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Preface

Los Angeles, CA
December 9, 2022

This is a collection of lecture notes, problem and solutions on the topic
of experimental measurements, data uncertainty and error analysis. These
notes were assembled over a period of approximately four years while teach-
ing chemistry 114 at UCLA, a physical chemistry laboratory course that
includes separate lectures in addition to the laboratory sessions. The course
was initially based on the excellent textbooks by J.R. Taylor, “An Introduc-
tion to Error Analysis” and Hughes & Hase, “Measurements and their Un-
certainties”, but was later revised to focus on the probabilistic foundations
of classical measurements. I do not consider these notes to be a substitute
to the book of Taylor, which I recommend to any newcomer for its strong
pedagogical value. Instead, I view these notes as providing a more in-depth
coverage of the probabilistic foundation. While the reader is assumed to
know calculus, no knowledge of probability theory is assumed; the required
concepts are introduced as needed in these notes.

I make frequent use of MATLAB while teaching the course because it is
important for young students to learn scientific computing. For those who
can’t afford MATLAB, a free software alternative can be download, called
GNU Octave. Many of the MATLAB examples herein should work on GNU
Octave either directly or with a small amount of conversion effort. An entire
chapter is dedicated to MATLAB sessions where the students are walked
through several examples. At UCLA these MATLAB sessions are done
during class time at the Science Learning Center. Problems and solutions

X1



xii Preface

are included at the end of many chapters. The students should be aware
that more advanced analysis techniques exist (such as statistical learning)
and are not covered here due to the short (1-quarter) nature of this course. I
would encourage the reader wanting to learn more, to read books on modern
multivariate statistical techniques. Special thanks go to Alison Ly, a UCLA
undergraduate student, for redrawing most of the figures in this document.

Louis Bouchard



Chapter 1

Experimental
Uncertainties

Every measurement contains some amount of uncertainty due to a variety
of experimental factors (e.g. temperature fluctuations, Johnson noise, shot
noise, sample motion, vibrations, environmental fields, etc.). The uncer-
tainty is due to fluctuations in the physical quantities being measured and
in the measurement apparatus. Uncertainties can be thought as representing
the noise magnitude which affects our signal. The goal of the experimentalist
is to reduce uncertainties to an acceptable minimum either by repeating the
measurement several times or by designing a better experiment. Our goal
here is to understand where uncertainties come from and how to characterize
them.

1.1. Types of uncertainties

There are two main classes of uncertainties encountered by the experimen-
talist:

e Systematic errors: these errors originate because there is a bias in the
system. For example, performing the same experiment on a different day
could mean the ambient temperature is different, which could then lead
to a drift in some currents in the system. A good piece of equipment
should be designed to take into account temperature variations, for ex-
ample. However, not all instrumentation is designed to compensate for
environmental factors. Another example could be the measurement of
a magnetic field using a magnetometer. However, the presence of large
metal objects nearby could affect the magnetic field.

1



2 1. Experimental Uncertainties

e Random errors: these errors arise from random fluctuations in the elec-
tronics or the physical measurement under study. For example, if you are
measuring the voltage across the terminals of a load, there will be ran-
dom fluctuations in the voltage as function of time. These could be due
to Johnson noise, which is due to thermal fluctuations of electrons in the
resistance of the load and leads to random voltage fluctuations. Johnson
noise is also generally present in the measuring apparatus. Vibrations
could also give rise to random errors.

Note: Sometimes the distinction between systematic and random error may
depend on time scales. The systematic errors can be randomly fluctuating
quantities that change so slowly that they appear static on the timescale
of (rapid) measurements. Random errors are those due to fluctuations that
are rapid compared to the timescale of measurement. In the latter case, a
series of consecutive measurements appears to fluctuate randomly.

1.2. Histograms

The quantities measured in the laboratory are random variables. A random
variable is not a variable in the usual sense. It is instead characterized
by a probability distribution function that encodes all relevant statistical
information about the random variable.

Suppose that X is a random variable. For example, let X be the diameter
of CDs produced in a factory. If we example n CDs and measure their
diameters, we collect n measurements of X:

{z1,29,...,2,}.

These values are all different because no two CDs are perfectly identical.
Because the values fluctuate from measurement to measurement, it is con-
venient to view X as a random variable. We shall denote a random variable
by its capital letter, X and its value by a lowercase letter . The two are
related by © = X (w). Here, w notes a particular outcome of a random
experiment. For example, if the experiment consists of rolling a die, there
are 6 possible outcomes: w € {1,2,3,4,5,6}; multiple outcomes of die roll
are denoted wi,ws,...,w,. For the CDs w denotes a particular instance of
diameter measurement; w; denotes the j-th measurement of the diameter.
Suppose that we measure 10,000 CDs; we would get a list of diameter such
as:

119.73
117.10
122.76
119.20
119.12
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Figure 1.1. Histogram is a discrete approximation of the probability
distribution of a random variable. It is obtained from experimental
data.

117.94
122.35
121.26
120.97
122.66

The list {x; = X (w;)}~, contains a total of 10,000 values (i = 1,...,n,
where n = 10,000). The nominal diameter of a CD is 120 mm.

Now suppose that we we plot a histogram of these values as follows: bin the
horizontal axis into 20 bins (i.e. from 110 to 130), with each bin of width 1.
These bins could be centered on those values, for example: [109.5, 110.5],
..., [119.5, 120.5], [120.5, 121.5], [121.5, 122.5], ..., etc. For each bin, count
the number of times X falls within the interval of the bin, i.e. # of times
you find a value in the above list that falls within that interval. Obviously,
the longer the list (the larger n is), the larger this count will be.

Plot this value (frequency of occurrence) vs diameter, as shown in Fig. 1.1.1
This histogram is a (discrete) approximation of the probability density func-
tion (PDF), which is a function that describes the distribution function of

IThis plot was generated in GNU Octave using the following sequence of commands:
x=120+2*randn([10000 1]); and figure; hist(x,linspace(110,130,21)); The first com-
mand creates a “fake” data set that simulates the acquisition of experimental data with random
error (more specifically, a random variable  with mean 120 plus normally-distributed random
noise with standard deviation of 2).



4 1. Experimental Uncertainties

the random variable X. The finer the bins are, and the larger n is, the more
closely this histogram approximates a continuous function.

The histogram is also called empirical distribution. Mathematically, we
partition the horizontal axis in N “bins”, defined by the intervals (rg, rg11],
where -+ < rg < ry <ryg<...,r; € RU{—o0,+00}. Recall that {z; =
X (w;) 11, is our set of measurements of X (data points) and n the number
of points. In terms of this dataset the histogram is the function:

2 1 ]I(r ,r ]
h(l‘) = ; Z : k+l Z {(El rk,rk+1]}

= (Tk41 — 1)

where 114 c(r, ry,,]) 1S an indicator functlon that equals 1 when x; € (rg, T41]
and 0 otherwise. Similarly, I, ,, . ,)(z) is an indicator function that equals 1
when 2 € (ry,7x41] and 0 otherwise. > 7" | 15 e(ry e} COUNts the number
of times a result x; = X(w;) falls into the bin (rg,7x11]. The coefficient

ivzl Ly rs) (%) ensures that @ € (1, 7%41] (k is a counter that loops over
all bins, one at a time). In Problem 34, we prove that the histogram con-
verges to the PDF in the limit of large n.

The term “empirical distribution” often refers to the expression:

= :L;:;(S(:L‘—xz)

where p(x) is a PDF and {z;}?_; is the set of experimentally measured data
points. Here, §(z) is the Dirac delta function. This will be discussed in
Section 2.4.

1.3. Methods for reporting uncertainties

1.3.1. Method 1. When reporting a measured quantity « and its uncer-
tainty dx, we write

(measured value of z) = x + dz

For example, the length of a rod is measured to be (1.0 £ 0.1) m. In this
course we will present common ways to estimate the value of dx and which
value of x to report. In a certain sense, this notation means that most values
measured experimentally will fall within the interval [z — 0z, x + dz].

In reality, however, the measured value of x is the sum of the true value of
X, Tirye, Systematic errors (bias) plus a random error (§):

(measured value of x) = Zypye + bias + 13
“constant” rapidly

fluctuating



1.3. Methods for reporting uncertainties )

where ¢ is a random variable whose outcomes fall within the interval [—dz, dz]
to a large extent. If the value of the bias is known, it can always be sub-
tracted from the measurement to obtain iy = 0z. In some cases it is
possible to design experiments to specifically measure bias.

1.3.2. Method 2 (notation). Another method for reporting uncertainties
uses brackets to list the digits that are uncertain:

1.234(55) m is a more-compact way of writing 1.234 + 0.055 m.

1.3.3. Report your uncertainties with 1 or 2 significant figures.
Experimental uncertainties should be rounded to 1 or 2 significant figures.
For example,

(10.000 £ 0.123) m

should really be rounded to
(10.0£0.1) m

or
(10.00 + 0.12) m.

Two significant figures are normally used in precision measurements. In
most other cases, we keep only one significant figure. In this course, we will
stick to 1 figure because we are not doing precision measurements.

We round the uncertainty to the 1 significant figure and then report the
value of x to the same digits. For example, writing
(30.129+0.1) m

does not make sense because the number of significant figures to the right
of the period differ for each number. We should instead report

(30.1 +£0.1) m,
where the value of x has been rounded to the same decimal place as the
error.

In most calculations, it is advisable to keep many significant figures during
the calculation and only round off at the end, when the final uncertainty
has been determined. This is to avoid round-off errors.

When comparing two different reported values, we can determine if these
values differ significantly or not by looking at the interval defined by the
uncertainties. For example, if someone reports two different lengths,

(10£5) m and (18 £5) m,
we see that the error bars overlap: the first interval is

[5, 15]
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30 4+ 30 4=
i [v
=
L 204 discrepancy = 10 Vs 20 4 discrepancy = 10
8 .
g Al C
w2
2 104 10+
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0= 0=

Figure 1.2. Discrepancy between two measurements. We must look at
the errors bars, not just the nominal value. (left) No overlap (right)
Some overlap. In the second case, we cannot say for sure that the two
measured values are significantly different because of the overlap.

while the second is
[13,23].
Since the error bars overlap, we cannot say for sure that the two numbers
differ significantly. On the other hand if the numbers reported are
(I0£1) m and (18 £1) m,
which correspond to intervals
[9,11] and [17,19].
In this case, we can say that the two values are significantly different from
each other.

Figure 1.2 illustrates the error bars for the case where resistance A is mea-
sured to be (15 + 1) Q and resistance B is measured to be (25 + 2) Q versus
the case where resistance C is measured to be (16 = 8) © and resistance D
is (26 £9) Q.

Since the error bars do not overlap, values A and B are said to be significantly
different from each other. Whereas measurements C and D do not differ
significantly because of the substantial overlap of their error bars. Even
though the x5 values differ by 10, in one case, the values are significantly
different whereas in the other case they are not.

1.4. Random Errors, Systematic Errors and Mistakes

There are three main types of errors encountered in experiments:
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8T Mean value

<— Width (spread)

Occurrence

2.0 22 2.4 2.6
Total distance traveled (m)

Figure 1.3. Histograms tell us about accuracy (if the true value is
known) and precision. The latter is related to the spread of the dis-
tribution.

e Random errors: These errors are random fluctuations that influence
the precision (or “spread”) of the measurement, as shown in Fig. 1.3. The
width of the distribution provides a measure of the random error. The
common method for reducing random errors is by repeating the measure-
ment many times and taking the average. We will see later that this
method reduces the random error by a factor \/n, where n is the number
of measurements. The random scatter in the data can be of technical
origin (due to the apparatus) or fundamental noise (e.g. Johnson noise,
shot noise).

e Systematic errors: These errors are caused by a bias in the system or a
mis-calibration of the instrument and typically cause the result to “tilt” or
“shift” or “drift” in some direction away from the accepted or predicted
value. Such errors can sometimes be difficult to detect or correct. To
diagnose systematic errors, we need to know the “true value” of a mea-
surement. Identification of the systematic “shift” can be accomplished by
performing an experiment with known conditions and parameters. Cor-
rection of the systematic error may involve a simple subtraction of the
shift or drift, or changes in the apparatus or experiment.

e Mistakes: These are user errors such as writing down the wrong value,
misreading the scales on the instrument, confusion over the units, or mal-
functions of the apparatus.

1.5. Uncertainty of a single measurement

Suppose that we want to determine the uncertainty of a single measure-
ment, so we can write Tpess £ 0, where Tpes here is the results of a single
measurement. The random error can be obtained as follows:
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‘HH\HH‘HHHH\‘\HHHH‘HHH\H
Ocm 1 2 3

14! I
\m\m\m\m\m\m\

Figure 1.4. It is customary to take the error bars associated with analog
measurements (from a ruler, here) to be half of the smallest division
(millimeters, here).

e From the measurement device: If you are using a digital device, use
the manufacturer’s specs or a full last digit, e.g.

(1.56 £ 0.01)
For analog devices, report half of a division, e.g.
measure 8.5 m — report (8.50 £ 0.05) m

Here, there is no problem adding a zero to 8.5 because with the analog
device, we are able to “eyeball” the extra digit by estimating the posi-
tion between the two divisions. An example of analog device is shown in
Fig. 1.4.

It is also possible to estimate the uncertainty yourself if the divisions
are large enough. In that case, you can estimate the last digit based on
the position between two divisions and estimate the uncertainty in your
procedure. For example, the analog device may only have divisions every
1 cm. But you may be able to estimate up to the millimeter by eyeballing
the measurement. This procedure may not necessarily give you precision
to the 1 mm scale, but you may be able to estimate it within 3 mm.
Suppose the measurement is 5 cm according to the divisions available on
the analog device, and you estimate the last digit to be 5.3 cm. You would
then report 5.4 + 0.3 cm.

e Using the standard deviation: The standard deviation can be used
to represent the error in a single measurement. The problem is that we
need many measurements to obtain the standard deviation, i.e. we need
to repeat the measurement n times and compute the “sample standard
deviation”

n

1
(1.1) 6p1 = T Zl(gcZ — fix)? (sample standard deviation)
1=




1.7. Reporting experimental results for a mean value 9

where [ix is the mean X estimated from the arithmetic sum
1 n
fx = ~ z; Z;. (sample mean)
1=

We use a hat notation (6, 1) to indicate that the quantities (o, p) are
estimated from data {z; = X(w;)}7;. The quantity fix is called the
“sample mean” because it is the calculation of the mean from the samples
Z1,...,ZTn. Other accepted names for these terms include “population

standard deviation” and “population mean”.?

Note: One problem with the second method is that the measurement preci-
sion may be limited by the finite resolution of the measurement device. For
example, it is possible that repeated measurements all give the same answer:

10.0 m, 10.0 m, 10.0 m,10.0 m, ..., 10.0 m.

If that is the case, use the first method (estimate the error bar from the
smallest division of the measurement device.)

1.6. Standard error

If you report for xp.5: @ mean value calculated from repeated measurements,
the error in the measurement of xp.s is the standard error, not the standard
deviation. The standard error is defined as the ratio of the sample standard
deviation to \/n
OA'n—l
Vn
If we collect n data points, each with uncertainty ,_; (“sample standard
deviation” of a single measurement), and calculate the sample mean fix, the

uncertainty in the sample mean is a.

We report
On—1

ix +o=fyx+
fix ko= jix 2

The standard error is also called the “standard deviation of the mean”.

1.7. Reporting experimental results for a mean value

When doing experiments, we typically repeat a measurement many times to
reduce its random error. The number reported is the sample mean. (Even
if, as an experimentalist, you don’t do these repeats yourself, it is likely

2 may seem ridiculous to collect n measurements just to compute the error bar of a single mea-
surement; true, but it is nonetheless the correct way to obtain the error in a single measurement,
when repeated measurements are possible. If you can afford to perform n measurements, report
the mean value instead; in which case, the error in the mean is called the standard error, which
is defined below.
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that your measurement apparatus does this averaging for you.) Here is how
this procedure is handled (either manually by you or automatically by your
experimental apparatus):

Given a random variable X to measure, collect experimental data as n
samples

T1,XL2y...,Tn
where z; = X (w;).
Calculate the sample mean [ix as the arithmetic sum gx = %Z?:l T
while keeping all the significant figures.

On—1

Calculate the standard error (error in the mean fiyx), a = NG where

n

1 .
Opn—1 = Z(xz _/LX)Qa

n—14
=1

while keeping all the significant figures.

Decide how many significant figures to retain for the error. If many data
points are used, keep 2 significant figures. Otherwise keep only 1. In this
course, we will stick to retaining only 1 significant figure for the error bar.

Round the mean to the appropriate decimal place.

Reporting errors:

If the experimental measurement of a random variable X can be repeated
many times (e.g., 1 = X(w1),22 = X(w2),..., 2, = X(wy)), the most
common way to report the experimental value of X is:

On—1

N

A 1 n ~ 1 n ~ o
where fix = - > x; and 6,1 = \/m Yo (@i — fux)?. This as-

(measured X) = fix £

sumes that &,,_; is a meaningful (non-zero) value, i.e. it is constructed
from non-identical measurements (such as 10.0, 10,0, 10.0, 10.0, etc).

If it is not possible to repeat the experimental measurement (due to
time constraint or other reason), then report the single measured data
point, z1, plus uncertainty as stated by the manufacturer or using a
pre-calculated value for the standard deviation.®

2Although calculating the standard deviation does require repeated measurements, this task
can be done at a more convenient time.

1.8. Precision vs. Accuracy

Precision and accuracy are different concepts.
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1.8.1. Accuracy. Suppose your know the “true value” of a physical quan-
tity. For example, the speed of light in vacuum is a universal physical
constant that is defined to be equal to

¢ =299,792,548 m/s.

This figure is exact since the length of the meter is defined from this constant
and the international standard for time. The “true value” can be obtained
from other means. The accuracy is a measure of how close is the mean value
of your measurement from the true value.

1.8.2. Precision. Loosely speaking, precision is defined as the “spread” or
scatter of values around the mean. A precise measurement corresponds to
a small spread, whereas an imprecise measurement corresponds to a large
spread.

In Fig. 1.5, four distinct cases are illustrated: accurate and precise measure-
ment, accurate and imprecise measurement, inaccurate but precise measure-
ment and inaccurate and imprecise measurement. The graphs shown are
obtained by plotting histograms of the frequency of a given experimental
result versus the value measured.

If the “true value” corresponds to the dotted line, an accurate measurement
of x means that the average value of the measurement, which can be thought
of as the “center of mass” of the histogram, lies close to the dotted line. This
is true, regardless of the sharpness or spread around this mean value. An
inaccurate measurement is one where the measured values cluster far away
from the dotted line.

1.8.3. Fitting data to a model. As scientists, we often need to validate
theory with experiments. Physical quantities are related to one another
via some physical law (a mathematical formula). In which case, there is
an equation (model) available to fit your data to. By fitting data to your
model, you can see if the model suitably describes the physical situation.
(And there are situations, of course, where the model may not be known
and analysis of the data requires you to identify a suitable model.)
Experimental data comes with error bars. Plotting error bars on a graph
enables us to decide if experimental data is consistent with a given model.
Let us look at the example of Hooke’s law which describes the extension of
a spring from its equilibrium position when attaching a mass to its end.
Example: Hooke’s law. Hooke’s law says that the force F' on the spring is
linearly proportional to the displacement z from equilibrium (x = 0):

F=kx
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Figure 1.5. Precision vs accuracy. Repeated measurements of an ob-
ject’s length x (arbitrary units). The nominal length (true value) is 11.3,
as indicated by the red dashed line.

If we attach a mass m to the spring, the force acting on the spring is the
gravitational force on the mass m:

F =myg,

where g is the gravitational acceleration constant, approximately g ~ 9.8 m/s2.
The situation is illustrated in the figure below. Writing the Hooke’s law in
the form

F mg g

PR G

immediately suggests a possible experiment for measuring the value of k: we
attach different masses m and measure the corresponding displacement .
The slope of this graph yields g/k, from which we can obtain k (Fig. 1.6).
Figure 1.6 also shows an example where linear fit does not describe the data

well and a quadratic component must be added to the model.
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spring at rest

X
|\ AS— m (mass)
extension
F=mg
st 54
B B !
0 500 1000 0 500 1000
m (grams) m (grams)

Figure 1.6. The plot on the left (right) shows a scenario where the
experimental data are well-described by a linear (quadratic) trend.

1.8.4. Fractional Uncertainties. It is sometimes convenient to express
values
(measured x) = Tpest + 0T
in terms of fractional uncertainty
ox
|Zpest |
If we multiply by 100 we get the percentage uncertainty:

(fractional uncertainty) =

(percentage uncertainty) = x 100

‘xbest‘
If we multiply by 1,000,000 we get “parts per million”:

(parts per million (ppm)) = x 106,

B ‘wbest’
and similarly for “parts per billion” (ppb). The main advantage of fractional
uncertainty is that it is a dimensionless quantity (it has no units).

Examples:
10 &= 1 corresponds to 10 £ 10%

99 4 1 corresponds to 99 + 1%
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1.9. Rules for Rounding and Significant digits
1.9.1. Significant Digits. Here are accepted rules for reporting significant
digits
e All non-zero digits are significant:

2.998 x 10® m/s has 4 significant figures
e All zeroes between non-zero digits are significant

6.022 141 79 x 10?3 mol~! has 9 significant figures
e Zeroes to the left of the first non-zero digits are not significant
0.51 MeV has 2 significant figures

e Zeroes at the end of a number to the right of the decimal point are sig-
nificant
1.60 x 107 C has 3 significant figures

e If a number ends in zeroes without a decimal point, the zeroes might be
significant:

270 Q could have 2 or 3 significant figures
To avoid confusion, report instead:
2.70 x 10% Q or 2.7 x 102 Q

1.9.2. Rounding rules. To round a number at the N-th digit, where N
here will be taken as the tenths digit position for illustrative purposes, the
generally accepted practice is described below:

(1) If the next digit (VN + 1) is 4 or lower, leave N unchanged:
6.6(2) x 1073* becomes 6.6 x 10734 (2 sig figs)
since ‘2’ is lower than 4.
(2) If the next digit (/N + 1) is 6 or higher, increase N by 1:
5.6(7) x 1078 becomes 5.7 x 1075,
since ‘7’ is greater than 6.

(3) If the digit after last one to be retained (N 4 1) is 5
(a) Leave last digit (N) unchanged if digit N is even:

9.(4)5 becomes 9.4 (2 sig figs)

since ‘4’ is even.
(b) Increase last digit (N) by 1 if digit N is odd:

9.(7)5 becomes 9.8 (2 sig figs)

since ‘7’ is odd.
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(4) If the digit after last one to be retained (N + 1) is 5 but there are
non-zero digits to the right of 5, round N up:

10.75 becomes 10.8 (2 sig figs)

since there are non-zero digits to the right of the ‘5’. Here, the
parity of the N-th digit ‘7’ does not affect the decision to round.

Rounding the result of addition and subtraction: We round-off the result to
the same number of decimal places as the number with the least number of

decimal places:
1.23 + 45.(6) = 46.(8)

(We have dropped the ’3’ in 1.23 because 45.6 does not contain such a level
of precision; hence the '3’ becomes meaningless when adding.)

This rounding rule is not arbitrary. It is grounded in the theory and methods
of error propagation (see Chapter 3). We will see that if two numbers are
added, Z = X 4+ Y, the rules of error propagation give ay = \/ag( + oz%,,
where oy, © = X,Y, 7 is the error in X,Y, Z, respectively. In the above
example, suppose that ax and «ay differ by at least an order of magnitude,
ie. ay = 10"ay, n > 1. Then, ay = axV1+1072" ~ ayx is a good
approximation since v/1 + 0.01 = 1. If the error bars are assumed to be 1
unit of the last significant digit, ax = 10™, ay = 10™~", then the error in
Z is at the same digit, 10™. The uncertainty in Z is therefore determined
by the number with the least number of decimal places.

1.9.2.1. Rounding the result of multiplication and division. We keep the
same number of significant figures as the component with the least num-
ber of significant figures:

@ % 345.6 = 414.72 = %102
<~ <~

2 sig figs 2 sig figs
We will be learning in Chapter 3 about methods of error propagation.

1.10. Problems

Problem 1. Partial differentiation: (a) Find the total differential of the
function f(z,y) = yexp(z + y). (The total differential of f(x,y) is defined
as df = %dx + g—gdy.)

(b) Find the first and second partial derivatives of the function f(z,y) =

3,2 143 3 of of of 9*f 9°f 9%f
22°y” + 7, i.e. calculate 7, By> 9220 ay? Dwdy> Dydz-
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(c) Suppose we have a function f(x,y) where y = y(z). The total derivative
of f with respect to x is

de Oz dy ) dx’

Find the total derivative of f(x,y) = 2 + 3zy with respect to z, given that

y =sin"!z.

UL (30

Solution. (a)
0
(Ti = exp(z +y) + yexp(z +y).

0
= yexp(x +y), a}j

df = [yexp(z +y)]dz + [(1 + y) exp(z + y)]dy.
(b)

of 290 OF 3 2 82f_ ) O 3
896—6:1;y, ay—él:c Yy + 3y°, ax2—12ajy, ay24x + 6y,
o f 2 0% f
=12 =
0xdy vy Oyox
© af af d 1
Y
—_ = 2 _— = —_— =
Ox + 3y, Oy 3, de (1 —a2)1/2
and so
df — 1 _ . —1 3x

Problem 2. Find the gradient of the following functions:

(a) r = /22 +y% + 22
b) f(z,y,2) = 2* +y° + 2*
2,34

(
(C) f(ac,y,z) =Ty z
(d) f(z,y,2) = e”sin(y) log(z)

Solution. (a) Vr =rt. (Since 9,7 = (1/2)(1/r)2x = z/r, etc.)
(b) Opf =2z, Oyf = 3y, 0.f = 4z. So that Vf = (2z,3y,4z).
(c) Ouf = 2xy324, 0, f = 322y%24, 0. f = 422y®23. So that
Vf = (2zy32, 32224, 42?y323).
(d) 9.f = e”sin(y) log(z), 9, f = e® cos(y)log(z), 0, f = e*sin(y)z~L.
So that Vf = e*(sin(y) log(2), cos(y) log(z), sin(y)z~1). [ |
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Problem 3. For the three questions below let r — r’ be the separation vector
from a fixed point (z/,y/, 2) to the point (z,y, z) and |r — r/| be its length. If
V indicates derivative with respect to the unprimed variables r, show that:
(e) Vlr —r'|2 = 2(r — 1)

)
() V(I/Jr = 1)) = =(r =) /Jr = x'?
(g) What is the general formula for V(|r — r/|")?
(h) In problem (f) above you have computed V(1/|r — r'|) = —(r — t) /|r — 1|3
Now calculate the quantity V/(1/|r —r’|), where V' denotes the derivative
with respect to the primed variables r’ (instead of the unprimed variables

r).

Solution. For (e), the x component of the gradient is 9, ((z — 2/)? + (y —
)2+ (z — 2/)?) = 2z, etc. so that V|r —1/|> = 2(r —r/). For (f) the z
component is 9;1/\/(x — /)2 + (y —¢')2 + (z — 2/)? = (-1/2)((z — 2/)* +
(y— )2+ (2 — 2')2)73/2(22) so that V(1/|r —'|) = —(r —')/|r — ¢/|>. For
(g) we have V|r —r'|" = n(ﬁ :’I |r —r/|"~1. For (h) the only difference is a
negative sign. |

Problem 4. Show that the Taylor expansion, up to quadratic terms in x — 2
and y — 3, of f(z,y) = yexp(xy) about the point x = 2, y = 3, is:

fla,y) = 66{3 Y9z —2) +T(y — 3)+

(2))~1 [27(:1; —2)2 4 48(x — 2)(y — 3) + 16(y — 3)2} }

(Show all your calculations)

Solution. The Taylor expansion of a function of two variables is:

2 2
ashoyeh) = (o) + RV ek | ) S| [ +odamr)

To obtain the stated result, plug in x = 2 and y = 3 in the Taylor expansion
formula and take h = z — 2 and k = y — 3 as the step size, making use of
the following derivatives (evaluated at the point z = 2 and y = 3):

0 0 0?
(Ti = y? exp(zy), ajyc = exp(zy) + ay exp(zy), aT;J; = y” exp(ay),

82—‘f—Q:Eex (zy) + 2%y exp(zy) O = 2y exp(zy) + zy? exp(zy)
a2 PlTY yexp\ry), 8x8y_ypy Yy explry).

Problem 5. Shorthand notation: f, = 833’ Joy = axay, Joz = 8 2, etc.
The multivariable Taylor expansion can be used to study the behavior of
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functions near extrema. All stationary points have f, = f, = 0 and these
points may be classified as:

(1) minima if both fg; and fy, are positive and fg?y < fazfyy

(2) maxima if both f,, and fy, are negative and fgfy < fazfyy

(3) saddle point if f., and f,, have opposite signs or f2, > fezfyy-

Prove that the function f(z,y) = 2* + y* has a minimum at the origin, but
that g(z,y) = z* + y> has a saddle point there.

Solution. We have f, = 0, f = 423 and f, = 9,f = 4y3, both of which are
zero at the origin. Thus the origin is a stationary point. To check that this is
a maximum, minimum or not, we need the second derivatives: fy, = 1222,
fyy = 1242, fzy = 0. Both f;; and f,, are zero at the origin, so the test
is inconclusive. However, both are positive in a small neighborhood of the
origin and fxzy < fezfyy- Thus, we have a minimum. [ |

Problem 6. Show that the function f(x,y) = 2° exp(—2? — y?) has a max-
imum at the point (1/3/2,0), a minimum at (—+/3/2,0). What about the

nature of the point at the origin?

Solution. Setting the first two partial derivatives to zero to locate the sta-
tionary points, we find

% _ (3332 _ 2334) exp(f:cz _ y2) =0, gg = —2ym3 exp(ffrj2 — y2) =0.

For the second equation to be satisfied we require x = 0 or y = 0 and for
the first one to be satisfied we require z = 0 or x = +/3/2. Hence the

stationary points are at (0,0, (1/3/2,0) and (—4/3/2,0). We now find the
second partial derivatives:
foz = (42° — 142 + 62) exp(—2® — ¢?)
fyy = 533(43/2 —2) eXp(—fL’Q - 5U2)
fa:y = 2x2y(2x2 - 3) exp(—x2 - y2)
We then substitute the pairs of values of x and y for each stationary point
and find that at (0,0)

fxac:O, fyyzoa fzyzo
and at (£4/3/2,0)
fx:p =7+ 3/2 exp(—3/2), fyy =+ 3/2 eXp(_3/2)7 fxy =0.
Hence applying the above three criteria, we find that (0,0) is an unde-
termined stationary point, (1/3/2,0) is a maximum and (—4/3/2,0) is a

minimum. The function is shown in Figure 1.7. |



1.10. Problems 19

(%) exp (-x*-y?)

AN
AN
il "0 0
A l/”l )

\Q\\\

o ':‘\\\
"
%

il
)
/I///,I’II:,:::

Figure 1.7. Plot of the function f.

Problem 7. Matrix inverse. (a) Derive the formula for matrix inverse of a
2x2 matrix:

A_l_abfl_ 1 d v 1 d —b
o le dl T det(A) |[-¢ a|l ad—bc|—c al’
(b) Check that it satisfies the definition of the matrix inverse, namely check

that A“1A = AA~1 =1 where I is the 2 x 2 unit matrix.

(c) Prove that taking the inverse of nxn matrices A, B reverses the order
of matrices:

(AB)"' =B1A!
(d) Prove that (k is a non-zero scalar)

(kAP =k1AT!
where A is an invertible matrix.

(e) Prove that taking the inverse of an invertible matrix twice recovers the
original matrix:

(A H'=A

Problem 8. Manipulation of matrices and matrix operations. (a) For two
arbitrary matrices A and B, write down the matrixz products AB and BA.
What are the conditions on A and B for the matrix product to exist (and
be well-defined)?

(b) In general, does AB equal BA?

(c) Check that for matrices A, B and scalar ¢ the following property holds:
(AHT=A

where AT denotes matriz transpose.

(d) Prove that the transpose operation preserves the matrix addition:

(A+B)T=AT + BT
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(e) Prove that taking the tranpose of a product of matrices reverses the
orders of the matrices
(AB)T = BTAT

(f) Prove that a scalar is left invariant by the transpose operation:
(cA)T =cAT

(g) Prove that the dot product of two column vectors a and b can be com-
puted as

a-b=a’b
where a® denotes the transpose of a (i.e. a row vector). Verify this by
writing out explicitly the matrix product.

(h) Prove that the transpose of an invertible matrix is also invertible and
its inverse is the transpose of the inverse of the original matrix:

(AT)fl — (Afl)T

Problem 9. Compute the following dimensionless quantity and find the
correct error bars (pay attention to the order of operations indicated by the
brackets):

[(0.0045 = 0.0005) plus (0.3 & 0.9)] divided by (1.5 +0.1) =?

Solution. From the first operation (addition) we have

az = v/ (@a)? + (ap)? = 1/(0.0005)2 + (0.9)2 = 0.9

and
Zpest = 0.0045 + 0.3 = 0.3045

which we round according to the error = 0.3045 + 0.9 = 0.3 £ 0.9. Then we
perform the second operation (division). There, we have

03 _
1.5

(ORI

And the final result is 0.2 4= 0.6. |

Zl,)est = 0.2

and the error bar

evaluates to

Problem 10. Suppose that a random experiment consists of measuring the
length L of an object. (a) Explain the possible sources of randomness in
this measurement.
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(b) The “state space” of this random experiment consists of all possible
values L can take (without regards to the way L is measured, i.e. assume
infinite precision). Is this state space continuous or discrete?

(¢) Random variables depend on how they are defined relative to an ex-
periment. Define X as the random wariable which consists of the value L
measured with infinite precision. Is X a continuous or discrete random
variable?

(d) Let Y be the random variable which corresponds to the length L rounded
to the precision of the measuring instrument. Is Y a discrete or continuous
random variable?

(e) Let Z by the random variable which equals 1 if L is greater than 10
mm and 0 if L is less than or equal to 10 mm. (Such random variables are
called “indicator functions”, because they act as logical bits which are “on”
when certain conditions are met and “off” otherwise.) Is Z a discrete or
continuous random variable?

Solution. (a) Any experiment performed in the lab suffers from random er-
rors (fluctuations). Their origin could be any of: rapid thermal fluctuations,
mechanical vibrations, operator (the act of measurement can introduce er-
rors), fluctuations in the electrical power supply, etc.

(b) Continuous. (Since the values of L are not denumerable.)
(c) Continuous. (X can take an indenumerable number of values.)

(d) Discrete. (The number of values Y can take can be infinite, but still
denumerable.

(e) Discrete, since Z can only take 2 possible values: 0 and 1. |

Problem 11. Let f be a differentiable real-valued function on R? and vp a
tangent vector of R? at a point p € R?. Then

d
vplf] = E( f(p+tv))|=o directional derivative

is the (directional) derivative of f with respect to v,.
For example, suppose that f = zixozs, p = (1,—4,2) and v = (1,1,0),
where 1, x9, x3 are the coordinate functions of R3.

(a) Find p + tv and show that f(p + tv) = 2(1 +¢)(—4 + t). Show that

vp[f] = —6 by direct computation of the limit.
(b) If v, = (v1,v2,v3) is a tangent vector of R? at a point p, then
3
of
Up[f] = ; Vg o, ()

Prove this statement from the above definition (limit).
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(c) Use the definition of directional derivative in (b) to show that v,[f] = —6.

(d) Let f and g be differentiable functions on R3, vp and w), tangent vectors
at a point p, and a and b real numbers. Prove the following 3 properties:

(@) (avp + bwp)[f] = avp[f] + bwp[f],
(it) vplaf + bg] = avy[f] + buplgl,
(1) vplfg] = vplf] - g(p) + f(p) - vplg).
Solution. (a)
pHtv=1+t-4+t2), flp+tv)=21+t)(-4+1)
wlf] = S21+ (44 D)z = 22t~ Bco = 6.
(b) Let p = (p1,p2,p3). Then,

f(p+tv) = f(p1 + tvi, p2 + tvg, p3 + tus).

Since (d/dt)(p; + tv;) = v;, by putting x; = p; + tv; and using the chain rule
we obtain the desired result.

() of )
9, ) = 2223(p) = =8,
ggf;(p) = z123(p) =2,
L) = wrmalp) = 1.
we obtain

vlf] = 1(=8) + 1(2) + 0(—4) = —6.
|

Problem 12. Report the following numerical distance correctly, with error
bars: X+Y, where X = 110.125 +0.003 m and Y = 85.6 £ 0.2 m.

Solution. Whether we use the 07 = ox + oy method or the quadrature
method, the error in X +Y is dominated by the error in Y (i.e. oy > ox).
Thus the error bar is 0.2 m. Next, we round 110.125+85.6=195.725 to the
tenths digit, giving (195.7 + 0.2) m. [ |

Problem 13. How many significant figures are there in this expression:
3000000000 liters.

Solution. Anywhere between 1 and 10. |

Problem 14. Express the following result in proper rounded form, with
suitable error bars: mass=19.1234 g with uncertainty 0.6789 g.
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Solution. First we need to round the error bar to 1 or 2 sig figs. Let’s do
1 sig fig: 0.7 g. Then we round the mass to this figure: 19.1 g. The result
is: 19.1(7) g. [ |

Problem 15. Your experiment yielded the following measurement:
(4.1234 £ 0.4321) Joules.

Report this number with proper error bars and appropriate significant fig-
ures.

Solution. Either (4.1 +0.4) J or (4.12£0.43) J. [ |

Problem 16. How many significant figures are there in each of the following
expressions?

(i) 0.00082 s

(ii) 0.14800 psi

(iii) 6.24x106 1

(iv) -754.090x 10727 J
(v) 50 cm

(vi) 50 m

Solution. (i) 2
(i) 5
(iii) 3
(iv) 6
(v) Lor2

(vi) 1 or 2 [ |

Problem 17. Express the following result in proper rounded form, with
suitably truncated error bars: mass=8.4857 g with uncertainty 0.2554 g.

Solution. First we need to truncate the error bar to 1 or 2 sig figs. Let’s
do 1 sig fig: 0.3 g. Then we round the mass to this figure: 8.5 g. The result
is: 8.5(3) g. [ |

Problem 18. You measure the length of an object with a ruler (or mea-
suring tape) whose smallest division is 1 mm. You measure the length 5
times with results in mm of 123.4, 123.5, 124.6, 123.7, 123.8 mm (the last
digit you have estimated by eyeballing). What is the average length and the
uncertainty in length?

Solution. Because this is an “analog” device (ruler’s smallest division is 1
mm), we should take 1/2 or the smallest division as our error. Namely, 0.5
mm. Thus, the result is 123.8(5). [ |
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Problem 19. Compute the following dimensionless quantity and find the
correct error bars (pay attention to the order of operations indicated by the
brackets):

[(0.0045 4 0.0005) plus (0.3 + 0.9)] divided by (1.5 + 0.1) =?

Solution. From the first operation (addition) we have

az =/(aa)? + (ap)? = /(0.0005)2 + (0.9)2 = 0.9

and
Zpest = 0.0045 + 0.3 = 0.3045

which we round according to the error = 0.3045 4+ 0.9 = 0.3 £ 0.9. Then we
perform the second operation (division). There, we have

03 _
1.5

7 () ()

And the final result is 0.2 4 0.6. |

Zposr = 0.2

and the error bar

evaluates to




Chapter 2

Probability

Experimental measurements in the laboratory are random variables (rv).
Every time you measure a physical quantity you get a different number
because of random fluctuations (random errors). The random fluctuations
are called random errors. Thus, a statistical description of experimental
measurements is needed.

Here, we introduce tools to study random variables. Random variables can
be continuous or discrete, depending on whether they take continuous or
discrete values, respectively. An example of a continuous random variable
is the length of an object. Length is a random variable which can take pos-
itive real values in a continuous interval. An example of a discrete random
variable is the number of counts within a time interval. Counts can only
take discrete values (1,2,3,...), in this case, the positive integers.

2.1. Continuous Random Variables

As mentioned in the previous chapter a random variable X is not a simple
variable; it is better described by associating it with a function that encodes
all of its statistical properties.! We associate with X a probability density
function (PDF), p(x). As a matter of convention, we shall use capital letters
(X) to denote random variables and lowercase letters (x) for the value of X
in some particular experiment w, i.e., x = X (w).

IThink of an experiment performed on Monday. The value measured on Tuesday may be slightly
different than the one obtained on Monday because of random errors. Same story for measurements
performed on subsequent days — these values will also be different due to fluctuations.

25



26 2. Probability

2.2. Probability Density Function

The probability density function (PDF) of a random variable X, denoted
p(z), is everywhere non-negative: p(z) > 0 and is normalized to 1:

/OO p(z)dz = 1.

—0o0

We note that the PDF refers to a particular random variable (say, X). This
is sometimes emphasized by adding a subscript, e.g., px(z) instead of p(z).
When working with a single random variable we do not need the subscript
because it should be clear that there is only one possible random variable
that p(z) refers to. However, when the problem involves more than one
random variable, we should use a subscript to avoid confusion between the
different PDFs.

2.3. Cumulative Distribution Function

We define the cumulative distribution function (CDF) as the integral of the
PDF:

T

P(X <uz) E/ p(2')da’

—0o0

The CDF is the probability that X takes a value less than or equal to z.
The quantity {X < x} is an example of a random event; the function P(-)
associates a number between 0 and 1 to this random event. The notation
{X < z} is shorthand for the set {w : X(w) < z}, i.e. the set of all
random outcomes w such that X (w) < x. We note that if p(x) is continuous,
then there is no distinction between P(X < z) and P(X < x). When
discontinuities are present, we should be careful about the equality.

From this definition, we can solve for p in terms of P:2
dP(X < x)

p(x) = g

We note that
Pla< X <b)= /abp(x)dx = (/_boo - /_Oo) p(z)dz = P(X < b)—P(X < a).

2.3.1. Interpretation of PDF. The PDF, p(z), has the following inter-
pretation. The quantity p(x)dz is the probability that the random variable
X lies in the interval [z, z + dz]:

p(z)dr =Pz < X <z +dz),

2Ty differentiate the integral with respect to z, apply the Leibniz formula (see Section 12.3) for
differentiation of integrals. In the expression [ p(z’)da’, the only dependence on z comes from

the upper limit of the integral. Thus, % JZ o p(a')da’ = p(x).
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where dz is an infinitesimally small quantity and P(-) denotes the probability
of the event - occurring. The quantity p(z)dx by itself is rarely used, except
under the integral sign. Instead, one integrates this expression to find the
probability that X will take some value in a finite interval [a, b]:

Pla< X <b) = /bp(x)dx.

The last step follows from?

Pe<X<z+der)=P(X <z+dz) -P(X <z)=dP(X < x),
integrating P(z < X <z +dz) = dP(X < z) from a to b yields ff dP(X <
z) =P(X <b) —P(X <a) =Pla <X <b) whereas integrating p(z)dz
yields ffp(:p)dz. Since the two are equal, we have that P(a < X < b) =
f;p(x)d:z:.

2.3.2. Limit value of CDF. We note that the CDF approaches 1 in the
limit of large x. This follows from the normalization condition on the PDF.

2.4. Experimental Data: The Empirical Distribution

Suppose that our knowledge of the rv X is not its PDF, p(z) but instead a
series of data points obtained experimentally:

Tr1 = X(wl),l‘g = X(WQ),... , T = X(wn)

(An equivalent description that will be used in subsequent chapters is to
take n independent rv’s X1,..., X, of the same distribution as X and fix w.
The order in which rv’s are measured is immaterial since they are assumed
independent. Fixing w implies that all random variables are measured si-
multaneously. The data is {z; = X;(w)};.)

We define the empirical PDF as follows:
. 1
p(x) = - Z; Sz — x;),
1=

where §(z) is the Dirac delta function. It is trivial to verify that [ p(z)dz =1
and p(x) > 0. The CDF corresponding to p(z) is:

€T

1
P(X <zx)= / p(x)de = —#{i: z; < x}.

N n
Here, #{i : ; < x} denotes the number of data points x; satisfying the
condition x; < x. The empirical distribution p(z) is an approximation to
the true PDF p(z). This fact follows from the Law of Large Numbers (see
Problem 35).

3In calculus, recall that df(z) = f(z +dx) — f(x).
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2.5. Mean Value of Continuous Random Variable

Let X be a continuous rv. The mathematical expectation of X, denoted
E(X), is defined as:

[e.o]

E(X) = / 2 p(z)da.

—00

where the integral is over all values taken by the rv X (here, over the entire
real line). If the random variable takes values in the interval [0, 1] then the
limits of the integral range from 0 to 1.

That is, to obtain the mean value of X, we replace the rv X by a regular
variable x that represents its value, then multiply by p(x) and integrate over
all z.

Other names for E[X] include “mean value” (of X), or “expectation value”
or “average value”. Other symbols you may encounter in the literature
include X, px, (X) or m(X).

We note that this expression differs from the sample mean fix = % S

The sample mean is an estimate of the mean.? Substitution of the empirical
distribution (Eq. 2.1)

(2.1) LOEED SUCEED
i=1

into the above definition for E[X] gives the sample mean:
R R 1<

/ x—Zé(w—wi)dw:—in.

—oo i s

Here {z;}_; denotes experimental measurements of X.

2.6. Indicator Functions

An indicator function, 1,1 (z) is a function that takes the value 1 when
x < y and 0 otherwise. Indicator functions can also be applied to random
events. Let X be a rv and A is a random event. The indicator function for
the random event X € A is defined as:

1 ifXeA
1A(X)_{

0 otherwise
where X € A refers to the value of the rv X taken after a random experi-
ment. Another notation for 14(X) you may encounter is 1xc4. You may
also encounter Ixc4 or x4(X) instead of 1xc4. Taking the mathematical

4More specifically, the sample mean is the best estimate of the mean in the sense of least squares.
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expectation of 1x¢4 and applying the definition of probability,

E[lxea] = /00 1oca(x)p(x)de = / p(z)dz = P(A).

-0 A
where A is a random event and the integral [ 4 means integral over all points
x that meet the condition = € A (for example, X could be a coordinate, and
A = (—o0,y| indicates an event where the coordinate is less than y). In-
dicator functions are useful when dealing with experimental measurements.
See Problems 34, 29 and 36 for example uses of the indicator function.

2.7. Variance

The variance of X, denoted var(X) or ag(, is defined as the sum of square
differences between X and its mean, ux = E[X], weighted by the PDF:

0% =var(X) = /OO p(z)(z — px)*de

—00

The square can be expanded to give ffooo p(z) (2% + ,u%( —2zpx )dx and thus
0% = E[X?] - (ux)*.

The square root of the variance is called the standard deviation and is com-
monly denoted o.

2.8. Example PDFs

2.8.1. Point Distribution. Let X be arv and p(z) its distribution (PDF).
The simplest known PDF is one concentrated at a single point xq:

p(z) = 6(z — o).
It is trivial to verify that p(z) > 0 and [ p(z)dz = 1. The CDF is easily
found:

P(X <a)= /_a 0(x — zp)dz = 0(a — x9),

e(x):{l if 2 >0

0 otherwise

where

is the Heaviside step function. We note that the Heaviside function can be
expressed in terms of the indicator function as 6(z) = 1(g ) (). We also

note that d(z) = L6(x).
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2.8.2. Discrete Distribution. Let X be a rv that can take values {x;}}¥,
in a set X. N is the number of possible values that X can take. The PDF

N N
p(fﬁ):ZPﬁ(l‘—xi)a pi >0, Zpizl
i=1 =1

is called discrete distribution because it can be used to describe discrete rv.
The set of number {p;}YY, is called the probability mass function (PMF).
The x; represent the discrete values taken by the rv X. p; is the probability
of observing the discrete outcome x; € X. The mean of X is:

o N N

px =E[X] = / prié(x —z;)dx = ijlacZ
=1 i=1

The variance is
N

var(X) =Y pi(zi — px)*.

