 mol/m3)(2 m/s)/(1 m)=2 mol/m3/s. For
ideal gas, the chemical potential is µ = ∂U

∂n , where U = 3
2nRT . Thus,

µ = 3
2RT , where T = 300 K. Then invoke:

ds
dt = − d

dx

[ 1
T

(Ju − µJj)
]

= 0

Thus, d
dxJu = µ d

dxJj , where µ = 3
2RT . Plug in the numbers. �

Problem 132. If two systems A and B are in thermal contact, the assembly
(A+ B) being isolated, exchange a heat quantity 1 kJ every second (i.e., 1
kW), calculate the entropy production if TA = 200 K and TB = 300 K. Is
the entropy production positive or negative (explain)?

Solution. Heat flows from B to A (from hot body to the cold body), so
δQ = δQB = −δQA = −1 kJ.

σ = δQ

dt

( 1
TB
− 1
TA

)
> 0 = −(1 kW)

( 1
300 K −

1
200 K

)
= 5

3
kW
K .

Entropy production is always positive. �

Problem 133. Explain what is the driving force, X, of a chemical reaction.
What is the corresponding flux, J? What are the units of the flux and force?

Problem 134. Does a chemical reaction produce entropy? Why (or why
not)?

Solution. Yes, spontaneous irreversible reactions produce entropy, the en-
tropy production is ξ̇(−∆Grxn/T ). �
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Appendices

A.1. Vector

For our purposes, it will be sufficient to define a vector x as a n-tuple:
~x = (x1, x2, . . . , xn),

where xi ∈ R are all real numbers. These numbers x1, . . . , xn are called
the coordinates of the vector. The coordinates are normally taken to be
Cartesian, although other coordinate systems are possible. The vector x
lives in Rn.

A.2. Euclidean Length

A vector r with components r = (x, y, z) has Euclidean length:

|r| ≡ r ≡
√
x2 + y2 + z2.

A.3. Dot Product of Two Vectors

The notation x · y denotes a dot product. In 3D (x,y ∈ R3) the dot product
of these vectors whose components are x = (x1, x2, x3) and y = (y1, y2, y3)
can be expressed as:

x · y = x1y1 + x2y2 + x3y3.

The geometric definition of the dot product is the projection of x along the
vector y:

x · y = |x||y| cos θ,

417
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where θ is the angle between x and y. |x| and |y| denote the Euclidean
length of the vectors x and y, respectively. One often writes x and y for the
length (omitting the norm symbol) for simplicity.

A.4. Derivative of a Function of One Variable

Let f(x) be a function from U to V , where U and V are subsets on the real
line (U, V ⊂ R). Let x be a point in the interior of U .1 If f is differentiable,
then2

f(x+ h) = f(x) + h ·Df(x) + o(|h|),
where o(|h|) is a function that tends to 0 as |h| → 0. Df(x) is called the
derivative of f at the point x. This definition is equivalent to the statement:

Df(x) = lim
|h|→0

f(x+ h)− f(x)
h

.

The derivative Df(x) is also denoted as df(x)/dx or f ′(x).

A.5. More Than One Variable: Partial Derivative

When f is a function of more than one variable, we must specify which
variable we differentiate with respect to. Hence, the notion of partial de-
rivative. Partial derivatives are required in thermodynamics because the
thermodynamic potentials depend on several variables.
Suppose that f depends on two variables, f(x, y). We have the option
of differentiating with respect to x or y. (In fact, we must specify which
variable we differentiate with respect to.) These derivatives are called partial
derivatives and are defined by differentiating with respect to the variable of
choice while holding the other constant:

∂f

∂x
= lim

h→0

f(x+ h, y)− f(x, y)
h

,
∂f

∂y
= lim

h→0

f(x, y + h)− f(x, y)
h

.

As stated, these derivatives are evaluated at the point (x, y). For example,
partial differentiation of f(xy) = xy with respect to x yields ∂f/∂x = y.
(If you don’t see why, take y to be constant, any constant, say, y = 4, i.e.
f = 4x, whose derivative with respect to x is 4.) Likewise ∂f/∂y = x.
Another example is f(x, y) = y sin(x). Its derivative with respect to x is:

∂f

∂x
= y cos(x)

1It is easier to take interior points rather than points on the boundary because calculating the
derivative of f at x requires looking at the neighborhood of x. At the boundary, there is one side
with no neighborhood.
2You can think of h as a “small parameter”.
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because this is what we get if we treat y as if it were a constant. Similarly,
the derivative with respect to y is:

∂f

∂y
= sin(x).

In thermodynamics, the practice is to explicitly state which variables are
held constant. For example, the internal energy U(S, V,N) is a function of
three variables (S: entropy, V : volume, N : number of particles) and its
total derivative is denoted:

dU(S, V,N) =
(
∂U

∂S

)
V,N

dS +
(
∂U

∂V

)
S,N

dV +
(
∂U

∂N

)
S,V

dN.

The notation
(
∂U
∂S

)
V,N

means “derivative of U with respect to S while hold-
ing V and N constant”. In general, however, it is not necessary to specify
which variables are held constant because the definition of partial derivative
makes it clear that all variables except the one of interest are to be held
constant.

A.6. Taylor’s Theorem

Let f be a function that is n times differentiable at a point x0. Then,

f(x0 +ε) = f(x0)+ε · dfdx (x0)+ 1
2!ε

2 · d
2f

dx2 (x0)+ · · ·+ 1
n!ε

n · d
nf

dxn (x0)+o(|ε|n),

where o(|ε|n) is a quantity such that

lim
|ε|→0

o(|ε|n)
|ε|n

= 0.

In plain English, Taylor’s theorem says that if ε is small enough, and f
is smooth enough (sufficiently differentiable), we can expand f around the
neighborhood of x0 using n of its derivatives. These n derivatives are evalu-
ated at x0 and thus are n numbers. Together with f(x0), we only need n+1
numbers to approximate the function in this neighborhood.
When n → ∞, this expansion is called Taylor’s series. When x0 = 0 the
Taylor series is called a Maclaurin series. To obtain the Taylor series from
an analytical formula for f , we start by evaluating the derivatives of f at
the point x = x0.

A.6.1. Examples. The Taylor (Maclaurin) series for f(x) = ex about x0 =
0 is

ex =
∞∑
n=0

xn

n! .
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The Taylor series of f(x) = cos(x) about x0 = 0 is

cos(x) =
∞∑
n=0

(−1)nx2n

(2n)! .

The case of ex is trivial since all derivatives of this function are ex (which,
when evaluated at x = 0 give 1). For cos(x), the derivatives alternate
between sin and cos together with some sign changes:

df
dx (x) =− sin(x) df

dx (0) = 0,

d2f

dx2 (x) =− cos(x) d2f

dx2 (0) = −1,

d3f

dx3 (x) = sin(x) d3f

dx3 (0) = 0,

d4f

dx4 (x) = cos(x) d4f

dx4 (0) = 1,

...
which leads to

cos(x) = 1− 1
2!x

2 + 1
4!x

4 − 1
6!x

6 + · · · =
∞∑
n=0

(−1)nx2n

(2n)! .

A.7. Chain Rule

The chain rule is needed when we differentiate a function with respect to a
variable that is found within the argument of the function. Example:

d
dyf(λy) = df

dy ·
d(λy)

dy = df
dy λ.

A function f expressed in the form f(·) is a function of some argument ·.
The argument is the slot in which we insert a number or variable in order
to evaluate the function’s value at that point. Here, the argument of f is
λy. However, the variable we differentiate with respect to is y. y is found in
the argument of f , i.e. λy is a function of y. In the first equality, the term
df
dy means “derivative of f with respect to its argument”.
In two variables, the idea is the same except that we use partial derivatives
to stress which argument of the function is targeted. For example, if we
must differentiate f(x, λy) with respect to y, the chain rule gives:

∂

∂y
f(x, λy) = ∂f

∂y
· ∂(λy)
∂y

= ∂f

∂y
λ.
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Here, ∂f
∂y means derivative of f with respect to its second argument. A

better notation for ∂f
∂y would be D2f to emphasize the second argument,

rather than y (since y is different from λy).

A.8. Total Differential

For a function of one variable, f(x), the total differential is defined as:

df(x) = f ′(x)dx = df
dx · dx.

It is also defined as
df(x) = f(x+ dx)− f(x).

Taylor expansion of f(x+ dx) = f(x) + f ′(x)dx+O(|dx|2) leads to:
df(x) =���f(x) + f ′(x)dx+O(dx2)−���f(x) = f ′(x)dx+O(|dx|2),

where O(|dx|2) represents higher-order terms ((dx)2 and higher). And for
this to agree with df(x) = f ′(x)dx = df

dx · dx, then we must have that
O(|dx|2) = 0.
For a function of two variables,

df(x, y) = f(x+ dx, y + dy)− f(x, y) =����f(x, y) + ∂f

∂x
· dx

+ ∂f

∂y
· dy +O(|dx,dy|2)−����f(x, y),

where O(|dx, dy|2) denotes higher order terms. For the rules of calculus to
hold, we must have that O(|dx,dy|2) = 0. Then,

df(x, y) = ∂f

∂x
· dx+ ∂f

∂y
· dy.

This can be generalized to any number of variables. For example, a function
of 3 variables, U ≡ U(S, V,N), has:

dU(S, V,N) = ∂U

∂S
dS + ∂U

∂V
dV + ∂U

∂N
dN.

And for the case U ≡ U(S, V, {Ni})

dU(S, V, {Ni}) = ∂U

∂S
dS + ∂U

∂V
dV +

∑
i

∂U

∂Ni
dNi.

Comparing this to the fundamental equation of thermodynamics, dU =
TdS − PdV +

∑
i µidNi, we get thermodynamic definitions for T, P, µi:

T ≡ ∂U

∂S
, P ≡ −∂U

∂V
, µi ≡

∂U

∂Ni
.
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A.9. Exact Differentials

In the statement of the first law (dU is an exact differential), we invoked
the concept of exact differentials or exact forms. Exact forms are those that
are obtained as the differential of some function f(x, y):

ω(exact) ≡ df = fx(x, y)dx+ fy(x, y)dy = ∇f · d~r,
where here fx denotes the partial of f with respect to x and d~r = (dx,dy).
The fundamental theorem of calculus says that integration of an exact 1-
form df on a closed interval [a, b] is equal to the difference of f at the
boundaries of the interval, ∂[a, b] = {a, b}:∫

[a,b]
ω =

∫ b

a
ω =

∫ b

a
df = f(b)− f(a).

Another equivalent statement is:∫ b

a
∇f · d~r = f(b)− f(a),

where ∇f = (∂xf, ∂yf) and d~r = (dx, dy). Thus, for exact differentials,
their integrals only depend on the end points and not on the path taken to
reach the end point.
On the other hand, more general expressions of the form

ω = f1(x, y)dx+ f2(x, y)dy
are called differential forms (1-forms). While all exact differentials are 1-
forms, not all 1-forms happen to be exact.
It is helpful at this point to introduce Euler’s test to help us determine
whether an expression containing first-order differentials is exact. Take, for
example, the following differential 1-form:

ω = (xy)dx+ (xy)dy.
If this were an exact differential we would write ω = df for some f . If this
were the case then df , according to the definition of differential, must also
be equal to (subscript denotes which variable is held constant):

df =
(
∂f

∂x

)
y

dx+
(
∂f

∂y

)
x

dy

But since mixed partials should be equal:
∂

∂y

(
∂f

∂x

)
= ∂

∂x

(
∂f

∂y

)
.

This “Euler test” provides a necessary condition for exact differential. Let’s
check to see if this is the case: ∂y(xy) = x whereas ∂x(xy) = y, which are
not equal for all x, y. So we cannot say that ω is an exact differential.
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On the other hand,
ω = ydx+ xdy

meets the necessary condition since ∂y(y) = 1 and ∂x(x) = 1 are equal. In
fact, we see that ω = d(xy). Thus, it is an exact differential because it is
the derivative d of some function f(x, y) = xy.
Any expression ω which can be written in the form df for some f is an
exact differential. In fact, this is the correct definition of exact differen-
tial. Euler’s test provides a necessary condition. The sufficient condition is
provided by identifying the function f for which ω = df over some specified
domain.3 The latter task of finding f requires more work.

A.10. Einstein Summation Convention

Whenever two indices are repeated in the same term, a summation is im-
plied. For example, in the dot product of u = (ux, uy, uz) and v = (vx, vy, vz)
we have:

u · v = uαvα ≡
3∑
i=1

uivi = uxvx + uyvy + uzvz.

It is simpler to write uαvα than the entire summation.

A.11. Multivariate Taylor Expansion

In 1D the Taylor expansion of f(x+ h) at x is:

f(x+ h) = f(x) + f ′(x)h+ 1
2f
′′(x)h2 + 1

3!f
(3)(x)h3 + . . .