=1

2.8.3. Distribution After Rescaling Of Random Variable. Let X be
a rv. What is the distribution of 2X 7 Since we are multiplying all values of
X by 2, we at least expect the mean to be twice as large. What about the
remaining details of its distribution? First of all we note that:
a/2
P2X <a) =P(X <a/2)= / px (x)dz.
—0o0
Next, we differentiate this integral with respect to a to get the PDF:
d 1
—P(2X = 2) - —.
da (2X <a) =px(a/2) 5
We conclude that the PDF of 2X is half as high and twice as spread out
compared to the distribution of X. If the mean of X is pux then the mean
of Y =2X is
o0 1 o0
BY) =5 [ wx(u/2dy = [ @olpx(e)(2a) = 2.
—00 2 —00
The variance is:
L[> 2 L[ 2 2
var(Y) = 5 (=) px(y/2)dy = 5 (22—2px)"px (x)(2dz) = 27var(X).

—00 — 00

2.8.4. Cauchy Distribution. Let X be arv with the Cauchy (or Lorentzian)
distribution. Its PDF is defined as:

1 1
px(x) = ;m~
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The CDF is:

1 1

We know from calculus that the derivative of tan~!(x) is 1/(1+ 2?). There-
fore, the last expression can be integrated:

1 1
P(X <x)= %tan_l(x) + 7

2.8.5. Rayleigh Distribution. Let X be a rv with Rayleigh distribution
(X ~ Rayleigh). The Rayleigh distribution has a PDF:

pla) = e /07,
g

where > 0 and o is a parameter of the distribution. The CDF can be
shown to be:

PX<z)=1- e /2%

where x > 0. The reader can check that the mean of X is oy/7/2 and its

variance is 02477“.

2.8.6. Gaussian (Normal) Distribution. The normal distribution N (11, o%)
with parameters ;o and o2 is defined by the density:

(z) 1 _ ‘””"32
xT) = (&4 20 y
P V2ro?

1 .
where x € (—o00,00). The prefactor TongZ 18 such that p(z) adds up to 1:

/OO p(z)dz = 1.

—0o0

This can be verified using the well-known result for a Gaussian integral
ffo e~y = /7 /a, where a > 0. As an exercise, you should check that

o0

this PDF is normalized to 1, the mathematical expectation of X ~ N '(u, 0?)
is p1 and its variance is 02, i.e. EX = y and E(X — p)? = o2

This probability density is plotted below. It is centered on u and the width
is proportional® to o.

If a rv X follows a Gaussian distribution (Fig. 2.1) with mean p and variance
0?2 we write X ~ N (u,0?). For a Gaussian distribution, the CDF is called
the error function. See Figure 2.2.

5In fact, the full width at half maximum of the Gaussian is 2v/2log 20 & 2.3550. You can check
2 2

11 1 5T 1 a7

2m—m62 or 3 e 202 since the

maximum of the function is \/2172 (set = = 0). Taking logs of both sides gives x = ++/202 log 2.

ixes

this by finding the values of z for which
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p(x)

—» 2,/2log2c <«
~2355¢

X X

Figure 2.1. Gaussian (bell shaped) distribution. The PDF has full
width at half-maximum of approximately 2.3550.

Gaussian
PDF

Erf

X X

Figure 2.2. Error function is defined as the (cumulative) area under the
Gaussian PDF.

_ (@2
202 dx.

(2.2) erf(z)

1 T
o=—F7——= | e
H V2mo? /—oo

The error function is an integral which cannot be evaluated analytically.
Instead it must be solved numerically. Values of the error function can be
obtained from tables, calculators or computer programs. The error function
for standard normal rv (mean 0, variance 1) is often tabulated in books.
In MATLAB the command normcdf (x,mu,sigma) will return values for
erf(z),,o. See Section 2.9 for a discussion of the error function.

2.8.7. Log-Normal Distribution. In Section 2.8.6, we have introduced
the error function as the CDF of the Gaussian PDF (Eq. 2.2):

1 xr
erf(;n)u70_ = \/m/ e_(z_#)2/202d$'

If X ~N(p,0%) and Y = eX, then
P(Y <y) =P(eX <y)=P(X < logy),
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which leads to the CDF":

logy 1
—o  V2mo?

This is called the log normal distribution (Y ~ log-normal). You can check,
using the Leibniz formula (see Section 12.3) for differentiation, that the PDF
of the log-normal distribution is:

1 —(log(w)-w?2/20%

1
P o v

(2.3) PY <y) = e~ (F=m?/20% qp — erf(log ¥) u.0-

2.9. Tabulated Values of Error Function

It is important to be able to use tabulated values of the error function. Let
X ~ N(u,0?). Then,

¢M,U(1U) = erf(x)uva = P(X < I‘) — \/21[-7/ 67(£,H)2/(202)d£

let (=(¢—p)/0,d¢=d¢/o

1 (z=p)fo T —
= PRy = a
V27 /_oo ‘ ¢ < o ) ’

where ®(-) denotes the normalized error function:

() = «12? / e e

The latter is the CDF of the standard normal distribution, N'(0,1). z is
known as the z-score:

T —p
2.4 = .
(2.4) =2
As an example, Eq. (2.3) can be expressed in this notation as:
1 _
erf(l()g y)ma =0 <Ogy’u> .

(2

You should beware that there exist other conventions for the error function.
For example, MATLAB and EXCEL softwares define the error function as:

(2.5) erf(x) = \/27? /Ox e .

This is related to the normal CDF according to:

Ppo(r) = erf(z),, = @ (x ; ”) - % <1 + erf (i;g)) .
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This expression can be used to calculate erf(z), , using data from tables,
where p is the mean of the population and o is the standard deviation of the
population. First, we form the “z-score” (Eq. 2.4). Then we use tabulated
values of the error function for this particular value of z.

For example, suppose that a manufacturer produces electrical resistors whose
nominal value is (100+2) Q, where 2 Q is the standard deviation (both could
be estimated, for example, using sample mean and sample variance). As-
suming that the distribution of the resistance X is Gaussian (i.e. X ~
N(100,22)), what is the probability that choosing a resistor at random will
yield a resistance of 95 €2 or less? We want to show that

P(X <95 Q) = Erf(95)100,2 =~ 0.0062.
Method 1 uses MATLAB:

>> normcdf (95,100,2)
ans =

0.0062

Method 2 uses tabulated values of ®(z): The z-score is:
x—p 95—-100

o 2 N
which is negative. Unfortunately, tables of error function do not list negative
z values. However, notice that negative z values can be obtained from
positive ones:

Z =

—2.5,

(B(—2) =1-B().]

Here, for positive z = 2.5 the value ®(2.5) is 0.993790. Taking 1 — ®(2.5)
gives 0.00621, the result we sought. Most books on statistics will have such
a table. Tables can also be generated in MATLAB by typing:

normcdf (1linspace(0,3,50)’,0,1)

The results {(z, ®(z))}, x € [0,3] are shown in Table 2.1.

2.10. The z-score

Let’s view the z-score as a random variable:

Z(w) = X(w) —p

where p = E[X], 0 = Jvar(X) and Z ~ N(0,1). The statement that
Z ~ N(0,1) follows automatically when X is normal with mean p and
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z P(z) T P(z) T P(x) z P(x) T P(z) T D (x)

0 0.5000 0.5056 0.6934 1.0112 0.8440 1.5169 0.9353 2.0225 0.9784 2.5281 0.9943
0.0337 0.5134 0.5393 0.7052 1.0449 0.8520 1.5506 0.9395 2.0562 0.9801 2.5618 0.9948
0.0674 0.5269 0.5730 0.7167 1.0787 0.8596 1.5843 0.9434 2.0899 0.9817 2.5955 0.9953
0.1011  0.5403 0.6067 0.7280 1.1124 0.8670 1.6180 0.9472 2.1236 0.9831 2.6292 0.9957
0.1348 0.5536 0.6404 0.7391 1.1461 0.8741 1.6517 0.9507 2.1573 0.9845 2.6629 0.9961
0.1685 0.5669 0.6742 0.7499 1.1798 0.8810 1.6854 0.9540 2.1910 0.9858 2.6966 0.9965
0.2022 0.5801 0.7079 0.7605 1.2135 0.8875 1.7191 0.9572 2.2247 0.9869 2.7303 0.9968
0.2360 0.5933 0.7416 0.7708 1.2472 0.8938 1.7528 0.9602 2.2584 0.9880 2.7640 0.9971
0.2697 0.6063 0.7753 0.7809 1.2809 0.8999 1.7865 0.9630 2.2921 0.9891 2.7978 0.9974
0.3034 0.6192 0.8090 0.7907 1.3146 0.9057 1.8202 0.9656 2.3258 0.9900 2.8315 0.9977
0.3371 0.6320 0.8427 0.8003 1.3483 0.9112 1.8539 0.9681 2.3596 0.9909 2.8652 0.9979
0.3708 0.6446 0.8764 0.8096 1.3820 0.9165 1.8876 0.9705 2.3933 0.9917 2.8989 0.9981
0.4045 0.6571 0.9101 0.8186 1.4157 0.9216 1.9213 0.9727 2.4270 0.9924 2.9326 0.9983
0.4382 0.6694 0.9438 0.8274 1.4494 0.9264 1.9551 0.9747 2.4607 0.9931 2.9663 0.9985
0.4719 0.6815 0.9775 0.8358 1.4831 0.9310 1.9888 0.9766 2.4944 0.9937 3.0000 0.9987

Table 2.1. Numerical values of the error function ®(z) =

\/% fjoo e*$2/2dm :

p(x)

Fraction of data expected to
lie within one standard
deviation of the mean

<+—FWHM = 2,/2log2c
~2355¢0

Figure 2.3. Confidence limits. The Gaussian distribution has a full
width at half-maximum of approximately 2.3550.

variance o2. In that case,

(26) P(X <2)=POoZ+p<z)=PzZ<Z_F

o
1 (z—p)fo 7 —

= Clqr=—9(TH
V2T /Oo © ¢ o

This is result identical to the one in the previous section, but its derivation
did not require us to change variables of integration. Using the probability
function P(-) can sometimes save you a step.

2.11. Confidence Limits and Error Bars

Recall the Gaussian probability density which has a bell shape centered on
E[X] = px and full width at half-maximum =~ 2.3550 (Fig. 2.3). The area
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under the curve bounded by the interval x € [ux — o, ux + o] is given by:

1 HXFO (e-nx)?
Noro e 22 dax=erf(ux +0)uy,o —erf(ux —0)uy.o ~ 0.683
wo nx—o
where
f() ! L/m Ry
erf(z), s = —— e 202 dux.
T Vore? )

About 2/3 of the total area under the curve is within +o of the mean. Recall
that:
(value of z) = xpest + Iz

where we often take 6z = o. This choice for dx corresponds to the “68% con-
fidence level”. This means that we are confident, at the 68% level, that were
we to take another measurement, the value would lie within one standard
deviation of the mean. There are other possible conventions for choosing
0x. Common choices for dx are:

+0 — 68% level
+20 —  95% level
+30 — 99.7% level

2.11.1. Example: From CDF to PDF. It is important to be able to
convert from PDF to CDF and vice versa. Suppose that we have a CDF:

@1 d
(2.7) P(Y < a) :/ -
—oo ™ (1497
To get the PDF from this CDF we use the formula
dP(Y < a)
e
The result is:
() = 1 1

(We renamed a as y.) The differentiation is always with respect to the upper

bound of the integral. Another way to look at it is to write F'(z) = P(X < z)

and dF dF(a)
dix) dia = px(a).

Inspection of the Leibniz formula (see Section 12.3) for differentiation shows

that the differentiation step is completely trivial and amounts to simply

identifying the integrand. This is consistent with the definition of CDF:

=px(z) or

a

(2.8) MY<@=/ Py (y)dy.

— 00
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2.12. Calculating Probabilities: Single Variable

Probabilities of random events of the type {a < X < b} are calculated by
integrating the PDF from a to b:

Pla< X <b) = /bp(x)dx.

More generally, we deal with random events, which are statements of the
type {X € A} where A is a set of points. The quantity P(X € A) is a
number between 0 and 1, which gives the probability that the rv X will take
values in the set A:
P(X € A) :/ p(z)dz,
{z|zcA}

where {z|r € A} is the set of points x that belong to the set A. The integral
is a Riemann summation over the set of points {z|r € A} on the real line.
This notation is useful because we can transform the statement {x € A} into
any equivalent statement, including one that involves a change of variables.
For example, the two following statements are equivalent:

{X < a} = {log(X) < log(a)}.
This is useful if another rv Y is defined as Y = log(X). In that case,
evaluating the probability of {Y < b}, b = log(a), gives the same numerical
result as evaluating the probability of {X < a}.

2.12.1. Average of f(X). The average (or mean, or expectation value) of
a function f of a rv X is defined as:

Bl = [ 7 f@)p(a)de.

2.13. Statistical Moments, Deviation and Dispersion

2.13.1. Moments: Mean, Variance, Skewness, Kurtosis. Let X be
arv. Take f(x) = 2™ in the above formula. This gives the n-th moment of
X: o
E[X™] E/ p(x)z"dz.
—00
The case n = 1 (first moment) is called the mathematical expectation or
mean value of X:

o0

E[X] = / xp(z)da. “mathematical expectation”
—0o0

We assumed that X takes values in the range (—oo,00). When X takes

values in a set X the limits of integration in all our integrals must be changed
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accordingly:

We shall often write as shorthand:

As we have seen in the previous lecture, the variance of X is defined as:

7= [ pla)le - ux)ds,

—00
which also equals 0 = E[X?]— 3. Thus, the variance is the second moment
of X minus the square of the average of X. Variance is also known as the
second central moment of X.

The n-th central moment of X is defined as:
o

BIX — " = [ pla)(o - ux)"da.

—00
Why are moments important? Moments describe the probability distribu-
tion. There is a theorem of mathematics that says if we know the moments
of all orders, we can reconstruct the entire distribution function. You al-
ready know how to obtain the sample mean and variance. The mean is just
the center of mass of the distribution whereas the variance is related to its
width (about the mean).

Also of interest are the skewness (3rd central moment)

E[X — ux]? E[X — ux]?
[E(X — px)?]3/ o
and the kurtosis (4th central moment):
E[X — ux]' _ EIX — jux]?

[E(X — px)?]? ot
The skewness measures the asymmetry of the distribution about its mean
whereas the kurtosis is often used to assess by how much a distribution
deviates from the bell-shape. For example, if a distribution looks like a bell
shape but has much longer tails, the kurtosis will reflect this.

Kurt[X] =

2.13.2. Median, Percentile. The median of a rv X is the value of x5
such that

50 1

P(X > x50) = P(X < x50) = / p(z)dx = 7

—0o0
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The median is a special case of percentile. The 10-th percentile of X is the

value of z1g such that:
x10

P(X <z9) = / p(z)dx = 0.10.

—00

The n-th percentile of X is the value z, such that:

Tn

P(X <z, = /_ p(z)dx = 100"

2.13.3. Mode. The mode is the value that appears most often in a set of
data values. If X is a discrete rv, the mode is the value that is most likely
to be sampled. For example, in a sample {1,1,6,7,5,9,10,1} the mode is
1. In a sample {1,1,6,5,7,7} there are two modes: 1 and 7. A distribution
with more than one mode is called multimodal. The most extreme case of
a multimodal distribution occurs for uniform distributions, where all values
occur equally often. This definition can be adapted for continuous rv by
discretizing the PDF into a histogram and finding the value(s) of x for
which the histogram is highest.

Another definition of mode for continuous distribution is the set of local
maxima. When the PDF of a continuous distribution has multiple local
maxima those are called the modes of the distribution (any peak is a mode).
It may be tempting to define the mode of a PDF p(x) as the set of points x
for which dp(x)/dz = 0; however, this method does not always work. There
are shapes of PDFs that have a mode, but at which the derivative of the
PDF is not zero. The Laplace distribution being an obvious example:

p(z) = %beXp <—’x;”‘>-

The mode is p but the derivative at u does not exist since the derivative
of |x| does not exist at + = 0. We note that a continuous rv’s mode is
not the value of X most likely to occur, as was the case for discrete rv.
Furthermore, for some densities, even when the derivative is 0, it doesn’t
imply there’s a mode there. Consider the beta density as an example, where
setting p'(z) = 0 will find a local minimum rather than a maximum.

2.13.4. Average Absolute Deviation (AAD). We have seen that the
center of a distribution can be quantified by the mathematical expectation
(mean), the mode and the median. There are likewise many possible de-
scriptors of the dispersion of a rv. The variance is one example. Another
example is the average absolute deviation (AAD). AAD of a data set is the
average of the absolute deviations from a central point. The central point
can be a mean, median, mode or any other point of reference. The two most
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common AADs are the mean absolute deviation and the median absolute
deviation (MAD).

Let X be a rv. The mean absolute deviation of a random sample {z; =
X(wi) iy of X is

1 n
MAD(1,...2p) = — > fa —m(X)],
=1

where m(X) is the reference value (typically, the mean or median). This
arithmetic average provides an estimate of the expectation value E|X —
m(X)| given a random sample. The median absolute deviation is defined
similarly, except that we compute the median of | X — m(X)| instead of its
mean.

More generally, a dispersion can be defined by

1 n
Dp(xla”'vxn): S/E‘X_m(XNp% X nzllxl_m(X)‘p7

where p = 0,1,2,...,00 and {z1,...,z,} is a random sample of X. For
p = oo we get the maximum absolute deviation. For p = 1 we get the
average absolute deviation. For p = 2 we get the mean squared error.

2.13.5. Remark: (f(X)) is NOT the Same as f((X)).
1

2.13.5.1. Ezample 1: Suppose that the kinetic energy, K(v) = imUQ, of an
object of mass m is to be calculated using experimentally measured values
of the velocity v. Thus, v is a rv. Since v is a random variable, K (v) is also a
random variable. We may denote it as V. You determine from experiments
that the velocities, V, are Gaussian-distributed around 100 m/s, with a
standard deviation of 1 m/s, i.e. p(v) = \/%e_(”_woyﬂ. What is the

average kinetic energy, E[K(V)]? You expect that E[K (V)] should be close
to K(100) = 1m(100)?. However, the exact value of E[K (V)] will depend
on the distribution p(v). We need to calculate:
*1 1 2
E[K(V)] = —mo? ——e~ 10072,
R

—00

m < 9 —(v—100)2/2 m 4
= vie dv =~ —1.0001 - 10°.
2421 /_OO 2

So fairly close to K(100) but slightly higher.

2.13.5.2. Ezxample 2: Suppose that f(6) = cos(f) and p(#) = 1 for 6 €

[—3,3] and p = 0 elsewhere (uniform distribution). Denote the random

variable as ©. Using p(f) you can easily check that © = f_%% 0df = 0. The
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average of cos(©) is:

. 1/2
cos(©) = / cos(6)df ~ 0.9589.
~1/2

Note: it is not equal to 1 even though the average of © is 0.

2.13.5.3. Ezample 3: In physics and chemistry, the notations (r) and 7 are
used interchangeably to denote the mathematical expectation. Consider
the dipole-dipole interaction between two electric dipoles. The energy of
interaction depends on 1/r®, where r is the distance separating the two
point dipoles. It is easy to show that in general, <r%> #* ﬁ r is a rv due
to molecular diffusion. It has an average value 7 and deviation dr:

r=T7+dr,

where T is deterministic and 7 is random with zero mean. The average of
1/r3 is Taylor-expanded about the mean 7:

(8)~ (i)~ (3) () () s

The first term is 1/72 since 7 is deterministic. In the second term, %4 can

come out of the angle bracket because it is a deterministic quantity. Similarly
for ;—g in the third term. Thus,

1 1 3 12
—VN=_—__ =5 5 2 o(ls 3
<7«3> <’l“>3 <’I">4< T’> + <7“>5 <( ’I“) >+ (| T“ )
and you can see that <%3> is in general different from —<T1>3. Since (0r) =0

we have:5

<r13> = <r1)3 + E((57")2> + O(|6r]?).

(r)°

extra terms (nonzero)

We sometimes see in the literature % in lieu of <r%> This is technically
incorrect. However, for small values of (|dr|)/(r), it is a good approximation.

2.13.6. Jensen’s Inequality. A topic related to the previous section is
Jensen’s inequality. Let ¢(x) be a convex function, i.e.

otz + (1 —t)xe) < te(xr) + (1 —t)p(x9), 1 < x2, te€][0,1]
This can be generalized for Ay +---+ A, =1, A; > 0 as:

o(Az1 + Aoza + -+ M) < Ao(x1) + Aep(z2) + -+ 4+ M),

for any z1,...,x,. Let X be a rv. Then,

[0(E[X]) < E[p(X)]]

6For our definition r = 7 + 6r to hold, we need (6ry = 0.
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Proof:
2m

go(E[Xn:w(/olxp(x)dw)— g | 3227002 7002

=0
27’1/

1
< Jim Y2 2 2) = | etan@paz = Elpx))

As an example apphcatlon of this inequality we have:
(E[IX — pux])® < EIIX — x| = var(X).
Taking the square root of both sides:
E[IX — pix|] < \/oar(X).

We conclude that the mean absolute deviation from the mean is less than
or equal to the standard deviation.

2.13.7. Remark: Discrete Random Variables as Special Case. Sup-
pose that we roll a die and a rv X (i.e. value of the top face of die) takes
values in a discrete set, such as X = {1,2,3,4,5,6}. It is said to be a discrete
rv because the set X is countable. In the general case X may take values
in a discrete set {x1,...,2n}. Let p; > 0 be the probability of observing
the value z;. Define the PDF in terms of Dirac delta functions and PMF

{pz‘}ij\ili
N
= Zpié(a: — x;)
i=1

Since the PDF is normalized, we must have:

[e's) N
/ d:c—/ Zpl xi)dx:Zpizl.
=1

—00

All of our previous definitions hold if we replace integrals by summations.
For example:

o w N N
px = E[X] = / z - p(x)de = / r Y pid(e—x)de =D pi;.
—00 —00 i=1 =1

var(x) = [ (o ppla)de = Y il — )

Similarly,
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Here, x; € X are the possible values X can take, whereas p; = P(X = x;)
are the corresponding probabilities.

2.14. Two (Continuous) Random Variables

If we are to compute the average of an expression that is a function of more
than one rv, we need to use the joint probability density pxy(x,y), which
is everywhere non-negative (pxy (z,y) > 0) and integrates to 1:

/ / pxy (7, y)dzdy = 1.

The joint PDF is obtained from the joint CDF analogously to the single-
variable case:

(2.9) pxy(z,y) =

2
0xdy
The average of a function g(X,Y’) would be:

E(g(X,Y)) Z/_OO /_Oo pxy (7,y)g(z,y)dzdy.

Given a joint probability density function, pxy (z,y), the marginal density
function for X is obtained by integrating over y:

P(X <z,Y <y).

pxte) = [ peviey

— 00

Similarly, the marginal density for Y is obtained by integrating over all x:

py(y) = /OO pxy (z,y)dz.

—0o0

Note: you can easily check that both marginals px(x) and py (y) are bona
fide densities, i.e. nonnegative and normalized to 1.

2.15. Statistical Independence

The marginal density is a useful concept if you are asked to check whether or
not two rv are statistically independent. Two rv X and Y are statistically
independent if the joint probability density is written as the product of
densities of each variable:

pxy(2,9) = px(2) Py ()|

where px (z) and py (y) are the marginal densities of X and Y, respectively.
They can be computed from pxy (z,y) by integrating.

There are at least two consequences of statistical independence that we can
immediately point out. First, one concerns expectation values. Consider
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the average of a function ¢(X,Y) of two rv X and Y-

E(9(X,Y)) = /oo /OO pxy(z,y)g(x,y)dzdy

= /Z /Z px ()py (y)g(z, y)dady.

If g factors as a product of a function of X times a function of Y, for example
9(X,Y) = XY then the expectation value of XY is equal to the product of
expectation values of X and that of Y

BxY) = [ h / " px(@)py (y)ay dady = / " px(@)rda- / " oy @udy
_ E(X) - E(Y).

Thus, the expectation value of a product of rv’s factorizes as a product of
expectation values for each rv:

[E(XY) = E(X) - E(Y).|

The second consequence pertains to the calculation of probabilities in gen-
eral, which also factors as a product. For example, the joint probability:

P(X € A,Y € B) :/ pxy (z,y)dzdy
{(z,y)|lz€A,ye B}

- / px (2)py (y)dzdy
{(z,y)|rcAycB}

= / px (x)dz - / Py (y)dy
{z|zeA} {ylyeB}
=P(X € A)-P(Y € B).

As a special case, take the intervals A = (—o0,z] and B = (—o0,y] and we
get the result that the CDFs also factorize:

P(X <2,V <y)=P(X <x)-PY <y)|

2.16. Calculating Probabilities: Two Variables

Probabilities of an event A are calculated by integrating the PDF over the

relevant set of points which make the event A true. That is, for a single rv
X:

(2.10) P(X € A) = /{ @
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where {z|x € A} denotes the set of all points x such that z € A. For
example, if A = [a,b] (interval), we have:

Pla< X <b) = /bpx(x)dac.

If A is the union of two disjoint (non-overlapping) intervals [a,b] and [c, d],
ie. A= [a,b]U][c,d], then the probability of X taking a value in A is the
sum of two integrals:

b d
P(X € A) :/ px(x)dx—l—/ px (z)dx.

For two or more rv’s we integrate the joint probability density over all such
points (x,y) that meet the sought criterion:

P(X €AY € B) = / / pxy (z,y)dzdy,
{(z,y)|r€A,yeB}

where {(z,y)|x € A,y € B} denotes the set of all points (x,y) such that
r€Aandy € B.

In general, for a given set of points over which the probability needs to
be calculated, we must translate what this means in terms of the upper
and lower limits of integration. Let us look at some specific examples. Let
(X,Y) be a 2-dimensional (bivariate) rv with joint density pxy (x,y). The
probability that the vector (X,Y’) will lie in the first quadrant of the 2D
plane is:

P(X >0,Y >0) = // pxy (z,y)dzdy
{(z,y)|z>0,y>0}

= / / pxy (z,y)dzdy.
0 0

Suppose again that we have a random experiment involving two rv X and Y.
The probability that the outcome will lie in one of the first two quadrants:

P(X > 0) = P(X >0.Y € (0,00 = [ | pxy (2, y)dudy
{(z,y)|z>0}

[ ([ pxremas) an

2.16.1. Product of X and Y. Let X and Y be independent rv’s and let
Z = XY. The PDF of Z is:

pz(2) = /°° px(x)py(z/:n)%dx.

oo kd
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Proof:
P(Z<z2)=P(XY <2)=P(XY <2z, X>0)+PXY <z X <0)
=PY <z/X, X >0)+PY >2z/X,X <0)

:/Ooopx(x) /_pry(y)dyd:c—i—/_iopx(ﬁ) /ZZpy(y)dydfv

Differentiating with respect to z, we get the PDF:
o0
1

0o 0
/Opx(x)py(z/x);dm—/ pX(w)py(z/x)idx:/ px (x)py (z/x)—dz.

oo o |z

See also Problem 26.

2.16.2. Sum of X and Y. Here is another application of the Leibniz
formula (see Section 12.3). Suppose we have two rv’s X, Y with joint density
pxy(z,y). What is the density of their sum, X + Y7 Since the density is
the derivative of the CDF:

d d
Px+y(2) = —P(X +Y <2) :/ pxy (x,y)dzdy
dz Az Ji(@y)lo+y<z}

d

- dzd
a Jy pxy (x,y)dzdy

zy)lr<z—y}

x 9 2—y
2/ 5 </ pXY(fL’,y)dl’> dy

=/ pxy (2 —y,y)dy.

—o0
This is as far as we can go without further information about X,Y". If X and
Y are independent, the joint PDF factorizes into a product, pxy(z —y,y) =
px(z —y) - py(y), and the last operation becomes a convolution:

Pxiy(2) = /oo px(z —y) - py(y)dy.

—00

Thus, the PDF of Z = X + Y is the convolution of the PDFs of X and Y,
whenever X and Y are statistically independent.

2.17. Several Variables

Suppose we have several rv’s X1, Xo,...,X,. Probabilistic expressions in-
volving these rv’s can be evaluated if we know the joint distribution:

b1 bn,
IP(XI <by,..., Xy < bn) = / dxy-- / dxan17-~-7Xn($17 s 7xn)7

where px,.. x,(z1,...,2,) is the joint PDF of Xi,..., X, and P(X; <
bi,..., X, < by) is the joint CDF.
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We can also ask about the probability of the following event:
{X1 € By,X2 € Byg,...,X,, € Bp}.
Then, using the joint PDF:

P{XleBl,...,XneBn}: dxl/ diL'anI _____ X"(:Jcl,...,:cn).
B1 B

As in the single-variable case, we can write probabilities over intervals in
terms of the CDFs. For example, let X, Y be two rv’s and let By = (a1, a2)
and BQ = (bl, bg). Then

]P)(XeBl,YEB2) a1<X<a2,b1<Y<b2)

b
/ dx/ dy pxy (2, 7)
by

0 3}
—/a1 dx(ax (X <z, Y<b2)—ax]P’(X<a:Y<b1)>

:P(X < QQ,Y < bg) — P(X < al,Y < bz)
—P(X <a2,Y <b)+P(X <a,Y <b).

We have made use of Eq. (2.9), i.e
2
= P(X Y
pXY(xay) axay ( <z, <y)7

and invoked the fundamental theorem of calculus (twice).

2.18. Additional Properties of rv’s

2.18.1. Linearity of the Expectation Value. Let X and Y be rv’s and
a, b constants. From the linearity of the expectation value operator:

ElaX +bY] = / / (azx 4 by)pxy (z,y)dzdy
o0 v —00

=a / / rpxy (z,y)dedy + b / / ypxy (z,y)dzdy

=a /oo zpx (z)dz + b/oo ypy (y)dy
=aE[X] + bE[Y],

where pxy (x,y) is the joint probability density of  and y.” px(x) is the
marginal density of X. Similarly for py (y). This can be generalized to any

"Note: while the exact form of pxy (z,y) may be unknown, its knowledge was not required to
demonstrate linearity.
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number of rv’s, e.g. for X = X7 + X5+ --- + X, it also follows that
|E[X] = E[X1] + E[Xy] + - -- + E[X,,]. |

It is also trivial to show that the same result holds in the case of discrete
rv’s.

2.18.2. Scaling Property of the Variance. From the definition of the
variance of a rv X (let ux = E[X]),

var(X) = E[(X — pux)*) = E[X?] - 2E[Xpx] + (ux)* = E[X?] — pk

we deduce that

var(aX) = a*var(X).

2.18.3. Variance of a Product of Independent Random Variables.
Let v be the velocity of a particle and ¢ the time variable. If both are
statistically independent rv’s, the mean displacement factors as a product
of means, E[vt] = E[v] - E[t], whereas its variance is

var(vt) =E[(vt)?] — (E[vt])?
E[v*t*] — (E[v])*(E[t])®
=E[v*] - E[t*] — (E[v])*(E[t])*.

Thus, by statistically independence, we can express the mean and variance
of the displacement x = vt in terms of the mean and variance of v and ¢.

2.18.4. Variance Between Pairs of Random Variables: The Co-
variance. The covariance of X and Y is defined as (let ux = E[X] and
iy = E[Y)):

[ cov(X,Y) = E[(X — px)(Y — piy)] = E[XY] — i - oy .|

We note that the covariance of two independent rv’s is zero since E[XY] =
E[X]-E[Y] = px - py-

2.18.5. Variance of the Sum of Two Random Variables. Using the
covariance, we may write the variance of the sum X + Y as

var(X +Y) =E[(X +Y — E[X + Y])?]
E[(X — px)?] + E[(Y — )] + 2E[(X — i) (Y — poy)]
(2.11) =var(X) + var(Y) + 2cov(X,Y).

If X and Y are statistically independent, cov(X,Y) =0, and var(X +Y) =
var(X) +var(Y), i.e. the error in X + Y is related to the errors in X and
Y by adding the variances.
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2.18.6. Corollary: Adding Experimental Errors. Suppose X and Y
are independent rv’s with standard deviations ox and oy, respectively. Let
Z = X 4+Y. Then the variances add quadratically:

o7 = \/ag(—i—a%,.

This formula is often used in the analysis of laboratory experimental results.
It is only valid in the case where X and Y are independent. How can you
verify of X and Y are statistically independent?

2.18.7. Sample Covariance. In Formula (2.11) the covariance must be
added to get the error in the sum of two rv’s, X + Y. The covariance is
zero if the two rv’s are statistically independent. It is difficult to check
for independence. However, it is easy to check for statistical correlation
by computing the sample covariance. Suppose that the following pairs are
measured experimentally {(x;,y;)}7_ ;. This random sample is described by
the empirical joint PDF:

pxy (w,y) Z(M—wz (v — vi).

Substitution into the definition of covariance:
cov(X,Y) =ZE[(X — pux)(Y — py)]

-/ / (o — )y — lea(m—xi)cs(y—y»dxdy

*Z Yi — py)

where px and py are the means of X and Y, respectively. Since we have
experimental data at our disposal, we take them to be sample means. This is
normally adjusted by replacing 1/n by 1/(n — 1) on the basis that a degree
of freedom has been lost due to our use of experimental data to obtain
statistical estimators for the means (fix and fiy):

Z — fiy).

This formula provides us with an explicit prescription for computing the
covariance of X and Y from experimental data. One may as well directly
use Formula (2.11), since it enables us to determine the amount of covariance
between them, and add its contribution to the error estimate, if needed.

covp—1(X,Y)
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2.18.8. Correlation Coefficient. A concept that is related to the covari-
ance is the correlation coefficient:

cov(X,Y)

p(XaY): )
ox Oy

where ox = \/var(X) and oy = y/var(Y). p takes values in the range —1 <

p(X,Y) < 1. The correlation coefficient is a measure of linear dependence
between X and Y. It is more useful than the covariance in the sense that
p is a dimensionless quantity which is normalized to the magnitude of X
and Y. A value of p = 1 means that X and Y are correlated. A value of
p = —1 means they are anti-correlated. A value of p = 0 means they are
uncorrelated. Please note that if X and Y are independent then p = 0.
However, the converse is not true. That is, p = 0 does not always imply
that X and Y are independent.

The reader can easily check® that if Y = aX + b (a,b constants) we have
cov(X,Y) = a-var(X) and

1 a>0

-1 a<0

X,Y)= L =
p(X,Y) al {
Thus, the correlation coefficient is a measure of linear dependence. In this
example, p=1if Y =aX +band a > 0 (X and Y are correlated), whereas
p=—1lifa <0 (X and Y are anti-correlated). This result is independent of
the magnitude of a; it only depends on its sign. For example, Y = 0.00001-X
and Y = 10000 - X both give p = 1.

Q: Can you find examples of rv’s X and Y where p is not equal to —1, 0 or 1
but some intermediate value (say 0.5)7 What is the meaning of a correlation
coefficient that is not equal to 0 or 17

2.18.9. Linear Correlation. Suppose that two random variables X and
Y depend on each other linearly:

Y =a+bX.

The correlation coefficient becomes:
cov(X,Y cov(X,a+ bX b-cov(X, X b-ox
Sy CUEY)  eonf ) _ b-cou(X, X)
0x 0y ox 0y 0x ' 0y oy
Therefore, the slope b is related to the value of the correlation coefficient (as
well as the variances of X and Y'):

b=p(X, V)X,
ox

8Start by the numerator: cov(X,Y) = cov(X,aX +b) = E[(X — pux)(aX +b— pax+s)], but since
HaX+b = aitx + b, this reduces to cov(X,aX +b) = E[(X — ux)(aX —apx)] = aE[(X —px)?] =
a-var(X).
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2.18.10. Sample Correlation Coefficient. Let X,Y be rv’s with mean
ux and py, respectively. Let x1, o, ..., z, be measurements of X. Similarly
for Y. The correlation coefficient can be estimated from experimental data,
{(xi,yi)}I"1, using the sample correlation coefficient:

A Yy (i — ix) - (i — dy)
XYy = - ~ - - - - ,
Vi S (= )2\ S (i — v )?

where n is the number of data points and 1 x is the sample mean

1 n
ﬂX'::4’§ Ly,
n -

=1

and similarly for fiy. They are uncorrelated if 7xy = 0. You can also check
for possible correlation between X and Y using a scatter plot. This is done
by plotting the set of ordered pairs {(x;,y;)} as points on the same graph.

2.18.11. Uncorrelated but not Independent. Let X and Y be rv’s
related by Y = X2. Let pux be the mean of X, puy2 its second moment, etc.
Clearly, these rv’s are not independent of each other. However,

cov(X,Y) = cov(X, X?) = E[(X — ux)(X* — pix2)] = pixs — pxpixe-
If the distribution of X is such that puyxs = pxpy2 (for example, if the
mean and skewness are zero, which is the case for a zero-mean normal dis-
tribution), then cov(X,Y) = 0 and the rv’s X and Y are uncorrelated even
though they are clearly dependent on each other.
This can easily be illustrated in MATLAB. Let’s create two plots. One for

the equation Y = X + n (linear case), where X and 7 are independent
standard normal rv’s:

1 X=randn([1 10000]);
2 Y=X+randn ([1l 1000017);

and one for Y = X2 + 7 (quadratic case), where X and 7 are independent
standard normal rv’s.

1 X=randn([1 10000]);
2 Y=X."2+randn([1 100001);

You can think of the linear case as in the familiar form Y = a + bX, but for
the special case of a = 0, b = 1, and noise added (7). Same for the quadratic
equation, it has noise added to it, as a way to simulate the outcome of a
random experiment.
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Figure 2.4. Correlations between rv’s (X,Y).

In each case, a plot is generated by typing figure;plot (X,Y,"'."') (see
Fig. 2.4). The sample correlation coefficient is obtained using the corrcoef
command, e.g. for the linear case

>> corrcoef (X,Y)

ans

1.0000 0.7025
0.7025 1.0000

whereas for the quadratic case we get:

>> corrcoef (X,Y)
ans =

1.0000 -0.0089
-0.0089 1.0000

The diagonal elements are 1 (since X is perfectly correlated to X, as is Y
correlated to Y'). The off-diagonal elements are the correlation coefficients
of X and Y. In the linear case, we have strong (=~ 0.7) correlation between
X and Y. We would expect 1 without the additive noise, n (you can check
this by reducing the amplitude of the additive noise). In the quadratic case,
the correlation coefficient is nearly 0, as it should because the Gaussian rv
X has zero skewness and zero mean.

2.19. Calculating Probabilities

If you are asked to compute the probability of a random event involving
X, your first reflex should be to write down an integral of the PDF, px(x),
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over the set of points that represent this event. Recall the formula (2.12)
introduced in the previous lecture:

(2.12) P(X € A) :/{ | eA}px(ac)dm,

In two dimensions you do the same thing except that the joint PDF is to be
used, e.g.

Pla< X <bc<Y <d) _/ pxy (z,y)dady

{(z,y)|a<z<b,c<y<d}

/ / pxy (z,y)dzdy.

This is for the specific case where the random even is {a < X < b,c <Y <
d}. For a general random event, we integrate over the set of points (x,y)
such that the event is true. It is not possible to enumerate all possible events
we may encounter. Some examples are:

{XeAYeB}, {X/Y<a}, {X+Y >b},
{a < cos(X) -log(Y) < b}, etc.

In each case, we integrate the joint PDF of X and Y, pxy(z,y), over the
set of points (z,y) that obey the conditions specified in the event.

To summarize the procedure involved when calculating probabilities, there
are two main steps. The first step is to write down the right hand side, but
keeping in mind that the random event will need to be expressed in a form
suitable for integration. The second step involves writing the integral in a
form that can be solved. This sometimes involves a change of variables, if
the integration region needs to be simplified.

2.19.1. Single-Variable Case. In the first step, we often invoke some
algebraic manipulations in order to transform the logical statement X € A
into a form that allows us to apply the information known to us. Let use
revisit the example already covered in Sections 2.9 and 2.8.7. Let Y = X
and X ~ AN (u,0?). You are asked to find the distribution of Y given the
distribution X (a normal law in the present case). At first sight, you may
think that P(Y < y) cannot be easily calculated because you are not given
the distribution of Y. However, the distribution of X is provided. So your
goal is to transform the statement Y < y into one that involves X instead. In
Section 2.8.7 we worked out the case of the log-normal distribution, ¥ = eX
where X ~ N (u,0?).

2.19.2. Two Variables Case. Another example is Y = U/V where U
and V are independent standard normal variables, i.e U ~ AN(0,1) and
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V ~ N(0,1). The CDF of Y is:

P(Y <a)=PU/V <a) = // pu (u)py (v)dudv
{(u)|u/v<a}

Effecting a change of variables Y = U/V, Z =V (inverse: V =2, U = ZY)
under the integral sign and using the Jacobian of the transformation:

0 d
dudv = (u,0) dydz, where (u,v) = R I 2z
d(y, 2) d(y, 2) Oyv  0,v 0 1
where ||-|| denotes “matrix determinant”, whereas |-| denotes absolute value.
Then,
P(Y < a) // pu(yz)pv(2)|z|dzdy

{(y,2)ly<a}

o0 a
_ 1 {/ eéyQZQeézzlzdy} dz
2T oo

Using the change of variables w = 22 dw = zdz and replacing f dz by
2 fo dz (this replacement is allowed since its integrand is pos1t1ve).

1 a o
P(Y <a)= / {/ e_ézg(lﬂﬂ)zdz} dy
T J—c0 0
:1/“ /”€_w<1+y2>dw dy:/“ 1 _dy
T J-oo Lo oo ™ (1+9?)

This is known as the Lorentzian (or Cauchy) distribution. The PDF of the
Lorentzian distribution is obtained by differentiating with respect to a:

11
py(y) = ;m-

In another example we can ask what is the probability that a rv X takes on
exactly the value z:

r+dz
P(X =z) = lim P(z < X <a+4dz) = lim p(z)dz = dlimop(x)dx =0
z—

dx—0 dz—0 J,

provided that p(z) is continuous. If p(z) is discontinuous at x, this result is
not necessarily zero. In this course, we will not be dealing with discontinuous
probability functions.

2.20. Probability of Mutually Exclusive Random Events

If random events Ay, A and A,, are disjoint sets, i.e. A; N A; =0, then the
probability of any of the A; events is a sum of probabilities:

(2.13) [P(A1UAs U UAy) =P(A1) + P(Ay) + -+ + P(Ay). |
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Figure 2.5. Mutually exclusive random events A and B.

Figure 2.6. Events that are not mutually exclusive share common out-
comes (as represented here by the overlap region).

Such a set of random events is called mutually exclusive events. The “union”
AjUALU- - -UA, of random events is equivalent to a “logical OR” operation,
ie.

P(A1UA2U~-'UAn) :P(Al or Ay or ... or An>
Suppose that we measure the number of radioactive counts within a 1-second
time interval. When we make the statement “12 or fewer counts were ob-
served” (during a 1-second time interval),

12 or fewer counts = 1 count or 2 counts or ... or 12 counts.

In other words, let X be a rv that represents the # of counts (in the 1-second
time interval).

(X<12) ={X=1}U{X =2 U{X =3}U---U{X = 12}.

Decomposing the event {X < 12} as a union of mutually exclusive random
events, i.e. {X = 1} N{X = 2} = 0, etc., offers some advantages when
calculating the probabilities of events. It enables us to invoke formula (2.13).

Two mutually exclusive events A and B have no overlap can be represented
as shown in Fig. 2.5. What should we do if the random events are not
mutually exclusive? For simplicity, consider only 2 events, A and B. Mutual
exclusivity means that A N B = (). If the intersection is nonzero, then we
have the situation illustrated in the Venn diagram (Fig. 2.6).
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In this case, we should avoid overcounting by subtracting the intersection:

|P(AU B) = P(A) + P(B) — P(AN B).|

Let us look at the example of rolling a die. Let X be the numerical result of
the die roll (# appearing on the top face). Define two random events, A and
B, as follows: A ={X <3} and B = {X is odd}. It is helpful to decompose
these random events into a union of mutually exclusive “elementary events”:

A={X <3} ={X=11U{X =2} U{X =3},

and

B={Xisodd} ={X =1}U{X =3}U{X =5}.
The union of A and B is:

AUB={X =1} U{X =2} U{X =3} U{X =5}.
The intersection of A and B is:

ANB={X=1}U{X =3}.

If the die is unbiased, i.e. P(X = z;) = 1/6 for z; € {1,2,...,6}, then
P(AUB)=2/3,P(A) =1/2,P(B) =1/2 and P(AN B) = 1/3. This verifies
the formula P(AU B) = P(A) + P(B) — P(AN B) for this particular choice
of random events.

2.21. Discrete Random Variables

A discrete rv X takes values in a discrete set X = {z;}2,, where N is the
number of possible values X can take (cardinality of the set X') and x; € X
are the possible values. The word discrete refers to the “state space”. X,
which is countable (discrete) and in the present case, contains N elements
(N can also be infinite). Discrete rv’s can be described using the PDF
formed with Dirac delta functions:

N
px() =Y pidle—w), pi>0, » pi=1
i=1 %

In this section we explicitly state the main formulas pertaining to the prop-
erties of discrete rv’s by way of discrete sums and the “probability mass
function” or PMF. Either description is valid.

2.21.1. Properties of Discrete Random Variables. The rv is defined
by the probability distribution {p;} (also known as the “probability mass
function” or PMF), where p; > 0 for all <. The normalization condition is

N
sz‘ =1
i=1
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p;: probability that rv X takes the value ;.
N: can be finite or infinite; in any case, the {p;} must sum to 1.

We note that from the definition of p; as the probability that X takes the dis-
crete value x;, and the fact that the events {X = x;} are mutually exclusive
random events, it follows that

P(X <aj) =P({X = 21} U{X = 29} U--- U{X = z;})

J J
=) P{X=u})=) »
=1 =1

The mean value of X is

N
= sz%
i=1

The n-th moment of X is

N
=> paj.
i=1

The mean or mathematical expectation of f(X) is

N
= sz‘f(xi)-
=1

The variance of X is (let pxy = EX)
P Var(X) = E[X — ,uX sz

The variance is also equal to E[X?] — (ux)?. When calculating averages of
functions of rv’s, we proceed by replacing the rv X by its value z;, multi-
plying the expression by p; and summing over all ¢. For example,

E[exp(— sz exp(—z;),  E[g(X)] =) pig(w:).
i
This is analogous to the continuous case covered in the previous lecture
where [ p(z) replaces Y, p;:

Elexp(—X)] = / " p@)exp(-2)dr,  Elg(X)] = / " p(@)g(e)da.

—0o0 —0oQ
When we deal with two discrete rv’s X and Y, the joint probability can be
written
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where P(X = z; NY = y;) denotes the probability of X taking the value z;
and Y taking the value y;. The p;; are normalized to 1:

2_pij=1.
i’j
The average of a function g(X,Y) is:

Elg(X,Y)] =Y pijg(xi,y;)-
i

As before, if X and Y are statistically independent, the mean of XY equals
the product of the means of X and Y:

E[XY] =) ziyP(X =2:0Y =y;)
ij

= > wiP(X =) ) yP(Y = ;) = E[X] - E[Y],

and similarly, we have:
E[X"Y™| = E[X"]-E[Y™].
A consequence of this result is

Elf(X)g(Y)] = E[f(X)] - E[g(Y)],
because sufficiently nice functions f, g can be expanded as a power series,
enabling us to apply the result E[X"Y™] = E[X"] - E[Y"™] to each term of
the expansion.

2.21.2. Poisson Distribution. The Poisson distribution is a discrete prob-
ability distribution which is frequently used to describe counts of rare events.
The main assumptions are:

e The events counted are rare events.
e All events are statistically independent.

e Average count rate does not change over time.

The typical application of this distribution is radioactive counting (for ex-
ample, with a Geiger counter), where the average count 7 in a given time is
given by the formula:

m= AT
where A is average count rate and 7 is time interval. For example: A = 1.5

s~ 7 =10 s gives m = 15. 7 does not have to be an integer number.
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Figure 2.7. Poisson distribution (PMF) for two different parameter val-
ues.

2.21.2.1. Probability Mass Function. The probability distribution is com-

pletely described by a single parameter, 7,
—nzn
P(n;ﬁ):i, n=20,1,2,...
n!

In the usual interpretation, P(0;7) gives the probability of observing 0
counts in a time interval 7, P(1;7m) gives the probability of observing 1
count, etc. It is easy to check that this PMF is normalized to 1:

> X —nEn X =n

) — e n _ aN I _ _-mm_

ZP(n,n)—Z = Z = e =1,

n=0 n=0 n=0
since the Taylor expansion of exp(z) is > oo zF /k!. Figure 2.7 shows plots of
the Poisson distribution for 7 = 3 and 7 = 10. Notice that the distribution
looks more like a Gaussian at large 7.

These plots were generated in MATLAB using the commands:

U

Nbar=2;N=0:20; figure;plot (N, exp (-Nbar) = (Nbar. N) ./factorial (N),'o");
Nbar=5;N=0:20; figure;plot (N, exp (-Nbar) » (Nbar. N) ./factorial (N), 'o"'
Nbar=10;N=0:20; figure;plot (N, exp (-Nbar) * (Nbar. "N) ./factorial ( !

figure;ezplot ('exp (- ((x-10)"2)/(2%«10))"',[0,201);

)
) )
N),'o");

B W N =

Two more properties of the Poisson distribution which you can easily verify
are:

2

average of n = ZP(n;ﬁ)n =, var(n) = o =71 = A1

Thus, the mean and variance are both equal to m. The standard deviation,
o = /7, gives the error in the measurement. For the mean, the proof is

9This is in contrast to the Gaussian distribution, whose description requires two parameters: X
and o2.
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trivial and left as an exercise. For the variance, the proof is easy but requires
more steps.lo

2.21.2.2. Error Bars of a Measurement. If the experiment yields a mean
count of n, the best estimate of the error!! in this quantity is /n. We
report this measurement as

n+/n.

While it may seem that the error grows with n, the fractional uncertainty
actually decreases with n:

on _n 1

n n  n
i.e., larger n result in smaller fractional uncertainty.
2.21.2.3. Poisson Counts. This example was taken from the book by Hughes
& Hase and modified. A bridge cannot hold too many cars at once due to
the potential for structural damage. A particular bridge is designed to hold
less than 13 cars (safe level) per time interval (1 min.). In a random sample,
the total number of cars recorded crossing the bridge in 10 hours was 1980.

Q: What is the average number of cars crossing per minute and its error?
A\ = A8V — 330 cars/min.

10x60
\ v/1980
~ 10 x 60

Q: What is the probability that during a random one-minute interval 13 cars
will be observed crossing? A: 7 = A7 = 3.30, with n = 13

—3.33‘313
P(n = 13;3.3) = eT —33x107°

Q: What is the probability that the bridge will fail (due to too many cars
crossing)? A:

= 0.07 cars/min.

[P(13 or more cars) =1 — P(12 or fewer cars)
=1 — {P(0;3.3) + P(1;3.3) + - - - + P(12; 3.3)}
=4.2 x 107°.

During 1 minute of observation, this is the probability that the bridge will
fail.

105 proof can be found at: https://proofwiki.org/wiki/Variance_of Poisson Distribution
11Sometimes7 all we have is 1 count. While this may not be the mean count, it is all that we have.
The best we can do in this case is report n £ /n.
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2.21.2.4. Poisson Distribution in the Limit of Large Means. For large means,
the Poisson distribution converges to a Gaussian distribution:

e "n" 1 (r — px)?
~ exp | ——————
n! V2T x 20x

where:

n (discrete) — = (continuous)

n — px (variance, mean)

Vi — \/px (standard deviation)
The proof makes use of Stirling’s approximation
logn! ~ nlogn —n + O(logn),
and

[n — 7]

< 1.

These two conditions (Stirling approx. and 7 close to n) imply that our
proof is valid in the limit of large means. If the mean is not large, the
Stirling approximation cannot be used.

=exp{—7n — logn! + nlogn}
=exp{-n —nlogn+n+nlogn}
= exp{(n — ) + nlog(a/n)}

:mp%”@+nbgb+<n;n”}

seof oo {0

The first step was to invoke the Stirling’s approximation, log n! =~ nlogn—n.
The second step was to expand about mean (72) for large 7). Then we Taylor
expanded log(1 + z) ~ x — 22/2 + O(23). In the last step we have used the
approximation n & 7 near the mean for the denominator in the argument
of the exp.

1
2
accurate form of the Stirling’s formula:

n\”
n! ~ v2mn (—) ,
e

The prefactor

could have been recovered had we used the slightly more

and of course, followed by the application of @ < 1 to justify replacing
vV2mn by v/27n. See Problem 40.
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2.21.3. Statistical Independence (Discrete Case). The notion of sta-
tistical independence is the same as in the continuous case. Let X and Y be
two rv’s. Independence of X and Y means that the joint probability factors
as a product:

(2.14) pi)]{Y = p;X -p}/, for all 4, 5

where pXY is the joint PMF for X and Y. p¥X is a marginal PMF:
pY =30
J

Likewise, p}/ is also a marginal PMF:

Y _ XY
=D v
T

2.21.4. Example 1. Consider a random experiment that involves rolling
a die

X €{1,2,3,4,5,6}
and tossing a coin

Y e {H,T}.

You are asked to determine whether or not X is statistically independent
from Y. Intuitively, this should be the case (i.e., why would a coin toss
affect the outcome of rolling a die?).

For this random experiment, there are 12 possible “elementary” outcomes:

(X.Y) =(1, H), (X.Y) =(LT),
(X.Y) =(2,H), (X.Y) =(2.T),
(X.Y) =(3.H), (X.Y) =(3.T),
(X.Y) =(4, H), (X.Y) =(4,T),
(X.Y) =(5, 1), (X.Y) =(5.T),
(X,Y) =(6, H), (X,Y) =(6,T).

To get the joint PMF we must repeat this experiment many times and
record the results. Suppose that we repeat the experiment 10,000 times and
count the number of times each elementary outcome occurs. Let’s do this
in MATLAB:

>> X=randi([1 2], [1 10000]);
>> Y=randi([1 6],[1 10000]);

We then plot a 2D histogram (see Fig. 2.8):
>> figure; h=histogram2(X,Y)
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Figure 2.8. Bivariate histogram of the die & coin experiment.

Histogram2 with properties:

Data: [10000x2 double]
Values: [2x6 double]
NumBins: [2 6]
XBinEdges: [0.5000 1.5000 2.5000]
YBinEdges: [1x7 double]
BinWidth: [1 1]
Normalization: ’count’
FaceColor: ’auto’
EdgeColor: [0.1500 0.1500 0.1500]

The histogram is an approximation to the PMF. As you can see, this distri-
bution is uniform. The values used to plot the histogram are:

>> h.Values

818 816 807 827 870 831
861 847 824 837 811 851

Dividing by the number of experiments performed (10,000):
>> h.Values/10000
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X\Y heads tails sum
1/12 1/12 1/6
1/12 1/12 1/6
1/12 1/12 1/6
1/12 1/12 1/6
1/12 1/12 1/6
1/12 1/12 1/6
sum  1/2  1/2

O T W N+~

Table 2.2. Joint PDF for an experiment that involves rolling a die (X €
{1,2,3,4,5,6}) and tossing a coin (Y € {H,T}).

0.0818 0.0816 0.0807 0.0827 0.0870 0.0831
0.0861 0.0847 0.0824 0.0837 0.0811 0.0851

gives an approximation to the joint PMF. Each entry is approximately equal
to 1/12. A PMF with entries equal to 1/12 can be represented as a matrix
(see Table 2.2). The marginal PMFs for X and Y are obtained by summing
along rows and columns, respectively. You can check that for the data
shown in Table 2.2), Eq. (2.14) holds for all i,j. Therefore, X and Y are
statistically independent.

We also know that statistical independence implies the variables are uncor-
related. Let’s check this by computing the correlation coefficient:

>> corrcoef (X,Y)
ans =

1.0000 -0.0115
-0.0115 1.0000

The MATLAB command corrcoef computes the matrix of correlation coef-

. X, X XY
ficients, [Z((Y,X)) //))((YX))

correlated with X; same for ') whereas the off-diagonal elements should be
zero. Indeed, the off-diagonal elements are two orders of magnitude smaller
than 1, indicating the lack of correlation between X and Y.

. The diagonal elements should be 1 (since X is fully

A counter-example illustrating statistical dependence would be the joint
PMF shown in Table 2.3, which differs from Table 2.2 only in the second
row. Namely, when the result from rolling the die is 2, the coin toss always
yields “tails”. (Don’t try too hard to imagine how this can possibly happen
in the lab; it is perhaps easier to imagine that a magician is doing the
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X\Y heads tails sum
1/12 1/12 1/6
0/12 1/6 1/6
1/12 1/12 1/6
1/12 1/12 1/6
1/12 1/12 1/6
1/12 1/12 1/6
sum  1/2  1/2

O T W N+~

Table 2.3. Joint PDF for an experiment that involves rolling a die (X €
{1,2,3,4,5,6}) and tossing a coin (Y € {H,T}). This joint PMF is the
same as that of Table 2.2 except for the second row.

experiment for you.) Because pé(ly =0# péf . p%/ =1. %, we are unable to

6
prove statistical independence of X and Y.

2.21.5. Example 2. The joint distribution of the bivariate rv (X,Y) is
given by

i ||
pxy (i, y;) = 2%
0 otherwise

r;=—1,1;y; =1,2,3,... (to infinity)

(a) k is a constant. Find the value of k.

1
Zzpﬁ = k2zﬁ —k2-1=2k.  k=1/2
i J

(b) Find the marginal probability distributions of X and Y.

1 1 1
pX(q;i):Zj:pij:Zj:2|'ri’2yj:2|$i’. r;=—1,1.
1
pY(y_]):ZP’L]:%' yj:]-72737--.
(2

(c) Are X and Y statistically independent?

Forming the product of marginal distributions,

px (zi)py (y5) = ! !

2\33i| e = pxv (xi, yj)

Hence X and Y are independent.

2.21.6. Cross-Correlation in Image Analysis. The concept of covari-
ance leads to the cross-correlation analysis. Cross-correlation is a type of
covariance that involves comparing two signals (or images) together through
pixel-by-pixel multiplication of a window (or ROI) that is translated across
different regions of a target signal (or image). If the two signals (or images)
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are of the same size, a single value is obtained. If the sliding window is
smaller than the target signal (or image), the output is a function of the
translation coordinate(s).

The 2D cross-correlation of a M x N matrix, X, and a P x @ matrix, H, is
a matrix C, of size M + P — 1 by N + @ — 1. Its elements are given by:

M—-1N-1
- B —(P-1)<z<M-1,
C’(:U,y)—mzz:[”;X(m,n)H(m ,N=Y), {—(Q—l)SySN—L

where the bar denotes complex conjugation. Likewise, a 1D signal can also
be compared to another signal, for purposes of comparison or pattern recog-
nition. The true cross-correlation sequence of two random samples {z, } and
{yn} is

Ray(m) = E[Znmyn] = Elznyn_nl,
where —oo < n < oo and asterisk denotes complex conjugation. The raw
cross-correlation is computed as:

R (m) — Ei\fz—o’m—l xn—i-my;kw m Z 07
w Ry, (=m), m < 0.

In MATLAB these two commands are implemented as xcorr2 and xcorr,
respectively. For more information including examples, see the MATLAB
documentation:
https://www.mathworks.com/help/signal/ref/xcorr2.html
https://www.mathworks.com/help/matlab/ref/xcorr.html

2.22. Conditional Probability and Conditional Expectation

2.22.1. Conditional densities. The conditional density of X given Y is

defined as
bPxy (JJ, y)

py Yy
where px y(z,y) is the joint PDF of X and(}z, py (y) is the marginal PDF
of Y. This is a consequence of the formula for conditional probability,
P(AN B)

P(B)
with A = {X ==z} and B ={Y =y}, ie.

pxy (zly) =

P(A|B) =

Px< X <z+dzly<Y <y+dy)dz
Plx< X <z+dr,y <Y <y+dy)dzdy
Ply <Y <y+dy)dy '
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An interpretation of px|y (z|y) is obtained by integrating it:

b
Pla< X <bY =y) = / px|y (z|y)dz

(i.e. the probability that X € [a,b] given that Y = y). However, the left
hand side {Y = y} is an event with probability zero, which is ill-defined.
We instead use a limit to circumvent this difficulty:

Pla < X <b|Y =vy) :lirr(l)IP’(a<X <b|lY —y| <e).
€E—

The conditional expectation of X given Y = y is defined as
o

E[X|Y = y] = / 2pxpy (zly)da.

—0o0

A consequence of this definition is:

E[Y] = / / ypxy (. y)dady

:/—Z /::y [py|x (y|7)px (z)] dzedy

N /_oo [/_OO pr|x(y|w)dy} px (z)dx

[e. 9]

:/ ElY|X = z|px(z)dz.

—00
An analogous concept of “conditional probability mass” exists for the case
of discrete rv’s. See Problems 57 and 58 for more on conditional densities.

2.22.2. Conditional Expectation. We may also calculate expectation
values under some condition. This is the same idea as calculating the normal
expectation value, except that we use the conditional density instead of the
regular density. For (a) the condition involves a random event H. If X is a
rv, H is a random event and px|p(z) is the conditional density of X under
the condition H, the expectation value of X under the condition H is:

E[X|H] = / 2pxa(2)dz,

where the integral is over all possible values of X (i.e., the “range” of X).
As an example, the event H could be H = {Y = 10}, or it could be
H = {Y = y} (where the value y remains unspecified). You can check
that E[X|H] is still linear in X. For (b) the condition is a rv, e.g., E[X|Y].
The conditional expectation E[X|Y] is obtained by calculating E[X|Y = y].
The result will be a function of y. Then replace y by the rv Y. Notice that
the end result for E[X|Y] is itself a rv. In other words, to get E[X|Y] we
use E[X|Y = y| together with y = Y (w). The meaning of E[X|Y] is “the
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function of Y that best approximates X”.

From these definitions many properties follow. For example, it is easy to
check that

BE X = [ [ |~ upvixtolo) dy} px@dr = [~ ypriy)dy =BV,

—00 —0oQ —00
We used the definitions of conditional probability py|x (y|z)px (*) = pxv (2, y)
and marginal density py (y) = ffooo pxy (z,y)dz. More properties of condi-
tional expectations can be found at this site (click on Proof to obtain the
proofs of various results):

https://wwuw.randomservices.org/random/expect/Conditional .html

In Problem 59 you are asked to calculate expectation values under some
condition.

2.23. Signal Averaging Reduces Relative Error

An important concept in experimental science is that of “signal averaging”.
This is done to reduce the noise error, or equivalently, to reduce the size
of the error bars relative to the measurement. Suppose X is a rv and we
perform n measurements of X. We obtain the data set {z; = X (w;)} ;.
Another way to view this experiment is to consider the simultaneous mea-
surement of n independent rv’s Xi,...,X,, each of which has the same
distribution as X: each has mean px and variance (var(X;) < oo). We
form the average:

Xi(w) + Xo(w) + - + Xn(w)

Xaw(w) =
n )
where a single value of w is used, as we assumed simultaneous measurement
of X1,...,X,. The variance of this sum is
n
~ 2icivar(Xi) 1
var(Xoy) = === X —,
n n

where we used the property var(aX) = a?var(X). The noise is the square

root of the variance o = y/var(Xgs,). Thus, signal averaging reduces the
noise from random errors.
We have just derived the formula for standard error: the mean of X,,(w) =

X1 (@) Xo @)+ Xn (@) 5 ) o (where px = EX) and its standard deviation is

n
Vvar(X)/n = ox/v/n. We recognize this as the standard error.
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If the X; are iidrv the signal-to-noise ratio (SNR) is defined as:

SNR — signal _ Xaow o Vi

noise var (Xiav)

Thus, SNR improves with signal averaging.

2.24. Some Theorems on Random Variables

2.24.1. Normal Linear Transform Theorem. The normal linear trans-
form theorem is:

a+ BN1(p, 0%) = Na(a + Bu, B20?).

(We denoted N with subscripts 1 and 2 to emphasize that they are different
rv’s, i.e., the rv on the right hand side is created from the rv on the left
hand side.)

Proof: Let Y = a4 X, where X ~ Ni(p,0?). Write

PY <a)=Pla+pX <a)=P(X < (a—a)/P)

a—a)/B
Y S
—c0 V2mo? '

and make a substitution of variables y = a+ fx, dy = Bdz to get an integral
of the form [*__ py (y)dy:

:/a L~ (a)/s-mw?/20 (g, ) /
—o0 271'0 \/271',8202

which is the CDF of a normal rv with mean o + S and variance 8202, In
the special case = 0, 02 = 1 we have:

o+ BN1(0,1) = Na(a, 52).

e~ (W—a—Bu)?/28%° 4,

2.24.2. Normal Sum Theorem. The normal sum theorem is:

Na(p1 + p2, 07 + 03) = Ni(u1, 01) + Na(pz, 03),

where on the right-hand-side is the sum of two statistically independent rv’s.
In other words, let X ~ Aj(u1,0%) and Y ~ Na(ug,03) be independent
rv’s. (We denoted N with subscripts 1, 2 and 3 to emphasize that they
are different rv’s.) We are asking what is the distribution of the new rv
U = X + Y. The proof of this involves handling a 2D integral of the joint

PDF of X and Y:
_(a— m) (y—u22)2
// 272 dady.
27r0102

{(z.y)lz+y<a}

PX+Y <a)=
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With some effort, you should be able to simplify this double-integral and
show that it is the CDF of the rv X + Y (use the change of variables
V=X+Y,Z=Y).

2.24.3. Sum of Independent Gaussians. Suppose that Xi,..., X, are
iidrv and normal, say, N'(0,1). The distribution of their sum is also normal.
This can be proven by induction, using the result from Section 2.24.2.

2.24.4. Sum of Two Independent Cauchy’s. Let X,Y be independent
Cauchy rv’s. What is the distribution of their sum X + Y? We start with

the CDF:
1 1
P(X+Y — dzdy.
(X +Y <a) // 2 +x2)(1+y2)xy

z,y)|z+y<a}

Let us effect a change of Varlables: u =2+ y and v = y. The inverse is
y=wv and x = u — v. The area element is:

9(z,y)
(u,v)

In the new coordinates, the integral is:

dudv =

dxdy =

1
det <0 1> ‘ dudv = dudw.

1 a o] 1 1
P(X+Y<a)=ﬁg/md“/mdvuﬂu_u)?) (14v2)

To solve the integral over v go to www.wolframalpha.com and type:

integrate (1/(1+(u-v)~2))*(1/(1+v"2)) from v=-infinity to infinity

The result is:

/ d 1 1 2w
v = .
oo (T (u=0)?) (1+0%)  4+u?
This gives the CDF in integral form. Differentiating with respect to a gives

the PDF:
1 2 1 1

pX—f—Y(a) = ;m = ;m

o\ 11
The general Cauchy distribution has PDF p(z) = |:7T’y (1 + (%) >] ,
where 1z is the center and + is the scale parameter (related to the width).
Thus, adding two Cauchy rv’s centered at 0 with “scale parameter” of v =1
results also in a Cauchy distribution centered at 0, but with v = 2 (i.e. it is

twice as broad as the v =1 case).

2.24.5. Central Limit Theorem. One of the most important theorems
in probability theory is the central limit theorem (CLT). The CLT describes
many important physical phenomena observed in nature that arise from the
sum of many independent random effects (e.g. microscopic forces). Loosely
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speaking, the central limit theorem states that regardless of the distribution
of these random effects, the limiting distribution is Gaussian.

Let (X1,...,X},) be a sequence of iidrv (independent identically distributed
1v), each having mean py and variance o2. Then,

1 o a1
lim rv { Z(XZ - HX)} 5 —=N(0,0%).
n—o0 n = Vn
This is equivalent to saying that the arithmetic average + Yo, X, con-

n

. C . . . g
verges'? (in distribution) to a normal law with mean px and variance —:

n
. 1 d o’
oS ()

The quantities {X;} are rv’s. Their sum is also a rv; the CLT states that
the sum will be Gaussian-distributed.

Note: that the arithmetic average should also have the mean px comes as
no surprise. But also that the variance %2 scales as 1/n should come as no
surprise if you recall the definition of standard error, which states that the
error in the mean scales as 1//n.

The central limit theorem is very important in the physical sciences because
many physical measurements yield Gaussian distributions as a result of the
effects of many small additive forces. For example, the Brownian motion
of a particle is the result of many small collisions with solvent molecules,
yielding a Gaussian distribution for the net displacement.

The CLT is illustrated in Fig. 2.9. The histogram on the left represents the
probability distribution of a single rv, X;. The histogram in the center is
the distribution of the average of two such iidrv (X1 + X5). The histogram
on the right is the distribution for the average of 10 iidrv, 1—10(X1 + X5 +
-+ + X10). As can be seen, while each rv has a uniform (flat) distribution,
as the histogram on the left shows, the more rv’s we average, the closer the
distribution of the average approaches a normal (bell-shaped) distribution.

2.24.5.1. Random Walk in One Dimension. The random walk, which is an
application of the CLT, is important in the physical sciences. Brownian
motion is a limit of the random walk.

1200nvergence in distribution means that the distribution functions converge pointwise:

lim P(X, <z)= Fp(z),
n— oo

where I, (z) denotes the CDF of the normal random variable with mean u and variance 02 /n and
Xn=L(X1+ +Xn).
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Figure 2.9. Illustration of the central limit theorem.

Let X; be the rv which denotes the displacement at the i-th step

X; € {—0o,+0}
and each outcome occurs with equal probabilities, i.e.
1 1
Po B an P—o B

These displacements at different points in time are assumed to be statisti-
cally independent. After n such steps the net displacement is

Su= X1+ + X,
where X; = 10 + 3(—0) = 0. Therefore, S, = 0. Also, varX; = £(0?) +
1(—0)? = 6% Then,
? ~5 2
varX; = Xi2 - X, = a2

By statistical independence of the X;’s:
n
S_% = ZvarXi = no?,
i=1
The total duration of the random walk is ¢ = nA¢. We have

o 2
S%:(%Jt:2Dt

The quantity D = ;—Azt is called the diffusion constant (or diffusion coeffi-
cient). D has units of length square divided by time (e.g. m?/s).

By the central limit theorem, we have that

lim S, = X1 + -+ X,, ~ N(0,n0?)

n—oo
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lim S,, ~ NV(0,n0?) means that its PDF is

]

ps, (z,t) = exp |—————| .

’ 4w Dt 4Dt

This PDF is also called transition probability density.'? It is the probability
of finding the particle at (z,¢) under the condition that it was at position
xz =0 at time t = 0.

The average position of the random walker after the n-th step is zero: S,, =
0. This means that if we repeat the random walk experiments, say 10,000
times, the average position after n steps will be zero. It does not mean
that the random walker automatically returns to the origin. It is merely a
statement about the random walk when the walk is repeated many times.

On the other hand, the result 57,21 = 2Dt about the mean square displace-
ment being proportional to ¢ (or root mean square displacement, z, being
proportional to v/#) should be contrasted to the case of ballistic motion for
which z = vt (displacement proportional to ¢). The different powers of ¢
reflect the fact that in diffusional motion, there is a lot of back-and-forth,
leading to a shorter displacement over time.

2.24.5.2. Random Walk in Three Dimensions. In three dimensions, the dis-
placement is a 3-components vector R = (X,Y,Z). If the components
X,Y, Z are statistically independent of each other, the joint probability den-
sity is a product:

pXYZ<w7 Y, z, t) = pX(x7 t)pY(y7 t)pZ(Zv t)a

1
Var Dt
the result of the previous section for each direction (component), we obtain

the joint probability density for the 3D random walk:

1 r2
pxyz(T,y, 2, t) = Wexp 1Dz

where px(x,t) = exp [—f—;t}, etc. (for each component). Applying

where 12 = 22 +y? + 22, 7 = (2,9, 2).
In 3D the mean square displacement (MSD) is'
E[r?] = E[z? 4 y? + 2%] = E[2?] + E[y?] + E[2?] = 2Dt + 2Dt + 2Dt = 6Dt.
In the general case of d dimensions, 7= (z1,...,xq), the MSD is:
E[r(t)?] = E[z] + - -- + 23] = 2dDt.

13A transition probability density is written p(z, t|y, s) to the denote the probability of finding a
particle at position x at time ¢ given that it was initially at position y at some earlier time s.

14
E[r(t)? = m ///]Rf’ r2 exp (747,7[{2)1&) d3r
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2.25. Importance Sampling

2.25.1. Law of Large Numbers (LLN). Let Xi,..., X, be a sequence
of iiddv each with mean p. We form the sample mean:

S 1
Xn:n;Xi:n(X1+"'+Xn)'

Then, for any € > 0,

lim P(|X,, — u| > ¢€) =0.
n—o0

This is the weak law of large numbers (WLLN). For a proof of the WLLN,

see Problem 36. X, is the sample mean. The strong law of large numbers
- 15
is

P (JEEO X — pf > e) ~0.

Both weak and strong LLN are statements about how the sample mean
converges to the real mean. However, there is an important difference: the
weak LLN tells us how sequences of probabilities (P) converge whereas the
strong LLN tells us how the sequence of rv X,, behaves in the limit. The
CLT, on the other hand, is a much stronger'® statement: the sample mean
(arithmetic average) rv converges (in distribution) to a normal law. The
central limit theorem (CLT) should not be confused with the LLN.

2.25.1.1. WLLN In Words. The statement lim,, oo P(|X,, — p| > €) = 0 for
any € > 0 simply means that if we take any sequence of iidrv’s X,..., X,,
their arithmetic average tends to their mathematical expectation as n — oc.
Thus, we can approximate mathematical expectations (which may be diffi-
cult to compute, especially if the distribution is unknown), using arithmetic
averages formed using experimental data. The larger n is, the better the
approximation of the mathematical expectation.

Since X; are rv’s, the WLLN formulation also applies to functions of rv’s,
Y; = f(X;), since the latter are also rv’s. If desired, f could be almost
any formula. For example, suppose that X; is the acceleration of a particle,
a; (i.e., X; = a;). The force is mass times acceleration: F(X;) = ma =
mX;. The WLLN allows us to compute not only the average acceleration,
E[X;], but the average force, E[F'(X;)], by simply renaming Y; = f(X;) and
applying it to the sequence {Y;}.

15T he proof of the strong law requires the Borel-Cantelli lemma, which we have not covered.

6This is a stronger statement because it is a statement about the entire distribution law of a rv,
not just its mean and variance.
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2.25.2. Expectation With Respect To Probability Measure. The
mathematical expectation of X was defined as:

BLY) = [ apla)d.

where p(z) is the PDF of X and the integral is taken over the range of X
(here, R). p(x)dz is the probability measure. It will be useful to use the no-
tation E,[X] to emphasize that the PDF used to calculate the mathematical
expectation is p. This way, there is no ambiguity as to which probability
measure is used. For example, if the PDF of YV is ¢(y), then we write:

EqlY] = / yq(y)dy.

(Note: y is a dummy integration variable; the choice of symbol is unimpor-
tant.) The WLLN states that if Y is distributed according to ¢(y), then its
mathematical expectation can be approximated by the arithmetic average:

1 n
=1

where the Y;’s are sampled according to the distribution ¢. If instead the
PDF of Y had been some other function f, we would have written E;[Y]
for [yf(y)dy. The two numerical values E;[Y] and E,[Y] can, of course, be
different, since f and ¢ may be different functions.

As far as the WLLN is concerned, it is meant to enable us to approximate
mathematical expectations of rv’s (or functions of rv’s) by arithmetic av-
erages constructed using experimental data. We present several examples
below to illustrate applications of the WLLN. The WLLN is best explained
by working out specific examples.

2.25.3. Numerical Integration by Monte-Carlo Method. Monte-Carlo
methods can be used to estimate the numerical value of integrals. For ex-
ample, suppose we want to compute the integral:

I= /ab h(z)dx

which is the same as
b b
h(z)(b—
I:/ (x)(a)dx:/ u(z)p(z)de = Eplu(X))
a (b - a) a
where E, denotes the mathematical expectation with respect to the PDF
p(x) and
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Thus, p(x) is the PDF of a uniformly distributed rv. This integral can
be evaluated by generating random numbers X1, ..., X, that are iidrv and
uniformly distributed on the interval [a,b]. By the WLLN, the following
estimator converges to I:

b

P= 13 u(xi) = Bylu(x)] = / w(@)p(z)de = I.

i=1 a
This gives us a way to evaluate integrals by generating random numbers.
For multi-dimensional integrals, this method has important advantages.
Namely, the generation of random numbers followed by estimation of I is less
computationally intensive than the direct numerical integration (by quadra-
tures) of the multi-dimensional integral.

There is no special reason to pick the uniform distribution. In fact, any
distribution p(x) can be used. In some cases, special choices of p(x) may be
advantageous. For example, sampling the domain [a,b] may be a waste of
time if most of the points within that interval correspond to regions where
h(zx) is zero or nearly zero. In that case, we instead want to sample regions
of the domain where |h(z)| > 0 is concentrated.

In other words, let

b b
h h
I :/ h(z)dx :/ ﬁp(m)dzn =E,[u(X)], u(zx) = hix)
a o P(@) p(x)
and choose p(z) such that the “peaks” of p correspond to the peaks of h.
The numerical value of I can be estimated by sampling iidrv Xy,..., X,

according to p(z) and computing the sum:

I~ izu(xi) - %Z ’;g; X, ~ pla).

=1 =1

2.25.4. Change of Distribution. Suppose that X is a rv with PDF p(x)
and we want to calculate the average of a function, f(X) of X. Let q(z) > 0
be another PDF on the same probability space as p. Then,

B 100] = [ swptas = [ LD g0yae —p, (LERD)
Here, E,[f(X)] denotes the mathematical expectation of f calculated us-
ing the PDF p(zx) for X, whereas E, (%) is the expectation of fp/q
calculated by associating the PDF ¢(x) to X instead.

In the first case, Xi,...,X,, random numbers are sampled from the distri-
bution p(z) and the integral is estimated as:
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Convergence is assured by the LLN. In the second case, Xi,...,X, are
sampled from the distribution ¢(x) and the integral is estimated as

FXOp(X)\ _ 1 f(X)p(Xi)
Eq( q(X) >Nn; g(X;)

The correction factor p/q is called the likelihood ratio. This method, of
course, requires us to be able to compute the ratio p/q for any value of X
that we may sample. The idea is to choose an importance distribution ¢ that
leads to faster convergence than the nominal distribution p. We generally
want to choose ¢ such that its spikes correspond to those of fp; in fact, it
can be shown that ¢ should be proportional to fp. Choosing ¢ can be done
using an “educated guess” or by random sampling of the function.

2.25.5. Calculation of Probabilities. Since probabilities are expecta-
tion values of indicator functions, the WLLN can also be used to speed up
the calculation of probabilities. This is especially useful for rare events. For
example, suppose we want to calculate the probability of an event {X € A},
where the PDF for X is p(z). From experimental measurements X7, ..., X,,
this would normally be approximated by

_ # draws in A

n

PIX € 4) = BfLxeal = [ Laelple)de ~ = 3" 1a(X)
=1

where 14(z) is the indicator function of A, i.e. it is a function that equals 1
when x € A and 0 otherwise. However, if p(x) is such that this event rarely
happens, we are going to need n very large or else the result will be zero.

On the other hand, the WLLN enables us to reweigh the integral, if we can

find a better distribution ¢(z) that samples values that are closer to the set
A:

n

L4(X)p(X)] 1 1a(X)p(Xa)
q(X) ] 2 a(Xi)

n
If the event is rare, the ratio p/q will be small (yielding the correct probabil-
ity for the rare event), whereas the summation will count several non-zero
terms, giving a more accurate answer (for the same n).

A special case of P(X € A) is the estimation of the CDF, P(X < z), which

can be expressed as E,[1{x ], and which equals to E, [il{x;(zi)g()()} And

E,[1xea] = E, [ X; ~ qla)

i=1

if g(z) is a better distribution than p(z), we can use the latter formula,
together with the WLLN, to approximate the CDF by a summation.

2.25.6. Generalization to d-Dimensions. All of the above formulas are
valid in d-dimensions. = € R and X € R are replaced by x € R and X € R,



78 2. Probability

respectively. Likewise, dz stands for d?x, the d-dimensional volume element
in the d-dimensional integral.

2.26. Comparing Distributions

Given some random samples x1,...,2, and y1,...,y, of two rv’s X and Y,
respectively. It is natural to compare them to see if there is a difference
between them. We have already mentioned that one may compare sample
means, sample variances and sample covariance. However, these statistical
quantifiers are the lowest order moments (first, second) of the distributions.
They do not provide a complete comparison. Two rv’s are identical if and
only if their distributions match. To compare distributions, we must use dis-
tance metrics. In this section we discuss a number of popular methods: the
Kolmogorov-Smirnov test, the cross entropy, the Bhattacharyya distance,
Wasserstein metric and the Kullback-Leibler divergence.

In mathematics a metric on a set X is a function d : X x X — [0,00) that
obeys the following conditions for all z,y,z € X: 1) d(x,y) = 0 if and only
if v =vy. 2)d(z,y) = d(y,z) (symmetry). 3) d(z,y) < d(x,z) + d(z,y)
(triangle inequality).

2.26.1. Kolmogorov-Smirnov test.
2.26.2. Cross entropy.

2.26.3. Bhattacharyya distance.
2.26.4. Wasserstein metric.

2.26.5. Kullback-Leibler divergence and the Relative Entropy.

2.26.5.1. Entropy. Suppose we have a rv X taking values z in the set X
each with probability p(z). The Shannon entropy

H(X]=-> P(X =x)logP(X =x) (discrete rv X)
TEX
or

H[X]=- /p(az) log p(z)dx (continuous rv X)

quantifies the “lack” of information about the system described by p(x). For
example, if we have a system that can be found in 6 possible states with
probabilities (1,0,0,0,0,0), the entropy is lowest (H = 0). On the other
hand, if the probability distribution is (1/6,1/6,1/6,1/6,1/6,1/6) (uniform
distribution) the entropy is maximal. The uniform distribution shows the
system can be found in any of its 6 states with equal probability; therefore
we do not know anything about its state. In the case of the first distribution
we know exactly which state the system is in (the first state). If entropy
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quantifies the lack of information, the negative of the entropy quantifies
information.

There are other measures of entropy The Renyi entropy measure is

logZIP’

TeEX

HE[X]

The Tsallis entropy measure is

HT[x] = Zeex P =27 7 1

l-«
Here, o > 0 is a positive parameter and c is a positive constant depending
on the particular units used. Both of these families include the Shannon
measure as a special case in the limit a — 1, where H*(p) = H{ (p) = H(p).
We may interchangeably write H(p) for H[X] and vice versa, since X is

defined by its distribution p. From this, we see that

H(p) = —% log p(z")

where p(z") = [, p(z;). This expression for H(p) is called the empirical
entropy of the empirical probability distribution.

2.26.5.2. Empirical entropy. The above definitions presume that we know
the distributions. Suppose that instead we have data z1, x9, ..., z, all taking
values in the discrete set X. The empirical PMF is:

T

where 0, (z;) is the Kronecker delta function and € X'. Using the definition
of entropy:

=D _p@)logplx) =—3 — 25 ;) log p(x :—*Zlogpxz

TeEX xeX =1
In the last step we have interchanged the order of the two sums and used

> bu(i) log p(x) = log p(xs).
TEX

2.26.5.3. KL Divergence. Suppose that we have two PDFs ¢(z) and p(x)
defined on the same probability space (i.e. the range of values is the same
x € X, and the set of all possible random events is identical) with PDF's ¢(z)
and p(x). Here we assume that the range is X = (—o0,00). The relative
entropy between ¢ and p is defined by:

Dicelp(e) s a(e)] = [ plo)log (p"”)) d.

oo q(z)
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This can easily be generalized to discrete rv’s by taking

N N
=S pda—a), @)= > aible - xy),
i=1 i=1

where N is the number of possible values z € X" the rv can take. This gives:

N
Dkrlp:q) = Zp (pEx)) =szlog <M>
TEX 4(z) i=1 i
We note that Dy is not symmetric, i.e. Dgpl[p : q] # Dkrlg : p], and
nor does it satisfy the triangle inequality. Therefore, it is not technically
a metric. It is possible to make it symmetric by taking the sum Dy [p :
q] + Dgkrlq : p] in order to obtain a metric.
2.26.5.4. Relationship to cross-entropy. Cross-entropy is closely related to
relative entropy or KL-divergence that computes distance between two prob-
ability distributions. For example, in between two discrete PMF's, the rela-
tion between them is:

H(P, q) = — Z p(x) log q(m) cross entropy

TEX
Z p(zx) log p(x entropy
TEX
Dkrlp:q) = Z p(z) log ( i) relative entropy
TEX

H(p,q) = H(p) + DkLlp : 4
Expressing the KL divergence in the form

Dirlp:ql =) pla)logp(z) — > p(x)logq(x
rzeX zeX
yields the interpretation of the KL divergence to be something like the fol-
lowing: if P is the “true” distribution, then the KL divergence is the amount
of information “lost” when expressing it via Q).

2.26.6. Density Estimation. So far we have worked dealt with paramet-
ric statistics meaning that we assumed knowledge of the PDF in order to
compute statistics involving rv’s. For example, concepts such as mean and
variance were defined in terms of PDFs. The PDF is either given to us, or it
is estimated from the data by fitting its parameters (e.g. mean, variance) to
the histogram. This procedure has limited capabilities, as it requires choos-
ing a model for the PDF. Non-parametric statistics makes no assumptions
about the form of the PDF. The density function (PDF) is instead derived
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from the data. Recall that (rescaled) histograms are a discrete approxima-
tion to the PDF. In this section, we will show that non-parametric estimates
of the density can be constructed using a sum of kernel functions.

2.26.6.1. Kernels. Kernels are best described informally as “bump func-
tions”. An example is the Gaussian function, also known as radial basis
function

2
Ko(y) = K(,y) = ¢ 2t
which is a fundamental solution to the heat equation describing the response
to a point source of heat in thermodynamics. Another example is the poly-
nomial kernel:

Kai(y) = K(z,y) = (z -y + 1)
Kernels in statistics must be non-negative, real-valued integrable functions
K, : R — X satisfying symmetry, K,(—y) = K,(y) and normalization,
f_oooo Kx<y)dy =1
A reproducing kernel K, operates on a Hilbert space H of functions that
are defined on a set X. A function K : X x X — R defined by the inner
product on H:

K(z,y) = (Ks, Ky)

that has the property of taking a function f and evaluating it at x:

<f7 Kx>H = f(l'),
is called reproducing because it maps a function f to its value f(z). An
example is the Dirac measure 6,(y) and the Hilbert space L?(R):

<ﬁ@nr=[%f@w@@myz/ff@w@—ymy:ﬂm.

2.26.6.2. Kernel Density Estimation. Kernel density estimation (KDE) is
method for estimating the probability density function of a rv. It can also be
viewed as a data smoothing technique where inferences about the population
are made (PDF), based on a finite data sample (histogram).

Let (1,2, . ..,z,) be independent and identically distributed samples drawn
from some univariate distribution with an unknown density f at any given
point . We are interested in estimating the shape of this function f. Its
kernel density estimator is

) = oG ) = SR ()
=1 i=1

where K is the kernel — a non-negative function — and A > 0 is a smoothing
parameter called the bandwidth. We note that K, (y) in the previous section
is now denoted K (y — x).
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A kernel with subscript h is called the scaled kernel and defined as Kp(z) =
(1/h) - K(x/h). The KDE can be though of as a weighted average, where

the weight is: .
Tr — Iy
wi =gk ( h )

The choice of bandwidth h matters in practice. Wider bandwidths smooth
out the data more (low variance). Narrower bandwidths result in noisier
data (high variance). Obviously, if we pick too low a bandwidth, the density
estimation has a generally greater bias because the moving average (trend-
line) is less responsive to changes in the data points.

Suppose that we measure a signal Y; that is the sum of the underlying signal
f(x;) and some additive noise &;:

Yi=f(zi) +&
where one usually assumes that
gi ~ N(Ov 02)'

Here, x; represents some internal variables that are not directly measured.
We denote them as x; rather than X;, to emphasize that those variables
have already been “fixed” at the time of the measurement, i.e.

fxi) = E[f (X0 Xi = z3].
Taking the conditional expectation given X; = x; we find:
ElYi|Xi = a] = E[f(Xi)|Xi = @]
We will obtain in the next section an expression for E[Y;|X; = z;].

2.26.6.3. Kernel Regression. The problem of kernel regression can be sum-
marized as follows. We want to estimate the conditional expectation E[Y|X =
x], which is a function of z. First note that:

Pxy (T, Y
BYIX <ol = [urle)y = [ 42000,
px ()
However, this requires knowledge of the densities. We use the following
kernel density estimates:

R 1 n ) 1 n
bxy(@y) =~ > Ku(w—z)Kn(y — i), px(x) = - > Ku(x — ),
=1 =1
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where the hat denotes estimate. We get the following estimate:
B[Y|X = 4] _/ YD io1 fih(ﬂﬁ — i) Kn(y — i) ’
Zj:l Kp(z — ;)
>y K — ) [ yKn(y — yi)dy
a Z?:l Kp(z — ;) 7
iy Kn(z — i)y
a Z;’L:I Kp(z — ;)
We have used the reproducing property of kernels:

/yKh(y —yi)dy = ;.

2.27. Problems

Problem 20. The height of a person is measured over time, every month
from birth to The data set consists of the person’s age in months and her
height in centimeters. The summary statistics for the data are provided
below:

T = age, in months
y = height, in centimeters
T =44 Sz = 8.5 =282 sy =4.1

Also, the correlation coefficient between = and y is » = 0.860

(a) What is the slope of the LSRL? (Round to the nearest hundredth.)

(b) What is the y-intercept of the LSRL? (Round to the nearest hundredth.)
(¢) Find the equation of the least-squares regression line (with y as the
response variable)

(d) What percentage of the variation in predicted height can be explained
for by the LSRL

Problem 21. Suppose that we have an amplifier that takes a voltage and
amplifies it by a factor of 10x, i.e. f(x) = 10x. Suppose that we feed this
amplifier the following input voltages:

X ={2.53,2.55,2.45,2.49,2.50, 2.52,2.47, 2.48, 2.56, 2.49}

(a) What is the sample variance at the output of the amplifier?

(b) Suppose that we have two rv’s, X and Y and they are statistically in-
dependent. Furthermore, suppose that var(X)=2.7 and var(Y)=2.5. Com-
pute the value of var(X +Y) and var(X —Y).

(c) Given that var(X)=2.7, var(Y)=2.5 and p(X,Y)=0.9 (correlation coef-
ficient), what is var(X +Y) and var(X —Y)?
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(d) If X, Y and Z are statistically independent and var(X)=1.7, var(Y)=2.3
and var(Z)=1.4. What is var(0.3X + 0.7Y +0.52)?

Solution. (a) First, calculate the sample variance of X and then multiply by
100. Then multiply each X; by 10 and then calculate the sample variance of
the multiplied values. The sample variance of the X’s is 0.001249. Multiply
this by 100 to get 0.1249. Multiplying each X by 10 and taking the sample

variance we get 0.1249, which is the same as the first method. From this we

confirmed the validity of the formula var(aX) = a?var(X).

(b) By statistical independence we have
var(X +Y) =var(X) +var(Y) =2.74+25=5.2.
Then from
var(aX +bY) = a*var(X) + b*var(Y),

with a =1 and b = —1 we have
var(X-Y) = (1)%var(X)+(—1)*var(Y) = var(X)+var(Y) = 2.74+2.5 = 5.2.
From this, we conclude that when X and Y are statistically independent,
var(X +Y) =var(X —Y) = var(X) + var(Y).
(c¢) From the definition of the correlation coefficient

cov(X,Y)
var(X)var(Y)
we have cov(X,Y) = p(X,Y)/var(X)var(Y). Then, inserting this into:

var(X +Y) = var(X) +var(Y) + 2cov(X,Y)

p(X,Y) =

we get:

var(X +Y) = var(X) +var(Y) + 2p(X,Y)v/var(X)var(Y)
from which we can obtain a numerical value:

var(X +Y) = 2.74 2.5+ 2(0.9)[(2.7)(2.5)]"/% = 9.877.
For var(X —Y) we have:
var(X —Y) = var(X) +var(=Y) + 2p(X, =Y )/ var(X)var(=Y)

and since var(—Y) = (—=1)2var(Y) = var(Y), we have:

var(X —Y) = var(X) +var(Y) + 2p(X, =Y )/ var(X)var(Y)
Now, using the property cov(aX,bY) = ab- cov(X,Y), we see that
cov(aX,bY) ab - cov(X,Y) ab

Vvar(aX)var(bY) B la||b]y/var(X)var(Y) - g

p(aX,bY) = p(X,Y).
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Fora=1and b= —1,
pl-X,-10v) = o y) = <px ).
Hence,
var(X —Y) = var(X) +var(Y) —2p(X,Y )/ var(X)var(Y)
and then we have
var(X —Y) = 2.7+ 2.5 — 2(0.9)[(2.7)(2.5)]*/? = 0.5235.
We conclude that var(X +Y) is not equal to var(X —Y) when X and Y
are correlated to some extent.

(d) If X, Y and Z are statistically independent, then we can write:
var(aX +bY + cZ) = a*var(X) + b*var(Y) + *var(Z),
where a, b, c are constants. Hence,
var(0.3X +0.7Y + 0.52) = (0.3)%var(X) + (0.7)%var(Y) + (0.5)*var(Z2)

= (0.3)21.7 4 (0.7)22.3 + (0.5)%1.4 = 1.630.
]

Problem 22. Suppose that X is a rv with distribution px(x) and ¥ = g(X)
is another rv related to X via a continuous differentiable function g. Prove
that the density of Y can be written as:

py(y) = /OO px(z)6(y — g(x))dx.

—00

Solution. Starting with the CDF:

P <o) =) <o) = [ pxlado= [ Lc@px (@
{z:g(z)<a}
Using the fact that the Dirac delta function is the derivative of the Heaviside
function:

a) = 0@, () = Luno(a)

And if the origin is shifted to xg, we may change variables to x = & — x¢:

0(Z — x9) = —=0(T — ), 0(z — x0) = 1>z, (T)

di
Taking the derivative with respect to a we get the PDF, py (a):

/ T o @px(@)dz = / " b(a— g(@)px (x)dz.

_oo da o
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Region'l — ., Region4

Figure 2.10. Partition of the region z? + y® > 1 into 4 regions.

Problem 23. Find the probability distribution function of the rv Z =
X2 +Y? in terms of the distribution of X and Y.

Solution. The probability that the vector (X,Y) lies outside the unit circle
{(y)la? +y? =1} is:

P(X?+Y?>1) = // pxy(z,y)dzdy.
{(zy)lz>+y?>1}

This can be calculated explicitly by splitting the integration domain (R? —
{unit disc}) into 4 regions (Fig. 2.10).

P(X*4+Y2>1) = /Z (/O: pr(a:,y)dx) dy+/o; (/100 pxy(x,y)dx> dy

Region 1 Reg?gn 4

+/_11<{/_;m+/;}my(x,y)dy>d$.