In n-D, a scalar-valued function f(x), where x ∈ Rn, is expanded as:

f(x + h) = f(x) +
n∑
i=1

∂f(x)
∂xi

hi + 1
2

n∑
i=1

n∑
j=1

∂2f(x)
∂xi∂xj

hihj

+ 1
3!

n∑
i=1

n∑
j=1

n∑
k=1

∂3f(x)
∂xi∂xj∂xk

hihjhk + . . .

A.11.1. Abbreviation for Partial Derivatives. We will often use the
shorthand notation to abbreviate the notation for partial differentiation:

∂α ≡
∂

∂xα

3The choice of domain is important because some forms may be not be exact over all space, but
may be exact over a restricted domain.
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In this notation, and using the summation convention, the multivariate Tay-
lor expansion looks particularly neat:

f(x + h) = f(x) + hi∂if(x) + 1
2hihj∂i∂jf(x) + 1

3!hihjhk∂i∂j∂kf(x) . . .

(summation convention) The components of h have been moved to the left-
hand-side of all derivative operators to avoid any possible confusion about
which quantity is differentiated.

A.12. Example: Derivative of 1/r

This example is often encountered when dealing with potentials (gravita-
tional, electromagnetic). The first order partial derivative of

1
r
≡ 1
|r| = 1√

x2 + y2 + z2

with respect to x is:
∂

∂x

(1
r

)
≡ ∂x

(1
r

)
= −1

2
(2x)

(x2 + y2 + z2)3/2 = − x
r3 .

Similar expressions are found for differentiation with respect to y or z. Thus,
for any component α = x, y, z we have:

∂

∂rα

(1
r

)
≡ ∂α

(1
r

)
= −rα

r3

where rα can be any of x, y, z depending on the choice of index α = x, y, z.

A.13. Probability Concepts

Molecular velocities are an inherently probabilistic concept. This is because
we are usually dealing with a large number of molecules and we do not have
perfect knowledge of every single molecule’s position and velocity. The best
we can do is describe their behavior statistically. Their description requires
us to introduce tools to manipulate random variables. Random variables
can be continuous or discrete, depending on whether they take continuous
or discrete values, respectively. An example of a continuous random variable
is the length of an object. Another example of continuous random variable
is the velocity component of a molecule chosen at random. The velocity
component, for example vx, takes values in the interval (−∞,∞). The
speed of a molecule, v =

√
v2
x + v2

y + v2
z , is another example of a continuous

random variable, taking values in the interval [0,∞). Length is a random
variable which can take positive real values, a continuous interval, [0,∞).
An example of a discrete random variable is the number of counts within
a time interval. Counts can only take discrete values (1, 2, 3, . . . ), in this
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case, the positive integers. Similarly, the roll of a (normal) die is a discrete
random variable, which can only take values in the set {1, 2, 3, 4, 5, 6}.

A.14. Continuous Random Variables

A continuous random variable X cannot be a simple variable because it
describes the value of a measurement made in a given experiment and all
statistical properties of this measurement.4 Instead it is better to think of
X as a function that encodes the statistical properties of the measurement.
To this end, let us associate with X a probability density function (PDF),
p(x).

A.15. Probability Distribution Functions

A PDF, p(x), describes the likelihood that a random variable will take a
certain value. For example, the probability, P, that a random variable X
will take a value in the interval [a, b] is given by:

P(a < X < b) =
∫ b

a
p(x)dx

where p(x) is the probability density function for the random variable X.
The requirements are that p(x) should be non-negative (≥ 0) and normalized
to 1:

p(x) ≥ 0,∀x,
∫ ∞
−∞

p(x)dx = 1,

where the limits of integration (denoted here by [−∞,∞]) range over the
domain of definition of the random variable, i.e. if this domain is [0, 1] then
the limits of integration are from 0 to 1. Its main purpose is to compute
average values. For example, the average (mean) value of X is:

EX ≡ X ≡ 〈X〉 =
∫ ∞
−∞

xp(x)dx.

The average of a function of X is obtained by replacing the random variable
X by a dummy integration variable x, multiplying by p(x) and integrating
over x:

Ef(X) ≡ f(X) ≡ 〈f(X)〉 =
∫ ∞
−∞

f(x)p(x)dx.

4This experiment could consist, for example, of choosing a molecule at random within an ensemble
and recording its velocity (assuming this is even possible!). Every time a molecule is chosen, it
will usually be a different molecule than in previous experiments, especially if the ensemble is
very large. Even if the same molecule is chosen twice, this will be done at different times, and its
velocity will be different. In each case, the result (velocity measurement) will be very different.
Hence, we need a statistical description that will tell us what is the average velocity, what is the
variance (spread of values), etc.
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A famous example of a PDF is the normal (Gaussian) distribution, whose
pdf is

p(x) = 1√
2π
e−x

2/2.

Meaning of the PDF: The PDF p(x) has the following meaning.
The quantity p(x)dx is the probability P that the random variable
X lies in the interval [x, x+ dx]:

p(x)dx = P(x ≤ X ≤ x+ dx),
where dx is an infinitesimally small quantity and P(·) denotes the
probability P of the event · occurring. The quantity p(x)dx in itself
is rarely used. Instead, one integrates this expressiona to find the
probability that X will take some value in a finite interval [a, b]:

P(a ≤ X ≤ b) =
∫ b

a
p(x)dx.

aSince P(x ≤ X ≤ x + dx) = P(X ≤ x + dx) − P(X ≤ x) = dP(X ≤ x), integrating
P(x ≤ X ≤ x+ dx) = dP(X ≤ x) from a to b yields

∫ b
a

dP(X ≤ x) = P(X ≤ b)− P(X ≤

a) = P(a ≤ X ≤ b) whereas integrating p(x)dx yields
∫ b
a
p(x)dx. Since the two are

equal, we have that P(a ≤ X ≤ b) =
∫ b
a
p(x)dx.

A.16. Mean Value

The mean value of a random variable X, denoted EX, is defined as:

EX ≡
∫ ∞
−∞

xp(x)dx.

That is, to obtain the mean value of X, we replace the random variable X
by a regular variable x that represents its value, then multiply by p(x) and
integrate over all x.
We note that this expression differs from the sample mean, 1

n

∑n
i=1 xi. The

sample mean is only an estimate of the mean.

A.17. Variance

The variance of X is defined as the sum of square differences between X
and its mean, weighted by the pdf:

σ2 =
∫ ∞
−∞

p(x)(x− EX)2dx
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The square can be expanded to give
∫∞
−∞ p(x)(x2 + (EX)2 − 2xEX)dx and

thus
σ2 = E(X2)− (EX)2.

The square root of the variance is called the standard deviation and is de-
noted σ.

A.18. Average of a Function of a Random Variable

The average (or mean, or expectation value) of a function f of a random
variable X is defined as:

Ef(X) ≡
∫ ∞
−∞

f(x)p(x)dx.

As an example, take f(x) = xn. This is called the n-th moment of X:

E(Xn) ≡
∫ ∞
−∞

p(x)xndx.

The case n = 1 (first moment) is called the “mean value of X”:

EX ≡
∫ ∞
−∞

p(x)xdx “mean value of X”

The variance of X is defined as σ2 =
∫∞
−∞ p(x)(x − EX)2dx, which also

equals σ2 = E(X2)− (EX)2. Thus, the variance is the second moment of X
minus the square of the average of X.

A.18.1. Example 1. Suppose that the kinetic energy, K(v) = 1
2mv

2, of
an object of mass m is to be calculated using experimentally measured val-
ues of the velocity v. Thus, v is a random variable V . Since v is a ran-
dom variable, K(v) is also a random variable. You determine from experi-
ments that the velocities, v, are Gaussian-distributed around 100 m/s, with
a standard deviation of 1 m/s, i.e. p(v) = 1√

2πe
−(v−100)2/2. What is the

average kinetic energy, EK(V )? You expect that EK(V ) should be close to
K(100) = 1

2m(100)2. However, the exact value of EK(V ) will depend on
the distribution p(v). We need to calculate:

EK(V ) =
∫ ∞
−∞

1
2mv

2 1√
2π
e−(v−100)2/2dv

= m

2
√

2π

∫ ∞
−∞

v2e−(v−100)2/2dv ≈ m

2 1.0001 · 104.

So fairly close to K(100) but slightly higher.

A.18.2. Example 2. Suppose that f(θ) = cos(θ) and p(θ) = 1 for θ ∈
[−1

2 ,
1
2 ] and p = 0 elsewhere (uniform distribution). Denote the random

variable as Θ. Using p(θ) you can easily check that EΘ =
∫ 1/2
−1/2 θ dθ = 0.
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The average of cos(Θ) is:

E cos(Θ) =
∫ 1/2

−1/2
cos(θ)dθ ≈ 0.9589.

Note: it is not equal to 1 even though the average of Θ is 0.

A.19. More than One (Continuous) Random Variable

If we are to compute the average of an expression that is a function of
more than one random variable, we need to use the joint probability density
pXY (x, y), which is everywhere non-negative (pXY (x, y) ≥ 0) and integrates
to 1: ∫ ∞

−∞

∫ ∞
−∞

pXY (x, y)dxdy = 1.

The average of a function g(X,Y ) would be:

Eg(X,Y ) =
∫ ∞
−∞

∫ ∞
−∞

pXY (x, y)g(x, y) dx dy.

Given a joint PDF, pXY (x, y), the marginal density function for X is ob-
tained by integrating over y:

pX(x) =
∫ ∞
−∞

pXY (x, y) dy.

Similarly, the marginal density for Y is obtained by integrating over all x:

pY (y) =
∫ ∞
−∞

pXY (x, y) dx.

Note: you can easily check that both marginals pX(x) and pY (y) are bona
fide densities, i.e. nonnegative and normalized to 1.

A.20. Statistical Independence

The marginal density is a useful concept if you are asked to check whether or
not two random variables are statistically independent. Two random vari-
ables X and Y are statistically independent if the joint probability density
is written as the product of densities of each variable:

pXY (x, y) = pX(x)pY (y),

where pX(x) and pY (y) are the marginal densities of X and Y , respectively.
They can be computed from pXY (x, y) by integrating.
There are at least two consequences of statistical independence that we can
immediately point out. First, one concerns expectation values. Consider
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the average of a function g(X,Y ) of two r.v. X and Y :

Eg(X,Y ) =
∫ ∞
−∞

∫ ∞
−∞

pXY (x, y)g(x, y)dxdy

=
∫ ∞
−∞

∫ ∞
−∞

pX(x)pY (y)g(x, y)dx dy.

If g factors as a product of a function of X times a function of Y , for example
g(X,Y ) = XY then the expectation value of XY is equal to the product of
expectation values of X and that of Y :

E(XY ) =
∫ ∞
−∞

∫ ∞
−∞

pX(x)pY (y)xy dx dy =
∫ ∞
−∞

pX(x)x dx·
∫ ∞
−∞

pY (y)y dy

= EX · EY.
The second consequence pertains to the calculation of probabilities in gen-
eral, which also factors as a product. For example, the joint probability:

P(X ∈ A, Y ∈ B) =
∫
{(x,y)|x∈A,y∈B}

pXY (x, y) dx dy

=
∫
{(x,y)|x∈A,y∈B}

pX(x)pY (y)dxdy

=
∫
{x|x∈A}

pX(x)dx ·
∫
{y|y∈B}

pY (y)dy

=P(X ∈ A)P(Y ∈ B).

A.20.1. Example: the Gaussian (normal) Distribution. The normal
distribution N(µ, σ2) with mean µ and variance σ2 is defined by the PDF:

p(x) = 1√
2πσ2

e−
(x−µ)2

2σ2

The prefactor 1√
2πσ2 is such that p(x) adds up to 1:∫ ∞

−∞
p(x)dx = 1

This can be verified using the well-known result for a Gaussian integral∫∞
−∞ e

−ax2dx =
√
π/a, where a > 0.

This PDF is plotted in Fig. A.1. The width is proportional5 to σ and mean
value is EX.
If a random variable X follows a Gaussian distribution with mean µ = EX
and variance σ2 we write

X ∼ N(µ, σ2).
5In fact, the full width at half maximum of the Gaussian is 2

√
2 log 2σ ≈ 2.355σ. You can check

this by finding the values of x for which 1
2

1√
2πσ2 = 1√

2πσ2 e
− x2

2σ2 or 1
2 = e

− x2
2σ2 , since the

maximum of the function is 1√
2πσ2 (set x = 0). Taking logs of both sides gives x = ±

√
2σ2 log 2.
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Figure A.1. Gaussian density.

A.20.1.1. The Gaussian Probability Density. The Gaussian probability den-
sity (in 1D) with mean zero is:

p(x) = 1√
2πσ2

e−
x2
2σ2 .

Its integral is 1: ∫
R
p(x)dx = 1

This can be easily checked using the standard result from integration tables:∫ ∞
−∞

e−ax
2dx =

√
π

a
.

σ is called the standard deviation. σ is related to the width of the bell curve.
σ2 is called the variance. The function p(x) has a bell shape centered at 0
and a full-width at half-maximum of approximately ≈ 2.355σ.

A.20.2. Other Examples of Probability Distributions. The Gibbs
distribution for the probability of the system X being in state x (random
variable X taking the value x) is:

P(X = x) = 1
Z(β) exp(−βE(x))

where Z(β) is a normalization factor called the partition function:

Z(β) =
∫

dx exp(−βE(x)).

β is a free parameter called the inverse temperature (β = 1/kBT ). When
integrated over x, this distribution is normalized:∫

P(X = x)dx = 1
Z(β)

∫
dx exp(−βE(x)) = Z(β)

Z(β) = 1.
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The Rayleigh distribution has density

p(x) = x

σ2 exp
(
− x2

2σ2

)
, x ≥ 0,

where σ is a parameter of the distribution.
The Gaussian distribution is

p(x) = 1√
2πσ2

exp
(
− x2

2σ2

)
,

where σ is a parameter of the distribution.

A.20.3. Boltzmann Factor. Another example of probability density is
the Boltzmann distribution, or the Boltzmann factor. The latter gives the
probability of a system to be in the state i, with energy Ei:

p(state i) ∝ exp
(
− Ei
kBT

)
A state is a set of quantum numbers. For example, if we specify the values
of n, l,ml,ms for an electron in an atom, we have specified a state. Note:
state is different from energy level. More than 1 state can correspond to
the same energy. That is the case for the hydrogenic atom, where only the
principal quantum number n determines the energy. For a given n, all values
of l,ml,ms give the same energy.
The meaning of the Boltzmann factor is the probability of finding the system
in a given state when the temperature is T , assuming classical particles (not
fermions or bosons). In the limit T → 0 only the ground state is occupied
(the reader should check this!). In the high-temperature limit (T → ∞)
all levels are equally likely to be populated; the distribution behaves like a
uniform distribution.

A.20.4. Derivation of the Maxwellian Distribution. We seek to de-
termine the constants a and c in:

f(vi) = c exp(−av2
i ). (i = x, y, z)

A.20.4.1. Finding c. In Section 1.3.3, the constant c was obtained from the
normalization condition:∫ ∞

−∞
dvif(vi) = c

∫ ∞
−∞

dvi exp(−av2
i ), a > 0

which led to c =
√
a/π.

A.20.4.2. Finding a. a can be found by invoking the two previous results:

〈εkin〉 = 3
2kBT, 〈εkin〉 = 1

2m〈v
2〉 = 3

2m〈v
2
z〉.
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But 〈v2
z〉 is an average which can be computed using the probability density

for ~v:6

kBT =m〈v2
z〉 = m

∫ ∞
−∞

dvzv2
zf(vz) = m

√
a

π

∫ ∞
−∞

dvzv2
z exp(−av2

z)

=−m
√
a

π

d
da

(∫ ∞
−∞

e−av
2
zdvz

)
= −m

√
a

π

d
da

(√
π

a

)
= m

√
a

π

1
2

√
π

a3/2 = m

2a.

Therefore, a = m
2kBT and c =

√
a
π =

√
m

2πkBT , so that:

f(vi) =
√

m

2πkBT
exp

(
− mv2

i

2kBT

)
, f(~v) =

(
m

2πkBT

)3/2
exp

(
− mv2

2kBT

)
.

A.20.4.3. Mean Square Displacement. The mean square displacement, 〈x(t)2〉,
or also denoted 〈X2

t 〉 where Xt is the random variable for position at time t,
for the 1D diffusion equals 2Dt. This is proved as follows. Apart from the
factor n, Eq. (A.4) is merely the probability density for finding a particle at
x at time t:

pt(x) = c(x, t)
n

= 1√
4πDt

e−x
2/4Dt.

So using the definition of the average (let a = 1/4Dt):

〈X2
t 〉 =

∫ ∞
−∞

x2pt(x)dx = 1√
4πDt

∫ ∞
−∞

x2e−x
2/4Dtdx =

√
a

π

∫ ∞
−∞

x2e−ax
2dx

=−
√
a

π

d
da

(∫ ∞
−∞

e−ax
2dx

)
= −

√
a

π

d
da

(√
π

a

)
= 1

2

√
a

π

( √
π

a3/2

)
= 1

2a
which is equal to 2Dt.
A.20.4.4. Transition Probabilities. Equation (A.4),

(
∂x
∂y

)
z

= 1
( ∂y∂x)

z

, asks the
question: what is the concentration at point x at time t + τ . This concen-
tration consists of a sum of contributions from all possible spatial positions
located some distance ∆ away from x weighted by the probability of under-
going a jump of size ∆ to reach the point x. This weighting factor is φ(∆).
This makes intuitive sense and can be taken as the definition of the function
φ(∆).

6Alternatively, we could have started by using the 3D probability density for ~V by writing, 〈v2
z〉 =∫

f(~v)v2
zd3~v, because this is equal, by normalization of the two functions f(vx) and f(vy), to∫ ∞

−∞
dvxf(vx)︸ ︷︷ ︸
=1

∫ ∞
−∞

dvyf(vy)︸ ︷︷ ︸
=1

∫ ∞
−∞

dvzv2
zf(vz) =

∫ ∞
−∞

dvzv2
zf(vz)

But this step can be skipped in favor of simply using f(vz) the probability density for the Vz
component.
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Those familiar with probability theory may recognize Eq. (A.4) as the defini-
tion of transition probability density for a Markov process. The probability
density pt(x) of finding the particle at position x, time t, obeys the condition

ps(x) =
∫ ∞
−∞

pt(y)p(x, s|y, t)dy, s > t

where p(x, s|y, t) a conditional probability density describing the probability
of the random process to be found at the point x at time s (s > t) under
the condition that it was at the point y at an earlier time t. It is known
as the transition probability density. Taking ps(x) to be proportional to the
concentration c(x, s), where s = t+ τ yields Eq. (A.4).

A.21. Angular Averaging

A PDF can also depend on several variables. For example, p(r, θ, φ). It is
called a joint probability density. It is possible to integrate over some of these
variables and obtain a reduced probability density, also known as marginal
probability density. Suppose that pXY (x, y) is a joint probability density for
the random variables X and Y , i.e.∫ ∫

pXY (x, y)dxdy = 1 (normalization), pXY (x, y) ≥ 0.

Integrating with respect to y eliminates the random variable Y and yields a
probability density for the random variable X only:

pX(x) ≡
∫
pXY (x, y)dy

An example of marginal distribution is an angle-averaged distribution. Sup-
pose that we have a (joint) probability density function, p(r, θ, φ), for the
three random variables r, θ, φ and that we want to average over θ and φ.
This is done as follows:

p(r) ≡
∫ 1
−1
∫ π

0 p(r, θ, φ)d(cos θ)dφ∫ 1
−1
∫ π

0 d(cos θ)dφ
= 1

4π

∫ 1

−1

∫ π

0
p(r, θ, φ)d(cos θ)dφ

where the denominator is added for normalization purposes. The specific
case shown in the above equation is the example of averaging over the unit
sphere.
The need for marginal distribution arises when physical quantities are being
averaged away by some process, such as molecular tumbling motion. The
end result, p(r), contains no information about the angles except the effect
of averaging over those angles.
In the next section, we will perform angle-averaging of the intermolecular
interactions. This is done because molecular rotations (tumbling) causes the
angles to be random functions of time. In experiments, we almost always
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measure time-averaged quantities because the measurement times (millisec-
onds to seconds) are much longer than the molecular rotations (picoseconds
or less).
Note: it is the PDF that is averaged over the angles and not the interaction
energy itself. In the high-temperature limit, those two operations are iden-
tical. At finite temperatures, there is a difference. In the last section below,
we will show how the Keesom interaction can be derived by averaging the
interaction energy over the angles, but weighted by the Boltzmann factor.
Nearly identical results are obtained.

A.22. Spherical Coordinates

The spherical coordinates are defined by
x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ

and the unit vectors are shown in Fig. A.2.

Figure A.2. Orthogonal frame in spherical coordinates.

The inverse transformation is

r =
√
x2 + y2 + z2, θ = cos−1

(
z√

x2 + y2 + z2

)
, φ = tan−1

(
y

x

)

A.23. Dirac Delta Function

The Dirac delta can be loosely thought of as a function on the real line
which is zero everywhere except at the origin, where it is infinite,

δ(x) =
{

+∞, x = 0
0, x 6= 0
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and which is also constrained to satisfy the identity∫ ∞
−∞

δ(x) dx = 1.

This is not a rigorous mathematical definition, but it will be enough for our
purpose later in Section A.24.2, where it will be used to express the initial
condition to the diffusion equation whereby at time t = 0 all molecules are
at x = 0 and nowhere else.
The Dirac delta function has another purpose, namely, to extract the value
of a function at some point a under the integral sign:∫ ∞

−∞
f(x)δ(x− a) dx = f(a).

This is called the “sifting property” of the Dirac delta function.
You can also think of it as a sharply peaked Gaussian density:

δ(x) = lim
σ→0

1√
2πσ2

e−
x2
2σ2 .

There are many other representations of the Dirac delta function.
In 3D the Dirac delta function has the meaning δ(x) = δ(x)δ(y)δ(z).

A.24. Integration Over a Sphere

Suppose that you are asked to average a function over the unit sphere. We
simply integrate over the solid angle dΩ = sin θdθdφ. This is equivalent to
setting r = 1 in the volume integral in spherical coordinates and omitting the
dr integration (which is equivalent to adding a Dirac delta function δ(r− 1)
in the integrand). The area element in spherical coordinates is shown in
Fig. A.3.

Figure A.3. Area element in spherical coordinates.
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A.24.1. Change of Variables Formula. Suppose that x, y and z are
expressed in terms of new coordinates u, v, w. The volume integral∫

R
f(x, y, z)dxdydz

of the function f over the region R is also equal to∫
R
f(x(u, v, w), y(u, v, w), z(u, v, w))

∣∣∣∣ ∂(x, y, z)
∂(u, v, w)

∣∣∣∣ dudvdw

where u, v, w is a parametrization of the region R. The integral is still com-
puted over the region R, except that the limits of integration are specified
in the u, v, z coordinates.

∣∣∣ ∂(x,y,z)
∂(u,v,w)

∣∣∣ is the Jacobian of the transformation,
which is computed from the determinant:∣∣∣∣ ∂(x, y, z)

∂(u, v, w)

∣∣∣∣ =

∣∣∣∣∣∣∣
xu xv xw
yu yv yw
zu zv zw

∣∣∣∣∣∣∣
where xu denotes the partial of x with respect to u, i.e. xu = ∂x

∂u , etc.
You can check that in spherical coordinates the Jacobian is r2 sin θ. Thus,
the volume element

dV = dxdydz = r2 sin θdrdθdφ.
i.e. compute the determinant:∣∣∣∣∣∣∣

xr xφ xθ
yr yφ yθ
zr zφ zθ

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
sin θ cosφ −r sin θ sinφ r cos θ cosφ
sin θ sinφ r sin θ cosφ r cos θ sinφ

cos θ 0 −r sin θ

∣∣∣∣∣∣∣
A.24.2. Exercise: the 3D case. Using Taylor expansions in multiple
variables, we can extend the analysis from the previous section and show
that the diffusion equation in 3D is of the form:

∂c

∂t
= D∇2c(x, t),

where c = c(x, t), x = (x, y, z) is a vector and ∇2 is the Laplacian, i.e.
∇2 = ∂2

∂2
x

+ ∂2

∂2
y

+ ∂2

∂2
z
. Find the solution to this diffusion equation in 3D for

similar initial conditions, i.e. c(x, 0) = nδ(x). Show that the mean-square
displacement in 3D is 6Dt (c.f. 2Dt in 1D).

A.24.3. Exercise: Mean-Square Displacement. The mean-square dis-
placement is defined as E(X2). Using the definition of average this means
solve E(X2) =

∫
R x

2p(x, t)dx Calculate this average using the probability
density we found when solving the diffusion equation:

p(x, t) = 1√
4πDt

e−x
2/4Dt
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where
∫
R p(x, t)dx = 1. Show that E(x2) = 2Dt. Note: the reason we don’t

use EX = 0 is that it’s equal to zero and therefore trivial.

A.24.4. Exercise: Solution for Arbitrary Initial Conditions. When
solving the diffusion equation we assumed that the concentration at time
zero, was proportional to δ(x). This led to the following result:

p(x, t) = 1√
4πDt

e−x
2/4Dt.

Suppose instead that we have the initial condition c(x, 0) = g(x). Show that
the solution would be a convolution:

c(x, t) =
∫
R
p(x− y, t)g(y)dy.

In 3D this would be of the form:

c(x, t) =
∫
R3
p(x− y, t)g(y)d3y,

where d3y = dy1dy2dy3 is a volume element.

A.25. Gradient

The gradient of a function of three variable f(x, y, z) is defined in Cartesian
coordinates as the vector

∇f = ∂f

∂x
x̂ + ∂f

∂y
ŷ + ∂f

∂z
ẑ.