Regions 2 and 3

Another way to calculate this would be to convert pxy (x,y) to polar coor-
dinates pre(r,f) and integrate from r = 1 to oo while letting 6 range from
0 to 2m. |

Problem 24. Find the probability distribution function of the rv Z =
VX2 +Y? in terms of the distribution of X and Y.

Solution. Suppose that X, Y ~ AN(0,0?) (zero-mean Gaussians) are inde-
pendent rv’s. Consider the transformation to polar coordinates:

R=VX24+Y2 ©=tan Y (Y/X).
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The inverse transformation is:
r=rcosf, y=rsinf.

What is the distribution of ©® and R? Let us do R. The CDF of R is found
by writing:

P(R<r)= // Le_(Izﬂﬁ)/(%g)dacdy.

2mo?
{22 +y2<r}

It will be convenient to transform to polar coordinates. The Jacobian of the
transformation yields the new area element:

O(z,y)
dady = drdé
= o0y |
where
ow,y) ||Ovx Opz|| |lcos® —rsinf|
o(r,0)  ||Ory ODpy||  |[sin@ rcosd -
Then,
| A e L[ 220
]P’(R<T):2ﬂ_02 ; dé Odre = Odre ST

The corresponding PDF is obtained by differentiating with respect to r:

T r?/(20%)

pR(T) - o2

We have recovered the Rayleigh distribution, by constructing the rv R =
VX2 +Y2 where X,Y ~ N(0,02).
The derivation of the distribution for © is trivial. Recall that © = tan=!(Y/X).

Then,

L@ )/0%) gy,

2mo?

PO < 0) =

{(z,y)| tan~* (y/z) <0}
Transformation to polar coordinates gives:

6 [e’e) 1
PO <0) = / d@/ drize_ﬂ/(%z)r.
0 0 2ro

The integral over 7 can be solved with the substitution w = r?/(20?), dw =
rdr/o?. Thus, our CDF is:

6
IP(@<0):1/ ="
0

2w 27
where 0 € [0,27]. The PDF is that of a uniform distribution:
1
0) = —
p@( ) o’
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(X,Y)~N(0,1)

Figure 2.11. Scatter plot of the ordered pairs {(X;,Y;)};2 %, where

X;,Y; ~N(0,1) are all independent.

with 0 € [0,2r]. Thus, R is Rayleigh whereas O is uniform. This can be seen
in Fig. 2.11, which is a scatter plot of the pairs (X,Y"), where X, Y ~ N (0, 1).
This plot was generated in MATLAB as follows:

>> X=randn([1 10000]); Y=randn([1 10000]);
>> figure;plot (X,Y,’.b?);title(C’ (X,Y)"N(0,1));
>> set(gca,’fontsize’,16);

The distributions of R and O can be plotted by taking the pairs (X,Y’) and
generating R, ©. Histograms of R and © are shown in Fig. 2.12. It can be
seen that R is Rayleigh and © is uniform. These plots were generated in
MATLAB using the following commands:

>> R=sqrt(X. 2+Y."2); theta=atan(Y./X);

>> figure;hist(R,50);

>> set(gca,’fontsize’,16);

>> title(CR=(X"2+Y"2)~{1/2}");

>> figure;hist(theta+pi/2,50) ;set(gca,’fontsize’,16);
>> title(’\theta=tan"{-1}(Y/X)*);

Problem 25. The median of a finite list of numbers is the “middle” number,
when those numbers are listed in order from smallest to greatest. (A set of
an even number of observations has no distinct middle value and the median
is usually defined to be the arithmetic mean of the two middle values.)

(a) Prove that given a random sample z1,...,x, (take n as odd, so there is
a middle value) of a rv X, the median is the value x5 that is the middle
data point in the ordered list of the random sample.
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R=(X2+Y2)12 6=tan"1(Y/X)

600 250

15 2
(@ R (b) ©

Figure 2.12. Histograms of R and O, as generated from a sequence of
rv’s {(Xi, Vi) 1120 where X;,Y; ~ N(0,1) are all independent.

(b) Explain the relationship between median and mean. When would you
use one vs the other?

Solution. (a) The median is defined as the value w5 satisfying:

Z50 1
/ p(z)dr = 3

—0o0

Substituting the empirical distribution

p(z) = % Z Sz — x;),
i=1

into the definition of median:

1 750 1 & 1
- = /_oo n;a(x e =~ (nf2),

i.e. for this integral to equal 1/2 it must evaluate to (n/2)/n = 1/2. In
other words, half the terms in the summation contribute. Which terms?
The integral is over the range (—oo, x50], i.e. begins at —oco and ends at x50.
Integration will therefore pick out all the terms labeled x; that are found in
the interval (—oo, z50]. Each term is a Dirac delta function that integrates
to 1. Thus, it is a counter of sorts. Once we have found the midway point
of the ordered list, the corresponding value x5 is called the median.

(b) The median, like the mean, attempts to produce some kind of average of
a random sample. The media ignores the extreme and outlier values since
it only picks the central value. The mean is affected by outliers. |
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Problem 26. We have learned that given two independent rv’s X and Y,
we may form a new rv Z that is the sum of X and Y, ie. Z = X +Y,
and that the probability density of Z is the convolution of the densities of
X andV,ie.

pxyy(a) = /oo px(a—y)py(y)dy

— 00
or in terms of CDFs:

P(X+Y <a) = / / px (z)py (y)dady

{(zy):z+y<a}

_ /_‘: < /_ :ypxwdx) py (y)dy

:/Oo P(X <a—y)py(y)dy

—00
Please note: limits of integration (—oo, 00) should be replaced by the domain
of definition of the rv if different from (—o0, c0).

(a) Suppose that X and Y are independent and let X ~ Uni(0,1), ¥ ~
Uni(0, 1) (uniformly distributed over the interval [0,1]), i.e. PDF is px(x) =
1 for 0 < z <1 and same for py(y). What is the PDF of X + Y7

(b) Show that if X ~ A(u1,0%) and Y ~ N (u2,03) then X +Y ~ N (u1 +
M2, J% + J%)

(c) Suppose that you play 2 lotteries. In the first lottery you either win
$1000 with probability 1/2 or lose (with probability 1/2) and get nothing.
In the second lottery you are guaranteed of winning something; however the
payout is less: the payout follows a Rayleigh distribution with mode equal to
$100. (The Rayleigh PDF is py (y) = (y/aQ)e*‘”z/(Q"z), where o is the mode,
the mean is o4/7/2.). You can assume that X and Y are independent.
What is the PDF describing the total payout from both lotteries? Plot the
PDF. What is the average amount you’d expect to win?

(d) Consider Newton’s law, F' = ma, where m is mass and « is acceleration.
Given the distributions of m and a as A(10,1) and N(10,0.1), respectively.
What is the distribution of F'?

(e) Find the mode of the following PDF, which approximates the thumb
length X in inches in a particular country:

{Zsin (W(Q“;Z)) , 2<x<4

p(x) =
0, elsewhere
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Solution. (a) The convolution is

1 1
px sy (a) = /0 px(a — y)py (y)dy = /0 px(a — y)dy = /O 10,4 (a — y)dy,

where 1 4(y) is the indicator function over the set A. The latter results in an
integral equal to zero unless a—y € [0, 1], or —y € [0,1] —a ory € a+[—1,0].
The overlap between a + [—1,0] and the limits of integration [0, 1] can be
split into 2 regions: a € [0,1] and a € [1,2]. In the first region the overlap
progressively increases; in the second region it decreases. Performing the
integral we obtain the tent function:

1

1 foa dy =a 0<a<l1
px+y(a) = / lpyla—y)dy =1 [ dy=2-a 1<a<2
0 0 otherwise

(c) Let Z = X +Y and px(x) = pod(x — x;) + p1d(z — ), with z; = $0
and z, = $103. py(y) is given to us with o = $100. The PDF of Z is the
convolution (a > 0):

px+v(a) = /O " pxa— y)py ()dy

—/0 [pod(a —y) + p1o(a —y — xw)]%e_yQ/(z(’Q)dy

—2/20%) ) (@7 P0) o (a)?/(20%)

a
:p()ﬁe o2 e 1[xw,oo) (CL),

where o = $100, x,, = $103, p; = 1/2 and py = 1/2.

251

157
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1 1 1
0 500 1000 1500 2000
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The mean value:
o

Ry _Po / W2e—/(20%) 4 +7 0 (a - aw)ac @=L (a)da

_poo-\/> a -f—l‘w) (a/)z/(%?)da/
:poa\/; - —;(5 x 10°)(20 + V27) ~ $562.50
o

which is right about somewhere between the two peaks, as we would expect
the average to be, based on the center-of-mass of this PDF. (We have used
wolframalpha.com to obtain a numerical value for this integral in the last
line.)

(d) Let Z = XY. The PDF of Z is:

pate) = [ h pX@)pY(z/x)ml‘dx (+)

Plugging in the distributions for X and Y: AN(10,1) and N (10,0.1), we
have:

pz(z) = \ﬁ =0 12 / (z—10) /2 —(2/2—10)2/2(0. 12)|i|dx
A proof is:
P(Z<2)=P(XY <2)=P(XY <2z, X>0)+PXY <z X <0)
=PY <z/X, X >0)+PY >2/X,X <0)

:/Ooopx(gg) /ixpy(y)dydx-i—/ooopx(l‘) /Z:py(y)dydw

Differentiating with respect to z, we get the PDF:
0

pe(e) = | oty (/o) pdn = [ pxlapy (o/2) s

—00

= [ px@r (/) e

—00

(e) The mode here can be found by setting the derivative to zero: p'(z) =

0. In the nonzero region 2 < x < 4 the derivative of 7 sin <7r(1'272)) is

p(z) = %2 cos (@) Setting the derivative equal to zero we must solve

w(z—2)

@ = 0. Taking the inverse cosine, =5~ = 5 + km, k € Z, or

COS (

z—2=1+ 2k and x = 3 + 2k. The solution in the interval 2 < x < 4 is
T = 3. |
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Problem 27. The Poisson’s law with parameter a (a > 0) is defined by:
ak
y)
where kK = 0,1,2,.... With a = A7, where X is the average number of events
per units time and 7 is the length of the interval (¢,¢ + 7), the probability
of k events in 7 is

AT ()‘T)k

k!
This equation assumes that A is independent of . If A depends on ¢, the

product A7 gets replaced by the integral ftHT A(§)dE, and the probability of
k events in the interval (¢, + 7) is

P(k;t,¢ +7) = exp {— /tm /\(f)dg] % [/tHTA(g)dg} .

The parameter A is called the rate parameter. A(t) is the rate function.
Suppose that a company manufactures superconducting wire. Upon close
examination of the product on the assembly line, you find that the defect
density along the length of the wire is not uniform. For wire strips of length
D, the defect density A\(x) along the wire length z varies as

1 2
A(@) = 2o+ 5 (M = Xo) (1 + Cos(gx)> AL Ao

Pk events] = e ¢

P(k;t,t+7)=¢e"

for 0 < z < D due to greater wire contamination at the edges * = 0 and
x=D.

(i) What is the meaning of A(x) in this case?
(ii) What is the average number of defects for a wire strip of length D7

(iii) Find an expression for the probability of k defects on a wire strip of
length D?

Solution. (i) Bearing in mind that A(z) is a defect density, i.e., the average
number of defects per unit length at z, we conclude that \(x)Az is the
average number of defects in the tape from x to z 4+ Ax.

(ii) Given the definition of A(x) we conclude that the average number of
defects along the whole wire is merely the integral of A\(z), i.e.,

b b 1 2 Ao+ A
/ /\(x)dx:/ [)\o+(/\1—)\0) (1+Cosm>]dx: othp_q
0 0 2 D 2

(iii) Assuming the Poisson law holds, use the equation with z and Az (dis-
tances) replacing t and 7 (times). Thus,

z+Ax r+Ax
Pl + An) =expl= [ MO0 ([ MO0
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X<y region

x=y line

>

Figure 2.13. Integration in the x < y region.

X

In particular, with x = 0 and x + Az = D, we obtain

-Q
) _ ok
P(k;0,D) = Q =T

Problem 28. Let X and Y be independent rv’s having the exponential
distribution with parameters A and p respectively. (Recall that if rv X
has exponential distribution with parameter A > 0, its CDF is P(X <
r) =1 —e ™M 2 > 0, whose density is dP(X < z)/dz = Xe™**.) Let
U=min{X,Y}, V=max{X,Y} and W = V — U. Find the probability
P(U =X)=P(X <Y). Show that U and W are statistically independent.

Solution. First you should realize that the logical statements U = X and
X <Y mean the same thing. Indeed, U = min{X,Y} less than or equal
to X implies that both X < X (if min{X,Y} = X) and ¥ < X (if
min{X,Y} = Y). The former (X < X) is a trivial statement which is
true at all times. Thus, it can be ignored. The only non-trivial statement
left is Y < X, hence the equivalence of the two statements U = X and
X < Y. If the two statements are equivalent, then their probabilities are
also equal: P(U=X)=P(X <Y).

P(U = X) = P(X <Y) can be computed since it is in terms of X and Y
whose distributions are known. Since P(X <Y) involves both X and Y we
must integrate the joint PDF of X and Y over the set of all points (z,y)
such that z < y is satisfied:

Px<y)- [ pxy (&, y) dedy,
{(z,y)|lz<y}

Let’s integrate along horizontal strips, as shown in Fig. 2.13. Thus,

PO <Y) = [Mdn [ dypy @) = [Cdo [T duox@in ),
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where in the second equality we invoked the statistical independence of X
and Y and wrote the integrand as a product of densities in X and Y. Now,
we invoke the shorthand notation P(X < y) = foy px (x)dz and use the fact
that py (y) = pe " and rewrite this as:
o oo )\
P(X<Y)= / P(X < y)ue Mdy = / (1—eM)pue Mdy = ———.
0 0 Bt A
For w >0, P(U <u,W >w) =PU <u,W >w, X <Y)+PU <u,W >
w, X > Y).17 Thus, there are two terms to calculate. For the first one:

PU<u,W>w,X<Y)=P(X <u,Y >X+w)

= / / pxy(z,y) dzdy

{(@y)|r<u,y>r+w}

u o0
:/ dx )\e)‘x/ dy pe H
0 T4+w

~——
,e—uy};j_w

= /u e M Hrtw) gy
0

A
At

and similarly, P(U < u,W > w, X >Y) = ﬁ“ue*)‘w(l — e~ mu) | Hence,
for 0 < u < u+ w < oo, we have an expression which factorizes into
the product of a function of u with a function of w. Hence U and W are

independent:

e Hw (1 _ e—()\—HL)u)

A
P(U < u, W > w) = (1 — e~ AFTHu) (He“w + )\ie)‘w> .
1 1

Problem 29. A coin is flipped n times. The outcome is a rv X, which can
take the value heads or tails (X = heads or X = tails). For n measure-
ments, there are n such rv’s (and corresponding results): Xi, Xo,..., X,.
The coin is possibly biased. Therefore, the probabilities of each outcome
are not necessarily 1/2. Instead they are given in term of a parameter
—1/2 < 6 < 1/2 quantifying the bias:

P(X = heads) =1/2+ 6, P(X = tails) =1/2— 0.

(a) Explain how the numerical value of the bias parameter, 6, can be de-
termined experimentally (empirically) by flipping the coin several times, i.e.

I7Since the two events {U<u,W>wX <Y}and {U < u,W > w,X > Y} are mutually
exclusive whereas the event {X <Y} U{X > Y} is always true. Recall that two events A and B
are mutually exclusive if there is no overlap: AN B = 0.
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find an explicit formula for én, the estimator of 6, in terms of Xq,...,X,,.
Show that, under specific circumstances, 8,, converges to 6 in probability,
i.e. show that P(|0,, — 0| > ¢) — 0, as n — oo for any € > 0.

(b) Denote the number of times where you get heads as the result by H (and
H is a rv, because its value may differ each time this experiment is done).
Write down an explicit expression for H in terms of the experimental data.
Find the mathematical expectation of H.

(c) Find the variance of H. For which value(s) of € is the variance a mini-
mum? A maximum?

(d) Calculate the “signal-to-noise ratio” of H. Explicitly give the depen-
dence of SNR on n.

(e) For a fixed value of n, find the conditions for which the SNR is 1) infinite
and 2) undetermined/undefined. Give a physical explanation of those two
different situations.

(f) Find the limiting (n large) distribution of H.

Solution. (a) The probability P(X = heads) can be determined by count-
ing the number of heads, i.e. let fi be the empirical probability

1
Jo = E Z; 1{X¢:heads}7
1=

where 1(x,—peadsy €quals 1 if X; = heads and 0 otherwise. Taking the
mathematical expectation we get

Efy = % ;El{Xi:heads}a
where
El{x,—heads} = Z P(X; = heads) = P(X; = heads)
{zi:w;=heads}
Therefore (the X; are iidrv, with the same distribution as X),
Efy = P(X = heads).

By the law of large numbers (LLN), fg converges to P(X; = heads) as n
increases. Now, since P(X = heads) = 1/2 4 6, which is also equal to Efy,

we take our estimator 6 to be:
1 « 1
On = (n z; 1{Xi:heads}> - 5)
1=

which implies that 6, converges to P(X = heads) — %, as n increases. How-
ever, P(X = heads) — % is also equal to 6, by the LLN. Thus, 6,, — 6.
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(b)

n
H = Z 1{Xi:h6ads}
i=1
where 1x,—peads €quals 1 when X; = heads and 0 when X; = tails. Taking
expectation value:

n

EH = El{y,—heaasy = Y _ P({Xi = heads}) = > (1/2+6) = n(1/2+0).
=1 =1

i=1

(c) Variance:

n

UCLT(H) = Zvar(l{Xizheads}) = ZE[(l{Xi:heads})Q] - [E(]-{Xi:heads})]2
=1 =1

=n(1/2+6) —n(1/2+ )2
since (14 Xi:heads})z = 1{x,—heads}- The variance reaches a maximum when
¢ = 0 and a minimum when 0 = £1/2.

(d) Find the dependence of SNR on n:

n(1/2+6) .
Vny/1/4 — 6?)
(e) SNR is undetermined when § = —1/2 (probability of heads=0). 1) SNR
is infinite when 6 = 1/2 (probability of heads=1).

(f) By the CLT, the limiting distribution is Gaussian. The mean is n(1/24-6)
and variance is n(1/2 + 60) — n(1/2 + 6). [ |

SNR = N

Problem 30. Consider a die which is unbiased. (a) You roll the die once.
What is the probability of getting a “1” vs a “477?
(b) You roll the die twice. What is the probability of getting a total of
“2” (i.e. “1” on both trials) versus the probability of getting a total of “7”
(“Total” means you add the two results together.)

(c) You roll the die 10,000 times and record the results. What is the prob-
ability distribution of the mean (i.e. the mean of all the results), its first
moment and variance?

Solution. (a) 1/6 and 1/6

(b) 2: 1/6 times 1/6 = 1/36

7: 6 times 1/6 times 1/6 = 1/6

() by the CLT the distribution converges to the normal law, A'(3.5, 2 /10000),

where the value of o2 is:
6

o = (wi — p)’pi = 2.917
=1
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Problem 31. What power of ¢ (time) does the root-mean-square displace-
ment in a 1D random walk depend on? How does this differ from the case
of ballistic motion. Explain.

Solution. For random walk the root mean square displacement is propor-
tional to v/t whereas for ballistic motion it depends on ¢t. The v/t dependence
can be explained by the large number of “back-and-forth” steps in the ran-
dom walk. |

Problem 32. Consider the normal (Gaussian) distribution with parameters
wand o2 ie. let X ~ N (u,0?). Show all calculations.

(a) Calculate moments of all orders (n =0,1,2,3,...) for X.
(b) Calculate the central moments of all orders for X.

(c) Define a new function K(t) = logE(e!X), and Taylor expand K(t) in

powers of ¢:
oo

tn
Kit)=>" fin—.
n=1
Find a general expression for the coefficients .
(d) Define a new function M (t) = exp(K(t)). Show how the moments can
be obtained from M (¢) in terms of the k,’s.

(e) Show how the density of X, p(x), can be constructed from a knowledge
of the statistical moment, or from the central moments, or from the x,,’s.

(f) Explain why the method in (e) of reconstructing p(z) is important from
an experimental science standpoint.

Solution. (a) The moments of odd orders are all zero because the integral of
an odd function (n-th moment of X, where n is odd) times an even function
(Gaussian PDF) vanishes because the integrand is odd. On the other hand,
the moment E(X"), where n is even are non-zero. They are calculated as
follows:

E(X") :/ ! e~ (@=W)?*/20% 4n dz,
R

2mo?

a2 (n—11 /x
/0 e "y = SnfaFIgn2 \/;

for n even. The result is:

where we use

E(X") =d"(n— 1.
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The first few moments are:

order moment central moment
n=1 W 0
n =2 uQ + o o2
n=3  u®43uc? 0
n=4 pt + 6p2o?® + 30 30"
n=>5 [L5 + 1(),u3cr2 + 15,ua4 0

see https://en.wikipedia.org/wiki/Normal distribution#Moments
(b) See solution to (a).

(c) Expand e'X = 320, tll),(l and take the average, Ee!X = Y20, tiEE!Xi).
On the other hand, take the exponential of K (t),

i X 1 (S ¢ 2 1 (& ¢ ’
K@) _ >l knay — Lo v - L
MO = 123 (gﬁ,n,) v (gn,> L

We can now identify the like powers of ¢ (let u, = EX"):

tl 1 = K1 n1 = K1
t2 /2 = Ko /2 + K3 /2 o = Ko + K3
t3:3/6 = K3/6 + K1k /2 + K3 /6 13 = k3 + 3K1Ko + K5

This can be “inverted” to give:
R1 = M1

K2 = f2 — M%

K3 = pi3 — 3pzpn + 24}

(d) M(t) = E(eX) = EY 2, #X1/il = 32 #E(X?)/il. The moments are
obtained by differentiation with respect to ¢ and setting ¢t = 0:
d?"

C=E(XT) = Mt
o =BT = o100
(e) Consider the quantity E(e!X),
0 trﬂr 00 .
M(t) = Z = E(e!) = / ep(z)da.

r=0 -
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We can solve for p(x) by invoking the inversion formula:

1 y+iT 1 y+iT 0o
— lim e **M(s)ds = — lim / e st {/ eszp(x)dx] ds.
g

271 T—o0 ~—iT 271 T—o0 —iT —c0

00 T
= 2i Tlim / / V@@= () dzdr.
T1lT—=00 ) _oJ—-T

Then integrating over 7 and invoking &(z — a) = 5= [*_e!@=0)tqt:

—0o0

o

= / @8z — t)p(x)dz = p(t).
—0o

(f) This is important because if we know all the moments, we can reconstruct

p(x). The moments can be estimated from experimental data. |

Problem 33. The scores in a chemistry class from 2016 were as follows
(out of 100):

40.311 33.386 44.142 65.631 41.066 47.051 42.322 50.752 30.730 28.777 50.885
45.143 29.997 34.107 31.045 39.684 25.157 38.825 41.838 35.716 26.620 44.827
50.506 63.251 32.622 59.843 56.967 50.783 51.961 39.746 50.895 36.447 26.660
49.376 29.302 37.166 33.532 33.627 34.030 34.816 52.107 58.384 50.539 37.568
39.806 54.394 42.399 40.042 47.231 21.915

(a) If the course policy is to assign 'A’ grades to the top 10-percentile of the
class and 'F’ to the rest, how many students obtained an F?

(b) Draw a histogram of the exam results.

(c) Calculate the mean, standard deviation and median of the exam and
indicate those quantities on the histogram. (Explain how those quantities
are calculated from the data.)

(d) In units of standard deviation (o), how far is the 10-percentile from the
mean?

(e) Reconstruct the PDF of this rv X (score), using the numerical data.

(f) Suppose that the 2017 scores were:

59.378 102.006 54.660 39.713 61.877 46.731 17.570 45.646 71.654 19.959
58.948 57.506 78.838 31.859 20.175 31.766 39.408 41.096 31.092 52.754 53.712
67.778 66.991 37.362 57.768 72.032 48.005 78.559 46.742 84.157 66.175 90.976
72.627 40.335 19.464 60.673 51.911 34.235 35.143 39.269 48.814 83.537 50.505
40.340 47.480 58.682 72.354 56.195 74.103 50.013
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20 30 40 50 60 70

Figure 2.14. Histogram.

Plot histogram and calculate distribution parameters. Are these scores sig-
nificantly different from those of 20167 (Why/why not?)

Solution. (a) The top 10-percentile is called the 90th percentile, and is the
value of zgg such that

Z90

/ p(z)dz = 0.90.

—0o
Numerically, there is a function in MATLAB called prctile that will com-
pute this for us. I get 55.68 for the above data. This means that all scores
below this get an 'F’; we count 45 of those.

(b) See Figure 2.14.

(c) Mean = 41.679 (use formula for sample mean), std = 10.372 (use formula
for sample standard deviation), median = 40.177 (order the numbers and
pick the middle one).

(d) In MATLAB, we simply type (prctile(d,90)-mean(d))/std(d) and
obtain 1.3500.

(e) From the raw data we can calculate the moments of the distribution:

r raw moment central moment
1 41.679 9.4502 x 1071
2 18425 105.43
3 8.5908 x 10* 325.47
4 4.1974 x 10° 2.6805 x 104
5  2.1355 x 108 2.0898 x 10°

and using the inversion formula, we can obtain p(x).
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(f) The mean/std are 53.371 £+ 19.136. Compare this to 41.679 + 10.372.
These two numbers are not significantly different because their error bars
overlap considerably. |

Problem 34. Prove, using the law of large numbers, that the histogram of
a rv X converges to its PDF, p(x).

Solution. Let X have CDF F(x). Let X1, X»,..., X, be a random sample
of F. Define the indicator function 1(_ ,j(y) to be equal to 1 if y <z and

zero otherwise. Then,
x

E1 (o0 (Xi) = / p(z;)dz; = P(X; < x) = F(x).

— 00

For each n, the histogram of the random sample is:
1 n
Fn(l‘) = ﬁ Zl 1(—00,&:] (Xl)
1=
Its expectation value is:
1 n
i=1

It then follows from the law of large numbers that F,,(z) converges to F(x).
If the CDF's converge, the PDFs also converge. |

Problem 35. Prove, using the law of large numbers, that the empirical
distribution of random variable X, p(x) converges to its PDF, p(x).

Solution. The solution is identical to that of Problem 34. The empirical
distribution p(z) = £ Y- | §(x — ;) has the empirical CDF:

p(z)dx = %#{z cxy < x},

ng@:/

—00

xT

where #{i : x; < z} denotes the number of data points x; satisfying the
condition x; < x. Let’s denote the random variables as X; and x;, their
corresponding values. Since n data points are used to construct this CDF
let us denote it as Fj,(x). Its expectation value is

1 1
EFy(r) = —E#t{i: X; <a} = EEZ 1(oo0)(Xi) = F(2),
=1

where F(z) is the CDF of p(x) and #{i : X; <a} = > 1 2)(Xi). Tt
then follows from the law of large numbers that F,,(z) converges to F(z).
Since the CDF's converge, the PDFs also converge, as the PDF is obtained
from the CDF by differentiation. |
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Problem 36. Consider the weak law of large numbers (WLLN): Let X,
Xs,... be iidrv with mean p and variance 0% < co. Then, (1/n) Y7 | X;
converges to u in probability.

(a) Prove the WLLN.

(b) Hlustrate it using a numerical example, i.e. choose € > 0, generate
random sequences X1, ..., X,, compute the sample mean X, record this
value as mj. Generate a second random sequence, and obtain the sample
mean as my. Repeat this process many times (r times) and plot a histogram
of the sample means (mj,ma,...,m;). Then increase n and repeat this
process. You should now have several histograms as function of n. Then
plot the probability P(|X,, — u| > €) as a function of n and show that it
converges to 0 as n increases. Since we are dealing with experimental data,
the probability should be calculated empirically:

_ 1 <
P =11l 2 ) = =" L, iz
j=1

. o 1 C o
where 1}, > is an “indicator function”, i.e. equals 1 when |m; — u| > €
and equals 0 otherwise.

Solution. (a) Weak law: let X, = (1/n)(X1 + X2 + -+ + X,,), var(X,) =
(1/n®)n - var(X1) = 0%/n, and T, = 254 Then,

P(| X, — p| > € :/ pr(xy) - pn(zp)dzy .. day,
{(@1,0n)|[Tn—p|>€}

= 2
Tn —
= /{I [>e} (@mpl(xl) """ Pn(zn)dey ... day,
Tn—H|Z€

— 2
Ty —
S / (62//L)p1(l‘1) ..... pn(z‘n)dfﬂl e dmn

X 2
:71)@7“(2 n) = 702 — 0 as n — oo.
€ ne
This completes the proof of the WLLN. The first inequality is justified be-

cause [T, — p| > €, and therefore, 1 < @, and consequently (squaring

both sides), 1 < E"E%F The second equality is justified because the integral
is everywhere non-negative. Therefore, extending the region of integration
from the restricted set {(z1,...,%n) : |Tn — 1| > €} to the whole space R"
leads to an upper bound. This proof assumes the existence of the variance
0'2 of Xl

(b) There are many possible solutions here. Here is mine. I used this code
in MATLAB to generate the random numbers and required plots:
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Figure 2.15. Law of large numbers illustrated.

1 m=10000; r=10000;

2 X=10*randn([m,r])+100;

3 for j=1l:r,

4 Xn (j)=(1/73) *squeeze (sum(X(1:3,3),1));

5 end;

6 figure;plot (Xn);

7 figure;hist (X(100,1:100),20);

8 figure;hist (X(10000,1:10000),50);

Here we generated random variables ~ N (100, 100). The first plot (Fig. 2.15)
illustrates the LLN because the arithmetic averages are shown to converge
to the true mean (100) as the number of terms in the sum increases. The
histograms show that with only a few terms, we do not get a nice Gauss-
ian, whereas using 10,000 terms, we get a nice bell curve. (If you chose a
distribution other than normal, these histograms should reflect the chosen
distribution.) [ |

Problem 37. Derive the probability distribution of a biased random walk
(i.e. let p, =1/2+ 6 and p_, = 1/2 — § for some bias 0 < § < 1/2).

Solution. By the CLT, the distribution will be Gaussian, of course. The
mean step size is pu; = EX; = 0(po —p—o) = 0(1/2+0 —1/249) = 206. So
the total displacement
Xiot = X1 4+ Xo + -+ X,
has expectation value
EXtot = 20(571,
instead of 0. (i.e. it “drifts” linearly with time at constant speed 200.)
The variance is var(X;) = E(X; — 11;)? = po (0 — 200)? + p_o(—0 — 206)% =
(1/2 4 8)0?(1 —28)* + (1/2 — §)o?(1 + 26)% = o%(1/2 + 0)(1 — 4 + 46°) +
02(1/2 — 6)(1 + 46 + 46?) = o%[1 — 42]. The total variance is:
var(Xeor) = var(X1) + - - - +var(X,) = 0%[1 — 46%|n,
as opposed to o2n. Thus, the variance is reduced. When § = +1/2 (meaning
steps are always to the left, or always to the right), then the variance is zero
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because the path is no longer random, but instead becomes deterministic.
|

Problem 38. Prove that in 3D the mean square displacement is 6D¢, and
in the general case of d dimensions, it is equal to 2dDt (a direct calculation
of the d-dimensional integral requires the spherical volume element in d-dim,
which includes some Gamma functions).

Solution. In 3D the mean square displacement is

’ :1/ 2 LR P
E(r(t) )_(47rDt)3/2 R3T exp | — 15 d3r
1 5 r2 )

(Do o O iy ) hrdlcos)do

4m /00 rte e dr
= X _——
(4nDt)372 J, P\ "Dt

To integrate this we use the famous result ffooo e~ qy = /7 /a, differenti-
ate wrt a twice: [% wle=0* Az = 3\ /ma=/2,
4m *® y r? 4r 3 5
—_— ———|dr=———-- 4Dt)/? = 6Dt.
(47 Dt)3/2 /0 nep ( 4Dt> "7 (@nDt)3? sVraDy
In the general case of d dimensions, the mean square displacement is:
E(r(t)%) = BE(2? + - -- + %) = 2dDt.

There is no d-dimensional integral needed here, as each ;% contributes 2Dt,
and there are d such terms, for a total of 2dDt. |

Problem 39. Prove that for the Poisson distribution the mean and variance
are both equal to the parameter of the distribution.

Solution. Proofs can be found here:
http://filestore.aqa.org.uk/subjects/AQA-MS03-W-2-SM.PDF
https://proofwiki.org/wiki/Variance_of Poisson Distribution W

Problem 40. Prove that Poisson distribution converges to a Gaussian in
the limit of large n. However, obtain the coefficient of the exponential as well
(the prefactor), making use of the slightly more accurate Stirling’s formula.
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Solution. The calculation we did previously was:

e "pt

n!

=exp{—7n — logn! + nlogn}
=exp{—n —nlogn +n+nlogn}
=exp{(n—mn)+nlog(n/n)}

—exp {(n =)+ ntog 1+ (1)

1

The prefactor Nore recovered by using

n! ~vV2rn (ﬁ)n

e
Now, replace e_Zﬁn by \/21%6(_:)@" = V;rfne_ﬁﬁ"e_”logw“”. This gives the
desired result with the correct prefactor. |

Problem 41. Let X ~ AN(0,1). Generate iid random numbers on a com-
puter (say, 10,000 numbers). Those are the different realizations of X, i.e.

Z1,%2,...,210,000.- Next, consider another random variable, Y.
(a) Let Y = X + 1, so that we now have 10,000 pairs of points: (z1,¥1),
(x2,y2), --., (210,000, Y10,000)- Plot these 10,000 pairs {(z;,y;)} as dots on

scatter plot. Fit a straight line. What slope do you get? From the data,
calculate the sample correlation coefficient. Is Y correlated to X7 Why?

(b) Let X be as previously defined. Let Z be distributed identically to
X, but independent of X. Generate random numbers on a computer to
obtain pairs {(z;,2;)} of random numbers. Define a new random variable
Y =X+Z. IsY correlated to X? Why? (Plot XY pairs on a scatter plot,
fit a straight line, calculate rxy.)

(c) Let X be as defined previously. Let Y ~ N(0,1). Generate random
numbers for X and Y, and plot the resulting pairs {(z;,y;)} on a scatter
plot. Are X and Y correlated? Why?

Solution. (a) Y is correlated to X (r = 1). On a scatter plot, we should
see a perfect straight line (no deviation from it).

(b) cov(X,Y) = cov(X, X + Z) = cov(X,X) + cov(X,Z) = var(X) = 1,
hence » = 1. Here on a scatter plot there will be random deviations from a

straight line due to Z. However, fitting a straight line will still give a slope
of 1.

(c) Totally uncorrelated, since X and Y are independent. (Scatter plot looks
random.) [ |
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Problem 42. Choose a distribution we have not used in class. Fix (choose)
the parameters of the distribution. Let X be a random variable distributed
accordingly. Calculate the mean and variance of X analytically (i.e. using
the distribution function). Use a computer to generate random numbers
according to the distribution of X. (How do you generate such random
numbers?) Plot the histogram of X, compare to the PDF or PMF of X (plot
both on the same graph). Calculate numerically the mean and variance of
X (using the random numbers you generated). Compare to the true values
of mean and variance obtained from the PDF or PMF.

Problem 43. Let X be the result of rolling a die. Generate n random
numbers on a computer and obtain the random sample X7, Xo, ..., X,. Take
the arithmetic average: X,, = %Z?:l X;. Plot X,, versus n. What do you
conclude? What theorem does this exercise illustrate?

Solution. This illustrates the law of large numbers. See the article for the
plot:
https://en.wikipedia.org/wiki/Law_of_large numbers |

Problem 44. Let Y be a Poisson rv with parameter A\. Prove that Y can
be written as the sum
Y=X1+Xo+ -+ Xy,

where X; are independent identically distributed rv’s, also with the Poisson
distribution. What should be the lambda parameter of the X;?

Solution. Let’s do the case of two rv’s. Let Z = X + Y where X and Y
are Poisson, with parameters A and p, respectively. Then the PMF of Z is:

e A\ e HpFT 67()\+,u) i AN
P(Z:Z):; z! (z—ux)! T E_%(a))\u

Thus, Z is also Poisson, but with mean A + p. This can be extended to n
Poisson variables. Their sum will also be Poisson. If Y = X7 +---+ X, has
parameter \, then each X; must have parameter \/n. |

Problem 45. Let X1,...,X,, be a sequence of independent random vari-
ables with CDF’s F,, (X; has CDF Fj, i = 1,...,n). Let X be a random
variable with CDF F. The sequence X, is said to converge in distribution
if the CDF’s converge pointwise, i.e.,

lim F,(z) = F(x),
at all points x for which F' is continuous.

(a) Show that convergence of the CDF’s also implies the PDF’s. i.e. let f;
be the PDF of independent rv’s X; (i = 1,...,n) and f be the PDF of X.
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Prove that convergence of the CDF’s implies:
Jim fo(2) = f(2)
for all x.

(b) Prove that the sequence of independent rv’'s X; ~ N (1/n,1) converges
in distribution to a standard normal random variable.

Solution. Since

1 1 1]? a?
Eexp (—2 [m — n} ) — exp (—2> :
it follows that X,, converges in distribution to X AN (0, 1). [ |
Problem 46. Let X,, ~ N(0,1/n) and let X = 0. Prove that for any € > 0,
P(|Xp| > €) — 0

as n — oo. This is an example of convergence in probability, i.e. P(|X,| >
€) — 0 implies that X,, converges in probability to X (=0), since P(|X,,| >
€) =P(| X, — X|>e).

Solution. First we note that P(|X,| > €) = P(|X,|?> > €2). The latter is
the integral:

y ay

{z2>€?} {z2>€?}

Problem 47. Let X; be iidrv with uniform distribution over the interval
[0,1]. Take the sum S, = X; + X9 + --- + X,,. Find the distribution
of X,, analytically (i.e. find its CDF and PDF). Show numerically (i.e.
by generating random numbers on a computer) the histogram of S,, from
n=1,2,...,10. What do you conclude?

Solution. This is straightforward and will be left as an exercise (simply
generate random numbers in MATLAB to construct S,, and plot using
the hist function). S; has the uniform distribution. S has the “tent”
distribution. etc. whereas S, for large n looks more and more Gaussian as
n increases, thanks to the CLT. Convergence to a Gaussian is very fast and
does not require n to be very large. |

Problem 48. Suppose that X has a PDF, p(z) = 1 sin(z), where z € [0, 7],

and equals zero elsewhere. Calculate its mean and variance. Calculate its
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skewness and kurtosis. Compare skewness and kurtosis to those of a normal
distribution (with same mean and variance).

Solution. We will do the first two moments (others are obtained similarly):

™

E(X) = /O7T %sin(a:)a:dx =5

2 2 2 4
Those results can be obtained from WolframAlpha by typing:
integrate x*x(1/2)*sin(x) from O to Pi
integrate ((x-Pi/2)72)*(1/2)*sin(x) from O to Pi |

E(X — T2 = /Oﬂlsin(x)(:c ~ T y2dy = 2(r2 — ).

Problem 49. Let X ~ N(0,1). What is the distribution of Y = X3 + 57

Solution.
Vy=5
PY <y)=P(X3+5<y)=P(X < ¢y—5) = ——e
V27

It is also ok to calculate its PDF by differentiating the above CDF with
respect to y, making use of the Leibniz formula. |

—2*/2qy.

Problem 50. Calculate the mean and the variance of a random variable X
distributed according to the PDF:
v

A= e

Solution. For the mean we have an integral of the type (set v =1, u =0
without loss of generality, since I analyze the “tail” of the function here):

0 1
/ 3 xdx
oo T4+ 1

When z is large, this integral behaves like [1/x ~ log(x), which diverges
with z. Thus, the mean does not exist. For the variance, we have an integral

of the type
/ xdxw/dxw:r%oo
|

which also diverges. Thus, it has no variance. |

Problem 51. The probability of & successes in n trials is (k = 0,1,...,n,
0<p<1):

P(k successes) = (Z)pk(l —p)"*.

B is a random variable distributed as such. Prove that B has mean np and
variance np(1l — p).
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Solution. Seehttps://en.wikipedia.org/wiki/Binomial distribution
|

Problem 52. Suppose that you have a string instrument (e.g., electric
guitar) whose strings, when plucked, behave like oscillators. The potential
energy of the string is modeled by an anharmonic oscillator which consists
of the sum of quadratic and quartic terms:

V(z) = az® + ba'. a, b non-negative constants

The potential V is transferred to kinetic energy, which is then measured by
the guitar’s pick-up coils and sent to the amplifier. The noise statistics of
V are important for the design of the guitar amplifier circuits.

If the position x (z: extension of the center of the string from its equilib-
rium position) is measured experimentally using an interferometer whose
instrument noise is known to be normally distributed with mean y and vari-
ance o2, what would you expect the noise statistics of V' to look like? (i.e.
find the probability distribution of V') Note: you can assume there are no
temporal correlations in the noise.

(a) When b = 0 and a is nonzero (no anharmonicity).

(b) When a = 0 and b is nonzero (anharmonic part only).

Solution. (a) When V = az?, the probability of V < v, P(V < v), is:

v

a

]. 2 2
Plaz?® < v) = P(—,/% < 2 < vy — / e~ (@=p1)*/20% 1,
( ) ( \/; \/:) 53

A
a

Differentiating with respect to v gives the PDF, py (v) = dp(gfv):

o~ (VoJa-m?/20% g o~ (Vola-w)?/20% | o~ (/ofatn)? /202

Nowos -@M—(lower limit) = N
(b) When V' = bx? the probability of V' < v, P(V < v), is (imaginary roots
are discarded, because probabilities are non-negative quantities):
(v/b) /4
e~ (@=m)?/20% .

P(ba* < v) = P(—(v/b)1 < 3 < (v/b)1) =
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_ dP(V<wv),

The PDF is obtained by differentiation, py (v) AT

e (/D) i—p)2/20%

V2mo? “dv

(v/b)}/* — (lower limit)

1 e (@/DYi=)2/20% | (/) /4 4p)? /202

R V3272 hl/4

Problem 53. The joint density of X and Y is

pxy(z,y) = {

Another rv Z is independent from X and Y and has the same distribution
as X. (a) Find the covariance matrix of the vector (X,Y, Z). (b) Calculate
the first two moments of a new rv that is the sum of all 3, i.e. X+Y +Z. (c)
Compute cov(X,Y + Z). (d) Compute the covariance matrix of the vector
(X, X+ZY+2).

2 fo<z<y<I;

0 otherwise.

Solution. (a) Let v = (X,Y, 7). Then, since Z is independent of X and
Y, we can immediately put 0’s in a few places:

cov(X,X) cov(X,Y) cov(X,Z)

cov(v,v) = |cov(Y,X) cov(Y,Y) cov(Y,Z)
cov(Z,X) cov(Z,)Y) cov(Z,7)
)

var(X) cov(X,Y) 0
= |leov(Y,X) war(Y) 0
0 0 var(Z)

For var(X) and var(Y), we need the marginal PDFs:

1
px(x) = / pxy (2, y)dy = / 2dy =2y[I, = 2(1 — x).
{yelo,1]|y>a} x

y p—
py(y) = / pxy (z,y)dz = / 2dz =2 2,25 = 2y.
{zel0,1]je<y} 0
where 0 < z,y < 1. Using the marginal PDFs,
1 1
1
EX :/ xpx (z)dx :/ 22(1 —z)dx = 3
0 0

1
var(X) = /0 (x — é)2px($)d$ = li

1
EY = / ypy (y)dy = / y2yde =
0
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1
var(v) = [ =37y = 5.

Finally, for cov(X,Y’) we use the joint PDF:

1 1
cov(X,Y):E(X—EX)(Y—EY):/O dx/ (m—é)(y—gﬁdy

/11<1 30)2(1 — 2)dx =
= — — o — X xr = —.
0 9 36

The covariance matrix is:
1

& &0
18 36
cov(v,v)= |5 & O
0 0 15
(b) First moment:
2 2 4
m1:E(X—l—Y—l—Z):EX—FEY—i-IEZ:Q]EX—i-EY:g—Fg:g

Second moment:
me =E(X +Y +2)2 =EX? +EY? + EZ? + 2EXY +2EY Z + 2EX Z.
Since Z is independent of X and Y and has the same distribution as X:
my = 2EX? + EY? + 2EXY + 2EYEZ + 2EXEZ.

where .
1
EX? = / 222(1 — z)dz = =
0 6
! 1
EY? = / y?2ydr = =
0 2
1 1 1 1
EXY:/ da:/ a;y2dy:/ (z —23)dz = =.
0 T 0 4
Therefore,

= 2.

W —
W =

1+2
3

[SSR )

0. 1 lio iy
mo = - — — R .
2 6 2 4

(c) By linearity, and independence of Z from X:
1
cov(X,Y + 7Z) = cov(X,Y) + cov(X,Z) = cov(X,Y) = 36
(d) Let v=(X,X 4+ Z,Y + Z). The covariance matrix is:
var(X) cov(X, X +7) cov(X,Y + Z)
cov(v,v) = |cov(X + Z, X) var(X + Z) cov(X +2,Y + Z)
covY+Z,X) covlY +Z, X+ 7Z) var(Y + Z)

var(X) cov(X,X)+cov(X,Z) cov(X,Y)+cov(X,Z)
= | cov(X,X)+cov(Z,X) var(X+2) cov(X,Y ) +cov(X,Z)+cov(Y,Z)+cov(Z,Z)
cov(Y, X )+cov(Z,X) cov(X,Y)+cov(X,Z)+cov(Y,Z)+cov(Z,Z) var(Y+2)
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Since Z is independent of X and Y, this simplifies to:

1 1
var(X) var(X) cov(X,Y) 18 T18 36
= | wvar(X) var(X) cov(X,Y)+var(Z) | = % 1—18 3—164—1—18
cov(Y,X) cov(X,Y)+var(Z) var(Y) T i_i_i 1
36 36 ' 18 18
1 1 1
rw oy
36 36 18
[ |
Problem 54. The covariance matrix of the vector (X,Y, 7) is
cov(X,X) cov(X,Y) cov(X,Z) 2 0 1
cov(Y,X) covY)Y) cov(Y,Z)| =0 4 -1
cov(Z,X) cov(Z)Y) cov(Z,Z) 1 -1 4

(a) Calculate the variance of the rv X +Y + Z. (b) Compute cov(X,Y + Z).
(c) Compute the covariance matrix of the random vector (X, X +2Z,Y + Z2).

Solution. (a)

var(X+Y +Z) =cov(X+Y+Z, X +Y+7) =2+44+4+14+1-1-1= 10.
(b)
cov(X, Y +Z)=cov(X,Y)+cov(X,Z)=0+1=1.
(c) Let v=(X,X+Z,Y + Z). Then,
cov(X, X) cov(X, X + 7Z) cov(X,Y + Z)
cov(v,v) = |cov(X + Z,X) cov(X+Z,X+Z) cov(X+Z,)Y+Z)
covY+Z,X) coo(Y+Z,X+Z) covY +2Z,Y + 2)

cov(X,X) cov(X,X)+cov(X,Z) cov(X,Y)+cov(X,2)
= | cov(Z,X)+cov(X,X) cov(X,X)+2cov(X,Z)+cov(Z,Z) cov(X,Y)+cov(X,Z)+cov(Z,Y )+cov(Z,Z)
cov(Y, X )+cov(Z,X) cov(Y,X)+cov(Y,Z)+cov(Z,X)+cov(Z,Z) cov(Y,Y)+2cov(Y,Z)+cov(Z,Z)

2 2+1 0+1 2
={1+2 242(1)+4 O0+1+(-1)+4| = |3
140 0+ (-1)+1+4 442(-1)+4 1

B 00
=

Problem 55. Distribution of the sum of two random variables. (a) Prove
that the sum of two discrete and independent rv’s (e.g. X + Y, where
X and Y are independent) has distribution function (PMF) given by the
convolution of two PMFs (one for X, one for Y), i..e,

k
P(X+Y =k) =) P(X=DPY =k-1).
=0
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Let X and Y be two independent rv’s. X is Poisson with parameter 2. Y is
Poisson with parameter 3. (b) Find the expectation and the variance of the
sum X +Y. (c¢) Find the probability mass function (PMF) of the rv X +Y.