In spherical coordinates (using the “physics convention” for the angles θ, ϕ
shown in Fig. A.4), the gradient is

∇f = ∂f

∂r
r̂ + 1

r

∂f

∂θ
θ̂ + 1

r sin θ
∂f

∂ϕ
ϕ̂.

For a function, such as V (r), that depends only on r, then only the first
term matters:

∇V (r) = ∂V

∂r
r̂.

A.26. Legendre Transformation

The Legendre transformation is central to the structure of thermodynamics
and classical mechanics. In classical mechanics it establishes the correspon-
dence between Lagrangian and Hamiltonian mechanics. Here we follow the
presentation of Arnold’s outstanding book [28]. In thermodynamics it is
used for two purposes. The first is to change the “natural variables” to a
more convenient set of variables. The natural variables are the independent
variables that can be controlled in the laboratory. The precise set of nat-
ural variables one should use is a choice that depends on the application.
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Figure A.4. Spherical coordinates.

The second purpose is the statement of thermodynamic equilibrium. The
second law says entropy should be maximized. However, this can also be
shown to mean that energy is minimized, as we will explain below. Legendre
transforms can be used to transform nonlinear partial differential equations
(PDEs) into linear ones, for which known methods can be used to solve
them.
The Legendre transformation of f(x) is the function f∗(p) defined by

f∗(p) = max
x
{px− f(x)} .

In the case of multiple variables, ~x and ~p are vectors and the definition is:

f∗(~p) = max
x
{~p · ~x− f(~x)} .

A.26.1. How to Obtain the Legendre Transform. (Definition) Let
y = f(x) be a convex function, f ′′(x) > 0. The Legendre transformation of
the function f is a new function g of a new variable p, which is constructed
in the following way (Fig. A.5).

• We draw the graph of f in the x, y plane.
• Let p be a given number.
• Consider the straight line y = px.
• We take the point x = x(p) at which the curve is farthest from the straight

line in the vertical direction: for each p the function px− f(x) = F (p, x)
has a maximum with respect to x at the point x(p).
• Now we define the function g(p) = F (p, x(p)) and call it the Legendre

transformation of f , which is basically F but in which we have substituted
x = x(p) (x as a function of p).
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• The point x(p) is obtained by solving for x in the expression obtained
from the extremal condition ∂F/∂x = 0, i.e. f ′(x) = p. Since f is convex,
the point x(p) is unique (if it exists).

f(x)

g(p)

x(p)
x

y

p

Figure A.5. Legendre transformation.

Example. Let f(x) = x2. Then F (p, x) = px − x2, x(p) = (1/2)p,
g(p) = (1/4)p2.

Example. Let f(ẋ) = mẋ2/2. Then g(p) = p2/2m. This can be seen as
follows:

F (p, ẋ) = ẋp− f(ẋ)
Fẋ = 0 = p− f ′(ẋ) =⇒ p = f ′(ẋ) = mẋ =⇒ ẋ(p) = p

m

g(p) = F (p, ẋ(p)) = p2

m
− p2

2m =⇒ g(p) = p2

2m.

Example. Let f(x) = xα/α. Then g(p) = pβ/β, where (1/α)+(1/β) = 1
(α > 1, β > 1).
This can be seen as follows:

F (x, p) = xp− xα

α

Fx = 0 =⇒ p = αxα−1

α
= xα−1 =⇒ x(p) = p

1
α−1

g(p) = p · p
1

α−1 − p
α
α−1

α
= p

α
α−1

(
α− 1
α

)
= pββ

where β = α
α−1 or (1/β) + (1/α) = 1.

Example. Let f(x) be a convex polygon. Then g(p) is also a convex
polygon, in which the vertices of f(x) correspond to the edges of g(p), and
the edges of f(x) to the vertices of g(p). For example, the corner depicted in
Fig. A.6 is transformed to a line segment under the Legendre transformation.
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f

x

p0

3

2

1

p1

g

p
p1p0

1

3

2

Figure A.6. Legendre transformation taking an angle to a line segment.

A.26.2. Cyclic Property of Partial Derivatives. In order to establish
the energy minimization principle (see Section A.27) we also need to in-
troduce the cyclic property of partial derivatives. Suppose that we have a
constraint7 of the form F (x, y, z) = 0 then x, y and z depend on each other.
Then we can write:

dx =
(
∂x

∂y

)
z

dy +
(
∂x

∂z

)
y

dz and dz =
(
∂z

∂x

)
y

dx+
(
∂z

∂y

)
x

dy.

Substitution of the first equation into the second one gives:

dz =
(
∂z

∂x

)
y

[(
∂x

∂y

)
z

dy +
(
∂x

∂z

)
y

dz
]

+
(
∂z

∂y

)
x

dy

=
[(

∂z

∂x

)
y

(
∂x

∂y

)
z

+
(
∂z

∂y

)
x

]
dy +

(
∂z

∂x

)
y

(
∂x

∂z

)
y

dz.

Rearranging gives:[
1−

(
∂z

∂x

)
y

(
∂x

∂z

)
y

]
dz =

[(
∂z

∂x

)
y

(
∂x

∂y

)
z

+
(
∂z

∂y

)
x

]
dy.

Because dz and dy are arbitrary variations, their coefficients must vanish
for this equation to hold in the general case. Setting the first term equal to
zero gives the reciprocal relation of partial derivatives:(

∂z

∂x

)
y

= 1(
∂x
∂z

)
y

.

7For example, the constraint x2 + y2 + z2 − 1 = 0 defines a sphere.
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Setting the second term equal to zero, and applying the reciprocal relation
in order to replace

(
∂x
∂y

)
z

by
(
∂y
∂x

)
z
, gives

(
∂y

∂x

)
z

= −

(
∂z
∂x

)
y(

∂z
∂y

)
x

.

A.27. Maximizing Entropy vs Minimizing Energy

The second law says that for isolated systems the entropy is a nondecreasing
function that reaches a maximum value at equilibrium. The total energy of
the system is U(S,X), where X denotes any set of extensive variables (e.g.
V , Ni, etc.). Using the inverse function theorem of calculus, we can solve
for S in terms of U and get S(U,X). “Maximum” entropy (dS ≥ 0) means
that: (

∂S

∂X

)
U

= 0 and
(
∂2S

∂X2

)
U

< 0 at equilibrium

From calculus we have that(
∂U

∂X

)
S

= −

(
∂S
∂X

)
U(

∂S
∂U

)
X

= −T
(
∂S

∂X

)
U

= 0.

Thus, the energy is at an extremum at equilibrium. We can also show that(
∂2U
∂X2

)
S

= −T
(
∂2S
∂X2

)
U

.

In terms of the Helmholtz potential, A(T, V,Ni) = U − TS, we start from
U and replace S by T . The transformation is:

Ã(T, V,Ni) = max
S
{U(S, V,Ni)− TS} ,

where max is the maximum over all possible S. We write Ã to indicate that
A was obtained by maximization. This maximum will be reached whenever
T is equal to the temperature ∂SU , i.e., T =

(
∂U
∂S

)
V,Ni

. The particular

choice of S that fulfills the condition T =
(
∂U
∂S

)
V,Ni

is denoted S(T ). The
transform is written as:

Ã(T, V,Ni) = U − TS
where S is understood to stand for S(T ) obtained from the condition T =(
∂U
∂S

)
V,Ni

. We will furthermore denote S by S̃, to indicate that S is the
value of the entropy at equilibrium. If we combine this with the fact that
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at equilibrium, the internal energy is minimized

Ũ(S̃) = min
X

(U(S̃,X)),

we may write the Helmholtz potential as:

Ã = max
S

{
min
X

(U(S,X))− TS
}

= min
X

{
max
S

(U(S,X)− TS)
}
,

where in the second equality we have interchanged the order of the min and
max. But the bracketed term is simply Ã(T,X). Thus, we conclude that

Ã = min
X

(Ã(T,X))

and the Helmholtz free energy is minimized at equilibrium.
Likewise, for the enthalpy

H(S, P ) = U + PV

we have

H̃ = max
V

{
min
X

(U(V,X)) + PV

}
= min

X

{
max
V

(U(V,X) + PV )
}
,

so that
H̃ = min

X
(H̃(P,X)).

For the Gibbs free energy we have a double transformation, or equivalently
a transformation in two variables where V is replaced by P and S is replaced
by T :

G(P, T ) = U + PV − TS.
Using the formula transformation in two variables:

G̃ = max
S,V

{
min
X

(U(S, V,X)) + PV − TS
}

= min
X

{
max
S,V

(U(S, V,X) + PV − TS)
}
,

we find
G̃ = min

X
(G̃(P, T,X)).

Thus, at thermal equilibrium the Gibbs free energy is minimized, the Helmholtz
free energy is minimized and the enthalpy is also minimized.

A.27.1. Legendre Transformation in Classical Mechanics. In clas-
sical mechanics, we begin with the Lagrangian, L, which is a function of
particle position and velocities, L ≡ L(q, q̇, t), where q denotes particle gen-
eralized positions and q̇ denotes the generalized velocities:

q = (q1
x, q

1
y , q

1
z , . . . , q

N
x , q

N
y , q

N
z ).
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whereN is the number of particles. Similarly for q̇, we have a 3N -dimensional
vector of generalized velocities. The Lagrange equations of motion are the
Euler-Lagrange equations8:

d
dt

(
∂L

∂q̇j

)
= ∂L

∂qj
.

In general, L is the difference between kinetic (T ) and potential (V ) energies:
L = T − V . For example, a particle with kinetic energy T = 1

2mż
2 and

gravitational potential energy V = −mgz has Lagrangian L = T − V =
1
2mż

2 +mgz. The Euler-Lagrange equations of motion become

0 = d
dt

(
∂L

∂q̇j

)
− ∂L

∂qj
= d

dt(mż)−mg = mz̈ −mg,

which yields Newton’s law (F = ma), or more succinctly, z̈ = g. This equa-
tion is second-order in time. Sometimes, equations that are first-order in
time may offer certain advantages. This is possible if we define the Hamil-
tonian as the Legendre transform of the Lagrangian:
(A.1) H(p, q, t) = p · q̇(p)− L(q, q̇(p), t),
where p · q̇ denotes the dot product of

p = (p1
x, p

1
y, p

1
z, . . . , p

N
x , p

N
y , p

N
z )

with
q̇ = (q̇1

x, q̇
1
x, q̇

1
x, . . . , q̇

N
x , q̇

N
x , q̇

N
x ),

8These equations are obtained from the principle of least action, δS = 0, where S[q(t)] =∫ t2
t1
L(q(t), q̇(t), t)dt. δS is obtained by perturbing its argument q: δS[q(t)] = S[q(t) + δq(t)] −

S[q(t)] and Taylor-expanding the first term. The exact nature of the variation δq(t) is important:
here, we consider variations in the path δq(t) where the initial and final points are unchanged:
δq(t1) = δq(t2) = 0. Taylor expanding the functional to first order and integrating by parts,

δS =
∫ t2

t1

δL(q(t), q̇(t), t)dt =
∫ t2

t1

{L((q + δq)(t), (q̇ + δq̇)(t), t)} dt−
∫ t2

t1

L(q(t), q̇(t), t)dt

=
∫ t2

t1

{
((((

((
L(q(t), q̇(t), t) + δq

∂L

∂q
+ δq̇

∂L

∂q̇
+ . . .

}
dt−

∫ t2

t1
((((

((
L(q(t), q̇(t), t)dt

=
∫ t2

t1

{
∂L

∂q
−

d
dt
∂L

∂q̇

}
δq(t)dt = 0

(The surface term from integration by parts vanished due to the boundary condition δq(t1) =
δq(t2) = 0.) Since δS = 0 should hold for arbitrary δq(t), the integrand must vanish, yielding the
Euler-Lagrange equation ∂L

∂q
− d

dt
∂L
∂q̇

= 0.
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and q̇(p) denotes the velocity expressed in terms of the momentum. The
quantity q̇(p) is obtained from the equation9

p = ∂L

∂q̇
,

which, for the case of a kinetic energy term 1
2mż

2 yields p = mż, or ż(p) =
p/m, the usual concept of linear momentum. The equations of motion are
obtained by taking the total differential of (A.1):

dH =
∑
i

[(
∂H

∂qi

)
dqi +

(
∂H

∂pi

)
dpi
]

+
(
∂H

∂t

)
dt(A.2)

=
∑
i

[(
−∂L
∂qi

)
dqi +

(
q̇i + pi

∂q̇i
∂pi
− ∂L

∂q̇i

∂q̇i
∂pi

)
dpi
]
−
(
∂L

∂t

)
dt

=
∑
i

[
−∂L
∂qi

dqi + q̇idpi + pidq̇i −
∂L

∂q̇i
dq̇i
]
−
(
∂L

∂t

)
dt.

Substituting the definition of conjugate momenta, pi = ∂L
∂q̇i

,

(A.3) dH =
∑
i

[
−∂L
∂qi

dqi︸ ︷︷ ︸
d
dt (

∂L
∂q̇i

)= ∂L
∂qi

+q̇idpi +��
�pidq̇i −��

�pidq̇i
]
−
(
∂L

∂t

)
dt

and equating the coefficients of like differentials between (A.3) and (A.2),
we get the Hamilton equations of motion which are first-order in time10:

ṗi = −∂H
∂qi

, q̇i = ∂H

∂pi
,

∂H

∂t
= −∂L

∂t
.

You can check, for example, that the Lagrangian

L(q, q̇) =
∑
i

1
2miq̇

2
i − U(q)

transforms to the Hamiltonian:

H(q, p) =
∑
i

p2
i

2mi
+ U(q).

The Hamiltonian is a convex function of the momenta, just like the La-
grangian is a convex function of the velocities.

9With this definition of the conjugate momenta, pj =
∂L

∂q̇j
, the Euler-Lagrange equation,

d
dt

(
∂L

∂q̇j

)
=

∂L

∂qj
, reads ṗj =

∂L

∂qj
.

10These Hamilton equations, ṗi = −
∂H

∂qi
, q̇i =

∂H

∂pi
,
∂H

∂t
= −

∂L

∂t
, are to be contrasted with the

Lagrangian equations, pj =
∂L

∂q̇j
and ṗj =

∂L

∂qj
.
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A.27.2. Legendre Transformation in Thermodynamics. We have seen
how the Legendre transform preserves convexity and therefore plays a role in
energy minimization of thermodynamic potentials at equilibrium. Chemists
also use the Legendre transform because it enables us to change the inde-
pendent variables to a set of variables that is more convenient. Those are
called the “natural variables”.
The differential of the internal energy U(S, V,N) is

dU ≡
(
∂U

∂S

)
V,N

dS +
(
∂U

∂V

)
S,N

dV +
(
∂U

∂N

)
S,V

dN = TdS − PdV + µdN,

where
T ≡

(
∂U

∂S

)
V,N

, P ≡ −
(
∂U

∂V

)
S,N

, µ ≡
(
∂U

∂N

)
S,V

to the Helmholtz free energy11 A(T, V,N) = U − TS,
dA = dU − SdT − TdS = −SdT − PdV + µdN.

Thus, we have changed the independent variables from (S, V,N) to (T, V,N).
This is the case because the expression for dA contains the differentials
dT , dV and dN whereas dU contained the differentials dS, dV and dN .
Please note that since we have swapped the variables S and T by way of
the Legendre transform, the new variable T is required to be equal to the
energy ∂SU :

T ≡
(
∂U

∂S

)
V,N

.

(This was the condition for finding the function x(p) in the formal defi-
nition of the Legendre transformation, see pages 1 and 2 of these lecture
notes.) Finally, the convexity of the function has been preserved, i.e. the
new thermodynamic potential is convex.
There is also the enthalpy H(S, P,N) = U+PV , whose differential becomes

dH = TdS + V dP + µdN
or to the free enthalpy (Gibbs’ potential) G(T, P,N) = U−TS+PV , whose
differential is

dG = dU − TdS − SdT + PdV + V dP = −SdT + V dP + µdN.
A thermodynamic potential is chosen according to which variables are the
most convenient to use from an experimental standpoint. For example, if
pressure is held constant in an experiment, then G is the potential of choice.
If volume is held constant, then A is convenient to use.

11We note that A = U − TS differs from the above-defined Legendre transformation by a minus
sign. The origins of this sign difference is historical. In spite of this sign difference, the technique
is the same.
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A.27.3. Involutivity of the Legendre transformation. The Legendre
transform to be involutive, meaning that applying twice recovers the orig-
inal function without loss of information. Consider a function f which is
differentiable as many times as necessary, with f ′′(x) > 0. It is easy to verify
that a Legendre transformation takes convex functions to convex functions.
Therefore, we can apply it twice.

Theorem. The Legendre transformation is involutive, i.e., its square is the
identity: if under the Legendre transformation f is taken to g, then the
Legendre transform of g will again be f .

Proof. In order to apply the Legendre transform to g, with variable p, we
must by definition look at a new independent variable (which we call x),
construct the function

G(x, p) = xp− g(p),
and find the point p(x) at which G attains its maximum: ∂G/∂p = 0, i.e.,
g′(p) = x. Then the Legendre transform of g(p) will be the function of x
equal to G(x, p(x)).

We will show that G(x, p(x)) = f(x). To this end we notice that G(x, p) =
xp − g(p) has a simple geometric interpretation: it is the ordinate of the
point with abscissa x on the line tangent to the graph of f(x) with slope p
(Fig. A.7). For fixed p, the function G(x, p) is a linear function of x, with
∂G/∂x = p, and for x = x(p) we have G(x, p) = xp − g(p) = f(x) by the
definition of g(p).
Let us now fix x = x0 and vary p. Then the values of G(x, p) will be
the ordinates of the points of intersection of the line x = x0 with the line
tangent to the graph of f(x) with various slopes p. By the convexity of the
graph it follows that all these tangents lie below the curve, and therefore
the maximum of G(x, p) for a fixed x(p0) is equal to f(x) (and is achieved
for p = p(x0) = f ′(x0)).

A.27.4. Inequalities. By definition of the Legendre transform, F (x, p) =
px − f(x) is less than or equal to g(p) for any x and p. From this we have
Young’s inequality:

px ≤ f(x) + g(p).

Example. If f(x) = 1
2x

2, then g(p) = 1
2p

2 and we obtain the well-known
inequality px ≤ 1

2x
2 + 1

2p
2 for all x and p.

Example. If f(x) = xα/α, g(p) = pβ/β, where (1/α) + (1/β) = 1, and we
obtain Young’s inequality px ≤ (xα/α) + (pβ/β) for all x > 0, p > 0, α > 1,
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y

x

f(x)

x(p)x0

p

Figure A.7. Involutivity of the Legendre transformation

β > 1 and (1/α) + (1/β) = 1.

Example. Let f by a quadratic form f(x) =
∑
fijxixj . The reader can

show that its Legendre transform is again a quadratic form g(p) =
∑
gijpipj ,

and that the values of both forms at corresponding points coincide:
f(x(p)) = g(p) and g(p(x)) = f(x).

A.28. Problems

Problem 135. You are a member of a club. (a) The club consists of only
50 members. In how many ways can a president, vice president, secretary,
and treasurer be chosen (amongst the 50 members)? (b) In how many ways
can a committee of 4 members be chosen? (Hint: in the first case, order
matters; in the second case, order does not matter.)

Solution. (A) 50!
(50−4)! , (B) 50!

46!4! �

Problem 136. Two students are working separately on the same homework
problem. If the first student has probability 1

2 of solving it and the second
student has probability 3

4 of solving it (due to higher IQ), what is the prob-
ability that at least one of them solves it given that the probability of both
of them solving it simultaneously is 3/8?

Solution. For overlapping events,
P(A or B) = P(A) + P(B)− P(A and B).

P(A or B) = 1
2 + 3

4 −
3
8
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�

Problem 137. Find the Taylor series for f(x) = 1
1−x about x = 0, where

|x| < 1. Explicitly compute all the terms needed to arrive at a general
expression for the Taylor series of f at x.

Solution.

First term → f(x = 0) = 1
1− 0 = 1

Second term→
(df

dx

∣∣∣∣
x=0

)
x = (−1)(1− 0)−2(−1)x = x

Third term→
( 1

2!

)(d2f

dx2

∣∣∣∣
x=0

)
x2 = (1

2)2(1− 0)−3x2 = x2

1
1− x = 1 + x+ x2 + x4 + · · · =

∞∑
n=0

xn

�

Problem 138. The osmotic pressure Π can be described by the function:
Π(x2) = −RT log(1− x2)

where 0 < x2 < 1 is the mole fraction of the solute, R > 0 is the universal
gas constant and T > 0 is the thermodynamic temperature also held at a
constant value.
(a) Write down the Taylor expansion of the function that defines Π at x2 = a.
(b) Use Taylor series

log(1 + x) = x− x2

2 + x3

4 −
x4

4 + x5

5 − · · ·

to prove that when x2 � 1, Π is proportional to x2 at a certain temperature.

Solution. (a) Taylor expansion of the function is
Π(x2) = −RT log(1− x2)

= RT

[
log(1− a)− x− a

1− a −
1
2

(x− a)2

(1− a)2 −
1
3

(x− a)3

(1− a)3 −
1
4

(x− a)4

(1− a)4 − · · ·
]

= RT

[
log(1− a)−

∞∑
n=1

1
n

(x− a1− a )n
]

(b) With −1 < x ≤ 1, when x2 � 1, we can neglect the higher-order terms
in the Taylor expansion and using

log(1 + x) ≈ x
we obtain

log(1− x2) ≈ −x2
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and
Π(x2) ≈ x2RT

�

Problem 139. In the ground state of the hydrogen atom, the PDF describ-
ing the likelihood of finding the electron at r is:

p(r) = 1
πa3

0
e−2r/a0

where a0 is Bohr radius. Compute the average potential energy

V (r) = − e2

4πε0r
Express the result finally in the units of eV. (ε0 = 8.8542 × 10−12 F/m,
a0 = 5.2918× 10−11 m, e = 1.6022× 10−19 C)

Solution.

EV = − e2

4π2ε0a3
0

∫ ∞
r=0

e−2r/a0 1
r

4πr2dr = − e2

πε0a3
0

∫ ∞
r=0

e−2r/a0rdr

= − e2

πε0a3
0
× a2

0
4 = − e2

4πε0a0
= −27.2 eV

�

Problem 140. The mean value of a random variable X taking values in
discrete space can be calculated from the weighted sum:
EX =

∑N
i=1 P(X = xi)xi

where xi ranges over all the allowed values of X, e.g. 1, 2, ..., N, whereas
P(X = x) is the probability of that X takes the value x. Calculate the
average of an eight-sided die roll.

Solution. EX =
∑8
i=1 (1/8)xi = (1/8)×

∑8
i=1 xi = 36/8 = 4.5 �

Problem 141. Let X be a random variable with PDF f(x). The mean
value of X, when X takes continuous (not discrete) values in the range
(−∞,∞), can be calculated by an integral:

EX =
∫ ∞
−∞

f(x)xdx

where x is the value of the random variable X. Calculate the average posi-
tion X of a particle with the following PDF (if it is not normalized, normalize
it):

f(x) =
{
x2 + 4 −4 < x < 0
x+ 4 0 < x < 4

Solution. First, normalize the probability distribution function (normal-
ization factor of A):
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1 = A(
∫ 0

−4
x2 + 4dx+

∫ 4

0
x+ 4dx)

1 = A(x
3

3 + 4x|0−4 + x2

2 + 4x|40)

1 = A(64/3 + 16 + 16/2 + 16), 1 = 184A
3 , A = 3

184
Now, the average:

EX = 3
184(

∫ 0

−4
x(x2 + 4)dx+

∫ 4

0
x(x+ 4)dx)

EX = 3
184(

∫ 0

−4
x3 + 4xdx+

∫ 4

0
x2 + 4xdx)

EX = 3
184(x

4

4 + 2x2|0−4 + x3

3 + 2x2|40)

EX = 3
184(−64− 32 + 64/3 + 32)

EX = 3
184(−64− 32 + 64/3 + 32)

EX = −16
23

�

Problem 142. Taylor-expand to low order (just a few terms needed) the
Coulomb interaction energy about the point R = r0, where r0 is the molecu-
lar radius. In the Coulomb interaction, the fall-off with distance is described
by the 1/R dependence (which gets smaller as R increases). In the Taylor
expansion, however, only positive powers of R occur. Show how the Taylor
series describes the fall-off of the interaction energy with distance.

Solution. From V (R) = 1
4πε0

q1q2
R , we get, from Taylor expansion about r0

using the “small parameter” R− r0:

V (R) = 1
4πε0

q1q2
r0
− 1

4πε0
q1q2
r2

0
(R− r0) + 2

4πε0
q1q2
r3 (R− r0)2 + . . .

The zeroth order term, 1
4πε0

q1q2
r0

is constant (doesn’t change with R). As
R increases beyond r0, R − r0 is positive, but the first order term has an
overall negative sign, and this reflects the decrease in interaction energy as
the intermolecular distance increases. The second-order term is positive,
but its magnitude is smaller than the first-order term. �

The problems below are related to probability. CDF stands for cumulative
distribution function, P(X < x), where X is a random variable. The CDF
related to the PDF, p(x), according to P(X < x) =

∫ x
−∞ p(x)dx. (The lower

limit may be different from −∞; it is the lowest value that X is allowed to
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take.) The CDF can be used to compute probabilities between two limits,
e.g., P(a < X < b) = P(X < b)− P(X < a).

Problem 143. Let X be a continuous random variable with PDF

p(x) =
{
kx2 0 < x < 1
0 otherwise

(i) Determine the value of k and sketch p(x)
(ii) Derive a formula for the corresponding CDF. (You can assume that the
lower limit of integration for the CDF is 0.) Sketch the CDF.
(iii) Find P(1

4 < X ≤ 2).
(iv) Compute the mean and variance of the random variable X associated
with this PDF.