Solution. (a) Let Z =X +Y (X and Y are independent), then

r+y=~k

k
=Y P(X==z,Y =k—ux)
=0

k
=Y P(X =2)P(Y =k —x)
=0

(b) For Z Poisson with parameter \, EZ = var(Z) = \. Thus, EX = 2,
EY =3 and E(X+Y) =EX+EY = 2+3 = 5. Next, we have var(X) = 2,
var(Y) = 3 and since X and Y are independent, we have var(X +Y) =
var(X) +var(Y) =2+ 3 =5. Then,

k f)\Ax ef,ululkf:r

P(X+Y:k):;)x!(k_x)!

-0+ Bk
_¢€ z, k—x
k! Z) (m) Ah

e~ AT (N 4 p)k
- k!
and the sum of two Poisson rv’s is also Poisson with additive parameters
A+ . Therefore, X +Y is Poisson with parameter 2+3=>5. The distribution
isP(X +Y =k)=e 2 /k! for k=0,1,2,.... [ ]

Problem 56. X, Xs,..., X, are independent rv’s, such that X is Poisson
with parameter 2, j = 1,2,...,n. Find the expectation, the variance and
standard deviation of the variable:
X +Xo+---+ X,

n

Solution. If Z is Poisson with parameter A\, EZ = var(Z) = X. Here, X;
is Poisson with parameter 2. We have EX = E1 i Xj =000 lEX; =

Y:

__ ~d=ln
1p.2 =2 Since X1,..., X, are independent we have var(X) = #var(Xl +
Xo++Xp) = S (var(X1)+- - +var(Xp)) = Hn2=2andog = /2. B

Problem 57. Let X ~ N(0,1) and Y ~ N(0,4) be independent rv’s. What
is the conditional density of Z = X +Y given X = 3 (i.e. under the condition
X =3).
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Solution. Recall that the sum of two independent Gaussians is also Gauss-
ian with additive means and variances. Since Z = X 4+ Y we have that
Z given X = 3 has the same distribution as 3 + Y given X = 3. Since
Y is independent from X and 3 +Y ~ N(3,4) this yields that the rv
Z|X =3 ~N(3,4). Thus, pzx=3(2) = ﬁ exp(—z(z — 3)?). [ ]

Problem 58. X1, X»,..., Xy are iidrv’s with X; ~ N(0,4), j =1,...,10.
Find the conditional density of X7 under the condition X1+ Xo+---4+X19 =
3.

Solution. We have Y = X5+ X3+ -+ X319 ~ N (0,9-4) = N(0, 36). Using
the definition of conditional probability

P (:Cl) — thXl-‘rY(:Elag) _ le,Y(ZE1,3 — :L‘l)
X1]X14+Y=3 le+Y(3) le+Y(3)

Since X7 and Y are independent, we have

px,y (21,3 — 1) = px, (x1)py (3 — 1)

1 1 9y 1 1 9
= exp(—=(z ——exp(——= 3 —= .
/5= P (1)) g el (8 = )
We also have X14+Y ~ N (0,10-4) and px, 4+4(3) = \/;07 exp(—g53?). Finally
we find that pX1|X1+Y:3(x1) = \/27:178/5 eXp(—2'118/5 (1‘1 — 03)2) ]

Problem 59. Exercise on conditional expectations: (a) By applying the
above definitions, check the trivial case E(X|X) = X. Here, X is a random
variable, i.e., E[X|X](w) = X (w). (b) Check also that E[Y|X]| = E[Y] when
X and Y are independent. Here, E[Y] is the random variable taking the
constant value E[Y] for any w, i.e. E[Y|X](w) = E[Y](w).

Let X ~N(0,1) and Y ~ N(0,4) be independent rv’s. Let Z = X +Y. (c)
Compute E[Z]|X = 3] (expectation value calculated using the conditional
density of Z under the condition X = 3). (d) Calculate E[Z|X].

Solution. (a) First let’s check that E[X|X] = X. First we start with
E(X|X = 2'), whose definition is E[X|X = 2] = [2px x—.(z)dz. Notice
that px x—(x) = d(x — 2’) is the only possible PDF (i.e. the probability
that X = z given that X = 2/ can only be non-zero iff z = 2/). Hence,
E[X|X = 2] = 2/. Replace 2’ by X and get E[X|X] = X.

(b) To prove E[Y'|X] = E[Y], we write py|x—.(y) = p‘;ig’)x) = pY](Dy;’(’;‘)(z) =
py (y) since X and Y are independent. Then, E[Y'|X = z] = [ ypy|x—p(y)dy =
[ ypy (y)dy = E[Y]. Therefore, E[Y|X] = E[Y].

(c¢) From Problem 57 we have already calculated the conditional density of Z.
Using that density, we get that E[Z|X = 3] = 3. (d) Conditional expectation
is linear: E[Z|X] =E[X +Y|X] =E[X|X]+E[Y|X]=X+E[Y]=X. &
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Problem 60. Let Xi,..., X be iidrv with X; ~ N(0,4), j = 1,...,10.
Let S = X; + -+ + Xj0. (a) Calculate E[X;|S = 3]. (b) Calculate E[X|S].

Solution. (a) Using the conditional distribution obtained in Problem 6,
we get E[X1|S = 3] = 0.3. Another solution: by symmetry, for j =
1,2,...,10 we get E[X|S = 3] = E(X,|S = 3). Hence 10E[X ]S = 3] =
S EXS = 3] = Y0 EIXGlS = 3] = E[Y;2, X;1S = 0] = E[S]S =
3] = 3. Hence E[X ]S = 3] = 0.3. (b) In a similar way as in (a), using
symmetry we get E[X;|S] = S/10. [ |

Problem 61. Choose a space craft pilot in the nearest galaxy at random
and call N the number of accidents during a year for this pilot. The number
of accidents N depends on another random variable, P, which quantifies
the pilot’s skills. The number of accidents given some skillset P = p has
Binomial(4,p) distribution, i.e., N|P = p ~ Binomial(4,p). The parame-
ter P among the population of pilots has P ~ U([0,1]) (uniform distribu-
tion). (a) Find the marginal distribution of N. (b) Find E[N|P]. (c) Find
EN.

Solution. (a) The marginal distribution of N reads as

B =) = [ B =nlp == [ () rap

for n = 0,1,2,3,4 (this may be calculated explicitly but it is a bit time
consuming). (b) N|P = p ~ Binomial(4,p) we have E[N|P = p|] = 4p thus
E[N|P] = 4P. (c) We have EN = E[E[N|P]] = E[4P] = 4EP = 4 [ p-1dp =
4% 2 p— —9. B
Problem 62. Let X be a random variable with the following distribution
function (PMF):

P(X =1)=0.2
P(X =2)=0.3
P(X =3)=0.3
P(X =4) = 0.2

Find EX, EX?, the variance and skewness.

Solution. The mean is:
E(X)=1%02+2%03+3%03+4%0.2=25
Second moment:
E(X?) =1%02+4%03+9%0.3+16%02=7.3
Variance:

02 =var(X) =E(X?) — (EX)? =7.3—-(25)2=1.05
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Skewness:
E(X —EX)3
o3
025 (1—-25)2+03%(2—-25)3403%(3—-25)3+0.2x%(4—25)% 0
(1.05)3/2
[

Problem 63. A random variable X has binomial distribution B(3,0.4). See
https://en.wikipedia.org/wiki/Binomial distribution

Find P(X = 0), P(X = 2) and P(X = 10). Calculate the standard deviation
of X.

Solution. Variance is npq, where p = 0.4 and ¢ = 1 — p = 0.6. Thus,
npqg = 0.72. Standard deviation is the square root: 1/0.72 ~ 0.8485. The

PMF is
(e
P(X =0) = <3>p0q3_0 = 37!(0.4)0(0.6)3 = 0.6 = 0.216
0 0!(3 —0)!
P(X =2) = (3) P2 = 37!(0.4)2(0.6)1 =0.288
2 21(3 — 2)!
P(X = 10) does not exist since 10>3. [

Problem 64. Let X be Poisson with parameter 4. For which value k =
0,1,... does X attain the greatest probability? Calculate or estimate P(X <
3) and P(X > 5).

Solution. For £k =0,1,... we have P](P)((;i:)l) = ei4:ﬁ;£%f€f)! = kiﬂ' Thus,
P(X=k+1) o P(X=k+1) _ P(X=k+1)
m>1fork—0,l,2,m—lfork—?)andm<lfor

kE=4,5... and we have P(X =0) < P(X =1) < P(X =2) < P(X =3) =
P(X =4) >P(X =5) >.... X attains with the greatest probability values
3 and 4.

[ |

Problem 65. Find the value of the constant ¢ such that f: R — R,
() 0 ife<l
xTr) =
P & ife>1

is a bona fide PDF of a continuous rv X. Calculate P(X < 2), P(X = 2),
P(X € [2,3]). Compute EX? and EvX.
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Solution. We calculate 1 = [% px(z)dz = [[° Sdz = [[Fca?dz =

c% = o-H = c(—é —(—1)) = ¢(0+ 1) = c. Therefore, ¢ = 1.
Wehave[P’(X<2) 12 da:_f“’;dx: 1\f Lo (=hH=1
P(X =2) = f22pX(:U)d = 0, P(X € [2,3 f2 px(z)dz = f3 Lda =
(—%) g = —% — (—%) = %. Next, we calculate EX? = ffooox px(z)dx =
flooxzx%dx = a;\fo = oo — 1 = oo, thus EX? does not exist. EvX =
[e9) 00 0o 2—3/2+1 |
Joo e Pox(@)de = [[F 2l hde = [[Fa7Pde = Ty ) =0- —p =
2, thus EvVX is finite. [ ]

Problem 66. Compute the fourth moment of the normal random variable.

Solution. Solutions can be found at:
https://arxiv.org/pdf/1209.4340.pdf
https://www.le.ac.uk/users/dsgpl/COURSES/MATHSTAT/6normgf . pdf
Integrals can be computed explicitly. Let I;(a) denote:

Ii(a) uke v/ 2dy

vl

The k = 0 case is given in terms of the standard normal CDF:

Iy(a) = e 2dy =1— d(a)

7w

The k =1 case is obtained by direct integration:
- ue™ "2 dy = b {e_UQ/Q}OO = L6_‘12/2.
a

:wlz?/ T Vo Vor

The k = 2 case is obtained by integration—by—partS‘

1 2 2
2 e U /2d —u /2 / e U /2
m/ “Von [ue * Van du
———ae "2 ¢ (1—®(a))

Il(a)

IQ(I

These are solved using integration by parts For k£ = 3, we can also integrate
by parts:

1 & 1
IS(U/) :\/72771_ U36_UQ/2dU = \/7/' - /2] du
1 2 —u2/2 o / —u2/2
=—-—=|u’e + 2— du
V2T {
1

_ 2 —a?/2 1 —a?/2
=——a‘e + —2e
V2T V2T
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For k = 4, we have

1 o
Iy(a) ﬁ/ ute v 2dy = %/ u3 ue‘“Q/Q] du
= — u367u2/2 *u /2 du
\/27‘(‘ {

The last integral was already solved in the k = 2 case. Substltuting that
results gives:

1 2 1 2
Ii(a) = ——a*e /%2 +3 [aea 124 (1-®(a ]
We are, of course, interested in the limit a — —oo. For a normal N (u,0?)

rv we simply make the substitution u = “”TT“ and use the above formulae.

Specifically,

e~ (@ —p)?/20? dz
/ vV 271'0

The substitution u = , du = dx/o:

o 1
EX4 = / (O"LL + ,U)4\/767u2/2du
oo P

Expanding
(ou+ p) = p* + o*ut + 403udp + 60%u%p? + 4pdou
gives

EX* [u4 + otut + 403 p + 6020 + 4u30u] e 2 dy

1
N V 2 /—oo
=1t 1o (—00) 4 0 I4(—00) 4 602 p? Iy (—00) + 4p’o I; (—o0)
=p* + 0% 3+ 60%u% + 4p20 - 0 = pt + 30 + 60212

The fourth moment of the normal distribution N(u,0?) is: p* + 6p20? +
304, |

Problem 67. Find the formula for P(X > ¢) of X and the CDF of X when

X has the PDF:
() 0 ifz<xl1
xTr) =
P 2 fe>1

Solution. The CDF is P(X <t) = fﬁoo px(x)dz. For t < 1 we have 0 since

_ t
the PDF is zero in that region. Fort > 1, P(X <t) = [{ Zdz = 2277 ;jj
2(%—%) 1— 2. Finally, (X>t)zl—P(th)zlfort<1and

L fort > 1. [ ]
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Problem 68. Let rv X be Erlang-distributed with parameters 2 and 5, see
for details:

https://en.wikipedia.org/wiki/Erlang distribution
Find the formula for P(X > t) of X and the CDF of X.

Solution. Erlang(2,5) distribution has PDF 52ze~>". Then, [ze 5®dz =

Ja(=te™)de = - zte™ 4+ [2/te™™de = -tze ™ + 1 [e5%dx = -
Type - 5%6*533 =- 3= 5(52+1). Fort > 0, P(X > t) = [ 25ze 5dx =

25 [° we5dx — e (5x + 1)‘;; = 0+ e (5t +1) while for t < 0 we have
P(X >t) = 1. The CDF of X is P(X <t) =1—P(X > t), which equals 1
for t <0 and 1 — e (5t + 1) for t > 0. [ |

Problem 69. Let the rv X have the following PMF (k =1,2,...):
1 1
P(X=k)=— —
( ) Kt (k+1)4

Find the CDF of X. Compute P(X > k) for k =0,1,2,....

Solution. For k = 1,2,... we have P(X < k) = Y P(X = i) =
Y (RN T G N T S M g
Now, for any t € R we have P(X < ¢) = 0 for t < 1. Also, P(X <
)y =PX < [t]) =1- m for t > 1. To calculate P(X > k) for
k=1,2,... wewrite P(X > k) = 3%, P(X = i) = 3.0, (%—ﬁ) -

1 1 1 1 _ 1
BT DT T DT (A T T R =

Problem 70. Let (X,Y) be a pair of continuous rv’s whose joint density is

1
pxy(T,y) = 5101 ()12 (y),

where 1 4(x) is the indicator function of the set A, i.e.

1 fze A
1h(x) =
Al) {0 otherwise

Find the CDF of the vector (X,Y).

Solution. Let s > 0, t > 0. The CDF is:

L[ ! SAL(EA2
PX <sY <1)= 2/0 Lo (w)dx/o Ljo,2)(y)dy = ()2()

where u A v is the minimum of v and v. |

Problem 71. The joint PMF of (X,Y) is
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L ly=1]2 [3 |
X=0]02 [01]0
1 o1 |o3]o0
2 o o |o3

Find the marginal probability mass functions of X and Y. Find the condi-
tional probabilities P(X = 0Y = 1), P(X = 1]Y = 1), P(X =2|Y = 1),
P(X =0]Y =2),P(X =1Y =2), P(X =2|Y =2).

Solution. The definition of conditional probability is P(A|B) = P%,’?g?). To

calculate
P(X=0,Y =1) 02

2
Py =1 03 3
where P(Y =1) =02+0.1+0=0.3 and P(X =0,Y = 1) = 0.2. Other
conditional probabilities are calculated similarly. We find:

P(X =0]Y =1) =

POX= 1Y =1)= 22 =2
0
MX:mYZQZS?:?
mxzmyzngézg
MX:HY:%:O§:4
P(X =2y =2) = 5 =0

Problem 72. The random vector (X,Y) is uniformly distributed over the
following region in the 2D plane:

D= {(z,y) R :a? +4* < 2}
i.e., the joint PDF is

1
pXY(xvy) = 71D(-T,y) =

% if 22 +92 < 2;
27 0

if 22 492 > 2.
Find the marginal densities of X and Y.

Solution. We apply the formula

oo 1 (o9}
px(z) = / pxy (@, y)dy = o 1p(z,y)dy
For # < —/2 and = > +/2 we have 2% + y? > 2. Thus, 1p(z,y) = 0
and px(z) = 0. Assume that z € [-v/2,v2]. We have 1p(z,y) = 1
iff y € [-v2—22,v/2 — 22] and otherwise 1p(z,y) = 0. Then, px(z) =
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Nome o
= 2 1p(z,y)dy = = 321671@/ = 12— 22, Similarly, py (y) = 0 for

y < —v2and y > V2, and py(y) = £1/2 — ¢? for y € [-v2,V2]. u

Problem 73. Prove that X and Y, whose joint PDF is defined in Prob-
lem 72, are statistically independent. Calculate the covariance between X
and Y.

Solution. Using the marginal densities obtained in Problem 72,

px(z) = 1v/2 —a? for x € [-V2,V/2]
py (y) = 14/2 —y? for y € [-V2,V2],

and

27 0 ifz?4+y%>2.
D ={(z,y) € R?: 2% +3* < 2}

we find that pxy (z,y) # px(z)py(y). Thus X and Y are not statistically
independent. The covariance is defined as

cov(X,Y) = E[(X — EX)(Y — EY)] = E[XY] — E[X]E[Y]

Via direct computation:

1 [ e 1
E[XY] :%/ dx/ mle(x,y)dy:%//nydxdy

V2—z2

1 = ifa?+y? <2
pxy(z,y) =1D($,y)={27r HEy s

1 2
=5 dz / xy dy
T .J-2
/252
1 /2?1 ) )
=5 _2:135[(2—:6)—(2—3:)]&6:0

Also, we have that E[X] = 0 and E[Y] = 0 since their marginal densities are
symmetric. Therefore, cov(X,Y) = 0. This is an instance of two random
variables that are statistically independent but uncorrelated. |

Problem 74. Let X and Y be rv’s whose joint PMF is given by:

| [Y=1]2 [3 |
X=0]02 [0.1]0
101 [03]0

2 0 0 |03

Compute the covariance and correlation matrix of the random vector (X, Y).
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Solution. Let X = (X,Y’). The covariance matrix is:

cov(X, X) cov(X,Y)| _ E(X — ux)? E(X = pux)(Y — py)
cov(Y,X) cov(Y)Y)|  |E(Y — py)(X — px) E(Y — py)?
The correlation matrix is the covariance matrix whose entries are normalized

(see correlation coefficient):

cov(X) =

E(X_2#X)2 E(X—pux)(Y—py) 1 E(X —px)(Y —py)
o oX0yYy ox0o
corr(X) = E(Y*#Yﬁxﬂix) E(Y —py)? [E(YHY)(XHX) Xl v ]
oxOy o2 oXxO0y

Computing the matrix elements:

ux =EX =04+2%x03=1
py =EY =1%(0.24+0.1) +2%(0.14+0.3) +3 % (0.3) =2
0% = E(X—pux)? = (0.240.1)%(0—1)*4(0.14-0.3)%(1—1)?+0.3%(2—1)? = 0.6
? =E(Y —py)? = (0.240.1)%(1-2)24+(0.1+0.3)%(2—2)240.3%(3—2)* = 0.6

The off diagonal element is:

E(X —pux)(Y —py) =02%(0—1)(1 —2)4+0.1%(0—1)(2 —2)
+01x(1-1)(1-2)4+03%x(1-1)(2-2)4+03%x(2—-1)(3—2)=0.5

Thus, we arrive at:

1 0.5 1 0.25
cov(X) = [0'5 0 ] , corr(X) = [0'25 1 }

Problem 75. Let rv X and Y have a joint PDF
3 f0<z<y<2
pxy(z,y) = .

0 otherwise

Are X and Y statistically independent? Compute the correlation matrix of
the random vector (X,Y).

Solution.

o] o] 2 2 1 1 2 2
EXY :/ (/ :Eypxy(:v,y)dy> dz :/ </ 2dy> dz = 2/ T (/ ydy) do
—00 —00 0 x 0 T
1
4

1/21”:2 1/2 ) 1 /? 5 1, 1 ,]72
=— | z=y*|' “dr=- x(4—w)d:v=/(4m—:n)dm: (4d=x* — —x%)

2 0 2 y=z 4 0 4 0 2 4 =0
1 1

=—(2-22-2YH) =1.

4 4
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Next,

R - /“ ([ partean) e [o([ S as=t o [ r0)a
1 1

o] [e’s) 2 21 1 2 2
R I e Ty
—00 —00 0 x 0 T

1 /2 1 [2 1 /2
- y=2 - 209 _ _ - 2 .3
—2/0 Yly—y do = 2/0 x*(2 — x)dx 2/0 (22° — z°)dz
1 LA\ 11, 1.\ 2
We also have
2 Y1 1 2 Y
EY = / </ pxy(m,y)dw>dy=/ y(/ 2dx> dy:2/ y(/ 1d$>dy
0 0 0 0

1 [2 11 o 1 4
_ - xyd _ = 2d _ — 31Y :723:7
2/0y z)y—o dy 2/0y Y Y=o 3

and

2 <y > 2 2 Y1 1 [? 2 v
EY” = Y pxy(z,y)de |dy= [ y dx dy=5 [ y ldz | dy
—0o0 —00 0 0 2 0 0

1 (%, ey 1 [? 11 yy=2 1.4
= x| Y dy = = dy = == -2 =2
2/0y ly—o dy 2/OyyMyyo 3

Then,
cov(X,Y EXY — EXEY
p(X,Y) = X
X0y VEX? — (EX 2\/IEJY2 — (EY)?
1— 24
— 33

@ R

and the correlation matrix of (X,Y) reads

il

Since p(X,Y’) # 0 the variables X and Y are dependent. [ |

Problem 76. There is a bridge in Durham, NC nicknamed the “can opener”
bridge. Watch this 10-minutes long compilation:
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https://www.youtube.com/watch?v=USu8vT_tfdw

The meaning of the bridge’s name should be apparent from this video. Con-
sider all oversized trucks shown in the video. The trucks either get through
with significant damage (can opener) or with minimal damage. We consider
2 different scenarios:

(A) While the truck is significantly oversized, the truck driver goes through
anyways, causing the truck to undergo carnage and decapitation.

(B) Truck either follows the sign and turns away, or goes through anyways
and the truck suffers minimal damage (small bump, then backing out) or
barely scraping under (lucky driver).

Count the number of times you observe scenarios A and B. From this data,
assign probabilities for events A and B. Suppose that type A events are
associated with a low IQ truck driver (IQ=60), whereas type B events are
associated with a higher IQ) driver (IQ=140). Compute the average 1Q of
a truck driver in Durham, NC. (Note: This problem is a joke; we are not
implying that truck drivers from anywhere are idiots.)

Solution. Suppose we count 15 severely damaged trucks and 5 mildly dam-
aged ones. The probability of A is

The probability of B is:

5
F(B) = o5 = 0.25

The average 1Q is:
E(IQ) =I1Q(A) -P(A)+ IQ(B) -P(B) =60-0.75 4 140 - 0.25 = 80.
|

Problem 77. Watch 10 minutes of traffic video (preferably traffic that is
not too dense, so you are able to count events). This webcam appears
suitable:

https://www.youtube.com/watch?v=5_XSY1AfJZM

Choose a landmark such as a line on the road. Pick a lane of traffic. Count
the time interval 7 between consecutive vehicles crossing that lane. Plot a
histogram of the time intervals. Compute the average (7). What distribution
does 7 follow? Fit the histogram to a suitable distribution. Obtain the
parameters of the distribution.
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Solution. An example data set is:

o

| I -
I R T NN ]
HEADWAY. ‘Time units of 10°% hours (i e O 36sec).

By inspection of this graph, (1) ~ 4 -10~% hours. The distribution is
called “headway distribution” or gap distribution. The commonly used
distributions include the “displaced exponential” (for low-medium flows)
and “Schuhl’s composite exponential” (for normal-heavy flows) distribu-
tions. |

Problem 78. For the traffic problem (#2) pick a time interval, say 4 min-
utes. Count the number of cars, n, that pass through the intersection/line
(in a given lane) during that time interval. Plot of histogram of n. Find the
distribution of n. Obtain the parameters of the distribution.

Solution. Suppose that we have 180 time windows (each lasting 4 seconds)
and record the following observations (z: number of vehicles arriving per 4
second interval):

x Obs. freq. Total vehicles Probability P(z) Theoretical freq.
0 94 0 0.539 97.0

1 63 63 0.333 59.9

2 21 42 0.103 18.5

3 2 6 0.021 3.8

>3 0 0 0.004 0.8

Total 180 111 1.000 180.0

To get the histogram, we plot the vector of observed frequencies vs . In
MATLAB, we could type

plot([94 63 21 2 0],’0°);

The graph doesn’t quite look like an exponential decay. On the other hand,
a Poisson distribution seems suitable. The probability distribution function
for Poisson takes the form:

mke—m

k!
where \ is a parameter to be derived from the data. Its physical interpre-
tation is the average number of cars per 4-second time interval. Since there
are 180 time intervals in our experiment, and the total number of vehicles

P(k) =
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observed is 111:
B total vehicles 111

- = =617 _
"= Yotal periods 180 0.617; € 539

(0617)" g7 _ (617)"(:539)

P(z) = x! x!

In the above table the column P(x) is the probability calculated using the
Poisson formula. The calculated “theoretical frequency” is equal to 180
P(z). |

Problem 79. For problems 76, 77 and 78 describe the probability space,
the set of elementary outcomes, the random variable and the random events
considered.

Solution. For problem 76, the set of possible outcomes, 2, is the set of all
possible trajectories w € € that a given truck can take (this is best left as
abstract). There are two events considered here: A(w) (high impact), B(w)
(low or no impact). The random variable considered here is the IQ of a
driver: IQ(w), where w refers to a particular truck/driver trajectory.

For problem 77, the set 2 of possible outcomes (w € ) is the traffic flow,
i.e. all traffic scenarios giving rise to all possible gaps between consecutive
cars (or some similar idea). We may consider events of the type {T = t}.
Each of these events has probability zero (since the time intervals/bins have
zero duration), however, for purposes of plotting a histogram we need to con-
sider finite intervals of the form {t; < 7 < ts}. The random variable is 7(w).

For problem 78, the set of outcomes is the same as in Problem 2, since the
physical random experiment is the same (traffic flow). The random variable
is n(w), the number of cars in a given time interval. The events are of the
form {n =z}, where z is an integer value (0, 1, 2, 3, ...). [ |

Problem 80. In probability theory we often use integrals over sets. This is
the same integral as you are used to, but written differently. For example,
the integral of the exponential distribution, e™*, over the set [0, 1] is:

3
/ e ¥dx = / e "dxr = — efx}i’ =e -3 =0318
(1,3] 1

Let A be a set over the positive real numbers. Denote:

Q(A) = /A e vd

Compute:
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(a) Q([5,00))
(b) Q([1, 3] U [3,5])
(¢) Q([0,00))

Solution. (a)

o
/ e fder=—e" go — e % ~0.007
5

3 5 5
/ e dx + / e ¥dx = / e *dx ~ 0.36114
1 3 1

oo
/ e Pdx =1
0

Problem 81. The same can be done for multiple variables. For A C R",
define the set function:

Q(A):/'--/Ad:vld:cg...dxn,

provided the integral exists. For example, if A = {(z1,22,...,2,) : 0 <
x1 < 29,0 <z; <1, fori=2.3,...,n}, then

(b)

()

n 1

17 po2 1 3

Q(A) = / [/ dxl} dzs - [/ dazz} = —=

o LJo ZH?) 0 2

Let B = {(z1,22,...,2,) : 0 < 21 < 29 < -+ < x, < 1}. Calculate the
numerical value of Q(B).

0

Solution.
1 T x3 ) 1
Q(B):/ [/ [/ [/ dxl] d:cg} ...dxn_l} dxn:—'
0 0 0 0 n.
where n!l =n(n—-1)...3-2-1. [

Problem 82. Solve the following problems using set theory:

(a) Find the union C U Cy and the intersection C1 N Cy of the two sets Cy
and Cy, where C; = {(z,y) : 0<2<1,0<y <3}, Co={(z,y):0< 2z <
2,2<y <3}

(b) Find the complement C¢ of the set C' with respect to the space C if
C={(z,y):a® +y* <1}, C = {(z,y) : |z + |y| < 1}.
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(c) Prove, using Venn diagrams, that the following statements are true:
(AN B)° = A°UB°
(AUB)“ = A°N B°
Iustrate with an example. Generalize these statements to countable unions
and intersections.

(d) Consider the space C to be the set of points enclosed by a rectangle
containing the circles C1, Cy and C3. Use Venn diagrams to compare the
following sets:

cCiu (02 N 03) and (Cl U 02) N (01 U 03)

(e) Show that the following sequences of sets, {Cy}, are nondecreasing
(nested upwards), i.e. Cy C Ciqq for k = 1,2,3,.... For such a sequence,
define
lim Cy = Uy C.
k—o0
Take the following sequence:
Cr={(z,y): 1)k <2’ +y* <4—1/k}, k=1,2,3,...

Find the limit limy_,., C}.
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(f) Show that the following sequence of sets, {C}}, where
Cr={x:2<x<2+4+1/k}, k=1,2,3,...,

is nonincreasing. A sequence of sets {A,} is said to be nonincreasing if

Ap D Apgq forn=1,2,3,.... In this case, we define
lim A, =Ny2,A,.
n—oo

Find limk_,oo Ck .

() For every two-dimensional set C' C R?, let Q(C) = [ [ (a* + y*)dzdy.
FC ={(r,y): —1<2<1,-1<y<1},Co={(z,y): -1 <z =y <1},
and Cs = {(2,y) : 2% + ¢y < 1}, find Q(C1), Q(C2) and Q(Cs).

(h) To join a club, a person must be either an idiot or a truck driver, or
both. Of the 35 members in this club, 25 are idiots and 17 are truck drivers.
How many persons in the club are both an idiot and a truck driver? How
will these people fare when they encounter the “can opener” bridge? (Note:
this problem is a joke; we are not implying that truck drivers are idiots.)

Solution. Union is a L-shaped region in the 2D plane defined by the coor-
dinates:

CiulCy={(z,y):0<2x<1,0<y<3orl0<z<22<y<3}
Intersection is a small square
CinCy={(z,y): 0<2<1,2<y <3}

(Notice the equality signs.)
The following MATLAB code can be used to plot the region

x=3*rand ([1 10000]);

y=3*rand ([1 10000]) ;

111=find (x>0 & %<1 & y>0 & y<3);
112=find (x>0 & %<2 & y>2 & y<3);
113=intersect(111,112);
113=union(111,112);

figure;

plot (x(113),y(113),”.7);

axis([0 2 0 31);
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C°={(z,y) : x| + |yl > 1 and 2® +y* < 1}
The following MATLAB code can be used to plot the region

x=rand([1 10000]);

y=rand([1 10000]);
111=find(x.72 + y."2 < 1);
112=find(abs(x) + abs(y) > 1);
113=intersect(111,112);
figure;
plot(x(113),y(113),’.7);

09

0.8

07

06

05

04f

03

02f

0.1

(c) Generalization is:
NierAi = Uier Ai
UierAi = Nier 4;
where [ is some, possibly uncountable, indexing set.
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A

(e) The sequence is nondecreasing since
{(@.y) 1 1/k <2+y® <4-1/k} C {(2,y) : 1/(k+1) < 2”+y® < 4-1/(k+1)}
for all k. The limit is

{(z,y): 0 < 2?4+ ¢® <4}

Note: the equality signs are gone because the end points are not part of the
infinite union.

(f) The sequence is nonincreasing since
{z:2<ae<2+1/k}D{x:2<2x<2+4+1/(k+1)}
for all k. The limit set is:
{r:2<2x<2}

Note: the equality sign remains because the term 1/k > 0 for all k£ (even in
the limit & — o).

()
1 1 8
Q(Cy) = /_1 dz /_1(352 +92)dy = 3 ~ 2.60667

Q(Cy) = //(x2 + y?)dzdy = 0 since the set C is a thin line with zero area
C
R 2m R4
Q(C3) = // (2% + y*)dzdy = / rdr dor? = % — g
0 0
{(zy)|lz?+y2<R?}

(h) 25+17=42. 42-35=7. In all likelihood, the bridge shall open 7 cans of
sardines. |

Problem 83. Let () be the set of elementary outcomes and F a subset of {2,
called “event”. Denote F the collection of all possible events. Technically, F
is called a “o-field of subsets”. Let P be a real-valued function defined on F.
P is a probability set function of it satisfies the following three conditions:

(1) P(A) >0, for all A e F.

(2) P(Q) = 1.
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(3) If {A,} is a sequence of events in F and A,,NA,, = () for all m # n,

then
n 1A Z P

A collection of events whose members are pairwise disjoint is said to be a
mutually exclusive collection and its union is often referred to as a dis-
joint union. The collection is further said to be exhaustive if the union of
its events is the sample space, in which case > >, P(A4,) = 1. We say that
a mutually exclusive and exhaustive collection of events forms a partition
of Q.

Using the above definition of probability:

(a) Prove that for each event A € F, P(A) =1 — P(A°).

(b) Prove that the probability of a null set is zero, i.e. P()) = 0.

(c) Prove that if A and B are events such that A C B, then P(A) < P(B).
(d) Prove that for each A € F,0<P(A) <1

(e) Prove that if A and B are events in €2, then
P(AuB) =P(A) +P(B) -P(ANB)

(f) For a finite sample space Q = {z1,x9,...,2y} with m elements, let
P1,P2,-..,Pm be such that 0 < p; <1fori=1,2,...,mand > ;" p; =1
Construct a probability set function P(A) on F (for all subsets A € F) such
that all 3 above conditions are satisfied.

(g) Let Q = {z1,z2,...,2y} be a finite sample space. Find the set of ele-
mentary probabilities p; for all ¢ = 1,2,...,m such that P(A) = #(A)/m,
where #(A) denotes the number of elernents in A. Prove that P is a proba-
bility on 2.

(h) Let @ ={z: 0 <z < oo}. Let C C Q be defined by C ={z: 0 <z <
10}. Define the function P(A) = [, 2¢=%/2dz for any event A C Q. Show
that P(Q) = 1. Evaluate P(C), P(C*¢) and P(C N C°).
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Solution. (a) We have Q = AU A° and AN A° = (). Thus from conditions
2 and 3 it follows that
1 =P(A) +P(A°)

(b) Take A = () so that A° = . Using the result from (a),
P()=1-P(Q)=1-1=0.
(c¢) Writing B =AU (A°N B) and AN (A°N B) = (), condition 3 gives
P(B) =P(A) +P(A°N B)
From condition 1, P(A°N B) > 0. Hence, P(B) > P(A).

(d) Since ) C A C Q, we have by the results of part (c) that
P0) <P(A) <P(Q)
or 0 <P(A) <1, the desired result.

(e) Each of the sets AUB and B can be represented, respectively, as a union
of nonintersecting sets as follows:

AUB=AU(A°NB) and B=(ANB)U(A°NB).

These identities hold for all sets A and B, according to set theory. (You can
also verify them using Venn diagrams.) From condition 3 we have

P(AUB) =P(A) +P(A°N B)
and

P(B) =P(ANB) +P(A°N B).
If the second of these quantities is solved for P(A° N B) and this result is
substituted in the first equation, we obtain

P(AUB) =P(A)+P(B) —P(AN B).
(f) We can take p; = 1/m and P(A) = #(A)/m. See (g).

(g) Take the equilikely distribution p; = 1/m. Define:
1 #(A
P(A) = Zm:( ),

T, €A m
Then, P is a probability on . It is trivial to check that all 3 condi-
tions are satisfied: P(A) > 0, P(2) = m/m = 1, and for disjoint sets
P(AU B) = P(A) + P(B).
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(h)

o

P(Q) = /000 %e_z/de = [—e_xp]o =0—(-1)=1

Problem 84. You write 3 letters and in a rush, put a random letter in each
envelope. (There are 3 envelopes, 3 letters, 1 letter per envelope.). What is
the probability that at least one letter is in the correct envelope?

Solution. Let C; be the event that the i-th letter is in the correct envelope.
Expand P(C; U Cy U C3) to determine the probability:

P(Cl UCs U C3) = P(Cl) + P(CQ) + P(Cg) — P(Cl N 02) —P(C1 N Cg)
—P(CQ N 03) + P(Cl NCyN Cg)
All pairwise terms P(Cy N Cy), P(C1 N C3) and P(Cy N C3) are zero because

it’s not possible to have only 2 letters in correct envelopes without have all
3. Then,

P(CLUC,UCs) =P(Ch) + P(Cy) + P(Cs) + P(C1 N CaN Ch).

Now the probabilities: There are 3!=6 ways to place 3 letters in 3 envelopes
(order matters). There is 1 way to place letter 1 in envelope 1 (and only
1 way to place envelopes 2 and 3 in the remaining incorrect envelopes).
Therefore P(C1) = 1/6. Same for P(Cy) and P(C3). For the last term,
P(C1 N Cy N C3), we need to know the number of ways we can place all
3 letters in the correct envelopes. There’s only 1 way to do that. Hence,
P(Cl NCyN Cg) = 1/6. Thus,
4
P(Cl UCyU Cg) = 6
|

Problem 85. A random experiment consists of choosing a random number
in the interval (0,1). (This number can be rational or irrational.) For
any interval (a,b) C (0,1) it seems reasonable to define the probability
P((a,b)) = b — a, i.e. as equal to the length of the interval. Choose an
appropriate sequence of subsets of (0,1) and use the following result:

nl;rgo P(C,) = P(nlirlgo Cp) =P(Ny2,Cy)

where {C),} is a decreasing sequence of events (i.e. C,y1 C Cy), to show
that P({a}) =0, for all a € (0,1).

Solution. Construct the following decreasing sequence of events:

Cr={z:a—-1/k<zx<a+1/k}
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You can check that these events are open intervals (a —1/k,a+1/k). Their
intersection/limit is the point {a}:

lim C = N2, Ck = {a}.
k—o0

Meanwhile,
P((a —1/k,a+1/k)) =a+1/k — (a — 1/k) = 2/k.
Taking the limit & — oo, we see that (applying the above ‘result’)
2
P(lim Cy) =P({a}) = lim P((a — 1/k,a+ 1/k)) = lim — =
k—o0 k—oo k—oo k

Therefore, P({a}) = 0. [

0.

Problem 86. Calculate the following probabilities:

(a) Consider a probability space where the set of elementary outcomes is the
interval Q = (0, 1), i.e. a number X (random variable) is chosen at random
within that interval. Define a probability measure over that interval as

P(X € (a,b))=b—a, for0<a<b<l.

Find an expression for the CDF. Derive a PDF from P (or the CDF). Com-
pute the probability that X is less than an eighth or greater than seven
eights. Would it be possible to use a discrete probability model for this
experiment?

(b) In a random experiment we will an unbiased die. The set of outcomes is
Q=1{1,2,3,4,5,6}. Let X be the random variable that indicates the result
(top face of die) of the experiment. X can take the value € {1,2,3,4,5,6}.
Its PMF is p; = 1/6 for i = 1,...,6. Plot the CDF of X, i.e. F(z) vs x.
Recall that the CDF is defined as F(z) = P(X € (—o0,z]). For x < 1 define
F(z) = 0. What is the limiting value of F(x) (i.e. as x — 00)? Using the
CDF, can you obtain the PMF? Explain.

(c) Let X be a random variable representing a real random number cho-
sen between 0 and 1. Obtain the CDF of X. You may assume that
P(X € (a,b)) =b—afor 0 < a < b < 1 Sketch the CDF. Obtain the
PDF. State the connection between CDF and PDF.

(d) Let X be a random variable with the CDF F(z). Then for a < b, prove
that the probability P(a < X <b) = F(b) — F(a).

(e) If X is a random variable and F(z) its CDF, then for all a and b, if
a < b then F(a) < F(b) (F is nondecreasing). Also, it can be shown that
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lim, o F'(x) = 0 (the lower limit of F is 0), limy_ F'(z) = 1 (the upper
limit of F is 1), limg|,, F'(z) = F(x0) (F is right-continuous).
Let X be the half-life of a radioactive isotope. Assume that X has the CDF
0 <0
F(z) = X
1—e™ 0<u.

Obtain the PDF of X. Show that the derivative of the CDF does not ex-
ist at * = 0, but that does not affect our ability to compute probabilities.
Compute the probability that the half-life is between 1 and 3 years.

(f) The conditions expressed at the beginning of problem (e) show that CDFs
are right-continuous and monotone. Such functions can be shown to have at
most a countable number of discontinuities. For any random variable, prove
that P(X = z) = F(x) — F(z—), for all € R, where F(z—) = lim_4, F(2).
This results is not a mere curiosity; it allows us to deal with discontinuities
in the distribution. Recall that for {C,,} a nondecreasing sequence of events,

lim P(Cy,) =P(lim Cp) =P (Uy2,Ch)

n—oo n—oo
Similarly for a decreasing sequence of events,

lim P(C,) =P(lim C,) =P(Ny2,Cy)

n—oo n—oo

(g) Let X have a CDF:

0 z <0
Flz)=qx/2 0<z<1
1 1<z

Compute the value P(—1 < X < 1/2) and P(X = 1) (the value is not zero!).

(h) Let X have the PMF

(2) cx x=1,2,...,10
€T) =
b 0 elsewhere

for an appropriate constant c. Find the value c.

(i) Let X have the PDF

f(x):{cx?’ O<or<?2

0 elsewhere

for a constant c¢. Compute c¢. Compute the probability P(1/4 < X < 1).
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(j) Let @ ={z:1 < x < 2} be the space of X. If D1 = {z:1 <z <4/3}
and Dy = {z :4/3 <z <2}, find P(Ds) if P(D;) = 1/3.

(k) Choose five cards at random and without replacement from a normal
deck of playing cards. Find the PMF of X, the number of hearts in the five
cards. Determine P(X < 1).

Solution. (a) PDF is obtained by differentiating the CDF. CDF is

Fz)=P(X € (O,:):]):/Oxdac:m.

Then PDF is:
1 O<z<l1l
J(@) = {0 elsewhere
1/8 1
PH{X <1/8}U{X > 7/8}) = dr + dr =1/4.
0 7/8

Discrete: no, because the probability P({X = a}) =0 for all a € (0,1).

(b) The CDF is defined as the right-continuous function:

F(z) = Z i
{i:z; <z}

)

where the notation {i : z; < z} means “sum over all ¢ such that z; < z”.
Plotting this function gives a right-continuous function:

F(x)
1.0+ _—

—_

0.5+ —_—

+ I 4
+ t } t
0,0) 1 2 3 4 5 6

The PMF is given to us: {p;}. From the CDF we can obtain the PDF by

differentiating;:
dF(x
1) = TS st — ),

where §(z — x;) are Dirac delta functions. What about the PMF? The PMF
is defined as P(X = z), the probability that X takes a specific value x.

Obviously this is zero unless © = z;, the points where the CDF “jumps”
(discontinuities of F'). The size of the discontinuity gives p;. Formally, the
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probability of x; is obtained by integrating the PDF:
xi+€ x;+€
P(X =uz;) = f(x)dz = lim f(x)dz = lim/ ijé(x—a:j)dx = p;.
X;—E€ ]

{fﬂz} e—0 Ti—e e—0

The PMF can also be obtained form the CDF as follows:
P(X =z;) =limP(z; —e < X <xj+e€) = lim {F(z; +€) — F(z; —€)} = p;.
e—0 e—0

(c¢) Recall that the CDF is defined as F(z) = P(X € (—oo,z]). Since
the domain of definition of X is (0,1), we take 0 instead of —oo as the
lower limit and we make sure that x does not exceed 1. We can take
P(X € (a,b)) = b — a, replace a by 0 and b by x:

0 <0
Fz)=P(X € (0,z]) =<2 z€(0,1)
1 z>1

The graph looks like:

F(x)

14+

'
t
(0,0) 1

The PDF is obtained from the CDF by differentiating:

_dF(z) _

)= =1

where € (0,1). This is the uniform distribution on the interval (0, 1).

(d) Note that
{—oo< X <b}={-00< X <a}U{a< X <b}.

The proof follows immediately because the union on the right side of this
equation is a disjoint union.

(e) The PDF is obtained by differentiating

f(x):dF(x) :{e_"’ 0<z<oo

dx 0 elsewhere
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The derivative of a function F(z) at the point a exists if the limit
lim F(z) — F(a)
T—a (a: — a)

exists.

That limit is also the slope of the tangent line to the curve y = F(x) at
x = a. That limit does not exist when the curve y = F'(z) does not have a
tangent line at * = a or when the curve does have a tangent line, but the
tangent line has infinite slope. In the present case, there is no tangent line
at = 0 because this point is a sharp corner (plot the graph of F'(x) to see).

This is of no consequence when computing probabilities involving X because
P(X = 0) = 0 (see problem f below). Therefore, we can assign f(0) = 0
without changing the probabilities involving X.

Finally,
3
P(1<X<3)=F(3)—F(1) :/ e *dx.
1

(f) For any = € R, we have
~ 1
=0 (5]

that is, {z} is the limit of a decreasing sequence of sets. Hence,

n—o0

P(X—x)—]P’(ﬁ{x—i<X§x}> = lim P(z—1/n< X <x)

lim [F(z) ~ F(z —1/n)] = P(z) - F(a-)

which is the desired result. The difference, F'(x) — F/(z—) measures the dis-
continuity at x.

(2)

P(—1 < X < 1/2) = F(1/2) — F(—1) = % _0-= i
MX:Q:F@-FQ4:1_%:%
(h) 10 10
I:Zp(x) :Zcm:c(1+2+---+10):55c.
=1 x=1

Hence, ¢ = 1/55.
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(i)

Hence, ¢ = 1/4. Also,

1 .3
T 255
Pll/4< X <1)= —dz = —— = 0.06226.
1/ ) /1 4577 4096
(j) The two sets are disjoint, D1 N Dy = (). Since, D1UDy = , the collection
of sets {D1, Dy} forms a partition of Q. Then,

P(D1UDs) =P(D1) + P(D2) =P(Q) = 1.
Hence,
P(Dy)=1-P(D;)=1-1/3=2/3.

(k) Let’s assume a standard 52-card deck. There are 4 suits, 13 cards per
suit. The number of ways to choose 5 cards without replacement, and with-
out regard to order is:

52 52!
= —— =2 598, 960.
< 5 > (52 — 5)!5! U

First we consider the case X = 1. The number of ways to choose a heart is

(113). Cards 2-5: number of ways to choose 4 non-hearts is (541). Number of
ways to choose 1 heart, 4 non-hearts:

(D))

PX=1)= () (%) ~ 0.4114

The probability of X =1 is

Similarly, Lo a0
P(X =2) = (2()52()3) ~ 0.2743
()¢
P(X =3) = 3(52)2 ~ 0.0815
(13)5(39)
P(X =4) = ~41512 ~0.0107
(52

P(X =5) = () (o) ~ 0.0005




142 2. Probability

For P(X < 1) we need to consider two disjoint events: {X = 0} and {X =
1}. Then,

P(X <1)=P{X =0} U{X =1}) = P(X = 0) + P(X = 1)

Problem 87. Let X have the PMF

3! 2\T (1\3—=% -
px(z) = T (3)°(3)77 ©=0,1,2,3
0 elsewhere

Find the PMF py (y) of the random variable Y = X2,

Solution. The transformation y = g(z) = x? maps the set {z : = =
0,1,2,3} into {y : y = 0,1,4,9}. In general, y = 22 does not define a
one-to-one transformation. Here, however, it does, as there are no negative
values of z in the set (for z). That is, we have the single-valued inverse
function z = g~ '(y) (not —,/y), and so

3! 2\ V¥ 1\
py(y) = px(Vy) = NOICEND <3) <3> , y=0,1,49

Problem 88. Consider a sequence of independent flips of a coin, each re-
sulting in a head (H) or a tail (T'). On each flip, we assume that H and T are
equally likely. The sample space consists of sequences TTHTHTHTHT....
Let the random variable X equal to the number of flips needed to obtain
the first head. For example, X(TTHTHHT ---) = 3. The space of X is
Q={1,2,3,4,...}. We see what X = 1 when the sequence begins with an
Hand P(x =1) = % Likewise, X = 2 when the sequence begins with TH,
which has probability P(X = 2) = (1)(3) = 1 (assuming statistical inde-
pendence). More generally, if X = x, where © = 1,2,3,4, ..., there must be
a string of x — 1 tails followed by a head. That is, TT---TH, where there
are x — 1 tails in TT---T. Thus, from independence,

o= ()7 (D)= (1) serea

the space of which is countable. Calculate the probability of the event that
the first head appears on an odd number of flips, i.e. X € {1,3,5,...}. Let
Z = (X —2)2. Compute the PMF of Z.