Solution. (i) We must have k > 0. The normalization condition yields:∫ 1

0
kx2dx = k

x3

3

∣∣∣∣∣
1

0
= k

3 = 1

which gives k = 3. Thus,

p(x) =
{

3x2 0 < x < 1
0 otherwise

(ii) The CDF is

P(X < x) =


0 x < 0∫ x

0 3ξ2dξ = x3 0 ≤ x < 1∫ 1
0 3ξ2dξ = 1 1 ≤ x

These functions are sketched below:

x

-1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

3 x2 (x<1 & x>0)

x

-1 -0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

x3 (x<1 & x>0)+1 (x>1)
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(iii) P(1
4 < X ≤ 2) = P(X < 2) − P(X < 1

4) = 1 − (1
4)3 = 63

64 . (Note:
P(X < 2) = P(X ≤ 2) because the distribution function is continuous; so
we need not worry about the equal sign.)

(iv) We need to compute:

EX =
∫
xp(x)dx =

∫ 1

0
x(3x2)dx = 3x4

4

∣∣∣∣∣
1

0
= 3/4.

E(X2) =
∫
x2p(x)dx =

∫ 1

0
x2(3x2)dx = 3x5

5

∣∣∣∣∣
1

0
= 3/5.

Variance is
E(X2)− (EX)2 = 3/5− (3/4)2 = 3/80 = 0.0375

�

Problem 144. The Stefan-Boltzman law says that the power irradiated by
a black body is proportional to the fourth power of its temperature:

p = cT 4

where c is a constant. This law has been used to measure the temperature
of stars in the galaxy. By measuring the light output (power), we can infer
the value of T . Suppose that p is Gaussian-distributed with mean µ and
variance σ2, find the distribution of T . Obtain both the CDF and PDF. In
particular, show that you can obtain the PDF from the CDF and vice-versa.

Solution. We need to find an expression for:
P(T < t) = P((p/c)1/4 < t) = P(p < ct4)

and since p follows a normal law N(µ, σ),

P(T < t) = P(p < ct4) = 1√
2πσ2

∫ ct4

−∞
e−(ζ−µ)2/2σ2dζ = Erf(ct4)µ,σ.

This is the CDF. The PDF is obtained by differentiating with respect to t:

pT (t) = dP(T < t)
dt = 4ct3√

2πσ2
e−(ct4−µ)2/2σ2

We can check that integrating the PDF from −∞ to t gives the CDF∫ t

−∞
pT (τ)dτ =

∫ t

−∞

4cτ3
√

2πσ2
e−(cτ4−µ)2/2σ2dτ

=
∫ ct4

−∞

1√
2πσ2

e−(ξ−µ)2/2σ2dξ = P(p < ct4) = P(T < t).

In the second equality we made a change of variables ξ = cτ4, dξ = 4cτ3dτ .
�
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Problem 145. Suppose that we have
F (t) = A cos(ωt)

where ω is a normal random variable with mean ω0 and variance ∆ω2. Find
the properties of the random variable F , i.e. derive the PDF, CDF, its mean
and standard deviation (or variance).

Solution. We note that ω = t−1 cos−1(F/A). Then,

P(F < f) = P(ω < t−1 cos−1(f/A))

=
∫ t−1 cos−1(f/A)

−∞

1√
2π∆ω2

e−(w−ω0)2/2∆ω2dw.

The PDF is obtained by differentiating the CDF with respect to f :

pF (f) = dP(F < f)
df = 1√

2π∆ω2
e−(t−1 cos−1(f/A)−ω0)2/2∆ω2 · d

df t
−1 cos−1(f/A)

= − t−1
√

2π∆ω2
e−(t−1 cos−1(f/A)−ω0)2/2∆ω2 · 1√

1− f2/A2 ·
1
A
.

�

Problem 146. Let the PDF of a continuous r.v. X be given by:

p(x) = 1√
2πσ2

e−(x−µ)2/(2σ2)

Prove, via direct calculation of the integrals, that the mean and variance of
X are: EX = µ and var(X) = σ2.

Solution. The mean is

EX = 1√
2πσ2

∫ ∞
−∞

xe−(x−µ)2/(2σ2)dx

Writing x as (x− µ) + µ, we have

EX = 1√
2πσ2

∫ ∞
−∞

(x− µ)e−(x−µ)2/(2σ2)dx+ µ
1√

2πσ2

∫ ∞
−∞

e−(x−µ)2/(2σ2)dx

Letting y = x− µ in the first integral we obtain

EX = 1√
2πσ2

∫ ∞
−∞

ye−y
2/(2σ2)dy + µ

∫ ∞
−∞

p(x)dx

The first integral is zero since the integrand is an odd function. In the second
integral, we used the normalization condition (

∫
p(x)dx = 1). Thus,

EX = µ

Now for the variance:

var(X) = E(X − µ)2 = 1√
2πσ2

∫ ∞
−∞

(x− µ)2e−(x−µ)2/(2σ2)dx
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We note that ∫ ∞
−∞

e−(x−µ)2/(2σ2)dx = σ
√

2π.

Differentiating with respect to σ, we obtain:∫ ∞
−∞

(x− µ)2

σ3 e−(x−µ)2/(2σ2)dx =
√

2π.

Multiplying both sides by σ2/
√

2π, we have
1√

2πσ2

∫ ∞
−∞

(x− µ)2e−(x−µ)2/(2σ2)dx = σ2

Thus,
var(X) = σ2

�

Problem 147. Let Y = AeX +B. (a) Find the distribution of Y when X
is a uniform r.v. over the interval (0,1), i.e. its density takes the value 1
over the interval and 0 elsewhere.
(b) Find the distribution of Y when X follows a normal law with mean µ
and variance σ2.

Solution. The PDF of X, as stated in the problem, is:

pX(x) =
{

1 0 < x < 1
0 otherwise

From the definition of a CDF, P(Y < y) =
∫ y
−∞ p(y)dy, and differentiating

it with respect to y, we get that p(y) = (d/dy)P(Y < y). Next, we need to
know P(Y < y). The CDF of Y is (for A+B < y < Ae+B)

P(Y < y) = P(AeX+B < y) = P(X < logA−1(y−B)) =
∫ logA−1(y−B)

−∞
pX(x)dx

=
∫ logA−1(y−B)

0
dx = logA−1(y −B)

To get the PDF of Y we differentiate the CDF with respect to y:

pY (y) = dP(Y < y)
dy = d

dy logA−1(y −B) = A−1

A−1(y −B) = 1
y −B

for A+B < y < Ae+B and 0 otherwise.
From the definition of a CDF, P(Y < y =

∫ y
−∞ p(y)dy, and differentiating

it with respect to y, we get that p(y) = (d/dy)P(Y < y). Next, we need to
know P(Y < y). Since Y = AeX +B, the probability

P(Y < y) = P(AeX +B < y) = P(AeX < y −B) = P(eX < (y −B)/A)
= P(X < log[(y −B)/A])
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And because X follows a normal law with mean µ and variance σ2,

P(Y < y) =
∫ log[(y−B)/A]

−∞

1√
2πσ2

e−(x−µ)2/2σ2dx

From this, we have:

dP(Y < y)
dy = d

dy

∫ log[(y−B)/A]

−∞

1√
2πσ2

e−(x−µ)2/2σ2dx

= 1√
2πσ2

e−(log[(y−B)/A]−µ)2/2σ2 · 1
(y −B)

where we made use of the formula for differentiation of an integral (only
term 2 applies, the other two are zero):
d
dy

(∫ b(y)

a(y)
f(x, y) dx

)
=
∫ b(y)

a(y)

∂

∂y
f(x, y) dx︸ ︷︷ ︸
1

+ f
(
b(y), y

)
· b′(y)︸ ︷︷ ︸

2

− f
(
a(y), y

)
· a′(y)︸ ︷︷ ︸

3

�

Problem 148. Normalize the probability function given by f(x) = cos(x)
so that it becomes a probability density function p(x) (shown below) over
the interval [-π/2, π/2]. What is the normalization constant? Calculate the
mean (expectation value) and standard deviation σ of a random variable
X defined in the interval [-π/2, π/2], i.e. calculate EX =

∫ π/2
−π/2 xp(x)dx

and the square root of the variance, σ2 = var(X) =
∫ π/2
−π/2(x−EX)2p(x)dx.

(Note: I write X for the random variable, and x for its numerical value.)

Solution. A PDF is said to be normalized if it can be described by the
following relationship ∫

f(x)dx = 1.

The integral is calculated over all space where X takes its values. For
example, X could be defined over the interval [−∞,∞], or [-π/2, π/2].
Solving for the normalization constant, C∫ π/2

−π/2
C cos(x)dx = 1, C = 1/2.
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The mean value, EX is
EX =

∫
R
xp(x)dx

If p(x) = (1/2) cos(x) then EX is zero, since x is odd and cos(x) is even:

EX =
∫ π/2

−π/2
x(1/2) cos(x)dx = cos(x) + x sin(x)

∣∣∣π/2
−π/2

(1/2) = 0

The standard deviation σ is the square root of the variance σ2

σ2 =
∫
∀
p(x)(x− EX)2dx =

∫ π/2

−π/2

1
2 cos(x)x2dx

= 1
2(2x cos(x) + (−2 + x2) sin(x))

∣∣∣π/2
−π/2

= 0.4674

σ =
√

0.4674 = 0.6837
�

Problem 149. This problem may be helpful to those who need practice
doing Taylor expansions. Consider a function, f(x), that is infinitely differ-
entiable at a point x0 (i.e. a “nice” function). The Taylor expansion of this
function for points x centered around the point x0 is given by

∞∑
n=0

f (n)(x0)(x− x0)n

n!

where f (n)(x0) is the nth derivative of f(x) at x = x0. Consider the function
f(x) = exp(x). The Taylor expansion, T (x), of exp(x) for x near x0 = 2 is

T (x) = f(x0) + f (1)(x0)(x− x0) + f (2)(x0)(x− x0)2

2! + . . .

= exp(2) + exp(2)(x− 2) + exp(2)(x− 2)2

2! + . . .

Let Tn(x) denote the Taylor expansion truncated at the n-th term:

Tn(x) = f(x0) + f (1)(x0)(x− x0) + · · ·+ f (n)(x0)(x− x0)n

n! .

Notice that when x = x0, all terms after the first go to zero because
x − x0 = 0 which then gives T (x) = f(x0). When x 6= x0 and near x0,
the second term f (1)(x0)(x − x0) acts as a linear approximation. Subse-
quent terms act as correction terms that bring Tn(x) progressively close to
f(x) as n increases.

(a) Check graphically that the second term in T (x) acts as a linear approxi-
mation of f(x) for x 6= x0 and near to x0. Plot f(x) = exp(x) for x = [2, 2.5]
then plot T (x = 2) and the first two terms of T (x = 2.1) for x0 = 2.
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(b) Let’s add more terms to Tn(x = 2.1) and look at its limiting behavior.
Plot Tn(x = 2.1) keeping the first three terms (i.e. n = 2), then repeat for
the first four terms (n = 3). You should see that adding more terms brings
Tn(x = 2.1) closer to f(x = 2.1) = exp(2.1).

For any ε > 0 and x we can show that |Tn(x)− f(x)| < ε for large enough n
(this is called point-wise convergence, i.e. convergence at any x). One can
also show that the Taylor expansion is unique.

Solution. (a) The arrow for “1st correction” is T1(x = 2.1)

2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4 2.45 2.5

8

9

10

11

12

1st correction

(b) Here the graph is zoomed in such that T2(2.1) and T3(2.1) do not overlap

2.094 2.095 2.096 2.097 2.098 2.099 2.1 2.101 2.102 2.103

8.11

8.13

8.15

8.17

8.19

1st correction

3rd correction

2nd correction

�

Problem 150. Taylor expansions are often used as approximations to f(x)
when x is near the point of expansion x0. The farther x is from x0 the more
terms we need for a good approximation. Here is some practice for you;
these functions are found in chemistry:
(a) Taylor expand f(T ) = log(T/τ) as T → τ where τ is a reference tem-
perature to make T/τ dimensionless.
(b) Taylor expand f(x) = (1− x2)−1 as x→ 0.
(c) Taylor expand f(T ) = exp(−T−1) as T →∞.
(d) Taylor expand f(x) =

√
1− x as x→ 0.

Solution. (a) Let’s do a change of variables where c = T
τ − 1. As T → τ ,

c→ 0. Then
f(T ) = f(c) = log(c+ 1)
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f(0) = log(1) = 0
f (1)(0) = 1

By taking successive derivatives, we arrive at

f(c) = c− c2

2 + c3

3 + . . .

f(T ) =
(T
τ
− 1

)
−

(Tτ − 1)2

2 +
(Tτ − 1)3

3 + . . .

(b) Recall the sum of a geometric series for |r| < 1
∞∑
n

rn = 1
1− r

We can fit the given function, f(x) = (1 − x2)−1 into the above equation
by change of variables where c = x2. For |c| < 1, the geometric series

1
1−c =

∑∞
n=0 c

n

1
1− c = 1 + c+ c2 + . . .

with c = x2 leads to:
f(x) = 1 + x2 + x4 + . . .

A Taylor expansion is a polynomial expansion and is unique for a given
function. Therefore, f(x) = 1 + x2 + x4 + . . . is the Taylor expansion of

1
1−x2 .
(c) Let −T−1 = c

f(T ) = f(c) = exp(c)

exp(c) = 1 + c+ c2

2! + c3

3! + . . .

f(T ) = 1− 1
T

+ 1
2!T 2 −

1
3!T 3 + . . .

(d) Let’s take the first few derivatives

f (1)(x) = −1
2(1− x)−1/2

f (2)(x) = −
(1

2
)2

(1− x)−3/2

f (3)(x) = −3
(1

2
)3

(1− x)−5/2

f (4)(x) = −5× 3
(1

2
)4

(1− x)−7/2

f (n)(x) = −|2n− 3|!!
(1

2
)n

(1− x)−(2n−3)/2
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where m!! = m× (m− 2)× (m− 4)× · · · × 1 for m odd.

f(x) = 1− x

2 −
x2

8 −
x3

16 − . . .

�

Problem 151. The triple product rule, also known as the cyclic relation, is a
formula commonly found in thermodynamics. If a function of three variables
can be expressed as f(x, y, z) = 0, then each variable can be expressed as a
function of the remaining two variables. Show that,(

∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

= −1

where
(
∂x
∂y

)
z

denotes the derivative of the function x(y, z) with respect to
y (holding z constant), etc. Does the triple product rule hold true for the
ideal gas law? Show your work.

Solution. Since we have f(x, y, z) = 0 we may solve for x as a function of
y and z, and write the total differential of x(y, z):

dx(y, z) =
(
∂x

∂y

)
z

dy +
(
∂x

∂z

)
y

dz

Likewise, we may solve for y as a function of x and z. The total differential
of y(x, z) is:

dy(x, z) =
(
∂y

∂x

)
z

dx+
(
∂y

∂z

)
x

dz

Substitute dy into dx

dx =
(
∂x

∂y

)
z

[(
∂y

∂x

)
z

dx+
(
∂y

∂z

)
x

dz
]

+
(
∂x

∂z

)
y

dz

Because dx and dz are arbitrary displacements, their coefficients must van-
ish. Setting the coefficient of dx to zero gives the reciprocal relationship:

(A.4)
(
∂x

∂y

)
z

= 1(
∂y
∂x

)
z

Thus, the inverse of a partial derivative is the same as inverting a fraction.
Setting the coefficient of dz to zero:(

∂x

∂y

)
z

(
∂y

∂z

)
x

+
(
∂x

∂z

)
y

= 0

Using a reciprocal relation such as Eq. (A.4) for
(
∂x
∂z

)
y

gives:(
∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

= −1
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Take the ideal gas law to be pv = kT where we take v used here to be the
molar volume and k is Boltzmann’s constant.(

∂p

∂v

)
T

: p+ v
∂p

∂v
= 0→ ∂p

∂v
= −p

v(
∂v

∂T

)
p

: p ∂v
∂T

= k → ∂v

∂T
= k

p(
∂T

∂p

)
v

: v = k
∂T

∂p
→ ∂T

∂p
= −v

k

Now multiply the expressions together to confirm they equal -1(
∂p

∂v

)
T

(
∂v

∂T

)
p

(
∂T

∂p

)
v

= −p
v

k

p

v

k
= −1

�

Problem 152. Partial derivatives of a multivariable function are those
which are taken for each individual variable while treating the remaining
variables as constants. This is more rigorously achieved by taking limits.
The definitions of the derivatives of a function f of three variables (x, y, z)
with respect to each argument are:

fx(x, y, z) = ∂f(x, y, z)
∂x

= lim
h→0

f(x+ h, y, z)− f(x, y, z)
h

fy(x, y, z) = ∂f(x, y, z)
∂y

= lim
h→0

f(x, y + h, z)− f(x, y, z)
h

fz(x, y, z) = ∂f(x, y, z)
∂z

= lim
h→0

f(x, y, z + h)− f(x, y, z)
h

Find the partial derivatives fx(x, y, z), fy(x, y, z), and fz(x, y, z) by com-
puting directly these limits in the case of f(x, y, z) = xy2z.

Solution. Each of the three limits given above are applied to the function
f(x, y, z) = xy2z.

fx(x, y, z) = ∂(xy2z)
∂x

= lim
h→0

(x+ h)y2z − xy2z

h
= lim

h→0
y2z = y2z

fy(x, y, z) = ∂(xy2z)
∂y

= lim
h→0

x(y + h)2z − xy2z

h
= lim

h→0

xz(2yh+ h2)
h

= lim
h→0

xz(2y+h)

As h approaches zero, it is much smaller than 2y. Thus, only the first term
is nonzero: 2xyz.

fz(x, y, z) = ∂xy2z

∂z
= lim

h→0

xy2(z + h)− xy2z

h
= xy2

�
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Problem 153. Use your knowledge of partial derivatives and the ideal gas
law to show that

V
∂P

∂V
= −P and V

∂P

∂V
+ T

∂P

∂T
= 0

Solution.
V
∂P

∂V
= V

(
− kBT

V 2

)
= −kB

T

V
= −P

V
∂P

∂V
+ T

∂P

∂T
= −kB

T

V
+ T

(
kB
V

)
= 0

�

Problem 154. Show that the second-order quasilinear partial PDE with
independent variables (x, t)

a(ux, ut)uxx + 2b(ux, ut)uxt + c(ux, ut)utt = 0,
can be transformed into the linear PDE

a(ux, ut)
∂2w

∂u2
x

− 2b(ux, ut)
∂2w

∂ux∂ut
+ c(ux, ut)

∂2w

∂u2
t

= 0

by way of a Legendre transformation.

Solution. We transform the old variables u(x, t) to new ones w(ξ, η) Set-
ting,

ξ = ux, η = ut, wξ = x, wη = t,

so that the Legendre transform is:
w(ξ, η) = xξ + tη − u(x, t)

The Jacobian of the transformation is

J =
∣∣∣∣∣uxx uxt
uxt utt

∣∣∣∣∣ = uxxutt 6= 0.

Using the same approach as Problem 155 solution, we obtain the following
transformations:

uxx = Jwηη, uxt = −Jwξη, and utt = Jwξξ.

Substitution into the original PDE gives:
a(ux, ut)Jwηη − 2b(ux, ut)(−Jwξη) + c(ux, ut)Jwξξ = 0.

Dividing through by J and then using ξ = ux ad η = ut gives the desired
result. �

Problem 155. Consider the minimal surface equation:

∇ ·
( ∇u

(1 + |∇u|2)1/2

)
= 0,

(a) Explain what is the minimal surface equation.
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(b) Show that for n = 2, the minimal surface equation may be rewritten as
(1 + u2

x2)ux1x2 − 2ux1ux2ux1x2 + (1 + u2
x1)ux2x2 = 0.

(c) Show that this nonlinear equation can be transformed, by means of
a Legendre transformation (whose new variables are denoted p1, p2), to a
linear equation

(1 + p2
2)vp2p2 + 2p1p2vp1p2 + (1 + p2

1)vp1p2 = 0.

Solution. (b) For n = 2, we have that (using x1 = x and x2 = y):

∇u =
(
∂u

∂x
,
∂u

∂y

)
= (ux, uy)

and
|∇u|2 = (∇u) · (∇u) = u2

x + u2
y.

Thus,

∇ ·
( ∇u

(1 + |∇u|2)1/2

)
=(ux, uy) ·

(
ux

(1 + u2
x + u2

y)1/2 ,
uy

(1 + u2
x + u2

y)1/2

)

= ∂

∂x

(
ux

(1 + u2
x + u2

y)1/2

)
+ ∂

∂y

(
uy

(1 + u2
x + u2

y)1/2

)

=
uxx + uxxu

2
y − uxuyuxy

(1 + u2
x + u2

y)3/2 + uyy + uyyu
2
x − uxuyuxy

(1 + u2
x + u2

y)3/2

=
(1 + u2

y)uxx − 2uxuyuxy + (1 + u2
x)uyy

(1 + u2
x + u2

y)3/2 = 0.

For the equation to hold, we must have the numerator equal to zero. That
is,

(1 + u2
y)uxx − 2uxuyuxy + (1 + u2

x)uyy = 0.
(c) The idea is to transform from u(x1, x2) to v(p1, p2). The Legendre trans-
form is:

v(p1, p2) = ~p · ~x− u(x1, x2) = p1x1 + p2x2 − u(x1(p1, p2), x2(p1, p2))
where p1 = ux1 and p2 = ux2 . We assume the mapping from (x1, x2) to
(p1, p2) is one-to-one and invertible so the condition (here we view ux1 and
ux2 as independent variables)

J =
∣∣∣∣∣ux1x1 ux1x2

ux2x1 ux2x2

∣∣∣∣∣ = ux1x1ux2x2 − u2
x1x2 6= 0

holds. Now we find a PDE for v with independent variables p1, p2. The
inverse transformation has the following Jacobian:

J ′ =
∣∣∣∣∣vp1p1 vp1p2

vp2p1 vp2p2

∣∣∣∣∣ = vp1p1vp2p2 − v2
p1p2 6= 0.
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By the involutivity of the Legendre transformation, we just have JJ ′ = 1,
or in matrix form,[

ux1x1 ux1x2

ux2x1 ux2x2

] [
vp1p1 vp1p2

vp2p1 vp2p2

]
=
[
1 0
0 1

]
.

From this, we obtain the following set of equations:
ux1x2vp1p1 + ux1x2vp2p1 = 1
ux1x1vp1p2 + ux1x2vp2p2 = 0
ux2x1vp1p1 + ux2x2vp2p1 = 0
ux2x1vp1p2 + ux2x2vp2p2 = 1.

Note that ux1x2 = ux2x1 and vp1p2 = vp2p1 , and observe that:
ux1x1 =ux1x1 − ux1x2 × 0

=ux1x1 − ux1x2(ux1x1vp1p2 + ux1x2vp2p2)
=ux1x1 − ux1x2ux1x1vp1p2 − u2

x1x2vp2p2

=ux1x1(1− ux1x2vp1p2)− u2
x1x2vp2p2

=ux1x1(ux2x2vp2p2)− u2
x1x2vp2p2

=(ux1x1ux2x2 − u2
x1x2)vp2p2

=Jvp2p2 .

Similarly, we find that ux1x2 = −Jvp1p2 and ux2x2 = Jvp1p1 . Substituting
these transformed variables into the original differential equation gives:

(1 + p2
2)Jvp2p2 + 2Jp1p2vp1p2 + (1 + p2

1)Jvp1p1 = 0.
Dividing through by J gives the desired result. �
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P − V work, 239
n-pentane, 84
1-form, 422

absolute zero, 277
acetic acid, 146, 157, 196, 220
acetone, 158
acid

polyprotic, 222
acid-base titration, 198
activation energy, 380
activation energy barrier, 380
activity, 287
activity coefficient, 140
adiabatic, 261, 318
affinity, 399, 401
alkane

boiling point, 98
angular averaging, 433
angular momentum, 385
Arrhenius, 139
Arrhenius acid, 195
Arrhenius law, 380
attractive forces, 24
auto-ionization, 201, 220
auto-protolysis, 201
Avogadro, 1
Avogadro’s constant, 1
Avogadro’s law, 5

balanced equation, 364
ballistic motion, 37
benzene, 81, 146, 157

BF3, 96
bicarbonate, 222
binary collision, 364
binary mixture, 157
binary solution, 410
blood plasma, 215
boiling point

alkanes, 98
dipole-dipole, 99
hydrogen bonding, 100
molecular shape, 98
periodic table trends, 102

boiling point elevation, 153, 309
Boltzmann distribution, 382, 431
Boltzmann entropy, 411
Boltzmann factor, 17, 382, 431, 434
Boltzmann-weighted interaction, 89
Boyle, 1
Boyle temperature, 31
Boyle’s law, 3
BrCl, 212
bromine monochloride, 212
Brønsted-Lowry acid, 196
buffer, 215

design, 217
PBS, 222

buffering region, 221

Ca2+ sensing, 314
cadmium iodide, 139
capillary electrophoresis, 368
carbon disulfide, 158
carbon tetrachloride, 146, 157
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carbonic acid, 222
Carnot-Clausius, 402
catalyst, 381
cation-π interaction, 81
CDF, 450
center of mass, 66
CH2OHCH2OH, 155
CH3COOH, 220
change of variables formula, 436
charge imbalance, 138
charge-dipole interaction, 71, 87

derivation, 72
Charles, 1
Charles’ law, 5
chemical potential, 287

ideal gas, 284
chemical reaction, 181

adding reactions, 185
coefficient multiplication, 184
detailed balance, 186
direction, 187, 200
equilibrium, 182
equilibrium concentrations, 188
heterogeneous, 185
inverse, 184
law of mass-action, 182
multi-phase, 185
reaction rate, 182
redox, 199
stoichiometry, 186
subtraction of reactions, 185

chlorine, 211
chloroform, 158
chromatography, 368
Clausius, 408
Clausius inequality, 267
Clausius theorem, 402
CO2, 95, 149
colligative property, 152
compressibility, 120
compression work, 237
conditionally convergent integral, 74
conduction

ionic, 131
conjugate momenta, 444
conservation of energy, 406
conservation of mass, 405
continuous random variable, 451
convex function, 444
convex polygon, 439
convolution, 437