Solution. For the first part of the question,

P(Xe{1,3,5,...}):i<;>2x_1:;g(i)x_l :1_1(/12/4):;

r=1



2.27. Problems 143

For Z = (X — 2)2%, the space of Z is {0,1,4,9,16,...}. Note that Z = 0 if
and only if X = 2. Z =1 if and only if X = 1 or X = 3. For the other

values of the space there is a one-to-one correspondence given by = = /2+2,
for z € {4,9,16,...}. Hence, the PMF of 7 is

px(2) =1 for =0
pz(z) = pX(1)+px(3):g for z =1
JUX(\/i—i-Q):%(%)\/E for z =4,9,16,...
You can show that the PMF of Z sums to 1 over its space. [ ]

Problem 89. Suppose that we have a unit circle and select a point at
random within the interior of the circle. Let X be the distance of the point
to the origin (Euclidean distance). The sample space for the random point
is O = {(w,y) : w* +y? < 1}. If the points (chosen at random) have
equal probability, write down a formula for the probability of the point
landing within an area A contained within the interior of the circle. The
event {X < x} means the point lies in a circle of radius . Compute the
probability P(X < z). Write down the CDF of X. Obtain the PDF of X.
Calculate the numerical value of P(1/4 < X < 1/2).

Solution.
area of A

P(A) =

T

For 0 < z < 1, the event {X < z} is equivalent to the point lying in a circle
of radius z. By this probability rule, P(X < x) = ma?/m = 22. Hence, the

CDF of X is

0 x<0
Flz)=<2? 0<z<1
1 1<z

Problem 90. Suppose that a phone company operates a computerized
switchboard designed to route phone calls across the busy telephone net-
work. Let X be the random variable that is the time in seconds between
(consecutive) incoming telephone calls. Suppose that the PDF of X is

(2) = ie_‘”/‘l 0<z<o0

J(@) = 0 elsewhere

Show that f(x) is normalized (to 1) and that f(z) > 0. Calculate the
probability that the time between successive phone calls exceeds 4 seconds,
ie. P(X > 4). Plot this PDF and illustrate the area under the graph that
corresponds to this probability. Is this distribution skewed? Compute the
skewness of the distribution and explain the value obtained.
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Solution.

0 elsewhere

) = {}Le_%/‘1 0<zx< o0

>

P(X > 4) = / Ze—ﬂc/‘*olx = e 1 =10.3679.
4

|

Problem 91. Obtain the distribution of Y = X2, where the CDF of X is

0 z<0
Fx(z)=<2%2 0<z<l1
1 1<z

Both X and Y have the same support, i.e., the interval (0, 1).

Solution. Let y be the support of Y, ie., 0 <y < 1. The CDF of Y is
Fy(y) =P(Y <y) =P(X* <y) = P(X < \y) = Fx(/y) = V¥ = u.
It follows that the PDF of Y is
1 O0<y<1
fr(y) = {

0 elsewhere

Problem 92. Let X be a continuous random variable with PDF

633
Obtain the CDF of X. Plot the PDF. Compute the 3 quantiles: 0.25, 0.50
and 0.75 for X. Indicate on the graph of the PDF the position of the 3
quantiles. Definition (quantile): Let 0 < p < 1. The quantile of order p of
X is a value &, such that P(X < §,) < pand P(X <§,) > p. It is known as

the (100p)th percentile of X.

Solution. The CDF of X is
F(z) =1+ (1+5e%)"2 — oox < 00,
which is confirmed by differentiation, F’(x) = f(x). The quantiles are
q1 = —0.4419242

for 25%,
g2 = 1.824549

for 50% and
g3 = 5.321057
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for 75%.
W N\

010

0.05
/ /
//

,
/
/

Problem 93. Let fx(x) = 1/2, =1 < x < 1, zero elsewhere, be the PDF
of X. X has uniform distribution within the interval of support (—1,1).

Define Y = X2. Find the PDF and CDF of Y.

Solution. If y > 0, the probability P(Y < y) is equivalent to
P(X? < y) = P(—j < X < V).

Accordingly, the CDF of Y is given by
0 y <0
Fy(y) =4 [V dde =5 0<y<1
1 1<y
|

Problem 94. Let X have a distribution
0 x <0

’”TH 0<z<l1.
1 1<z

Calculate the value P(—3 < X < 1/2) and P(X = 0) (not zero!). Plot
the graph of F'(x). Comment on any discontinuities and on the discrete (or

Fzr) =

non-discrete) nature of the distribution.

Solution.

Problem 95. Compute the following expectation values of X:
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(a) Let X have the PDF

f(x):{4x3 O<xr<l1

0 elsewhere

(b) For z = 1,2,3,4 the corresponding PMF is p(z)=4/10, 1/10, 3/10 and
2/10, respectively. Here, p(z) = 0 if = is not equal to one of the first four
positive integers.

(c) Let X be continuous rv with PDF f(z) = 2z, which has support on the
interval (0,1). Suppose Y =1/(1 + X). Find E(X) and E(Y).

(d) Let X have the PDF
2l—x) O<ax<1
f(w)z{( )

0 elsewhere

Calculate E(X), E(X?) and E(6X — 3X?).

(e) Let X have the PMF

Z =1,2,3
_ 6 x b b
X =
p(x) {0 elsewhere

Compute E(6X3 + X).

(f) Divide randomly a line segment of length 5 into two parts. If X is the
length of the left-hand part, it is reasonable to assume that X has the PDF

J: 0<az<5

f@) = {O elsewhere
Compute the expected value of the length E(X). Calculate E(5 — X). Cal-
culate also E(X (5 — X)) (expectation value of their product). Explain why
E(X(5—X)) #E(X)-E(5—X). In the physical sciences, we often encounter
situations like this where the product of expectation values is not the same
as the expectation value of the product. A famous example is the spatial
dependence of the dipole-dipole interaction, which scales as 1/73. In general,

(1/r%) # (1/r)°.

Solution. (a)
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1 2

2 2u — 2

E(Y):/ ° dx:/ Y7 2 qu=2(1 - log2).
0 1+.T 1 u

[e'e) 1
E(X) = / 2f(z)dz = /O ()2(1 — 2)dz = %

o0 1
E(X?) = / 22 f(x)dx = /0 (H)2(1 — z)dx = é

E(6X +3X?) = 6(%) + 3(1) _5

6 2
(e)
3 3 & 3 : 301
E(6X% + X) = 6E(X?) + E(X) =6 _2°p(a) + Y _ ap(x) = S
r=1 r=1
" 5 1 25 5
BXG-0) = [ aG-a@ =T £ G






Chapter 8

Propagation of Errors

In many experiments we are required to measure basic physical quantities
and derive other quantities from these measurements. The derived quantities
are often obtained from mathematical formulas. If we know the error in the
basic measurements, what is the error in the derived quantities? This is the
topic of error propagation. We shall denote errors in a quantity x as ay,
Az or dz. The notation ¢, is preferred over Az when we refer to small (e.g.
infinitesimal) quantities. We will avoid the notation o, because o refers to
standard deviation. The error «, could be taken as o, but it doesn’t have
to be; hence, the reason we avoid o, here.

Let’s start with some simple examples. Suppose we measure acceleration
and want to know the error in the force, as propagated through Newton’s
law, F' = ma. The average acceleration obtained from repeat measurements
is denoted @ and its error bar is denoted Aa. The maximum value of a is
Umaz = @ + Aa/2 and its lowest value is denoted a,in = @ — Aa/2. The
mass is assumed to be positive, m > 0 and so is Aa > 0. The change in F
is:
oF
AF = Frar — Frin = m(@maz — Gmin) = mAa = (8) Aa.
@/a

where the subscript @ on the derivative indicates that the derivative is eval-
uated at the point @. In a similar way, suppose that we have Hooke’s law
F = k2? and that we measure z. The error in F due to the error in z as
propagated through this formula is:

AF = Fmaa: - Fmin = k(azfmx - x%nm)

149
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to which we add and subtract Z,,q:Tmin:

2 2
AF :k(l‘max — Tpin T TmazTmin — xmaxxmin)

oF
=k(Tmaz + Tmin) Az = 2kTAz = () Az

or )
where Ax = Tyap — Timin and T = (Tymaz + Tmin) /2. Similarly, one can show
that regardless of the functional dependence on z, we will always have:

F
AF = <8> Ax.
oz )

We have only looked at F'(x) with first and second powers of x. If F(x) is
a smooth function, it can be expanded in a power series. Let F(z) = a,a".
Then:

AF = Fpaz — Foin = an(Trpe — Trin) = an[(T + Az /2)" — (T — Az /2)"]

Expanding each term using the binomial theorem:

(x4+h)" =2" +nz"'h + <Z> "R 4
and keeping only the terms that are first order in Axz:
F
— anl20(a/2 B + O8] = () e 0 (50 ) A
r ) —

Since this holds for a monomial a,x™ it holds for any linear combination of
monomials (polynomials) and any smooth function F.

T

Now for the case of 2 variables, we can take F(m,a) = ma and view it as a
function of both m and a. The errors in m and a are denoted Am and Aa,
respectively. Then:
AF = Fmaa} - szn = MmazAmaz — MminGmin-
Adding and subtracting the quantity mmqz@min, we have:
AF =MumazAmaz — MminQmin + MmazAmin — MmazAmin
=Mmaz N + Qmin AT

=(m + Am/2)Aa + (a — Aa/2)Am

oF oF
- (&z)a,m Aat (aml,m am

where we neglected the second-order small quantity AmAa in the last step.
Taking the limit of small Am and Aa and writing dm and da for the corre-
sponding infinitesimal quantities, the formula for error propagation has the

form: 6F (x1,...,2n) = Y iy (g—fzﬁ)iémi. Since 0F and dx; are required to
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be positive, the partial derivatives must be taken positive:

n

5F(x1,...,xn)zz

=1

oF
al’i

61/‘i.

T

This introduction is informal and does not tell the full story. The formula
derived, for example, neglects possible correlations between the random vari-
ables. We will now derive formulae for error propagation slightly more care-
fully while explaining the assumptions made along the way. The method of
error propagation based on partial derivatives predates the advent of modern
computers and is limited to the use of first and second moments of the statis-
tical distributions of the measured quantities. With modern computers we
can utilize knowledge of the full distribution functions to propagate errors
through formulae using Monte-Carlo methods (see Section 3.6). Monte-
Carlo methods paint a more complete picture since all statistical moments
are obtained.

3.1. Single Variable Case
It is best to illustrate the methods of error propagation by way of examples.

3.1.1. Entropy of a Gas. In statistical mechanics the entropy of an iso-
lated system with energy U is given by the Boltzmann formula

S(U) = kg log W(U),

where W is the number of microstates whose energy equals the system’s
energy U. W is also a measure of the volume of phase space. It can be
shown that the entropy of a monatomic ideal gas is:

v (47rmU>3/2 5

S =kpgN log + ikBN’

N

3h? N

where IV is the number of particles, V is the gas volume, U is its internal
energy and h is Planck’s constant. This is called the Sackur-Tetrode equa-
tion. Saturn is a planet made of gas. It has the lowest density of gas (0.69
g cm™3) of any gaseous planet (Jupiter, Neptune, Uranus, Neptune). Its
equatorial radius is 54,445 £ 10 km. Since we know its density and volume
(hence the value of N), in principle you can use the Sackur-Tetrode equation
to obtain a numerical value for the entropy S. What is the uncertainty in
its entropy? Taking V = %mﬁ, we find that:

r 4+ or
r

0S5 = 3kpN log

3.1.2. Black Hole Entropy. Black holes have entropy. In thermodynam-

ics, g—fj = % The energy of the black hole is given by its rest mass E = M¢c?.
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The entropy is obtained by integrating:

dE 887G 47TG 3
S—/T— /MdM— 4hGA’
where A is the surface area of the black hole (81ze of the event horizon),
M?G?

A = 4nr? = 167

4 )
c
with rs the Schwarzschild radius (rs = 2MG/c?) and G is the gravitational
constant. We used the Hawking formula for the temperature of a black hole:
B hed
-~ 8tGMkp’
A solar mass black hole has temperature 7" = 10~® K. A supermassive black
hole is about 1 million solar masses and has 7' = 10~ K. Suppose that

we estimate the Schwarzschild radius, rs, to be r, with an error dr. The
corresponding error in S is:

A
S(r+6r)—S(r+dr) = Mllw(r +6r)% — Mll 7(r)2
Expanding the square, (r + 67)% = 72 + 2rdr + (67)2,
3 3 2
3

Given an error o7 in the value of r, this formula provides an estimate for
the error in S.

3.1.3. Bragg’s Law. Bragg’s law gives the angles for coherent and in-
coherent scattering from a crystal lattice. When X-rays are incident on
an atom, they induce the radiation of electromagnetic waves at the same
frequency, but the angular distribution depends on the lattice parameters.
Crystalline solids produce specific patterns of reflected X-rays. At certain
specific wavelengths and incident angles, we get intense peaks of reflected
radiation (Bragg peaks). This is explained by modeling the crystal as a set
of discrete parallel planes separated by a constant parameter d (Fig. 3.1).

The incident X-ray radiation produces a Bragg peak if the reflections off
the various planes interfered constructively (Fig. 3.2). The interference is
constructive when the phase shift is a multiple of 27 (Fig. 3.2).

This condition can be expressed by Bragg’s law,

nA = 2dsin 6
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[}
-

o\~

- a

Q.I

2.

=]

@

Figure 3.1. Bragg planes in a crystal.

(a) Constructive interfer- (b) Destructive interfer-
ence ence

Figure 3.2. Bragg’s law. Two cases are shown: constructive vs destruc-
tive interference.

The case n = 1 is the first order peak. For structure determination, the
value of A (wavelength of incident radiation) would be known, and we would
measure 6§ and solve for d the lattice constant.

Another possible experiment we could do is determine A from a known value
of d and measured . Suppose we measure 6 and compute A from the Bragg
formula. This is shown graphically in Fig. 3.3, where the error in 4 is denoted
.

3.1.4. Linear Approximation Method. From this, we see that the error
in A is:
£@+ )~ FB)] ~ g |
) = o) — ~ag | =~
A o b1d0 oo

where in the last equality this error was obtained from calculus, by approx-
imating the function f by its first derivative at the point 6.

9
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AN
1.27 A= 2dsin0
Ao, | - —
}\/ X | R
(nm) | Bragg’s Law
A= | | A =1(0)

|

I I

| |

0 / (1] (3'0 60 90 x
0-q, _ Angle
0+a,
Figure 3.3. Error propagation for Bragg’s law.
£0) /
( )/ From calculus:
/
7/
/ df 1
_ P/ Or = 40 Olo Sef
f(0) //
pd o f . o
2 Derivativeis  p
ey J evaluated at P oo
0

Figure 3.4. Method for error propagation in a single variable based on
linear approximation.

This linear approximation is illustrated graphically in Fig. 3.4. This is the
most common method that people use for propagating errors. Another way
to think about it is to view 6 as a random variable that is the sum of a mean
value 6 and a deviation §6: B
0 =0+ 946.
With this decomposition, § is deterministic and 66 is random. Taylor ex-
pansion of f to first order gives:
df )

§f=f(O+50)— f(0) ~d0- <
Here 6 f is a random variable because it is equal to f(6 4 660) — f(6), a func-
tion of a random variable d8. Because J f is random, and its value changes
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f(0) df/dé error (of)

1/6 —1/6% ay/0% = f2ap or |ayf/f| = |ag/b)
exp(8) exp(6) exp(8)c = fa

log 6 1/6 ag/

log, 0 m ap/log10 -6

o" nd"t  [no" Ly or |as/f| = |nag/f)
sin ¢ cos @ | cos 0]y

cosf  —sinf | sin 6|y

Table 3.1. Formulae for propagation of errors in a single variable. This
table can be found in Hughes & Hase’s book.

every time an experiment is run, we can’t immediately use this expression
and call 6f the “propagated error”. We must take the additional step of
computing its variance var(df), which can then be used to obtain the error
(as say, the square root of the variance).

The Taylor approximation term, 66 - % _, is a random variable because 66

is a random variable. % g’ on the other hand, is a deterministic quantity

because it is the derivative of a deterministic function (f) evaluated at a de-
terministic argument (@ is deterministic by definition, because the “mean”
is just a number, hence deterministic).

Take the variance of 6 f and apply the property var(aX) = a?var(X):

var(5f) = (jg)z - var(60).

Because the square root of the variance is the standard deviation, let us take
the error bar ay to be the standard deviation \/var(éf) and similarly for
ap = y/var(60), writing:

df
arF=|—
T
This formula is identical to the one derived in the previous section. As an

exercise, the reader should derive all the formulas in Table 3.1.

Qag.

3.1.5. EXAMPLE: Error in Cosine (Single Variable). This example
can be found in Taylor’s book. Suppose we want to know the uncertainty
in a cosine, i.e. f(f) = cosf, where 0 is a measured quantity. The measured
angle is:

6 =20+ 3°
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Then,
(cos 0)pest = cos20° = 0.94.

and
dcos@

dé
with ap = 3° = 0.05 rad. Note: the formula dcosf/df = —sin @ only holds
if 8 is in radians. Then,

Qcosg = (8in20°) x 0.05 = 0.34 x 0.05 = 0.02

Qlcosh = ap = |sinf|ay (angles in radians)

S0 we report:
cosf = 0.94 + 0.02

3.2. Multi-Variable Case

To avoid references to angles, let us switch notation from € to . Consider a
function f(x) which depends on several variables x = (1, z2,...,zy). The
variables x refer to different physical quantities measured in the laboratory.
For example, suppose we measure the length (L), width (W) and depth (D)
of a rectangular box, each with their own error bars, and we want to know
the volume of the box and its uncertainty. Since V =L x W x D, we will
learn to derive the following result:

() = (5 + ()" + ()"

1% L W D

where «y is the error in V, and similarly for ay, aw and ap. Another
experiment could involve Ohm’s law (V = I R; R, resistance; I, current; V,
voltage). Suppose we measure voltage and current across a device and use

this information to obtain the impedance (R) of the device. The error in R,
ag is related to the errors in I and V, ayy and aj, as follows:

an) \/ (%)2 (fLV)?
( R 1 + v
If the variables are statistically independent, the formula for error prop-

agation takes a particularly simple form. The graphical method is easily
generalized as follows:

0f] = |f(x+dx) — f(X)]
and taking 0., to be the error bars a,, in z; (where o, > 0), ay to be the
error bar in f:

ayl = [f(X+adx) — f(X)]-
Example in 2D:

|Oéf’ = |f(A—|—OéA,B—|—OéB) _f(AaBN
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Thus, if you know f, A, B, a4, ap you can calculate the error bar in f. In
general, this method should be sufficient.

In high dimensional spaces, it is impossible to visualize the function to be
approximated. We can instead use derivatives:

0f] = [f (X + %) = fF(X)| =~

i=1
If you know the derivatives of f, you can use this formula. Consider a
function that adds several independent random variables:

flzi, 20, .. xn) =21+ 22+ - + T
In that case, all derivatives are equal to 1: 0,,f = 1 for all i = 1,...,n.
Denoting the errors in the z; as o; and the error in d f as oy, we find (since
oy > O):
lafl =lar +ag+ -+ o] = o]+ |az| + - -+ |ay.

We can also use the upper bound:

n n

<D
i=1

as our error bar in f. Then, denoting the error bars in z; as ag, (instead of
51‘1)

of
87%51'1

of
83:1' |537z\,

n
gl =D 10if] - e, |-
i=1

3.2.1. Remark: Adding Two Quantities. Consider the case f(z1,x2) =
x1 + x2. One way to get the error in f in terms of the errors in z; and x5
is to add the two error bars:

ol = loa |+ |a,|-
This formula is easily derived using the graphical method:
of of
7& —_—
8%1 “ + 8562
where f = x1 42, az, > 0 and oy, > 0. (Note: we are treating all variables
here as deterministic.)

|O‘f‘ = ’f(x1+aaf1vx2+ax2)_f($1ax2)‘ ~ Qgy| = ‘aw1|+|a$2|7

Another method for obtaining the error bars in f when f(z1,z2) = 1+ is
to add error bars quadratically: oy = v/(az,)? + (0, )2. Both methods are
valid; they simply report different information. The method of adding errors
in quadrature yields a tighter error bound than adding the errors linearly,
ie.

|az1|2 + ’O‘:rz‘Q < ‘O‘x1|2 + |O‘:Jc2|2 + 2|O‘w1||aw2| = (|O‘:Jc1| + |O‘:Jc2|)2-
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You can also see this graphically from the Pythagoras theorem: the hy-
pothenuse /(az, )2 + (ay,)? is always shorter than (or equal to) the sum of
the two remaining sides |ag, | + |z, |-

3.2.2. Derivative Method: Case of Statistically Independent Vari-
ables. As in the 1D case, we view the experimental measurement as a ran-
dom variable x which is the sum of a mean value X (deterministic quantity)
and a deviation dx (a random quantity):

X =X+ 6x.
The Taylor expansion of f(x) about the point X to first order is:

(3.1) 5 = f+ %)~ f) =Y 7

—=dx; + O(|6x?),

im1 9T
where the derivatives are evaluated at the point X. Since dx are random
variables, J f is also a random variable which depends on random variables
ox = (0x1,...,0x,). The dx; are deviations from the point of expansion X.
Again, we view the 0f/0x; as deterministic quantities whereas the dx; are
random. Note: Jf itself is not the error bar. It’s a random variable. Its
value changes every time a new experiment is done. However, an error can
be obtained from J f by taking the square root of its variance.

If the random variables {dx;} are mutually independent, taking the variance
of Eq. (3.1) gives:
n n
var(6f) = Zvar(@if Sox;) = Z(@if)%ar(éxi).
i=1 i=1
Noting that 0x = x — X, and that var(dz;) = var(z;) since constants such
as X don’t affect the variance, we have:

var(sf) = S (0:f) var(xy),
(ap2 = (g )2

or

n

(3.2) (ap)? = (0if) (o).

=1

How is this related to the result of the previous section?

n n 2
S o < (Z 1 l%l) -
=1 =1

I, norm squared 1 norm squared
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f(x1,xa,...)

error propagation

T :|:l‘2
Z1 - X9 Or T1/x2
n
)
x1
km
l.n
T] + X2 — X3+ T4

1T
Z3:Ta

Qy = \/(ax1)2 + (o,)?

Table 3.2. Formulae for error propagation in several variables.

table can be found i

n Hughes & Hase’s book.

The l3-norm gives tighter bounds than the /; norm. Recall: the /,-norm of

a vector 7 is:

(3.3) 12y = (22| + - - + [wnP) 7.
The reader should derive all the formulas in Table 3.2.

Let us work out the first

When f(z1,x2) = 21 £ x9, the partials 9, f = 1 and 0,, f = £1. Thus,

two lines of the table explicitly.

0 = (2 (@ (2

=1 (am)z + (il)Q : (aarz)z = (am)z + (am2)2.

Hence,

o = V/(02,)? + (g,)%

When f = x;1 - 22, we have 0,, f = z2 and 0y, f = x1. Then,

(of)? =

AN AN
(ax) (aa)) +(ax) (022)
{L‘% ' (aﬂfl)Q + .%'% : (a$2)2

Dividing both sides by f? = 2222 gives the result that fractional errors add

() -2 ()

up in quadrature:

We also get the same res

ult for f = z1/x9.
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Figure 3.5. Snell’s law. The angle of incidence (in radians) is denoted
i; the angle of refraction is denoted r.

3.2.3. EXAMPLE: Snell’s Law (Two Variables). This example can
be found in Taylor’s book. Consider light that enters a medium. Let (%)
denote the angle of incidence and (r) the angle of refraction (Fig. 3.5). These
two angles are related by Snell’s law, through the index of refraction of the
medium n (in this case, glass),

sint = nsinr.
We ask what is the error in n given experimentally measured errors in ¢ and
r.

3.2.3.1. Method 1, Using Propagation of Errors Formula. From the previous
lecture, (af)? =31 1 (0;f)*(as,;)?, and n = 3L we have

sinr?
N\ 2 . 2
COS1? SIne - CoSr
@ = (Gr) @0+ (i) (o

Dividing throughout by n?, or equivalently, multiplying by 1/n? = (sinr/sin)?:
ap )\ 2 cosi)? cos T2
(&) = () (@92 + (2 (a2
n sin sinr
3.2.3.2. Method 2, Using Table of Formulas. Using the result for A/B in the

table from the last page of the previous lecture, o, /2 = /(a4 /A)? + (ap/B)?,
and n = sin¢/sinr with A = sini and B = sinr, we have:

Qn Qlsini \ 2 Qsinr\ 2
— = —_— ) +|—),
n sin ¢ sinr
where agjn; = |cosi|a; and agin, = | cosT|a,. Some example numbers are

provided in Table 3.3, for the case where errors in angles are £1°, or 0.02
rad.
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i (deg) r (deg) sini sinr n ﬁjﬁ ﬁjg‘;' £
20 13 0.342 0.225 1.52 5% 8% 9%

40 23.5 0.643 0.399 1.61 2% 4% 5%

Table 3.3. Error propagation through Snell’s law.

Figure 3.6. Resonant circuit.

3.2.4. EXAMPLE: LC Resonant Circuit (Two Variables). Suppose
that we have an LC circuit (Fig. 3.6). Its resonance frequency can be shown

to bel
1 1

fo= - Jic
It is generally difficult to measure L with good accuracy. A better method
is to measure the resonant frequency fo (which can be done using a network
analyzer) and the capacitance C. L is then given by

1
(27 fo)2C”
What about the error in L7
oL | oL |?
where
aL| 1 2L
dfo]  2m2f3C  fo
and
L
(2r f0)202 C
The result is: )
ay, ) Qfy (ac ) 2
) ] i
( L ( fo ) e
LThis is seen by equating the voltages across each lumped element, i.e. jwl = —=, where

JwC?
7 = +v/—1 denotes an imaginary number and w = 27 fo.
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which could also have been derived from the above look-up table formula
with z = kA™/B™ for which

(e ()
z A B /-
3.2.5. EXAMPLE: Generic (Two Variables). This example can be

found in Taylor’s book. Let’s determine the error in ¢ = 2%y — xy?, where
we have measured experimentally the quantities:

z=3.0+0.1 and y=20+£0.1
The “zpes;” value, as usual, is obtained from the reported values:
Qhest = 322 —3-22 =6.0.

For the error, we need the following two terms:

=
ox
9q
dy

Adding the errors in quadrature gives:

ay =/ (0.8)2 + (0.3)2 = 0.9.

= |20y — y?|ae = [12 — 4] - 0.1 = 0.8,

oy = |2* — 2zylay, = |9 — 12]- 0.1 = 0.3.

Therefore, we report:
qg=6.0=£0.9.

3.3. When Variables are Correlated

Previously, we found the following formula for propagation of errors

n
(3-4) (ap)® = > _(0:f)* (),

i=1
where f is a function of n variables, i.e. f = f(x1,x9,...,2,). 0;f denotes
the partial derivative of f with respect to x;. This result relies on the as-
sumption that the different random variables are statistically independent.
However, if the random variables are not statistically independent, covari-
ance

cov(X,)Y)=XY -X Y
enters the picture and an additional term is required to describe the in-
terdependence between the variables. Before we begin, let us remark the
following properties of the covariance, which easily follow from the defini-
tion of covariance:
cov(X, X) = var(X)
cov(X,Y) = cov(Y, X) (symmetry)



3.3. When Variables are Correlated 163

cov(X +Y,Z) =cov(X,Z) + cov(Y, Z) (linearity in the first argument)
cov(aX,Y)=a-cov(X,Y) (linearity in the first argument)

from which you can derive

cov(aX+bY, Z) = a-cov(X, Z)+b-cov(Y, Z) (linearity in the first argument)

cov(Z,aX+bY) = a-cov(Z, X)+b-cov(Z,Y) (linearity in the second argument).

Also useful is the relationship:

cov(a+X,Y)=(a+X)Y—(a+ X)Y =X+ XY ¥ - XY = cov(X,Y),

since additive constants don’t change anything. Slightly more obvious is:

cov(a,Y) =aY —a-Y =a¥ —a¥ =0,

Since cov is linear in both arguments, we say that it is bilinear. Let {X1,..., X,,}
be n random variables. Bilinearity gives:

n
var(z a; X;) Z a;a; cov(X;, Xj) Za var( i)+22aiaj cov(X;, Xj).
i=1

1,7=1 1<J

So taking the covariance of
— f(x N 2
(3.5) 0f = f(X+6x) — f(X) = ; 9,01 + O(0xP%)

with itself to get the variance (the square root of which can be taken as the
error bar):

of . 3f

var(df) = cov(df,0f) = cov 2 pr B,

(af)?

= Z O f)? var(x;) —I—QZ 0i )(0; f)cov(dz;, 0z ;).
(ag,)? 1<j
Note: we neglected terms of order O(|dx|?) and higher.

Recall that éx = x — X and because X is simply an additive constant, we
have that:

cov(0zy, 0zj) = cov(x; — Ty, x5 — Tj)
= cov(x;, x;) — cov(x;, T;) — cov(Ty, x5) + cov(Tj, Tj).
Observe that cov(Z;,Z;) = 0 since both arguments are constant. Also, both
cov(z;,T;) and cov(T;, ;) vanish since one of the arguments is a constant.

This leaves:
cov(0zy, 0z) = cov(x;, ).
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Thus,

n

var(f) =Y _(0if)Pvar(z;) + 2y (0:f)(9;f)cov(wi ;).

i=1 i<j

n

(36)  |(an)? = Y0 (@) +2 3OO Peov (i, ;).

i=1 i<j

diagonal term off-diagonal term

Formula (3.6) differs from (3.4) by the emergence of a cross-correlation term,
2 (9if)(9; f)cov(wi, x;).
1<j
We note that if the random variables {z;} are statistically independent,
cov(z;, ;) = 0, the second term vanishes and the formula reduces to (3.4).

3.3.1. EXAMPLE: case of two variables. Suppose that we measure
mass and acceleration and compute the force according to F© = ma. The
above formula for the error in F' gives:

var(F) = (0, F)*var(m) 4 (0.F)*var(a) 4+ 2(0mF) (9. F)cov(a, m)

The partial derivatives of F are easily computed: 9,,(ma) = a, 0,(ma) = m.
Then,

var(F) = a*var(m) + m?var(a) + 2(ma)cov(a, m)
This can easily be computed from experimental data. Suppose we have
random samples {(a;, m;)}~;. The sample means are:

n n
R 1 R 1
,Ua:*§ Qg Mm:*§ mg.
n 4 n -
=1 =1
The sample variances are:

P2 (0) = —— S (ai— )t G2 m) = —— 3 (i — ).

n—1
=1 i=1

The sample covariance is:

1

covp—1(a,m) = —

Z(ai - ﬂa)(mi - ﬂm)
i=1

We conclude that the formula for propagation of error can readily be used
with experimental data. In the example F' = ma there is no a priori reason
to assume a correlation between a and m. With other models, however,
variables could be correlated.
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3.4. Several Functions of Several Variables

Suppose that f is a vector-valued function, i.e.

bil
- J2
i=177
fm
then, one such relationship holds for all m components f;:

(0,)? =) (05 f:)*(a))? + 2 (Onfi)(9; fi)cov(p, a;),
7j=1 h<j

n

(3.7) var(f;) = Z(ajfi)%ar(xj) +2 Z(@hfi)(ajfi)cov(xh, zj).

j=1 h<j

Of course, when m = 1 this expression reduces to Eq. (3.6).

Now suppose that we have m functions fi, fo,..., fm, each a function of
n different random variables x1,zs,...,z,. In the general case, the differ-
ent fr will be correlated with one another, even if the zi,xo,...,z, are
uncorrelated. The variances of the f; are given by Eq. (3.7), whereas the
covariances are:

cov(fi, f1) = (fs = fe) (i = fi) = 0 fud fi = <Z gi’j > <Z gg{lz >

Ofx 0ft ——
N Z 83}16:@5 zi0Tj,

3,j=1
which leads to:

(3.8) cov(fu, fi) = En: En: (gi’“) (gi) cov(@s, ;).

i=1 j=1

We made use of

Sfi = fu(X +0%) — fr(X) = O

. D, 28z + O(|0x[?),

and neglected terms of order O(]dx|?) and hlgher. If we denote gy = Oy fx
the elements of a matrix G and F' and X the covariance matrices of f and

X, respectively, then:
F =GXGT,
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which can also be written as:

(3.9) cou(f, f) = G- cov(x,x) - GT,

where cov(f, f) = F and cov(x,x) = X. Note: the first derivatives in the
GG matrix are evaluated at the point X. This very simple formula, which en-
codes all there is to know about error propagation, should be the one taught
rather than the one for uncorrelated variables, Eq. (3.4) (Section 3.2.2).
Equation (3.4) is obtained from (3.9) by dropping the off-diagonal terms
(covariances). The use of the covariance matrix should not scare students
because the parameters themselves result from a least-squares analysis, and
in general their covariances, which may be non-negligible, may be obtained
as part of the analysis. We will see in Chapter 8 (specifically, in Sec-
tions 8.7 and 8.7.1) how to obtain the covariance matrix during non-linear
least squares analysis.

3.4.1. Examples Using Matrix Method. We look at a few examples of
how to apply Eq. (3.9). Suppose that m = 1 and f : R®* — R depends on
three variables, f = f(x,y, z), assumed to be uncorrelated. The errors on
x,y, %z are oz, 0y, 0, respectively. Then,

_ (91 9f of

-\ 0z’ 9y’ 0z
2 0 0 af
b <8f of 8f> T2 i
=\ 9790 92 oy 0 By
Oz’ 0y’ Oz 0 0 o %

This gives:

2 2 2
F =var(f) = <g£> o2+ <g£> 05 + <g‘£> o,

Suppose instead that f : R? — R? describes a change of coordinates from
cylindrical to Cartesian, i.e. £ = rcos¢, y = rsin¢ and z = z. Suppose
that the random variables r, ¢, z are uncorrelated. Then,

cos¢ —rsing 0
G=|sing rcos¢ 0
0 0 1
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cos¢p —rsing 0 o2 0 0 cos ¢ sing O
F=|sin¢g rcos¢ 0 0 035 0 —rsing rcos¢g 0
0 0 1 0 0 o2 0 0 1

cosgp —rsing 0 o2 cos ¢ o2sing 0

=|[sing rcos¢p 0 0'5)(—7“ sin ¢) 0'3)7“ cos¢p 0

0 0 1 0 0 o?

z
Then, we conclude that:
< var(z) cov(z,y) cov(zx,z) > < o} cos® ¢+0357”2 sin® ¢ (03_0272) singcos¢ 0 )

cov(y,z) wvar(y) cov(y,z) (Uz_JiTQ) sin ¢ cos ¢ o2 sin? qb—&—airQ cos?2¢ 0

cov(z,x) cov(z,y) war(z) 0 0 o2
z

We see that the errors and correlations involving z are not affected by the
transformation (since z is never transformed). The errors in 2 and y depend
on where they are (r,¢) and on the variances of r, ¢.

3.5. Additive And Multiplicative Systematic Errors

3.5.1. Additive Errors. Systematic errors often appear as an overall shift
of the value we measure, i.e. instead of measuring x we measure ' which is
the sum of z and an offset 4:

¥ =x+6.
Another random variable y is subject to the same systematic drift:
/
Yy =y+0.

Thus,  and y have a common systematic error. Assume that x and y are
independent of each other and independent of 6. The error in ’ is:

var(z') = var(x) + var(d)
and similarly for . The covariance is:
cov(z',y') = cov(z + 8,y + 6) = var(d).
Thus, the covariance matrix for z’,7’ has the random and systematic error

added in quadrature along the diagonal whereas off-diagonal elements are
the square systematic errors:

< var(z) cov(x,y)) _ (Uar(x) + var(s) var(6) >

cov(y,z) wvar(y) var(9) var(y) + var(d)

If the systematic error is constant (i.e. does not fluctuate), then var(d) =0
and 2/, 7y are uncorrelated.

3.5.2. Multiplicative Errors. Suppose instead that the systematic errors
are multiplicative:
=05
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Similarly for y:
Y =0y

We assume that x and y are independent of each other. We also assume
that § is independent of  and y. Then,

var(z') = SQUCLT(l') + 72var(8) + var(d)var(x)
and o

var(y') = & var(y) + g2var(s) + var(d)var(y).
The covariances are:

cov(z,y)=6-2—0-2)(6-y—0-y)=0-26-y—d-x-0-y

=02zy —0x -0y =02-T-J—0-T-0 -5 =var(0)T-7.
The covariance matrix of a’,y’ is therefore:
32var(x)+§2var(6)+var(5)var(x) var(0)T-y
var(8)T-g 52var(y)+§2var(&)—i—va'r(é)var(y)

The amount of fluctuations in § determine the magnitude of covariance
between z’ and y'. If 6 does not fluctuate, var(d) = 0, § is just a number

and this reduces to: L
0 var(x) 0
0 g2var(y) .

There is no longer any covariance between z’ and 3’. As expected, the
errors in z’,3’ depend on the mean value of the scaling factor 4. Since
the multiplicative factor is just a constant, this result could also have been
deduced from the theorem var(aX) = a?var(X).

3.6. Monte-Carlo Method For Error Propagation

3.6.1. Toy Model. Let X,Y ~ N(0,0?) be iidrv’s and z,y their corre-
sponding values. Define the transformation:

r=a?+y2
You may recall this mapping from Section 24 in the context of transfor-
mation to polar coordinates R, © from X,Y ~ N(0,0?), which yielded a

Rayleigh distribution for R and a uniform distribution for ©. For now, let
us focus on error propagation through the function r(z,y). Propagation of

errors gives:
ar\? aor\?
= (o) 2 (5)
or 1 2z B x
Or  2/e2+y2 a?+y?

where




3.6. Monte-Carlo Method For Error Propagation

169

6000

5000 [~

4000 -~

3000 [~

2000 [~

1000 -

Figure 3.7. Histogram obtained via random number generation (Monte-
Carlo) for the error propagation through r = y/x2? + y2, where x,y are
standard normals. The red line is a fit to the Rayleigh distribution.

or 1 2y Yy

dy 222+ y? N VaZ 4?2

Substituting:

2 Y2
_ 2 2
Ir = \/xQ 1207 T3 T2
But since X,Y ~ N(0,0?), this reduces to:

2 2
(3.10) oy = O'\/ SN —

Z’2+y2 $2+y2_

We can check in MATLARB if the formula for propagation of errors is correct.
Suppose that o =1, i.e. X, Y ~ N(0,1). Then, according to Eq. (3.10), we

should find o, = 1. However, we instead find 0.6548:

>> x=randn([1 100000]);

>> y=randn([1 100000]) ;

>> r=sqrt(x. 2+y."2);

>> figure; histfit(r,50,’rayleigh’);
>> std(r)

ans =

0.6548

The histogram is shown in Figure 3.7.
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Figure 3.8. Plot of the function r = /22 + y2.

How can this difference be explained? Let’s begin by examining the origins
of the error propagation formula. We started from the linear approximation
of f:

5f = (& +0%) - )= %m +O(ox]?).
i=1 "

To first order, the variance of § f is:

var(df) = Z <8—f>2 var(dx;)

i=1 Oz; ,
whose square root gives the error in f, i.e., \/var(éf) = oy. (In our case, f
is r = \/x? + y?, so oy = 0,.) We are hoping that this linear approximation
yields a good approximation to the true variance, var(df) = var(f(X +
0x) — f(X)).We can check if the linear approximation is valid by estimating
the magnitude of the remainder term, O(|6x|?). A plot of the function

r(z,y) = /22 + y? is shown in Figure 3.8.

The remainder term of the Taylor expansion is proportional to the sec-
ond derivative. Consider a region centered on the origin with radius o. If
over this region the norm of the Hessian matrix (second derivative) of r
is bounded by ¢ < ||VVr(z,y)|| < @, the remainder term satisfies the in-
equality go?/2 < O(|6x|?) < Qo?/2. The Hessian matrix of r = /22 + 32

1S:
_ oy
(x2+y2)3/2 (:r:2+y2)3/2
Ty 1 o 22
(z24y2)3/2 V2 +y? (z24y2)3/2

1
VVr(z,y) = Va2t




3.6. Monte-Carlo Method For Error Propagation 171

For the y = 0 and « = 0 directions the linear approximation is exact (Hessian
vanishes). However, at 45° (z = y), the Hessian reaches a maximum:

)

1 x2 a2 1 1
202 (20%)/2 (222)3/2 ] — [ 2\/5133\ 2\1/5r|] ~ 1
1 ==

)37 Vo2 (2:;)3/2 22z 2v2] ||
whose eigenvalues are 0 and 1/(v/2|z|) (i.e. the Frobenius norm is 1/(v/2|z|)).
If the “small parameter” of the Taylor expansion is ~ var(dz;) ~ o, = 0y =
o, then this Hessian has norm ~ ﬁ Over the circle with radius o the
second derivative is bounded by

1
— < ||VVr(z,y)] < oo
20

Therefore, the Taylor remainder is bounded by

\/1%(’22 (; 2U¢§> < 0(|ox?) < 0,

with singular the upper limit corresponding to the limit of small r = /22 + 2.

In the Taylor expansion the first order term is ~ (0;f)o (i = z,y), where
the first derivatives themselves are (z,y)/v/2? + y? and therefore, of order
unity (magnitude is 1 when either 2 = 0 or y=0, and 1/y/2 at 45°, when
x = y). The remainder is bounded from below by ﬁ (when x = y). Thus,
the remainder is comparable in size to the first order term. The first-order
Taylor expansion is therefore not a good approximation since the error term
is just as large as the approximating term itself. This is an example of the
breakdown of the linear approximation used in error propagation.

We have concluded that when the linear approximation breaks down, the
correct error bar cannot be obtained by standard error propagation. We in-
stead must know the distribution function of the new variable (1) and based
on this distribution extract the error as a parameter of the distribution.
We have already established numerically that the standard deviation should
be 0.6548. Let’s check that this is consistent with the parameters of the

Rayleigh distribution
ro .2 2
pR(T) = b726 /@ )a
whose mean is by/7/2 and variance is b*(4 — 7)/2. Fitting the r-data to the

distribution gives a value of 1.00083, for the b-parameter:

>> fitdist(r’,’rayleigh’)

RayleighDistribution
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Rayleigh distribution
B = 1.00083 [0.997739, 1.00394]

>> (1.0008372) *sqrt ((4-pi)/2)

0.6562

Using the formula for the variance of the Rayleigh distribution we find that
the standard deviation should be 0.6562, which is in excellent agreement
with our Monte-Carlo estimate of 0.6548.

3.6.2. Monte-Carlo Method. This suggests a very simple but accurate
and general numerical method for error propagation that does not rely on
the linear approximation:

e For a function of n variables, f = f(x1,x9,...,2,) generate N (N very
large) random numbers for each rv xi,...,x, according to their joint
distribution. Hopefully, these are normally distributed iidrv’s, as most
computer software can generate such random numbers.

e Propagate the error through the equation f = f(z1,z9,...,x,) by feeding
it the N random numbers corresponding to the N realizations of each of
the n random variables (N x n random numbers total will have been gen-
erated for this purpose). This will result in N values of f, i.e., f1,..., fnx
(one value per realization of the rv’s).

e Compute the histogram of the new random variable f, using the N values
f17 AR fN'

e Fit the histogram to an appropriate distribution. (If the distribution
of f is known or can be derived, use it; otherwise pick a distribution
that approximates the histogram well.) Obtain the parameters of the
distribution.

e Alternatively (to fitting the distribution of f), you can instead numerically
calculate the moments of f. For example, the variance may be sufficient
if all you need is an error bar for f. However, make sure you inspect the
distribution of f to make sure that the variance is a good measure of its
spread.

3.6.3. Linear vs Non-Linear Propagation. The example covered in
Section 3.6 illustrates an interesting potential weakness of the error propaga-
tion method you should be aware of. The error propagation method works
well when f can be approximated by a linear map near X. Examples of
linear maps were presented in Sections 2.24.2 and 2.24.1 where we covered
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the the normal sum theorem,
N (1 + p2, 01 + 03) = Ni(u, o) + No(p2, 03),
and the normal linear transform theorem
a+ BN (u,0%) = N(a+ Bu, 8°07).

The first corresponds to a relationship of the form f(X,Y) =X +Y (two
variables), where X, Y are independent normal rv’s. The second is a rela-
tionship of the form f(X) = a+ X (single variable), where X is normal. In
both cases, the Taylor expansion stops after the linear term (the remainder
term is zero). In the case f(X,Y) = v X2 + Y2 the relationship is nonlinear
and the Taylor expansion of f requires an infinite number of terms. In that
case, we must be careful to assess the magnitude of the remainder term rel-

ative to the linear term. The error propagation formula based on Taylor’s
theorem is justified when O(]0x|?) < | 2,(8;f)dz;].

3.7. Problems

Problem 96. The Richter magnitude of an earthquake is determined from
the logarithm of the amplitude of waves recorded by seismographs (adjust-
ments are included to compensate for the variation in the distance between
the various seismographs and the epicenter of the earthquake). The formula
is:
My, = log;o(A/Ao(9))

where A is the maximum excursion of the Wood-Anderson seismograph, the
empirical function Ag depends only on the epicentral distance of the station,
0. Both A and ¢ are prone to measurement error. Find the uncertainty in
M7y, due to errors in A and §.

Solution. Propagation of error formula is:

2 2
where the derivatives are:
oMp, 1 A 1 1
A log(10) A Ag(6)  A-log(10)
oMy, 1 A(0) 1 9Ap(8) DAY(6)/05
86— log(10) A [Ag(0)2 85 —  A-Ay(d)-log(10)

Problem 97. You built a setup to detect light with an avalanche photo-
diode. In an avalanche photodiode the carrier production rate n(P/hv) is
increased by a factor of M because of the ionization by the drifting elec-
trons and holes. Here, 7 is the detector quantum efficiency (number of
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carriers generated divided by the number of photons absorbed), P is the
power absorbed in the detector and hv is the incident photon energy. The
photocurrent is enhanced by the same value:

e (£)

where g is a constant and e is the charge of the electron. Suppose that light
incident on the photodetector is in a coherent state. A coherent state is a
photon field that is a linear superposition of single-mode states. It is the
closest approximation to a classical electromagnetic field, as far as quantum
mechanics’ Heisenberg uncertainty principle allows.

In a coherent state the fluctuations of the photon number follow Poisson
statistics, i.e. for a measurement of the number of photons in the light field,
the probability of the field containing n photons is

—nxn

P(n;n) = -

n!
which is a Poisson distribution with mean m. The light power absorbed in
the detector (P) is proportional to n, i.e. P = Cn where C' is a constant.