Coulomb, 55
Coulomb energy, 67, 450
Coulomb’s law, 64
cumulative distribution function, 450
cyclic property of derivatives, 440
cytoplasm, 312
cytosol, 215

Dalton’s law, 12
Debye force, 82, 88
Debye interaction, 88
Debye unit, 57
Debye-Hückel theory, 140
degeneracy, 383, 385
density, 120
derivative, 418

chain rule, 420
cyclic property, 440
function of two variables, 420
total differential, 421

desalination, 160
detailed balance, 186
determinant, 58
diathermal wall, 256
diethyl ether, 157
diffusion, 166, 408, 411
diffusion coefficient, 34, 121
diffusion equation, 411, 413
difluoromethane, 101
dipole-dipole, 67
dipole-dipole interaction, 74, 87

derivation, 74
spherical coordinates, 75

Dirac Delta function, 434
direction of reaction, 187, 200
dissipated energy, 318
dissolution of electrolytes, 129
distillation, 159
distribution

Gaussian, 429
normal, 429
uniform, 431

divergence theorem, 64
dot product, 417
Dulong-Petit, 234

EDM, 56
effusion, 121
eigenstate, 383
Einstein diffusion, 32, 410
Einstein summation convention, 423
electric charge, 55
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electric dipole, 56
electric dipole moment, 56
electric field, 55
electric polarization, 62
electrical current, 409
electrolyte solutions, 129
electroneutrality, 137
elementary reaction, 369
endoplasmic reticulum, 215
energy conservation, 301, 412
energy minimization, 441
enthalpy, 277, 298, 323, 442, 445
enthalpy of matter transfer , 407
entropy, 261, 323, 399, 401, 441

Boltzmann, 411
Gibbs-Shannon, 411

entropy balance, 406
entropy maximization, 283
entropy of fusion, 299
entropy of the universe, 300
entropy of vaporization, 299
entropy production, 398, 400, 402, 404,

407, 408, 413, 415
entropy representation, 282, 303, 316,

404, 408
equation of state, 2
equivalence point, 219
equivalence relation, 256
ergodic theorem, 86
ESR, 369
ethanol, 101, 157
ethylene bromide, 146
ethylene chloride, 146
ethylene glycol, 155
Euclidean length, 417
Euler relation, 283
Euler’s test, 261, 423
Euler-Lagrange, 443
exact differential, 257, 261, 422
exact form, 422
exothermic, 229
expansion work, 239
extensive property, 300, 317
external variable, 318, 401
extracellular matrix, 313

fast equilibrium, 377
Fe, 244
Fick’s law, 408, 414
first law, 255, 257, 317, 383
first-order reaction, 366, 399
flux, 316, 402

force, 316, 403
Fourier’s law, 408, 415
free energy

Gibbs, 279
Helmholtz, 278
Landau potential, 279
meaning, 280
standard Gibbs, 288

free expansion, 239
free space

permittivity, 62
freezing point depression, 154, 311
fundamental equation, 273, 301, 316,

398, 404, 408

Gaussian distribution, 411, 429
Gaussian integral, 16
Gay-Lussac, 5
gel electrophoresis, 368
geometric series, 458
Gibbs distribution, 17, 430
Gibbs energy, 306
Gibbs energy of mixing, 306
Gibbs equation, 400
Gibbs free energy, 279, 288, 321, 442

standard, 288
Gibbs-Duhem, 284
Gibbs-Shannon entropy, 411
Gilbert N. Lewis, 200
Golgi apparatus, 215
gradient, 437
Graham’s law, 122
grand canonical distribution, 385
grand potential, 279

Hamiltonian, 443
hard sphere potential, 91
hard spheres, 25
HCl, 202, 216, 223
HCOOH, 215, 216
heat, 229
heat capacity, 231, 234, 235

Debye model, 235
Dulong-Petit, 234
Einstein model, 235

heat conduction, 408, 412
heat content, 315
heat flux, 403, 407
heat of fusion, 299
heat of vaporization, 299
heat transfer, 237, 399

constant pressure, 297
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constant volume, 297
isothermal, 302
reversible, 301

Helmholtz free energy, 278, 442, 445
Henderson-Hasselbach, 218
Henry’s law, 148, 158

applicability, 149
constant, 150

heptane, 161
heterogeneous equilibrium, 309
heterogeneous reaction, 185
hexane, 161
hydration shell of ion, 130
hydrochloric acid, 243
hydrogen atom, 431, 449
hydrogen bonding, 77, 85

water, 60
hydronium, 196, 203
hydronium ion, 204
hydrostatic pressure work, 237
hydroxide, 203

ICE table, 210, 214, 215
ideal gas, 3

chemical potential, 284
ideal gas law, 1, 7
Ideal solution, 144
ideal solution, 308
infinitesimal, 248, 274
infinitesimal heat transfer, 237
infinitesimal work, 237
infinitesimally, 240
initial condition, 437
Integration over sphere, 435
interaction

Debye, 88
ion-induced dipole, 79
ion-quadrupole, 80
Keesom, 87
Morse, 93
quadrupole-quadrupole, 81
Van der Waals (VDW), 82
Yukawa, 93

interaction range, 69
interactions

relative strength, 90
internal energy, 236, 277
internal variable, 401
inverse square law, 65
involutivity, 445
ion, 243

hydration shell, 130

ion solvation, 130
ion transport, 312
ion-dipole, 67
ion-induced dipole interaction, 79
ion-ion, 67
ion-quadrupole interaction, 80
ionic atmosphere, 138
ionic conduction, 131
ionic exchange reaction, 141
ionic interactions, 70
ionic liquid, 102
irreversible process, 398, 399, 411
isentropic, 261
isobornyl acetate, 146
isolated system, 264, 301, 383, 441
isothermal diffusion, 409
isothermal heat transfer, 302
isotropic interaction, 70

Jacobian, 436
joint PDF, 428

kBT, 90
Keesom force, 82
Keesom interaction, 87, 434
kinetic energy, 427
kinetic theory, 34, 379
Kronecker delta, 67

LaCl3, 154
Lagrangian, 442
Landau potential, 279
latent heat, 298
Law of Dulong and Petit, 234
law of mass-action, 182
Le Châtelier’s principle, 190
Legendre transformation, 437
Lennard-Jones potential, 83, 91
Lewis acid, 200
Lewis adduct, 200
Lewis base, 200
light scattering, 369
linear momentum, 444
London dispersion force, 82, 83, 85

strength, 83
Van der Waals, 82

long-range interaction, 70, 74
Lorentz force, 55
lost work, 399
lysosome, 215

magnesium sulfate, 141
marginal density, 428
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marginal distribution, 433
mass spectrometry, 369
mass-action, 182
maximal entropy, 441
Maxwell equations, 64
Maxwell speed distribution, 22
Maxwellian density, 16
Maxwellian distribution, 17, 431
mean free path, 120
mean speed, 21
mean square displacement, 432
mean value, 425–427, 449, 451

sample, 426
mean-square displacement, 36, 436
melting, 298
methylbenzene, 158
MgSO4, 141
microstate, 383
microwave, 369
mitochondria, 215
molality, 127
molarity, 127
mole fraction, 127
Molecular diffusion, 31
Morse potential, 93
most probable speed, 20
multi-phase reaction, 185
multiplicity, 383
multipole expansion, 68

NaCl, 70, 72, 90, 101, 153
NaHCOO, 215
NaOH, 141, 198, 220
naphthalene, 157
natural variable, 445
negative pH, 204
neopentane, 84
Newton’s law, 443
NH3, 95, 223
NMR, 369
non-electrolyte solutions, 128
non-ideal solutions, 137
non-volatile solutions, 152
nonideal solution, 144, 154
normal distribution, 429
nucleobase stacking, 81

octupole, 67
Ohm’s law, 409
Onsager, 413
Onsager coefficient, 403, 412
Onsager reciprocal relations, 413

order of reaction, 364
osmosis, 163

reverse, 164
osmotic pressure, 163, 448
oxidation, 199
oxidation number, 199

pKa, 205
pKb, 205
P-V work, 248
parallel plate capacitor, 56
partial derivative, 418, 423, 460
partial pressure, 11
particle flux, 403
Pauling electronegativity, 59
PBS buffer, 222
PCl3, 97
permittivity, 62
pH scale, 201, 204
phase boundary, 9
phase diagram, 9, 125
phase equilibrium, 122
phase transition, 123, 298
phosphate buffered saline (PBS), 222
phosphorous pentachloride, 211
phosphorous trichloride, 97, 211
piston, 237
Polarizability, 84
polarizability, 62, 88
potassium pump, 313
potential

hard sphere, 91
Lennard-Jones, 83, 91

potential difference, 409
precipitation reaction, 140
Pressure, 13
pressure, 238
pressure units, 7
probability density function, 425
process

adiabatic, 261
isentropic, 261
reversible, 261

PVT surface, 30

quadrupole, 67
quadrupole-quadrupole interaction, 81

radiofrequency, 369
random variable, 425

continuous, 425
discrete, 449
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function of a, 427
mean, 425
variance, 426, 451

Raoult’s law, 144, 146, 158, 308
deviations from, 145
limitations, 148
negative deviations, 145
positive deviations, 146

rate-determining step, 376
Rayleigh distribution, 431
reaction

consecutive, 374
fast equilibrium, 377
first order, 366
ionic exchange, 141
net, 371
order, 364, 370
precipitation, 140
rate-determining step, 376
reversible, 374
second order, 367
simultaneous, 373
unidirectional, 373

reaction affinity, 314
reaction constant, 289
reaction enthalpy, 314
reaction rate, 182, 366
real gases, 23
redox reaction, 199
reduction, 199
repulsive forces, 24
reverse osmosis, 164
reversible compression, 241, 243
reversible heat transfer, 301
reversible process, 240, 398, 401, 408
RMS displacement, 37
RMS speed, 16, 21
Robert Boyle, 3
root-mean-square speed, 21

salt dissociation, 139
sample mean, 426
seawater, 156
second law, 255, 260, 302, 304, 413, 441
second-order reaction, 367
self-diffusion, 37
self-energy, 73
silk fibroin, 85
sodium chloride, 410
sodium hydroxide, 141
solid angle, 86
solubility, 311

solutions, 127
composition, 127
dissolution of electrolytes, 129
electrolyte, 129
molality, 127
molarity, 127
mole fraction, 127
non-electrolyte, 128
non-ideal, 137
non-volatile, 152
preparing, 128

solvation, 130
specific heat, 297
specific heat capacity, 232
specific volume, 10
Speed distribution, 19
speed distribution, 17
spherical coordinates, 86, 434
spontaneity, 282
spontaneous process, 408
standard deviation, 427, 430
standard Gibbs free energy, 288
standard state, 293
state function, 257
statistical independence, 428
steady-state, 369
steady-state approximation, 377
Stefan-Boltzman law, 452
still, 161
strong acid, 203
strong base, 203
sulfuric acid, 198
supercritical fluid, 9

Taylor expansion, 86, 240, 403, 448,
450, 456, 457

multivariate, 423
thermal averaging, 85
thermal energy

kBT, 90
thermal expansion, 121
thermally conductive wall, 300
thermodynamic potentials, 277
thermodynamics

enthalpy, 277
first law, 255, 257
fundamental equation, 273
Gibbs free energy, 279
Gibbs-Duhem, 284
Helmholtz free energy, 278
internal energy, 236, 277
laws, 255
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second law, 255, 260
standard Gibbs free energy, 288
state function, 257
surrounding, 229
system, 229
third law, 255, 275
universe, 229
zeroth law, 255, 256

third law, 255, 275
titration, 198, 218, 220
toluene, 146
torque, 58
total differential, 421, 459
transition probability density, 433
trichloroethylene, 146
triple point, 9
triple product rule, 459

uniform distribution, 431

Van Der Waals (VDW) interaction, 82
Van der Waals gas, 24
vapor pressure, 122
vaporization, 298
vaporization point, 160
variance, 426, 430, 451
VDW equation of state, 25
velocity distribution, 17
velocity space, 20
virial coefficient, 30
virial expansion, 30
voltage sensing, 314
volume, 121

water, 157
weak acid, 212
weak base, 214
work, 229
P − V , 239
chemical, 253
electric, 250
electrostatic, 249
expansion, 239
gravitational, 248
magnetic, 251
spring, 249

Yukawa potential, 93

zeroth law, 255, 256