(a) Compute the fluctuations in the photon count (n) of the coherent state
in terms of the measured photocurrent (7). From the noise, estimate the
actual photon count n in the electromagnetic field.

(b) Same as (a) but use the fluctuations in the measured electrical power
instead of current (i). Electrical power is i?R, where R is a constant (the
load resistance).

Solution. (a)
o1
|Me77h—";j

i:Me[ni:—i—g} — 6i:‘Mené‘5n - dn=

square on to get n.
(b)

C 2
P =i’R = R(Me)* [nh: + g}

expanding the square bracket:

2,2
5 €N Cng o
on—=
T T T
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solving for § P

2n%c? 2
5P:R(Me)2[ ren ”09]5

(hv)? hv
replace n by (6n)? and solve to get dn. Square to get n. |

Problem 98. Use the method of error propagation to find the error in
the work function W (due to a force F(z) applied over a distance z, i.e.
W = [ F(z)dz and you can assume Hooke’s law for F') performed by drag-
ging a light object of mass m across a distance x. The object is mounted at
the end of a spring whose constant is k. The error in x is denoted dx.

(a) Find the error W in terms of dx.

(b) What if the displacement x is measured using an interferometer whose
output is designed to produce a voltage V' (you may assume that V' is linear
in x).

Solution. (a) Substitute F' = kz and integrate to get W = 1ka?. Then
W = |oW/0zx|dx = |kz|dx.

(b) Now we have = AV, where A is some constant. Then, W = JkA?V?
and W = |kA2V|6V. [ |

Problem 99. We have seen in class that when two random variables X and
Y are added to form a new random variable, Z = X + Y, the errors add in
quadrature:

O'% = 0'%( + 032/.
However, in your chemistry labs, you may have been taught that the errors
add in first power:

oz =0x +0oy.
There are no restrictions on the distributions of X and Y apart from the
obvious requirement of finite variances.

(a) Derive the second formula (o7 = ox + oy, where ox,0y > 0).

(b) Show the relationship between these two different methods for computing
the error in Z, i.e., derive an inequality that relates these two different forms
for oy.

Solution. (a) The second formula follows from mapping the range of X and
Y values onto the Z axis. Z(X,Y) = X +Y is a function of two variables.
As X and Y range over their allowed values (thanks to ox and oy), Z
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ranges from

Zmin = (X —ox) + (Y —oy)
up to

Zmaz = (X +UX) + (Y + UY)
The difference between Z,,,;, and Z,,qe 1S:

Zmaz — ZLmin = 204 + 20y .

This is the total range. Error bar is half of this, since we write it symmet-
rically as Z + 62
Oz =0x +0y.

(b) Observe that (ox,oy > 0):
lox +oy|* = 0% + 0% + 20x0y.

Hence,

lox + oy |> = 0% + 0% + 20x0y > 0% + 0%
The left hand side is a%, where 07 = ox + oy. The right hand side is a%,
where U% = ag( + J%. Thus, the error bar obtained from oz = ox + oy is

larger than the error bars obtained by adding the errors in quadrature. W

Problem 100. Use error propagation to show how an error in the measured
radius leads to errors in the calculation of sphere volume (as calculated from
the radius).

Solution. From V = %777“3, SV = 4mr?or. |

Problem 101. Same question as the previous one, except that now consider
the case where you only remember the value of 7 to a few digits (e.g. ™ =
3.14). How does this error in 7 (in addition to the error in r) contribute to
the uncertainty in volume?

Solution. (V)2 = [4mr2[?|6r|2 + | 43| |67]2. ]

Problem 102. Suppose you work at a particle accelerator and your job
is to spend your life measuring two quantities in the laboratory, X and
Y. X could be for example, a voltage, whereas Y could be a position.
Both X and Y relate to some important physical quantity being measured.
The two measurements are uncorrelated and statistically independent. It
is known that the values of X range continuously from 0 to 1 and appear
to be uniformly distributed whereas Y appears to be Gaussian distributed
with mean 0 and variance 1.

(a) Calculate the value of the probability P(0.2 < X < 0.8,Y < 0).

(b) Calculate the probability P(0.2 < X < 0.8,Y # 0) (i.e. the joint
probability that X lies in the range [0.2,0.8] and Y does not equal zero).
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(c) A physical theory for the new particle predicts that its spin can be
obtained from Z = XeY, where X is related to the total orbital moment of
the subatomic particles and Y is related to the total spin of these particles.
Definite values of Z are hard to obtain due to experimental error, so the
best you can do is set an upper bound on its value. Explain how you would
set such an upper bound. Or equivalently, calculate the chance P(Z < z)
that Z will take a value less than z.

Solution. (a) P=0.6*0.5=0.30

(b)P=0.6%1=0.6

(c) Method 1: since the distributions of X and Y are known:
P(Z < z) =P(Xe¥ < 2) = / pxy (z,y)dzdy

{(z,y)|vev <z,0<z<1}

/ . e—y2/2d 4 /1 i /bg(Z/x) e—y2/2dl
' ray = € Y
{(z,y)|xey <z,0<x<1} V2T 0 —o0 V2

1
_ /0 B(log(z/))dz.

Method 2: using error propagation, which can be done since z(x, y) is known
and the errors in X and Y are also known. |

Problem 103. From the coast of Normandy, you measure the position of
an English flag along the coast of Great Britain, across the English channel,
using a telescope. You use the angle the telescope makes relative to its base,
and the known distance across the English channel, to convert the angle to
lateral distance along the coast (using simple trigonometry). However, the
intense winds make it difficult if not nearly impossible for you to readout
the angle (and hence the distance) properly. The intense vibrations result
in random fluctuations of this distance.

Fortunately, you know that averaging several measurements together can
reduce the noise. Let Xi,...,X, be n measurements of the flag’s true
position X (r.v. mean p and variance o2; the variance is a measure of the
area of the flag). What should the value of n be (n: no. of samples acquired
in an experiment) needed to ensure that the probability that the position
(calculated form the sample mean) does not deviate from the true position
of the flag by more than ¢/10 is at least 0.95.

Solution. Using the inequality on p.1 with e = ¢/10

— o — o var(Xy)
P(X-— <—):1—P<X-— >—)>1—————
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- Xy ++ X, _ X 2
Where X, = u, var(X,) = var(X) -7
n n n
P(‘Yn—ﬂ‘§1> zl_mzl_@_
10 n(o/10)? n
If we want this probability to be at least 0.95, we must have 100/n < 0.05
or n > 100/0.05 = 2000. |

Problem 104. Suppose we have Hooke’s law F' = kx, where k and x have
uncertainties. Use error propagation to determine the error in F' from the
errors in k and x

Solution.

2 2
(OF)* = <?;;> (0k)* + (ZD (62)% = 2?(0k)* + K*(82)°

(6F) = \/22(6)2 + k2(0,)2.




Chapter 4

Statistical Parameter
Estimation

Statistical distributions, such as the Gaussian distribution, contain param-
eters such as the mean and variance whose values may be unknown. For
example, suppose that we want to estimate the mean of a distribution. We
may have at our disposal a series of measurements of a random variable X
(random sample) {X1,...,X,}. Corresponding to a random experiment w
we denote their values by lowercase letters: X;(w) = z;. How should we
calculate the average?

For example, should we use the arithmetic mean (sample mean),

1 n
Xarith. = — E X,
n -
=1
the harmonic mean

1< B
Xharm. = <n lel) )
=1

n 1/n
Ygeom. = <H $Z> ?
i=1

Methods have been developed to estimate the parameters of statistical dis-
tributions. Estimation theory is a branch of statistics that deals with es-
timating the values of parameters based on measured empirical data. An

or the geometric mean

179
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estimator is not an exact representation of the parameters, but instead at-
tempts to approximate the parameters from the measurements using some
underlying principle. There are several estimation methods that are com-
monly used, such as maximum likelihood estimation (MLE), Bayes estima-
tion, the method of moments, the maximum a posteriori (MAP) method,
etc. The simplest one is MLE; other methods require additional theory. We
shall cover the MLE method.

4.1. Maximum Likelihood Estimation (MLE)

MLE estimates the parameters of a statistical model by finding the param-
eter values that maximize the likelihood of making the observations given
the parameters.

4.1.1. Likelihood Function. Let us construct a so-called “likelihood func-
tion” L(@), as a function of the unknown parameters 8 = (61,...,6,), and
conditioned by the observation of the random samples. We will set this
likelihood function to be equal to the joint probability density of observing
the values X;(w) = z1,...,X,(w) = x,. Since the random samples are
independent random variables, the joint density factorizes into a product of
densities for each:

n
L(O|z1,z2,...,20) = DXy, x, (€1, %2, ..., T0|0) = pr(:pi|0).
=1

Here, px,,. x,(x1,z2,...,2,|0) is the joint PDF of Xi,...,X,, given 6.
px(x;]0) is the PDF of X given 0. An interpretation of the likelihood

function is as follows: given observed data xi, o, ..., x, (corresponding to
the realization w of iidrv’s X1, ..., X, ~ X), a distribution with parameters
6, then:

n
probability that X; is in [x;, z; + dx;] for all i = HpX(:ri\B)dxi,

i=1
where 6 represents one or more parameters of the distribution px (x|@). The
likelihood function, L(6) = [[;"; px (x;|@), which is just the joint PDF of the
x;, is treated here as a function of the parameter(s), 8. The z;, on the other
hand, are treated as fixed (the experiment is over). The MLE method con-
sists of solving the system of equations, VoL = 0, or 0L/00; =0,i=1,...,p
for the unknown parameters 6;, as function of the data (x1,...,zy).

Next, we need to know or assume a distribution for the random variables
X1, Xo, ..., Xn. We did assume they were iidrv’s, X; ~ X. The distribution
of X is arbitrary. By distribution we mean the CDF or PDF as well as its
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parameters 6. As an example, if they are normally distributed, the param-
eters are @ = (o, ). Due to statistical independence, the joint probability
distribution px, . x, (z1,...,2,|0) for observing the whole set of n readouts
{X;(w) = x;} factorizes as a product:

IS SR NI
(27T)n/20-n ’
where 6 = (p, ). The problem we want to solve is this: given the measure-
ments {x1,...,2,} we want to estimate the unknown quantities p and o.
In other words, we would like to find “best estimates” for these parameters
in terms of the observations 1, ..., Z,.

px(21|0) - px (22]@) - - - - px(z,]0) =

4.1.2. Principle of Maximum Likelihood. The principle of mazimum
likelihood states that the best estimates for 8 are those for which the observed
data z1,...,x, are most likely to occur, i.e. for which the likelihood function
L(0|x1, o, ..., x,) is a maximum with respect to 8. Suppose that @ = (u,0),
maximization with respect to @ means that we should enforce the following
two conditions:!

oL oL
— d —
ou 0 an 0o 0,
where the derivatives are evaluated at the point (u,0) = (fi,6). The hat

notation is used to denote the particular choice of 8 values obtained by MLE.

Let us start with the first condition (g—ﬁ = 0). Inspection of the above

“Gaussian” expression for p, , shows that ;1 only appears in the argument
of exp. Finding the extremum of exp(f(u)) with respect to p is equivalent
to finding the extremum of f(u) with respect to pu, since:

0 of
IipN (07 I (7) Rt
8M6 e au 0

LAn extremum of L is found by setting dL = 0. Take 8 = (u, o), for example: since dL(u, o) =
Oudp + Osdo and du,do are arbitrary displacements, dL = 0 implies that the gradient of L
vanishes: VL(u, o) = 0. The vanishing gradient means that all partial derivatives vanish: 9, =0
and 0, = 0.
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and dividing both sides by ef(®) implies that g—/’: = 0. In general, you can

find the extremum of log(L) rather than L; this is sometimes easier.? Thus,

n n
;L Z(zl —u)?/20% =0 or Z(az, —p) =0,
i=1 i=1
which leads to the formula for sample mean we have been using all along.
We substitute X;(w) in place of z;, suppress the w notation in order to view
[t as a random variable:

i3

The hat notation f denotes that this particular value of u corresponds to
the MLE for the mean. This provides a justification for the use of & as the
value of Tpest.

For OL/0c the situation is different because o also appears in the coefficient
of exp. In this case, we look for the extremum of L instead of its log.
Differentiating with respect to ¢ we get

oL (—n) _ 1 " (2 — p)? 2
n/22% _ 2 I >i | - e B - =
(27T) do O-n-‘rle + O-ne ( Z 2 o3

i=1

Divide by e~ 2=, multiply by o1

1 n
-n+— (Z(:pl — ,u)2> =0 which gives 62 =

(e ;
=1

where /i is the sample mean and ¥; is shorthand for Y"1 | (z; — u)?/202. In
the last step we wrote (ji,5) to denote the fact that this particular choice
of values for (u, o) corresponds to the MLE.

2We note that finding the extremum of L is equivalent to finding the extremum of log L. This is be-
cause log(z) function is a monotonic function. Indeed, a necessary condition for the maximization
of log L is:

0 1 0

—logL(z) = ———L(z) =0

o o8 L®) = L1 5o L@ =0
where L(z) # 0. Multiplying both sides of the equation by L(z) leads to (%L(m) = 0, which is
a necessary condition for a maximum in L(z). Thus, maximizing L is the same as maximizing
log L. (Exercise: our proof is not complete since we have only considered the necessary condition
for a maximum. Can you complete the argument by analyzing the sufficient condition?)
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In practice, we instead use the quantity with the coefficient 1/(n—1) instead
of 1/n:

n

1
62 | = — Zz;(XZ — [1)? sample variance

because the n — 1 corrects for the underestimation of o2 when we use /i
(sample mean) as our estimator for p. Recall that the choice of p = [
(sample mean), by definition, minimizes the quantity Y_,(X;—u)? for u = fi.
We say that o2 is a biased estimator of the variance whereas o2_; is an
unbiased estimator. The proof for the n/(n — 1) correction factor is found
in Section 4.2.4.

4.2. Estimator Bias

An estimator is said to be unbiased if its expectation value is equal to the
true value of the parameter. For example, if our estimator for the mean
is the arithmetic average fi = 13" | X, (sample mean), the arithmetic
average is said to be an unbiased estimator of the mean if Efi is equal to the
true mean of X. The latter is defined as [ zpx(z)dz.

4.2.1. Random Sample. Suppose we have a random variable X. In the
laboratory, we can measure X by acquiring several measurements of X.
Denote these measurements of X by the set of values (X1, Xo,...,X,).
Each X; is iidrv with the same distribution of X. X, are samples of X
measured at different points in time. We say that the set (X1, Xo,..., X,)
is a random sample of X.

4.2.2. MLE of the Mean: Is the Estimator Biased? Let X be a
random variable with mean p (@ = [apx(z)dz is the true mean). Let
(X1, Xo,...,X,,) be a random sample of X. Here we show that

is an unbiased estimator of p. % >, X, is the sample mean. This statement
follows from:

CLD SRS ol ORI Y
i i i K
To get the first equality, we used the linearity property of expectation value.
In the second equality, we used the fact that {X;} is a random sample of X,
whose mean is p.
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4.2.3. Variance of the Sample Mean Estimator. The sample mean

1 n
= EZXi
i=1

is a rv because it is a sum of rv’s X1, Xs,...,X,. It has a mean equal to
the true mean of X, namely p, which we verified in the previous section,
meaning that this particular expression for i is an unbiased estimator. By
the LLN, it converges to the true mean as n increases. We can also check

its variance:
2

~ 1 — o
var(ft) = s Zvar(Xi) =
i=1

meaning that it becomes “narrowly distributed” as n increases. This says
that the estimator becomes more and more precise as n increases. This is
a desirable feature of estimators. If you have an estimator whose variance
increases with n, this is not a good estimator. The square root of var(ji)
represents the error in the mean; you will recognize it as the standard error
(aka the standard deviation of the mean).

4.2.4. Bias of the Variance Estimator. Let (X, Xo,...,X,,) be a ran-
dom sample of X (with mean p and variance o2). Here we show that

o l¢ .
oh = - Z(Xi — 0)?,
i=1
is a biased estimator of o2. By definition, the variance of X;, which is also
the variance of X (since {X;} is a random sample of X), is:

0%, =ox =E(X —p)? = /(:1: — 1)?px (z)dz.
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Also,?
2 _gl z gl Z ()P

:E:LZ[(Xi — )2 = 2(X; — ) (i — ) + (o — )’

—EL Y (Xi—w)? | = nlp—p)?
=1
SR - p)? | - EGi -
=1

Z o? | —var(i) = 0% — var (),

and using the property,

var(z a; X;) = Z aZvar(X.

valid for independent random variables, we have:

. IS 1 1, 1,
var(ft) = var - ZXi = Z ﬁvar(Xi) = Z 500 = 0
i=1 i=1 =1
Thus,
1 —1
Ea—,% =02 - 2% = n=- o?
n n

which shows that 62 is a biased estimator of o2. Thus, to get an estimator
which, on the average yields a result equal to the true value of o2 we should
take instead - a as the estimator of the variance. We denote this “bias-
corrected” estlmator of the variance by 62,

1 n
62 | = — Z(XZ —i1)? sample variance
=1
The factor "5 is called Bessel’s correction.

3To get from the second to the third line, we take the summation inside the square bracket and
apply it to the second and third terms. (After multiplying the second term by n/n = 1.) The
third term inherits a coefficient of n because it is summed n times. In the second term, we replace
(1/n) 3, X; by fi. The second term, which becomes —2n(ji — u)? is of the same form as the third
term, n(ft— u)2. Adding the two terms together gives —n(fi — p)2. When going to the fourth line,
the factor of n cancels the 1/n in front of the square bracket, leaving —E (/1 — )2, minus 1 times
the variance of fi.
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This result is the expression for the sample variance introduced earlier in the
course (see, e.g., Eq. 1.1). The sample variance is basically the MLE estima-
tor for the variance, but corrected for bias. Finally, we note that for large
n, 1/n and 1/(n — 1) are asymptotically equal. Thus, 62 is asymptotically
unbiased, i.e.

2 _ 2
n

lim &, =0,_;.

n—oo
Finally, we would like to know how “sharp” this estimator is. Ideally, we
would want an estimator whose uncertainty is small. We do this by com-

puting its variance:
var(dn_y) = E(6p_1) — (Eo_1)* = E(6,_,) — (0%)%

n—1

where
n

1 1 <
4 o ~\2 0N
Esl _Ein_l § (Xi— ) n_1§ (X

i=1 j=1

= 1P ZE =)t Y B (X - )

i#]

n—l ZE )4+ZE(Xi—ﬂ)2'E(Xj—ﬂ)2

i#]

(o _1 1)2 (npta +n(n — 1)o%)

where p4 = E(X; — 1)* is the fourth central moment. In the limit of large n
this quantity tends to:

1
lim E6} = lim ——— (npa +n(n — 1)ot) = o™

n—00 n—00 (n — 1)
Substituting into the above expression for var(62_;), we find:

lim var(62_,) = hm E( i ) —(eH?=0.
n—oo

Therefore, the uncertainty of our variance estimator 42 _; decreases as n —
oc. In fact, var(62_;) (71—#)2 or 1/n for large n. The ability to reduce the
uncertainty of our estimator by acquiring more data is a useful feature.

4.2.5. MLE Can Fail. The MLE method does not always work. In fact,
it can fail even in the simplest cases. Suppose that the density is a mixture
of two normal densities:

p(x!a, U) =

(r—a

o A e [ 3]
exp |— exp |——1,
90/2m P 252 ovon P
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where the parameters (a, o) are unknown. Suppose that we measure iidrv
X1,..., Xy, (whose values are denoted z1,...,z,). For any constant § > 0,
there exists small enough o = o that for a = z1,

n
L(z1,00) = Y log p(wi|a1, 9)
i=1
2

>lo ( 1 > + Zn:lo < L e { Li ])
- R
& 200V 27 P & 24/ 27 P 2

n_o_2
o
=—1 — =2 | —nlog2v2r >4
0g 0g <; 2) nlog2v 2w
From this inequality, we can conclude that the likelihood does not exist (i.e.
it can always be made to “blow up” by taking the limit oy — 0). Therefore,
MLE is unable to estimate the parameters a and o. Thus, the range of

applicability of MLE is limited.

4.2.6. Difference between probability vs likelihood. The difference
between probability and likelihood is best illustrated with an example. Sup-
pose that we have a distribution of animal weights with a mean of 32 grams
and a standard deviation of 2.5. The probability that we will weigh a ran-
domly selected animal between 32 and 34 grams is given by the area under
the curve between 32 and 34 grams (left).

24 grams 32 grams 40 grams

In this case, the area under the curve happens to be 0.29, meaning that
there is a 29% chance a randomly selected animal will weigh between 32
and 34 grams. Mathematically we express this as follows:

P(weight between 32 and 34 grams|mean=32, standard deviation=2.5) = 0.29

or
P(32 < X < 34| = 32,0 = 2.5) = 0.29.

Another example is:

P(animal weighs > 34 grams|mean=32, standard deviation=2.5).
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or

P(X > 34| = 32,0 = 2.5)

24 grams 32 grams 40 grams

The area under the curve is described by the left hand side of the proba-
bilistic expression P(X > 34|y = 32,0 = 2.5), i.e. X > 34. The right hand
side, u = 32,0 = 2.5, describes the same distribution for both examples.
This distribution is fixed.

Likelihood, on the other hand, deals with fixed data and variable distribu-
tions. Suppose that we have some data, i.e. we have an animal and weighed
it (or more animals, and their weights). An animal weighs 34 grams. The
likelihood of weighting a 34 gram animal is this point on the curve:

0.15
0.1
0 ®
24 grams 32 grams 40 grams

Projecting onto the vertical axis, that value is 0.12. Mathematically, we use
the following notation:

L(mean=32, standard deviation=2.5|animal weighs 34 grams) = 0.12,

or
L(p = 32,0 =2.5\m=34 g) = 0.12.

The likelihood of a distribution with mean 32 and standard deviation 2.5

given that we weighed a 34 gram animal is 0.12.

If we shifted the distribution such that
L(mean=34, standard deviation=2.5|animal weighs 34 grams),

the likelihood would be 0.21. So with likelihoods, the information on the
right hand side (e.g. “animal weighs 34 grams”) is fixed. We modify the
shape and location of the distribution with the left hand side.
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0.15
0.1

.05

0
24 grams 32 grams 40 grams

To summarize, probabilities are the areas under a fixed distribution. They
answer questions such as what is the probability under conditions where the
distribution is fixed:

P(data|distribution)

Likelihoods are the y-axis values for fixed data points with distributions that
can be moved:

P(distribution|data).
In this chapter, we “move” the distribution by adjusting its parameters by
way of the maximum likelihood criteria.

4.2.7. Prior vs Posterior Distribution. In this section we will need two

results from probability theory. The first is the Bayes’ theorem:*
P(X16)P(0)

4.1 POIX)= ——=——=

(1) 01%) = =55

where P(X) # 0. X is called the “evidence” or data. 6 is sometimes called
the parameters or the distribution. Often, the evidence is fixed and we write

P(6|X) o P(X|0)P(6).

If the random events {X;} partition the sample space, we may write P(6)
using the law of total probability:®

P(X) =) P(1X;)P(X;).
j

Then,
po) — _POOF)
>, POIX;)P(X;)
4The proof uses the definition of conditional probability. On one hand we have P(A|B) = Mﬂ,f?g?) .
On the other hand we have P(B|A) = JP(];EQ?) . Solving for P(ANB) in both equations and equating

gives: P(A|B)P(B) = P(B|A)P(A). Rearranging gives P(A|B) = P(B|A)P(A)/P(B).
5If the events {Bn} form a partition of the probability space, i.e. UnBn = Q and B;NB; =0
(i # 7), then

P(A) => P(ANByn) =Y P(A|Bn)P(Bn).
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This is another way to express the same result. The events can be of the
type {X = z}, etc. For example:

P(X =0|0 = a)P(0 = a)
P(X =b)

They can also be intervals {a < X < b} or infinitesimals, e.g.

P(0 = a|X = b) =

(42) Pla<f<a+dalb<X <b+db)

Pb<X <b+dbla<b<a+da)Pla<l<a+da)
P(b <X <b+db) ’

which is the same as®

0\b§X<b+db pX(b)db

Canceling the da and db’s,

D (a) = PXa<b<atda(b) Po(a)
0]b< X <b+db o (0)

Taking the limit |db|, |da| — 0, we have for continuous random variables:

_ pxjo=a(b) Po(a)
Pe\x:b(a) = px—(b)

The posterior probability is the probability of the parameters 6 given the
data X. It is denoted as p(0|X). Posterior, in this context, means after
taking into account the relevant evidence (data) related to the particular case
being examined. Posterior probability differs from the likelihood function,
which is the probability of observing the data given some parameters (i.e.
or a fixed distribution), L(0|X) = p(X|6).

Let’s say our data is in the form of a dataset X = {X;}¥, (independent
rv’s) where X; N X; = 0 (¢ # j). According to Eq. (4.1), the posterior
distribution is

N
L = p(01X) o< p(O)p(X|0) = p(0) ] [ p(Xil0),

where the equality follows from the statistical independence of the X;’s.

rx.y(z,y)

6This follows from the definition of conditional probability px|y—,(z) = (D)

the left hand side

. For example,

Pla<0<a+danb< X <b+db)
P(b< X < b+ db)
_ pe,x(a,b)dadb
~ px(b)db

(4.3) Pla<0<a+dalp< X <b+db)=

= pg‘xzb(a)da.
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4.3. Method of Moments

Another method for deriving estimators is the method of moments. Recall
the strong law (SLLN) of large numbers (Section 2.25.1):

Theorem 4.1. Let Xq,...,X, be iidrv with finite first absolute moment,
i.e. E[|X1]|] < +o0. Then,

1 n
- ZX" — E[X4] almost surely as n — oo.
(L
Remark 4.2. “Almost Surely” means for all w except for a set of measure

0, i.e.

n—oo

P( lim {w}% > Xi(w) » E(X1)}) =0.
=1

In other words, the set of outcomes for which the random variable % Yo X
does not converge to E[X] has probability 0 as n — oc.

A second theorem of probability theory (not proved here) that we will need
is:

Theorem 4.3. Let Y1,...,Y, be a sequence of rv’s (not necessarily iidrv),
such that Y, — Y almost surely, and if h is a continuous function, then
h(Y,) = h(Y) almost surely as n — oo.

Let X1,...,X,, beiidrv whose PDF is the exponential probability

_ _ -1
px () =0~ 1punqy,
where 1¢,-0) is the indicator function that equals 1 when z > 0 and 0

otherwise. Suppose we want to estimate § = E[X] from experimental data.
We propose the following estimator for the first moment:

i _ 1Ny
enl—n;X“

which is such that é&” — 0 almost surely as n — oo. The SLLN guarantees
that this estimator converges to E[X1], which equals 6, the desired parame-
ter. This gives us a possible estimator for 6.

On the other hand, E[X?] = 202. According to the SLLN,

1 n
— g X? - E[X?] = 267 almost surely as n — co.
n

i=1
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Thus, if we divide by 2 and take the square root, we should get another

estimate for 0. Let .
1
Yn = E z; Xi27
1=

and take h(z) = \/x/2. We know that the sequence of rv’s Y,, converges
to the v Y = E[X?] = 262 almost surely per the SLLN. According to the
second theorem, h(Y;,) — h(Y) = 0 almost surely as n — oco. Thus,

is another possible estimator for §. So we have derived 2 estimators so far,
6 and 6@, you can also derive more. Which estimator you should use
depends on your particular application. Factors that may influence your
decision include bias, errors, rate of convergence, etc.

Based on the above theorems, a general recipe for the method of moments
consists of:

(1) Calculate the first few moments of X using the known PDF of X.
Since the PDF is a function of the parameters of the distribution,
the result will also be in terms of those parameters.

(2) Estimate the moments using experimental data Xy, ..., X, accord-
ing to the LLN.

(3) From (1), solve for the parameters of the distributions in terms
of the moments, and express the moments in terms of estimated
moments found in (2).

Let us work out an example to illustrate this. Let X be normally distributed
with mean p and variance o2. The two parameters of the distribution are p
and o.

Step 1: Using the PDF of the normal distribution, one calculates the mo-
ments:

o0 1 20 2
E[X"™ = z" e~ (@=m)?/20% qn.
X /—oo V2ro?
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The first few moments are found to be:

(4.4) n =1 E[X'] =u
(4.5) n =2 E[X?] =p* + o2
(4.6) n =3 E[X?] =u* + 3uc?

The higher order moments are not needed because the above moments are
already expressed in terms of both parameters y and o.

Step 2: Given a random sample X7,..., X, of X and its corresponding ex-
perimental measurement {X;(w) = x;}, the LLN enables us’ to write:

1 n
4. =1 E[X!] ~= ;
(4.7) n R
1 n
4. —92 E[X?] ~= 2
(4.8) n BRI
1 n
4.9 =3 E[X3] ~= 3
(4.9) n X0

Step 3: We solve the system of equations of Step 1 in terms of  and o, and
express these in terms of the equations found in Step 2.

Adding a hat to p, substituting X;(w) = z; and omitting w from the nota-
tion, Eqgs. (4.4) and (4.7) give:

1 n
41 =-S5 X,
(4.10) i n;

Next, we take Eq. (4.5), solve for o and substitute Eq. (4.7) and (4.8):

2
eyt (1)

"Recall that the LLN says that % > Xi(w) = E[X], where X is a random variable and {X;}} ;
is a random sample drawn according to the same distribution as X. X;(w) denotes the value
of X; after an experiment w. Since functions of random variables are also random variables; in

particular, the powers (moments) of X can be estimated from % S [ X (W)™ = E[X™].
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Next, we substitute X;(w) = z;, fi(w) = (1/n) >, X;(w) and drop w from

the notation:
n n

1 1 1
111) 2= LS a2 2o LS soax 42 = LSO - )
(411) 6% =% XP— it =) (XP = 20X+ %) nZ(Xz )
i=1 i=1 1=1
Here, [i is calculated using Eq. (4.10) using the data X;(w) = z;. Our two
“method of moments” estimators are given by Eq. (4.10) and (4.11).

As an exercise, you should work out the method of moments estimators for
other distributions (Problem 105).

4.4. Problems

Problem 105. Use the method of moments to find parameter estimators
for the mean and variance of other distributions. For example: use the
method of moments to find estimate(s) of the 6 parameter for the uniform
distribution of a random variable X, with PDF px(z|0) = 9*11[079] (x),
6 > 0, where 6 defines the upper bound of the support of px(x|6), and
E(X)=1#6/2.

Problem 106. Let X bearvand Xy,...,X, (X;(w) > 0) a random sample
of X (iidrv). Denote X;(w) = x; their respective values. The PDF for each
of these rv’s is:

o ﬁa a—1_—pBz =1
pX(x)——F(a)x e 7r, 1=1,.

)

where a > 0 and 3 > 0 are parameters for the distribution and I'(-) is the
gamma function. Write down the likelihood function (joint PDF) for these
n observations (the parameters « and (3 are the same for all n observations,
since they are iidrv). Show that the maximum likelihood estimators for «
and [ are obtained by solving these two equations:

3 é 4 log(a) r'@) (1 z": 1 il
==, an ogla) — — = log | — x; | — — og T;.
IS s I'(a) S\ n n < & i

=1

Explain how you would calculate the values of & and B in terms of the
observations x1,xo, ..., Tn.

Solution. The likelihood function is

il
L=px,, . x.(z1,...,25], B) = I fo‘_ e B2 @i
i=1

(M
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The log likelihood function is
n
[l =logL =nalogf —nlogl(a) + (a—1 (Zlong>—62xi.
i=1
Differentiating this expression with respect to a and § we get

ol
=nlogf — —F’ —i—Zlong =0

da I'(«) pa a,f=a,5

% - Z

At the extremum (9,0 = 0, 85l = 0), we use the hat notation & and B
Viewing « and [ as random variables (i.e. & = &(w) and f = p(w)),
substituting X;(w) = z; and dropping w from the notation:

7ﬁ a75

/

1;‘( log( ZX)——ZlogX

We need & to calculate 3, but in order to calculate @& you have a highly
nonlinear equation in &. There is no way you can solve for a analytically.
So given values for the rv’s Xi,..., X, you could use Newton Raphson (or
similar method) to solve for & numerically. [ |

and log(&) —

Problem 107. Suppose X1,..., X, are iidrv (random sample of X) with
density px (z]0) = 0e=%, 2 > 0, 0 > 0 and corresponding values X;(w) = ;.
Write down the likelihood function for n observations. Find the maximum
likelihood estimate for 6.

Solution. Likelihood function is
L =0e 0. ge 072 g0 = gre= 02z,

and using the log likelihood

n
log L =nlogf — 921@
i=1
differentiating with respect to 6 and setting derivative equal to zero we get

n . z; = 0.
X

Using the hat notation 6 for this extremum, substituting X; (w) = x; and
dropping w from the notation:
n

0= —i——.
Zi:lXi
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Problem 108. Let X be a random variable and X;,...,X,, (iidrv) be a
random sample of X. We denote the measurements as X;(w) = z;. Find the
maximum likelihood estimate of the parameter 6 for the density px(z|0) =
1/6, 0 < x < 6, based on the measurements z1,...,z,.

Solution. . .
1) = [[ptei) = (5)

This function will be maximized by choosing 6 as small as possible, subject
to the restriction 0 < x; < 0,7 =1,...,n. The smallest possible value of 6
that satisfies these inequalities is clearly the largest value of the x;. Thus,
the MLE of 6 is given by

0 = max{X1, Xs,..., X, },
where X;(w) = ;. [ |

Problem 109. Let X be a random variable and Xi,..., X,, be a random
sample of X. Denote their values as X;(w) = z;. If X follows a Lorentz

distribution: )
€
)= ——-+——
px (@[0) 7 (x—0)2 + €
with unknown median 6 and known spread ¢ > 0. Derive a maximum
likelihood estimator for 6.

Solution. Differentiating the likelihood function gives
8}?){17._.7)("(331,...,1'”’9) 2(IE1 *9) 2(‘/1“71 *0)

00 (I1—9)2+62+” (zn, —0)2+ €2
This is a nasty equation to solve for §. We could do it by computer by im-
plementing an iterative process for solving the nonlinear equations. Suppose
that 6 is a solution. Then the terms in the equation corresponding to data
points x; that are far from 6 are close to zero. The terms in the equation cor-
responding to data points x; that are closed to 6 then each have magnitude
about (x; — 6)/€2. So the @ solution is, roughly speaking, a sample mean of
part of the data, leaving out the more extreme values. While this estimator
is more efficient than the sample median, the sample median begins to look
attractive from the point of view of convenience. |

Problem 110. Show that the following random variable
X = ettol

where Z is a standard normal rv, i.e. Z ~ N(0,1), has the PDF:
e—(log:::—,u)Q/Zo2

px(z|p,0) = ——=——, z>0.
2mox
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Find the MLE for the distribution parameters p and o, given a random
sample X7, ..., X, of X and their values X;(w) = x;. Each random variable
X; are iidrv with the above PDF for X.

Solution. We proceed as usual:

1 _
P(X < 2) =P(el*°% < 2) = P(u+ 0 Z < logz) = P <Z < ng“)

g

B 1 /logz—u
N V2T J

which we recognize as being

e_EQ/Qdf.

& <logzn - ,u)
o

Differentiation with respect to x gives the PDF:

67(10gx7//')2/202

xr) =
p( ) V2mox
The likelihood function is
" o—(logzi—p)?/20°

L(Mv U) = H \/%ax-
i=1 g

The log likelihood is:

- 1
) =3 { =5 og(2m) ~ log(e) ~ log(as) ~ (og.z; ~ )/ 20° .
i=1
Differentiation with respect to ¢ and p yields the following MLE:
n A n 2
> i log X; and 52 — > iz1(log Xi — i) ‘

n n

i=
]

Problem 111. Suppose that you make n measurements of the random
variable X, knowing the X is Poisson distributed with Poisson parameter A,
and m measurements of another random variable Y, which is known to be
exponentially distributed, i.e. its PDF is py (y) = a - exp(—ay), a > 0. Find
estimators for the parameters A and a in terms of the experimental data
Xi1(w),..., Xp(w) and Yi(w),..., Y (w). (All these rv’s can be assumed
independent.)

Solution. Likelihood function:

—An x4+

e AL n _
L\ a) = —————gMe Wit +ym)

r1lza! . .z
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Taking derivative of log L with respect to A:
1
—n+($1+"'+xn)x =0

with respect to a:
1
mg—(y1+~'+ym):0.

The first equation gives:
|
)\:E(X1+-~~+Xn).

The second gives:
m

Bit o+ V)
Here X;(w) = x; and Y;(w) = y;. [ |

a =

Problem 112. The maximum likelihood estimator (MLE) is the set of pa-
rameters denoted 6 for which the likelihood function is maximized (provided
that one or more maxima exists):

0 c {argmaxL(@]a:l, e ,xn)}
0

Alternatively, we can also maximize the log-likelihood function

0 e {arg max((0|zq, ..., xn)}
6

(a) A MLE estimate is the same regardless of whether we maximize the

likelihood or the log-likelihood function. Why?

(b) In the case of a Gaussian distribution write down the log likelihood func-
tion.

(c) Carry out the maximization of the likelihood function (L) and the log-
likelihood function (I) in the case of a Gaussian distribution. Do you get the
same result? (Recall from (a) that you should get the same result.) Which
procedure is simpler?

(d) In the case of Poisson distribution distributed random variables (the
case of discrete random variables, but whose parameter(s) are continuous
variables!), carry out the same MLE procedure and determine the maximum
likelihood estimator for the mean and variance. For simplicity, assume that
the random variables measured (let’s call them ny,ng,...,ny) are iidrv.
This exercise teaches how to compute “sample mean” and “sample variance”
when performing repeated measurements of a Poisson-distributed random



4.4. Problems 199

variable. Does the ML prescription require you to compute an arithmetic
mean?

Solution. (a) Because log is a monotonically increasing function. Conse-
quently, a maximum of the likelihood function is also a maximum of the
log-likelihood function.

(b) The joint Gaussian for iidrv is
— 1 2 - (ZC — Y)Q
L(X,0%|z1,... 1) = ———e X /2 here y2 =y i)
( y O |l‘1 mn) (27T)n/20-n6 ) where x ; o2
taking the log we get
I = —(n/2)log2r —nlogo — x?%/2
Here maximization of L corresponds to the minimization of y? because of
the negative sign in front of y2.
(c) We have done L in class already. The case of [ gives:
ol n 1,

g0~ o o"

which yields the same result as for L:

=0

where X;(w) = z;.
And likewise, the partial with respect to X yields the arithmetic mean, as

can be seen by inspection. In this case, using the log likelihood is the simpler
method to use.

(d) RVs are iidrv, so the joint density is a product of individual Poisson’s.
Denoting their mean as 6 (in class, we used @). ML method applied to the
log likelihood:

N N N
0 g™ 0 n;
20 logg (6 ni!> =2 ; [0 + n;log — logn;!] = Z (—1 + ?)

=1

where in this expression n; is shorthand notation for the value n;(w). We
set this derivative equal to zero. This yields the arithmetic mean:

. 1 X
O(w) =+ > ni(w).
=1

(And for Poisson distributions the variance equals the mean, so there is
nothing else we need to calculate.) ]

Problem 113. Let X be distributed according to the distribution: P(X =
2)=60,P(X =3) =20 and P(X = 1) = 1 —30. (The state space is discrete:
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X € {1,2,3}.) This distribution has a single parameter 6.

(a) What is the range of allowed values for 7 Find the mean and variance
of X (in terms of 0).

(b) Suppose you want to estimate the parameter § using n random sam-
ples of X. Let ni,no and n3 be the number of times X equals 1, 2 or 3,
respectively, within this random sample. What is the probability law for n;?

(¢) Find the maximum likelihood estimator 6 for 8. Calculate the mean and
variance of . Is the estimator biased?

Solution. (a) 6 can take values in the interval [0,

bilities must remain between 0 and 1. The mean is

E[X]=1—30+20+3 x 20 = 1+ 50.

], so that these proba-

variance is

var(X) =1—30 +460 + 9 x 20 — (1 + 50)% = 6(9 — 256).
(b) ny follows a binomial law, with parameters n and p =1 — 36.
(c) The likelihood function is

L(X|0) = ﬁp(x =1;) = (1 —30)™ x 6"2(20)"
=1

Minimizing the log of L with respect to 0,

0 3n1 ny  2n3 -3n1  n—m
—logL = — i =0
29 °® 1-30 9 20 1-30" 0 ’
where n; stands for the value n;(w). Thus, we conclude that
- n—ni(w)
w) = ————.
(w) ™
Its mean is ] ]
Elf] == ——(1—-30)n=120
0= 5~ 5-(1-30)n
and the variance is
A 1 6(1 —30)
Thus, 0 is an unbiased estimator. Its variance decreases with n. |

Problem 114. Tesla Motors has a plant in Nevada that manufactures car
batteries. If a battery has length greater than a, it will not fit into the car,
and this is a big problem because the cost of fixing such defective batteries
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is high. Tesla has been plagued recently regarding problems in its assembly
line, related to poor quality control. You were tasked to visit the plan in
your capacity as inspector, and do a statistical analysis of the assembly
line. The first question that comes to mind is what is the probability that
a battery (chosen at random in the assembly line) has length greater than
a, i.e. P(X > a). (Let’s assume a 1D problem.) Show that a times this
probability can never be larger than the mean of X (i.e., EX). What is the
significance of this statement?

Solution.

Problem 115. Suppose that you make n measurements of the random
variable X, knowing the X is Poisson distributed with Poisson parameter A,
and m measurements of another random variable Y, which is known to be
exponentially distributed, i.e. its PDF is p(y) = a - exp(—ay), a > 0. Find
estimators for the parameters A\ and a in terms of the experimental data
X1,...,Xp and Yy, ..., Y,,. (All these rv’s can be assumed independent.)

Solution. Likelihood function:
-2 oty
L a) = 2T ot eom)
’ x1lxs! ...z,
Taking derivative of log L with respect to A:

1
—nt (@ )y =0

with respect to a:
1
mg—(y1+---+ym):0.

The first equation gives:

The second gives:

a/:

Vit + V)
Here, X;(w) = z; and Y;(w) = v;. [ |

Problem 116. What is the meaning of “bias” in the context of a statistical
estimator? How does one determine the amount of bias in an estimator?
What desirable properties should the estimator possess? Give an example
of a biased estimator and explain what makes it biased.

Solution. Biased, since the coefficient is 1/n instead of 1/(n — 1). [ |
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Problem 117. The Richter magnitude of an earthquake is determined from
the logarithm of the amplitude of waves recorded by seismographs (adjust-
ments are included to compensate for the variation in the distance between
the various seismographs and the epicenter of the earthquake). The formula
is:
My, = log;o(A/Ao(9))

where A is the maximum excursion of the Wood-Anderson seismograph, the
empirical function Ag depends only on the epicentral distance of the station,
0. Both A and ¢ are prone to measurement error. Find the uncertainty in
M7y, due to errors in A and §.

Solution. Propagation of error formula is:

2 2
where the derivatives are:
oMy, 1 A®) 1 1
A log(10) A Ay()  A-log(10)
oMy, 1 Ag(d) 1 040(0) DA(8)/06
86— log(10) A [Ag(0)]2 85 A-Ay(6)-log(10)

Problem 118. The fluorescence decay of a fluorophore molecule is modeled
by:
I(t) = rle T,

where 7 is the fluorescence decay lifetime, or equivalently, 7! is the decay
rate. (You can think of this model as giving the probability of a mole-
cule chosen randomly from an ensemble to be found in the excited state.)
To some extent, the decay lifetime is indicative of the immediate chemical
environment of the molecule. Consequently, you decide to investigate its
potential use as a chemical sensor by measuring lifetime in the presence of
different types of solvents and solutes. Your experiments returns values of
t (i.e., ti,t2,...,t, ) at which the fluorescence intensity drops to 1/e of its
initial value; i.e., the point where ¢ = 7. Such measurements of ¢1,ts,...,%,
are subject to considerable errors. To reduce variability you repeat the
measurement many times and derive a suitable average.

(a) Explain how you would estimate an average lifetime in terms of the
experimentally measured lifetimes t1, ts, . . ., t, which maximizes the chances
of observing this experimentally measured data.

(b) If the scientific journal you are trying to publish your results in asks you
to report average decay rates instead of lifetimes, how would you estimate
average decay rates from the data?
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Solution. (a) For simplicity, we shall use the same notation ¢; for the ran-
dom variable as well as its value t;(w). Since ti,to,...,t, are iidrv, the
likelihood function is a product:

L(t1,ta, ... ty) = rle /T e /T = 7 exp <—T_1 th> .
The log likelihood is
logL = —nlogT — 7! Zti'
Differentiating with respect to 7 and setting equal to zero:
n 1
-+ = t; =0.
L Ly

Solving for 7 we get the MLE which is the arithmetic average of the measured
lifetimes:

Problem 119. Suppose you record the number of cars crossing some inter-
section going northbound at regular intervals of 5 minutes after midnight,
i.e. when there is very little traffic, so you can assume that the events of
cars crossing the intersection are Poisson distributed. Let n; the number
of cars recorded in the ith time interval. Your job description requires you
to produce a daily report to the city by 10:00 am which includes the data
recorded along with some basic statistical analysis. In particular, the city
wants you to state on the cover page the mean number of vehicles and the
variance in a 5 minute time interval. However, because the numbers are
Poisson distributed you are unsure if you are allowed to use the formula
for sample mean, since you may recall it was derived using the assumption
of Gaussian statistics — not Poisson. Derive the correct formula for the
sample mean and variance in the case of Poisson statistics.

Solution. See Problem 112. |

Problem 120. You measure a signal, y, that is the sum of a function f
contaminated by additive noise £. In discrete form:

yi = f(zi,8) + &
where (3 is a parameter for the function f that we wish to obtain. (The form

of the function f is known, but we must determine this parameter from the
data.) The density of the noise & is known, p(§). Estimate the function
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f(z, Bo) from the set of functions f(z, ) (i.e. determine the value of f3),
using the data obtained by measurements y of the function f corrupted by
noise &.

Solution. The data is given by the pairs:

(x17y1)7 sty (xnvyn)
We estimate [y using the ML method by maximizing the log likelihood:

1(8) = logp(yi — f(xi,B))
=1

Where p(§) is a known function and £ = y — f(z,5). To make further
progress we must know the form of p(§). If p is Gaussian,

G- ¢
= exp | —==
b V2ro? P\ 202
(zero mean, known variance), we then obtain the least squares method:

1

202
i—1

n

1(B) = (vi — [ (i, B))* — nlog(V2m0)
Maximizing [(3) over the parameters (3 is the same as minimizing the least

squares functional:
n

> (i — f(wi, 8))

i=1
The particular value of 8 that minimizes this functional is called 3y. For
other distributions, p(¢), a different functional may be obtained. |



Chapter 5

Data Fitting

5.1. Linear Least Squares

An important aspect of experimental research is the measurement of physical
quantities. From these physical quantities we seek to confirm or disprove
certain hypotheses. This could be, for example, verification that a theory
holds in a certain regime. We then need to “fit” the data to an equation
and determine the unknown coefficients in the equation. This is the topic
of data fitting.

5.1.1. Least Squares Method. An old and trusted method to data fitting
is the method of least squares. If the distance between the experimental
data and the model is normally distributed with mean 0 and finite variance,
the joint pdf describing the measurement of the data points {yi,...,yn} is
such that the application of the principle of maximum likelihood estimation
(MLE) for the model parameters yields the method of least squares.

In contrast, if the measurements are not normally distributed about the
model, MLE does not yield least squares. (Exercise: can you demonstrate
this?) In this course, we will limit our discussion to data points which are
normally distributed about the model. Linear least squares is a special case
of least squares when the model is linear in the fitting parameters. Non-
linear least squares problems are more complicated and generally cannot be
solved analytically. Later in the course, we will solve non-linear least squares
problems using computer-based methods.

5.1.2. Straight line. Let us begin with the method of linear least squares.
And for simplicity we shall consider the problem of fitting data to a straight

205
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y
y=A+Bx
“best fit”
-~
X‘l X2 X3 X4 X

Figure 5.1. Straight line fit.

line model.! Suppose we have the data shown in Fig. 5.1 and we would like
to fit these points to a straight line

y(x) = A+ Bux.
The measured data is the set of pairs
(@1, 91), (22, ¥2), (23, Y3), - - -, (Tn Yn)-
If we assume that
e The uncertainty in {z;} is negligible.
e Bach y; is Gaussian-distributed with the same width o,.

e All measurements {y;} are statistically independent.

The hope is that the model (if correct) gives the true value of y:
y(x;) = (true value of y;) = A + Bu;.

From the above assumptions, it follows that the probability of a single mea-
surement y; is

( ) 1 |: (yi—A—B$i)2:|
p(yi) = exp | — 5 :
V2mo, 203
Because of statistical independence the joint probability density, L(A, B) =
p(y1,--.,yn), of obtaining a complete set of measurements y1,...,y, is the

product of probabilities of individual measurements:

p(yl).p(m).....p(yn):Mexp<_z(yz f;UZB )).

i=1

by independence

by assumption of independent Gaussians

Winear least squares and the straight line model are two different things. Fitting a polynomial is
still a linear least squares problem because linear means linear in the model parameters. It is not
a statement about the degree of the polynomial being fitted.
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We shall rewrite this expression in slightly more convenient form:

1 _
LA, Blyt, -, yn) = p1, -y yn) = ———e X /2
Yy

where

V2= zn: (i —A— Ba?z Z R2.
i=1
Here, R; = (y; — y(x;))/0os ~ N(0, 1).
According to the principle of maximum likelihood, the best estimates
for the unknown constants A and B are those for which p(yi,...,yn) is
maximized. Or equivalently, for which x? is a minimum. This strategy is
the basis for the method of least squares fitting.?

8)(2 2 o

Ix (yi — A — Ba;) =0

A ZZ -

3)( sz yi—A—Bz;) =0
yi*l

which we rewrite as

n n
An+ B Z T; = Z Ui
=1 i=1
n n n
AZ:UZ' -I—BZx? :inyi
i=1 i=1 i=1

These 2 equations and 2 unknowns are easily solved (see Section 12.1) to
yield:

n n n
IOESDIETEDIEY

n

‘ ‘ ) 2. TilYi
5.1 A= =1 =1 =1 =1
(5.1) 5 ,
n n n
5.9 B = =1 =1 =1
( ) A )
where
n n
A= anf — (Zx1)2
i=1 i=1

The resulting line y = A + Bz is called the least squares fit to the data, or
the line of regression of y on x.

2The method is called least squares because it involves minimizing chi square. This is a conse-
quence of our assumption that the data is normally distributed about the model. Because of the
particular form of L obtained, maximizing L is equivalent to minimizing x2.
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However, A and B are derived from experimental data. Thus, there is
uncertainty associated with A and B. Another question of interest is how do
we obtain an estimate for o, based on experimental data. o, is the parameter
of the (assumed) Gaussian distribution that describes the fluctuations of the
experimental data about the model.

5.1.3. Estimating o, for a Straight Line Model. The deviations y; —
A— Bx; are normally distributed, all with mean 0 and width o,. We can de-
rive an expression for o, by viewing L as a function of o, and use maximum
likelihood. Thus, we set:

n

1 i — A — Bx;)?
9 (ne—x2/2) =0, where 2= Z (v 5 i) .
doy \ oy — oy

Carrying out the differentiation we get

n

e ie*’<2/2(_71> (_2) S (i~ A-Br)?>=0

n 3
Oy Ty 9% /=

from which we conclude that 05 = 15" (yi — A — Bz;)%. In practice
we take the prefactor to be 1/(n — 2) instead of 1/n because A and B are
computed from the data and this results in a bias of the estimator af, (verify
this!). A prefactor of 1/(n — 2) corrects this bias. This “fix” makes sense if
we imagine fitting a straight line to only n = 2 data points. The fit would
always be perfect (0, = 0). The prefactor 1/(n — 2) ensures that we get
a division by zero: o, = 0/0 (undefined), indicating that such a situation
should be avoided.

1 n
O’in_Q = Z(yz — A — Bx;)>.
i=1

5.1.4. Estimating the Magnitude of 04 and op. For simplicity let us
assume that the errors in {y;} are all identical, i.e. o,, = 0,. Here we cannot
use maximum likelihood because L(A, B, oy) does not depend on o4 or op.
However, since A and B are well-defined functions of 41,2, ..., yn, we can
find o4 and op by simple error propagation:>

n ) n n n
y xzzyl_lezlﬁyz n n
A— i=1 i=1 A1:1 i=1 ’ A — RZIE? _ (Z ﬂj‘i)Q

=1 =1

31t is worth reminding ourselves of our assumption that the error in {x;} is negligible. If this error
is not negligible, we need to modify our strategy.
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from which we get

oA =0y

We proceed the same manner for op.

Given:

n n n
B = i=1 A1:1 i=1 ’ A — TLE :xZZ _ (§ ::L,Z)Q

we apply the method of error propagation to derive the error in B:

n

=2

7j=1

n
naj— ) |2
=1
A

(9yj

n

n
n nx —27235]2:1:6Z (2:1531)2
1= 1=
=0y X

J=1
cnfn e (] T =
A2 A
J=1 z:l
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Figure 5.2. Straight line model and the factors affecting the quality of
the fit. To get more precise slope and intercept, it is desirable to have
small error bars near the end points of the data set.

/n
UB:Uy Z

5.1.5. Factors that Affect a Straight Line Fit. Suppose that we fit
data to the straight line:

from which we conclude that

y(zi|A, B) = A+ Buz;
A number of factors will affect the results (slope and intercept).

e Intercept. To increase the precision in the intercept, we must reduce the
error bars on points that are close to the y-axis.

e Slope. To increase the precision of the slope, we must reduce the error
bars on the points located at extrema of the data set (first and last points).

This is illustrated in Figure 5.2.

5.1.5.1. Linear Least Squares: Summary of Assumptions. It is important to
remember the assumptions behind the method of linear least squares. First
of all, we assumed Gaussian-distributed errors. By error we mean deviations
of the data from the model, y; —y(=z;). This is reflected in the use of Gaussian
PDFs that describe the probability of a measurement g; being found near
the model y(z;):

1 s
P(yi < Yi < i +dy) = py, (i) dys = ———e V@D 204y,
2nol,

2
Yi?
Y ~ N(y(zi),07,). We have also assumed that the measured data points

{y1,92,...,yn} are statistically independent of each other. This assumption
of statistical independence allowed us to write the likelihood function as a
product of Gaussians:

i.e.,, each Y; obeys a normal law with mean y(x;) and variance o , or

1 2 LR
pyvi(y1) pya(y2) oo Py, (yn) = ) 2 o) ¢ R => R
1=1"Yi i=1
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Finally, the last assumption is our choice of the method of MLE as a way
to derive equations for the fitting parameter. MLE involves choosing the
fitting parameters that lead to the maximum likelihood of observing the
experimental data {(z;,v;)}.

5.1.6. Linear Least Squares: Geometric Interpretation of A, B. For
the straight line model,

y(x;|A, B) = A+ Bz,
we obtained the result for the linear least squares method as:

A= ZZ‘L:I 9312 Z?:I Yi — Z?:l Ly Z:‘L:I TiY;
— A :
B— MY i Tl — D iy Ti Y i Yi
A )

A= nix? — (Zn:xz)Q
i=1 i=1

This result is rather difficult to memorize. I will show you how you can
remember it using a simple geometric argument. We note that A and B can
be expressed in terms of sample averages. In the equation for A, we divide
the numerator and denominator by n?, and write:

@) - @)

(z2) — (2)?
where the angle brackets denote sample means, i.e., (x) = % S @, (2?) =
LS 22 and (zy) = L3 2y, We note that (zy) is simply an inner
product of two vectors, Z = (x1,...,2,) and ¥ = (y1,...,¥yn), sometimes
written as (&, %) in a linear algebra course.

In the expression for B, if we divide the numerator and denominator by n?,
we get:

(zy) — (z)(y)  cov(x,y)

P=" w2 = ear(e)

The factor Cgsﬁfw%) represents an orthogonal projection of the vector i onto

Z. In linear algebra such orthogonal projections are accomplished with the
use of projection operators:
0,7 . (4,%)
Pa() = = =7 = 1=
’ (7)) |2

where 6 is the angle between the vectors ¢ and .

z

(el

T=(y,éz)éy = ||Y]| cosOé,, &=

8
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Furthermore,

cov(zx,y) '
var(x)

Now let’s look at our model again, y = A+ Bz, and view x and y as random
variables and A and B as constants. Taking its average, (y) = A + B(z),
yields the relationship between A and B, A = (y) — B{(z). The equation

B = %@%’) is obtained from y = A + Bz by simply “projecting” it onto x
using the projection operator Pz(-) = %, ie.

o cov(z,y) _ cov(xz, A + Bzx) _ cov(z, x) _
Pe(9) = var(x) var(x) B var(x) B.

5.1.7. Maximizing the Likelihood Function. The MLE method re-
quires us to maximize the likelihood function L(8|y1, y2, . - ., yn) with respect
to the fitting parameters @ = (A, B,C,...)T. There are at least 3 ways to
do this:

e Maximize L by inspection. It is sometimes possible to find the maximum
by inspection. For example: maximize functions of the form (1/2 — n)32,
(1/2+mn) and (1/2 — n)(1/2 4+ n) with respect to n, for —1/2 <n < 1/2.
This can be done by inspection: in the first case, n = —1/2; in the second
case, 1 = 1/2 and in the third case, n = 0.

e You can maximize L using calculus. In one variable the necessary condi-
tion for an extremum is dL/dA = 0 whereas the second derivative test for
a maximum is d2L/dA% < 0. For example, in the case of two variables
0 = (A, B)T, the necessary condition for an extremum is L = L(A, B) is
dL = (04L)dA+ (0pL)dB = 0, which implies that 4L = dpL = 0. This
gives 2 equations and two unknowns, allowing us to solve for A and B.
Checking for a maximum requires a second (or higher-order) derivative
test.

e You can maximize the log of L, [ = log(L), also known as the “log-
likelihood” function. Since log is a monotonic function, maximizing L is
the same as maximizing log(L). The advantage of working with the log
of L is because log converts products into sums, i.e. log(AB) = log(A) +

log(B).

5.1.8. Weighted Average. Consider the experiment where we measure a
random variable X using different methods. For example, X could be the
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weight of an object and the weight can be measured using different types
of balances, where each balance has its own uncertainty. Let X1,..., X, be
a random sample of X. The measurements are denoted by lowercase vari-
ables X;(w) = z;. These rv’s are independent but not necessarily identically
distributed. Thus, we have the measurements x1, zs, ..., x,, each with un-
certainty o1, 09, ...,0,. What value should we report for X, in terms of the
data x1,...,x, given that the uncertainties are different? Naturally, you
may expect that the measurements with smaller uncertainty should carry
more weight. It does not make sense to use the sample mean where all
readouts are weighted equally, since some of those readouts may carry very
large error bars.

Let us assume that X4,..., X, are Gaussian—distributed4 iidrv with the same
mean (p) but different variances 2. We will then find the ML estlmator for
the mean, {1, and an estimator for the variance of the mean, i.e. O'H, where
p = fi. In other words, assume that the o2 are given to you (known values).
The problem consists of finding 02 in terms of the known values z; and o?.

The likelihood function is:

n
L(/L,G‘$1,..., H (@i M) /20—?'
i=1 2mo i
The log-likelihood is:
log L = —fnlog (2m) Zlogal 21272'“
o
=1 =1 ?

Extrema are found from:

dogL) <~ (w;— " "1
(;i):;(mgzu):Z; ;?:

i i=1

Substituting X;(w) = z; and dropping the w notation, we get the following
estimator for the mean:

2im1
Zz 1o

This estimator should be viewed as a random variable, i.e. i = fi(w) is a
function of the X;(w)’s

Note: if o; are all identical (i.e. o; = o for all i) then this reduces to the
simple arithmetic average, fi = %Z?:l X;. We can get a partial check that

(5.3) fi=

“weighted mean”

< w‘ = ~qw‘~>.<

4The assumption of Gaussian distribution is made in order to simplify the math.

SNotice how L is a product of functions, whereas | = log L is a summation. Thus, working with
the log-likelihood converts products into sums, which are easier to handle.
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this is a maximum of L:
0?*(log L) "1
Pal - §- k<o
ou ~ o

(The “proof” that this is a maximum also requires additional considera-
tions.)

We can check for bias:

= . (unbiased)

S-S=

Given a random sample, we substitute X;(w) = x; into Eq. (5.3), and obtain
the variance of the mean by error propagation
n aﬂ 2
2 _ 2 [ 9K
%‘Z%Qm>'
=1
where 1 = fi(w) and

op 0 Yor(wifo?) 1/a7

Oz Oxi Y i (1/0?) Y (1/02)

SO

2 = ;2 1/0? 2_ = 1/o? B 1
~‘§3Z<z;avﬁ0 =L S (/R T S

i=1 Jj=1
Thus, 02 is equal to the harmonic mean® of the variances of each measure-
ment, O'JZ-, divided by n:

g

:1<2;Avﬁvf

2
Ko n

Note: if o; are all identical (i.e. o; = o for all ¢) then this reduces to

05 = 02 /n, the standard error (or standard deviation of the mean).

5.1.9. Weighted Least Squares. If the measured data {y;} have different
uncertainties {0, } then we need to account for their relative “weights” when
fitting the curve (Fig. 5.3), i.e. points with exceedingly large error bars
should not play a dominant role in the fitting results.

We define the “weight” of the i-th measurement as w; = U% We can apply

Yi
the principle of maximum likelihood. We first write down the formula for

6The harmonic mean H(zi,...,xn) of 1,..., 2y is:

1 1 (<1
H(z1,...,zn) :; <Zml>

=1
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Figure 5.3. Weighted least squares fit accounts for the variations in the
error bars from point to point.

chi-square:
2 _ N\~ (i — A~ Bai)’
X - 0_2
i=1 Yi
Differentiating,
ax* - 2
—==-2) 0,%(yi—A—Bx;)=0
Yi
0A pa
ox* =
(5.4) 8% =—2) o0, %ni(yi — A— Bx;) =0,
i=1

which we can rewrite as:

n n n
AZwi —|—BZwia}i — Zwiyi =0
i=1 i=1 i=1
n n n
A Z w;x; + B Z wix? — Z w;x;y; =0.
i=1 i=1 i=1

These 2 equations in 2 unknowns can be solved to yield (see next section):
A = Cwird) (C wiyi) = (O wiws) ( wiziys)
A Y
g = X w)Q wimiy:) — (O wizi) (30 wiyi)
A

where

A= (; wi)(Z; wiz?) — (; wizi)?.
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We can also easily show that:”

[N wa? IS w;
oA = ZilAwlmZ and op = Z’sz.

5.1.10. Solving for A, B using Matrix Inverse. For the system of equa-
tions (5.4) in the previous section, we would first write it in matrix form:

(S, Eot) (3) = ().

then solve for (A B) with the matrix inverse:

' B 2wy Y wi?ﬂ? dowiTiyi)

The matrix inverse is easily found:
Swp Swiz\ B 1 Swiri =Y wit
S wir; > wi? N Sw; Y wir? — (Y wiwg)? \— Do wi > w; ’

Denoting the determinant by A and carrying out the multiplication of the

inverse with the column vector < 2. Wil >, as required by Equation (5.5),
> Wity
we obtain (A B):
<A> _ 1 <Z WiTy Y wiys — Y wiki Y wz%?/z)
B AN\ Dwi D wimiyi — Y wiTi Y wiy;
where A is defined as before. You can check by setting w; = 1 that you re-
cover the results of the unweighted least squares method previously covered.
For the weighted least squares, we conclude that the coefficients A and B
from the fitting procedures should be calculated according to the formulae:
A = LW S wiys — 3w 3 widiys
A )
B— Do Wi YWY — Y Wil ) Wi
= X .

5.1.11. Fitting Exponentials using a Straight Line Model. The ex-
ponential function

y(x) = AeP?
does not appear to be amenable to the technique of linear least squares be-
cause it is not linear in the parameters A and B. Such exponential functions
are ubiquitous in nature. They arise as solutions of differential equations of
the type:
dy

=N = )= y(0)et=to),

Lt; you had difficulty with this type of calculation when we previously dealt with the case of
identical error bars, here is a good opportunity to gain some more practice with error propagation.
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1(x)
Io A

/n X

Figure 5.4. Decay of beam intensity as function of depth of penetration
into a material. Attenuation is usually exponential with distance.

Figure 5.5. RC circuit.

as you can easily check by substitution of y(¢) into the differential equation.
As an example, the intensity I of a radiation beam penetrating a distance
x through a shield obeys the equation (see Fig. 5.4)

I(x) = Ipe™#*

Iy: intensity of the incident beam
w: absorption coefficient (a property of the shield material)

Another example is an RC circuit (Fig. 5.5). The charge @ accumulated on
capacitor C' drains away exponentially fast when the capacitor is connected
to a resistor. The time-dependence of the charge is described by:

Q(t) = Qoe ™

Qo: initial charge (at time ¢t = 0)
A =1/RC": inverse time constant
R: resistance

C': capacitance

Fortunately, these models can be treated by linear least squares if we take
the log of the equation:
logy =log A+ Bx
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i
/= X

Figure 5.6. In general, a polynomial can be fit to most smooth curves.
The challenge is to choose a fitting model that has the lowest number
of parameters possible while fitting the data well.

and fit a straight line to the equation (z; = logy;):
z; = log A+ Bux;

If the errors o, in y are identical at each point, then for a function of the

g
oy = -*. We can

form z = logy, o, depends on y according to o, = "

d
dy
then use the weighted least squares method.

5.1.12. Fitting a Polynomial. We can derive least squares formulae for
higher order polynomial models (see Fig. 5.6)

y(z|A,B,C,...,H) = A+ Bz + Cz* +--- 4+ HaP™!
For example, the height of a falling body should obey the equation

1 2
y(t[yo, vo, 9) = yo + vot — 29t

where
Yo, vo: initial height and velocity, respectively
g: acceleration due to gravity.

Consider the model:
y(z|A, B,C) = A+ Bx + Cx?,

which is still considered a “linear model” because linear refers to linearity
in the fitting parameters A, B and C, which this function fulfills. The
corresponding chi-square function is:

~ Z-—A—Bxi—CxZQ
XQZZ(y z).

2
0,
=1 )

To obtain the coefficients A, B and B we invoke the principle of maximum
likelihood. The likelihood function

L(A7B7C’y17 e 7yn) :p(y17 cee 7y7l) X e_X2/27

is viewed as a function of the fitting parameters A, B, C. Minimization is
performed with respect to these parameters. Setting Ox%/0A = 0, Ox%/0B =
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0 and 9x?/9C = 0:
n n n
An—l—Bin—i—Cng :Zyi

i=1 i=1 i=1
n n n n

AZaji +BZ£? —i—C’Zaz? :inyi
i=1 i=1 i=1 i=1
n n n n

AZm? +BZI’? +CZ£§1 :Z:E?yz
i=1 i=1 i=1 i=1

These 3 equations in 3 unknowns can be solved to yield values of A, B and
C in terms of the data.

5.1.13. General Linear Function of the Parameters. The method
works for functions y = f(z) which depend linearly on the coefficients A, B,
.... For example,
y(xz|A, B) = Asin(x) + B cos(x)
depends linearly on A and B. Likewise, any function of the form:
y(@|A, B,...,H) = Af(x) + Bg(z) + - -+ Hk(x)

where f,g, ...,k are known functions.

5.1.14. Multiple Regression. Many problems require 2 or more vari-
ables. An example is the ideal gas law PV = NkpT for fixed N, which
expresses the relationship between pressure, volume and temperature, i.e.
P=fWV.T).

Suppose that

z(x,y|A,B,C) = A+ Bz + Cy
and we measure the data points (set of triples)
{(mi,yi,zi)}, 1= 1,...,n

z;: all have the same uncertainty (o)
x;,y;: are assumed to be ”exact” (negligible uncertainty)
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Maximum likelihood yields:

n n n
An—i-Bin—f-CZyi:ZZi
=1 =1

=1

n n n n
AZH,’% +BZ$? +szzyz :inzi

=1 =1 =1 =1

n n n n
AN i+ B> i +CY ul = yiz

=1 =1 =1 =1

and we solve for A, B and C' to get the best fit (in the least squares sense).

5.1.15. Linear vs Nonlinear Dependence on Parameters. So far we
have discussed the case of “linear least squares”. By linear, we mean that
the model is a linear function of the model’s parameters. For example:
y(z|A,B) = A+ Bx
y(z|A, B,C) = A+ Bz + Cx?
y(z|A,B,C,D,E) = A+ Bz + Cz+ D2*> + Exz

are all linear models. In general, a linear model is of the form:
P
y(z]0) = ) 0:fi(x)
=1

where 6 = (04, ... ,9p)T and each term contains the first power of the 6;’s.
The functions f;(x) can be nonlinear in z. In matrix form, y(z|8) = 87 f(z),
where and f is the column vector (fi,---, fp)T (the subscript T' denotes
“transpose” ). For example,

y(xz|A, B) = Acos(x) + Blog(zx)
is still considered a “linear least squares” problem because A and B show
up in first power. On the other hand, y(z|A, B) = Acos(Bx) is not linear
in B because B shows up in even powers up to infinity. Similarly, y(z|A) =
A+ A%z is nonlinear because of the A2. If the dependence on the parameters

is linear, we can use the maximum likelihood technique to obtain estimates
of the parameters in terms of the data. This is called “linear least squares”.

5.2. How to Determine if a Fit is Good

5.2.1. Inspect the residuals and look for possible trends. The resid-
uals measure the distance between the model, {y(z;)}, and the data, {y;}:

R; = y; — y(x4|0)

where 6 denotes the set of fitting parameters, e.g. 8 = (A, B)? in the case
of a straight line model. Plotting the residuals (see Fig. 5.8) yields a useful
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data
fit
Ri Ri
b hd e’
L] L] L] L] L] L]
L) ° L) L] ° L] L J ° [ ]
need to include quadratic term need to include sinusoidal variation

Figure 5.7. Residuals can be used to assess the adequacy of fitting
model or to propose changes to the model.

tool to judge if a fitting model is adequate. In the figure below we have
illustrated two examples where the fitting model is inadequate because the
residuals show some clear (non-random) trends. In the first case, a quadratic
dependence should be added to the model. In the second case, the model
fails to capture a sinusoid dependence.

Suppose that y(z) is a model for the experimental data. The set of ordered
pairs, {(z;,y;)}, is the experimental data. For simplicity, we still assume that
the errors in x; are negligible. So far we have assumed that the following
random variable is normally distributed about the model’s trendline (with

parameters: mean, y(x;) and variance, 03):

Yi ~ N(y(l’i),azi)-
An equivalent statement is:
R; = yi — y(z;) ~ N(0, 0’52_).

Invoking var(aX) = a? - var(X), another equivalent statement is:

R, =00 y(@i) ~ N(0,1).

Oy,

K3

where oy, is the error in ;. The basic assumption of the least squares method
that data points are Gaussian-distributed about the model’s trendline is
a good assumption in most cases. This is a consequence of the central
limit theorem and the fact that most physical measurements of macroscopic
properties are the result (sum) of a very large quantity of smaller microscopic
processes, such as molecular collisions and other scattering events. There
are exceptions to this, where in some cases the distribution is not Gaussian.
R; is known as the normalized residuals. In the sketch below, the plot on the
left shows hypothetical experimental data whose error bars are larger on the
right than on the left. This leads to the residuals {R;} shown in the middle
plot. The error grows from left to right, as seen in the residuals. However, if
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Figure 5.8. Using (normalized) residuals to assess the quality of a fit.
From left to right: (1) Experimental data with straight line fit. (2)
Residuals. (3) Normalized residuals. (4) Histogram of normalized resid-
uals follows a Gaussian distribution with mean 0 and variance 1.

-20 -10 10 20 30 40 50 60
n

Figure 5.9. Linear regression.

we normalize the residuals, {R;}, the results show a uniform error bar since
R; ~ N(0,1). This is shown on the plot to the right, where I have sketched
a bell-shaped histogram to illustrate the standard Gaussian distribution of
the normalized residuals (Fig. 5.8).

An adequate model which captures all the needed trends should leave nor-
malized residuals that are normally distributed with mean 0 and width 1.
A good fit will yield:

68% of data scattered within +1 of 0.
95% of data scattered within £2 of 0.
99.7% of data scattered within +3 of 0.

5.2.2. Chi-Square as a Goodness-of-Fit Parameter. For convenience,
we shall denote the parameters of the model (A, B,C,...) by the vector
0 = (A,B,C,...)T. Consider a set of data points {(z;,%;)} and a model
y(x;]0) for the data (Fig. 5.9).

A measure of how good the fit is should be a distance metric that measures
how far the data points lie from the curve. One possible such measure can
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be obtained by summing all differences (squared) between the data points
and the model. The chi-square

n 2
2 _ N\~ Wi — y(i]6)]
X = Z o2
i=1 Yi
is a measure of the distance between the model and the data, i.e. the

“goodness-of-fit”. Some remarks:

e Fitting the data corresponds to minimizing y2. Doing so ensures that the
model closely represents the measured data. The best fit parameters are
found when y? is minimized.

e \? can also be viewed as a random variable since it is a function of y;
which are themselves random variables. Thus, it has its own distribution.
(Exercise: can you derive its probability distribution?)

e It can lead to analytical expressions for the coefficients in some cases. For
example, we have seen that for linear models, analytical expressions can
be obtained.

e When analytical expressions are not possible, we can always use computer-
based minimization. (Computer-based optimization is the topic of subse-
quent lectures.)

5.2.2.1. Chi-Square is (Ia-norm)? of the Normalized Residuals. The formula

for chi-square
N

= Y= y(ilf)
Ty;

where

is the normalized residual, can be viewed also known as the ls-norm of a
n-dimension vector whose components are the normalized residuals:

R=(Ri,Ry,...,Ry).
The I3 norm of a vector Z is also known as the Euclidean norm:
2]z = /2T + - + 3.

where ¥ = (21,2, ...,2,). The Euclidean norm is frequently used to mea-
sure distances. The Euclidean distance between two vectors & and ¥ is,

17— 31l = Vo — o0+ (@2 = g2)P o+ ()
The I; norm of a vector Z is defined as:

1200 = faea] + o] + - - + |2l
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Figure 5.10. [; vs l2 distance metrics.

The [; norm is also known as the Manhattan metric or the taricab norm.
The taxicab distance is thus:

17 = glls = 21— y1| + w2 — g2 + -+ + [T — Ynl-
In Fig. 5.10, the taxicab distance in 2D (n = 2) is shown by the red line and
the Euclidean distance is shown by the green curve.

Generally, the [,-norm of a vector Z is:
1y = (&1l + -+ |eal?) 7.

As you can see there are many possible choices for the distance metric
in order to measure the distance between the data and the model. With
the chi-square function, as constructed, we have a n-dimensional space and
least squares fitting consists of minimizing x2, the lo-norm between the data
points {y;} and the model {y(x;|@)}. The Iy norm is easier to work with
from a mathematical standpoint than other distance metrics. For example,
it is generally difficult to work with absolute values.

5.2.3. Analysis of Variance.

5.2.3.1. Conditional Variance. The conditional variance of a random vari-
able Y given another random variable X is defined as:

var(Y|X) = E((Y ~E(Y | X)) X).

The conditional variance tells us how much variance is left if we use E(Y" | X)
to “predict” Y. Here, E(Y | X) stands for the conditional expectation of Y
given X, which we may recall, is a random variable itself (a function of X,
determined up to probability one). As a result, var(Y|X) itself is a random
variable (and is a function of X).

5.2.3.2. Law of Total Variance. The law of total variance states that if X
and Y are random variables on the same probability space, and the variance
of Y is finite, then

var(Y) = Evar(Y | X)] + var(E[Y | X]).
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The two terms are called the “unexplained” and the “explained” components
of the variance, respectively.

Proof. The law of total variance can be proved using the law of total ex-
pectation. First,

var[Y] =E [YV?] - E[Y]?
from the definition of variance. Again, from the definition of variance, and
applying the law of total expectation, we have

E[Y?] =E [E[y?| X]] = E [varlY | X]+[E[Y | X]?].

Now we rewrite the conditional second moment of Y in terms of its variance
and first moment, and apply the law of total expectation on the right hand
side:

E[Y?] -EY]? =E [var[Y' | X] + [E[Y | X])?] - [E[E[Y | X]]]*.

Since the expectation of a sum is the sum of expectations, the terms can
now be regrouped:

= (Efar[Y | X)) + (E [E[Y | X]?] - [E[E[Y | X])}%).

Finally, we recognize the terms in the second set of parentheses as the vari-
ance of the conditional expectation E[Y | X]:

= Efvar[Y | X]] +var[E[Y | X]].
([

5.2.3.3. Explained and Unezplained Variation. We are interested in two mea-
sures used in correlation and regression studies: the coefficient of determina-
tion and the standard error of estimate. In doing so, we must also learn how
to construct a prediction interval for y using a regression line and a given
value of z. To study these concepts, we need to understand and calculate
the total variation, explained deviation, and the unexplained deviation for
each ordered pair in a data set.

Assume that we have a collection of paired data {(x;,y;)}—,. Together with
a model y(z) that predicts the value of y. The sample mean will be denoted
7. The total variation about a regression line is the sum of the squares of
the differences between the y-value of each ordered pair and the mean of y:

n
total variation = 5SSy, = Z(yl — @)2.
i=1
The explained variation is the sum of the squared of the differences between
each predicted y-value and the mean of y:

explained variation = SS., = Z(y(:vz) -7)°
i=1
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The unexplained variation is the sum of the squared differences between the
y-value of each ordered pair and each corresponding predicted y-value:

n
unexplained variation = SS,cs = Z(y(azl) — yi)Q.
i=1
Since

(i =9 = (i = y(@) + (@) = 9)° = (i —y(2:))* + (y(@:) —9)*
+2(yi — (@) (y(z:) —7)
Summation over the last term, > . (y;—y(x;))(y(z;)—7), yields the covariance
of ¢ = y; — y(x;), € ~ N(0,0?) and y(x;) (with mean y). This covariance
vanishes since both ¢; and y(z;) are independent and have mean zero:

7= N X 1) = ) -7 = P

% %
We conclude that the sum of the explained and unexplained variations is
equal to the total variation:

total variation = explained variation 4+ unexplained variation.

As its name implies, the explained variation can be explained by the rela-
tionship between x and y. The unexplained variation cannot be explained
by the relationship between x and y and is due to chance or other variables.

In the previous section we have seen the law for total variance:

var(Y) = Ejvar(Y | X)] +var(E]Y | X]).

unexplained explained

where the two terms are “unexplained” and the “explained” components of
the variance, respectively. We can check that this formula is equivalent to

the above result
n n n

S w97 =S ) — )2+ > () - 7)?

=1 =1 =1

vV v
total unexplained explained

if we replace variance by sample variance, and expectation by sample mean:
var(Y) =E[var(Y | X)] + var(E[Y | X])
=E [E((¥ —E(Y | X))*| X)] +var(E[Y | X])
1 n

= > - @)+ S ) ~9)?
=1

i=1
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where we used y(X) = E[Y | X] and

Ex [E((v ~ B | X)) | X)] =Ex (¥~ 5(X)* % = (0~ y(w))
=1
var(Ex[Y | X]) = Ex (E[Y | X)) ~ E[V)? = Ex(y(X)-5) ~ ~ 3" (y(a:)-5)*
=1

If the model is linear (see Section 5.2.3.5 below),
Y =a+bX +e¢, y(X)=E[Y | X]=Ela+bX +¢| X]=a+bX.
5.2.3.4. Adam’s Law. For any rv’s X and Y,
E[E]Y | X]] = E[Y].

Proof. We consider the case where X and Y are both discrete (the proofs
for other cases are analogous). Let E[Y | X] = g(X). Then,

E[g(X)] = g(X)P(X = z)

=Y (ZyP(Y:y|X:aj)) P(X = z)
=D D PPX =2)PY =y | X =)

:ZyZP(X =z,Y =y)
= yR(Y =y) =E[Y].
(|

5.2.3.5. Linear Regression. In its most basic form, the linear regression
model uses a single explanatory variable X to predict a response variable
Y, and it assumes that the conditional expectation of Y is linear in X:

E[Y | X] =a+ bX.
An equivalent way to express this is to write
Y=a+bX +e¢,

where € is a rv (called the error) with E[e | X] = 0. This can be proven by
taking Y = a + bX + ¢, with E[e | X] = 0. By linearity:

ElY | X] =Ela | X]+ E[bX | X] +E[e | X] = a+ bX.
Conversely, suppose that E[Y | X] = a + bX, define
e=Y — (a+bX).
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Then, Y = a + bX + € with
Ele | X]=E[Y | X] —Ela+bX | X] =E[Y | X] — (a + bX) = 0.
We can also solve for the constants a and b in terms of E[X], E[Y], cov(X,Y)
and var(X). This is done by invoking Adam’s law, E[E[Y | X]] = E[Y], and
taking the expectation of both sides gives
E[Y] = a + bE[X].
Note that € has mean 0 and X and € are uncorrelated, since
Ele] = E[E[e | X]] = E[0] =0
and
EleX] = E[E[eX | X]] = E[XE[e | X]] = E[0] = 0.
Taking the covariance with X of both sides in Y = a + bX + ¢, we have
cov(X,Y) = cov(X,a) +b-cov(X,X)+ cov(X,€) =b-var[X].
Thus, we have the two results:
cov(X,Y)
var(X) ’
cov(X,Y)
var(X)
Numerical values of a and b can then be obtained from experimental data
{(xs,yi)}—, by substituting the corresponding formulae for sample means,
variance and covariance in lieu of E[Y], E[X], var(X) and cov(X,Y), re-
spectively.

5.2.3.6. R-Squared Value: The Coefficient of Determination. The coefficient
of determination, R?, is defined as:

b=

a=E[Y] - bE[X] = E[Y] - -E[X].

SSres unexplained variance

RP=1-

S'Siot total variance

where
n n

1

SSres = Yi — Y&, 2; SStot = Yi—Y 7 Y= Yi,
> (0= v(a) URY _ Z
{y;} are the observed data, {y(x;)} are the model predictions. R2 is method
that can tell us how well observed outcomes are replicated by a model. Like
x2, it also uses the sum of square differences (L? distance) between the data
and the model. The better the fit, the closer the coefficient of determination
gets to R? = 1.

Example 5.1. The correlation coefficient for Twitter’s advertising expenses
and company sales data is 0.90. Find the coefficient of determination. What
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does this tell you about the explained variation of the data about the re-
gression line? About the unexplained variation? (p = 0.90 suggests a strong
positive linear correlation). Thus, R? = 0.81. This means that about 81.0%
of the variation in the company sales can be explained by the variation in
the advertising expenditures. About 19.0% of the variation is unexplained
and is due to chance or other variables.

5.2.3.7. Correlation Coefficient vs Coefficient of Determination. Let X and
Y be two random variables. X is the independent variable and Y is the
dependent variable. We would like to know the type of relationship that
exists between X and Y (if any). The coefficient of correlation (p) and
coefficient of determination (R?) provide useful information. As an example,
X and Y could be related linearly. We would describe the linear dependence
by a model, i.e. y(x) = a+ bz, where @ and b are estimators for the true
coefficients a and b. The random variables themselves are related by Y =
a+ bX + €, where € is needed to describe the noise (i.e. imagine the special
case where X is noiseless; € is needed to explain the variability in V).

Coefficient of determination (R?):

(1) The square root of R? is equal to the correlation coefficient (p). See
Section 5.2.3.8 below for proof.

(2) It provides percentage variation in Y which is explained by all the
Y variables together.

(3) R? value is (usually) between 0 and 1 and indicates strength of
Linear Regression model.

(4) The higher the R? value, the less scattered the data points are (i.e.
it is a good model). The lesser the R? value is the more scattered
the data points are.

Coefficient of Correlation (p):

(1) It measures the strength and the direction of a linear relationship
between two variables (z and y) with possible values between -1
and 1.

(2) Positive correlation (p > 0) indicates that two variables rise and
fall together. p = 1 means perfect positive correlation, i.e. ¥ =
a—+ bX + €, where b > 0.

(3) Negative correlation (p < 0) indicates that two variables are perfect
opposites: when one goes up the other goes down (and vice versa).
p = —1 means perfect negative correlation (anti-correlation), i.e. ,
ie. Y =a+4+bX + ¢, where b < 0.

(4) No correlation when p is close to 0. This means the correlation
between X and Y is weak or non-existent. It could be due to X
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and Y being statistically independent, although p = 0 is not a
sufficient condition to prove independence.

5.2.3.8. Relationship between p and R? in Linear regression.

Theorem 5.2. Assume a simple linear regression model with independent
observations

(5.6) Y=a+bX+¢, e,~N(0,6%),i=1,...,n

and consider estimation using ordinary least squares. Then, the coefficient
of determination is equal to the squared correlation coefficient between X
and Y:

(5.7) R? = p(X,Y)>.

Proof. The ordinary least squares estimates for simple linear regression are
- .~ 8
(5.8) a=g—bz, b="

where

The coefficient of determination R? is defined as the proportion of the vari-
ance explained by the independent variables, relative to the total variance
in the data. This can be quantified as the ratio of explained sum of squares
to total sum of squares:

_ SSe;t _ Z?:l(y(l"t) — y)Q
SStot i1 (Y — )
Using the explained and total sum of squares for simple linear regression,

we have: .
R? > oy (y(x) — 9)* _ SO+ ba — 7)?
> (yi —9)? Yy —9)?

RQ
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By applying (5.8), we can further develop the coefficient of determination:
R? = > (® — bT + b — 7)2
> i1 (yi — 9)?
- 2
S (i —9)?
1 i (2 — )

— b2

ﬁ 2?21(%' —7)?
s (sg) 2 (X,Y)?
- 822/_ Sy _p ) 9

where 532; = SSiot/(n — 1) and in the last step we used the relationship (5.8)
between correlation coefficient and slope estimate (slope = p-sy/s;). O






Chapter 6

Non-Linear Least
Squares Optimization

If the model is nonlinear in the fitting parameters we must use iterative tech-
niques. In many cases, the best we can do is “guess” the initial parameter
values and evolve them over time until we reach a satisfactory solution. Our
focus is on the function x?(@) because x? measures the difference between
data and a model, data fitting amounts to minimizing x?:
min x*(0) = x*(6)
w.r.t.(0)

with respect to the parameters 8 = (01,...,0,)7. These are the fitting
parameters we previously denoted A, B, .... These parameters span a
multidimensional space. The parameters of y? are sometimes subjected to
constraints.

If the data is fitted to a function f(x|@) that is linear in the parameters, we
can use linear least squares. In other cases (f is nonlinear in the 6;’s) we
must resort to iterative techniques. The iterative approach consists of:

e Start with initial guess {02(0) P_,. We denote the iteration index by a
superscript. The component of the vector 8 is denoted by a subscript.

e Iterate until x? is minimized, i.e. obtain a new set of coefficients {91(8) b

from the previous ones {91(5_1)}7;:1 using some suitable rule. (Very often,
the iterations stop when x? no longer changes appreciably.)

e Final {H{ inal P_’s yield a global minimum of y?. At least, we hope that
the minimum we reached is a global minimum.

233
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6.1. Newton-Raphson method

Newton-Raphson is a method for finding successively better approximations
to the roots (or zeros) of a real-valued function f(z). These zeros are solu-
tions to the equation f(z) = 0. When applied to the function f/(z), it can
be used to find extrema of f.

6.1.1. Finding Zeros of a Function. We can find the zeros of a function,
{z|f(xz) = 0}, even when x is defined implicitly. For example, suppose you
are asked to find the maximum likelihood estimator of «, a parameter of the
gamma distribution. The likelihood function for a set of gamma distributed

random variables is:
n

— . B i -1, -B>"
L(a7/8):p(x17""xn7a7ﬁ):WHI‘? € Zl_lx'
where X;(w) = z; are the experimentally measured data and T'(:) is the
gamma function. Taking the log of L and differentiating with respect to
gives the maximum likelihood estimator:

A~

(0%
b= 1=
%Z?:lxi

However, the derivative with respect to a gives
I'(&) 1< 1 <
log(&) — =1 - X. | - = log X:
08(8) = Fay =l | ; i) - ; og X,
an expression that is highly nonlinear in &. We cannot solve for o by writing
this equation in the form & = h({X;}), for some function h of the data points

{Xi(w) = x;}. Instead, we can write this equation in the form f(&|{z;}) =0,
where

(@) =tog(@) ~ o) o (jb Z&) L g,
i=1 =1

and use the Newton-Raphson method to solve for & in terms of the data
{z;}. As an exercise, you should write a MATLAB program to solve for the
zeros of this function for given data 1, ..., z,.

The Newton-Raphson algorithm consists of:
e Choose a starting point, z(1).
e Approximate f(z(M)) near (1.
P + ) =0~ f@W) + D).

Taylor expansion
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f(x)

Zero crossing
at f(x,th)=0

Figure 6.1. The Newton-Raphson method is used to iteratively find the
zero-crossing of a function. For k > 0 sufficiently large, a zero of f is
eventually found (if one exists). In the text I changed the notation for
iteration to a superscript, e.g. (%) instead of 4.

so that
F@M)+ f@M)h =0

and therefore
- faM)
T W)

e This gives an approximation that takes us closer to the zero crossing

1)
L@ _ o _ S

f@)’
e In general (i.e. after the k-th step) the update rule is:
(k)
gB ) = z(*) ™) . (to find zeros of f)

- fa®)
The working principle is illustrated in Fig. 6.1.

6.1.2. Finding Extrema of a Function. If we want to find extrema of
a function f(z), we can apply the Newton-Raphson method to the function
/' (x) instead of f(x), as shown in Fig. 6.2. The update rule is:

(@)

— k) S )
x () (to find extremum of f)
In other words, Taylor expanding the gradient of f around the point z(*)
and setting equal to zero gives the update rule for extrema of a function:
1 (k)
6.1)  f@®+n) =) +nff@®)y=0 = h= —M,
f(a®)

L)

which leads to

1( (k)
JRUSSVN O i Gy

7(@®)’
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f(x) 1

7

«— P(%)-0

| S
T rd
X X

Figure 6.2. The Newton-Raphson method can also be used to find ex-
trema of a function.

6.1.3. Alternative derivation. We can obtain this update rule directly
for f : R — R because we know that f/(z) = 0 at the minimum of f(z).
Approximating f with a Taylor expansion about some point z(¥)

£ 4 1) ~ f@®) + h- @) + 2 ),

We want to choose h so that f(x¥+h) is a minimum. The necessary condition
for an extremum is:

(1) e 10+ ) ) = )+ = o
which leads to
L FE)
)

and the update rule

/(2 (k)
y _ L)y 0y )
Its generalization to multiple dimensions, f : R® — R, involves replacing
derivatives f/(z) — V f(z) (gradient vector) and f”(z) — VV f(x) (Hessian
matrix) to obtain the update rule z**+1 = z(*) — (VV f(2*)))=1V f(z*).
This will be discussed below in Section 6.12.

L (k1)

6.2. Gradient (Steepest) Descent Method

Vx? lies along the direction where y changes most rapidly (Fig. 6.3). Con-
sequently, we may construct an update rule as

0+ = k) _ AV 2(0™).
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B1

Contour lines of constant x? in parametric space {ﬁ}

Figure 6.3. For a height function of the type z = f(x,y), the gradient
descent method moves in the zy plane along steps parallel to the local
direction of steepest descent. Note: in this figure 8 should be replaced
by 6.

where A > 0 is called the “learning rate” because it controls the speed at
which the model parameters 8 = (61,...,0,)" are learned from the data (x>
is a function of the data).

The learning rate A cannot be too large (to avoid overshoot) and must not
be too small (so it converges reasonably fast) while 8 is a column vector
containing all p parameters at the k-th iteration. (The negative sign is used
because Vx? points in the direction of steepest increase of x? and we want
the direction of steepest decrease.) Vx? can be computed analytically if the
functional form of x? (hence, the model) is known.

If we don’t have an analytical formula available for the gradient, we can

approximate (Vx?); = g—’gj numerically by finite differences:

X2(91, “. ,93',1,9]' +59j79j+17 PN ,Gp) - X2(91, PN ,9]',1,9]',9]'4&,. . .,Gp)
50, ’

where 66; is a small step along the j-th direction.

This method moves toward the minimum because the directional derivative
of f along ¢ evaluated at the point @

df — — ~ —

@(a) =V f(@)-9=|Vf@)lcoso
is largest when § points along (parallel to) the vector Vf(@) (i.e. when
¢ = 0). The function f undergoes its maximum rate of change in the
direction of Vf(a@) (Fig. 6.4). Thus, the gradient V f(a@) is a vector that
points along the direction of steepest increase of f (at the point @).



238 6. Non-Linear Least Squares Optimization

Vi(3)

[O2)

0
y

Figure 6.4. The gradient of f is a vector that points in the direction
of maximum rate of change in f. Note: 6 has been changed to ¢ in the
main text.

6.2.1. Interpretation as Gradient Flow. Let X be a vector space (e.g.
R™) and f : X — R a smooth mapping. The gradient flow (or steepest
descent curve) is a smooth curve z : Ry — X (R = {t € R|t > 0}) such
that
2(t) = —V f(a(t)),

where 2/(t) =dz(t)/dt. Let f be a convex function. The equilibrium points
(2'(t) = 0) of the gradient flow are the zeros of Vf, which are also the
minimizers of f.

The solution x(t) of this differential equation is obtained as function of ¢
subject to some initial condition x(0). The forward Euler discretization of
the gradient flow with step size A > 0 leads to

(k+1) _ .(k)
% = —Vf(a®)

Solving for the next iterate z(*+1) gives the scheme
2EHD — (k) _ )\Vf(w(k))

known as the standard gradient descent iteration with step size A. Thus, the
gradient descent method can be interpreted as the forward Euler method
for numerical integration applied to the gradient flow.

6.2.2. Proximal Point Method. Convergence of the forward Euler method
depends on the proper selection of the step size A. In order to get rid of the
ill-conditioning of the forward step method, an alternative is the backward
Euler approximation which may be done by a slight change of the above
equation, i.e., by writing

pkt1) _ (k)

A
This method is known to have better approximation properties than forward
Euler, especially for differential equations that converge, as the gradient flow
does. Its main disadvantage is that it cannot be rewritten as an iteration

= -V f(=*D).
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that gives z(*T1) explicitly in terms of z(®). For this reason, it is called an
implicit method, in contrast to explicit methods like forward Euler.

To find 1) we solve the equation

2D LAY f(20HD) = 50,
To solve it, one writes

2D — (I + )\ka)_lx(k)
and we replace V f by an operator F'

B = (1 + M\ F) 2™,

where {\;} is a sequence of positive real numbers. This is known as the
proximal point method. The difficulty associated with the proximal point
algorithm is due to the inverse operation (I + AF)~!. A common approach
is to split F into two operators A and B such that F' = A+ B and (I + \A)
and (I + AB) are easily inverted.

For more information about proximal methods, see:

https://web.stanford.edu/boyd/papers/pdf/prox_algs.pdf

6.3. Stochastic Gradient Descent (SGD) Method

A variant of gradient descent is the stochastic gradient method. In the
update rule for gradient descent, o+ = g(k) _ AV x> (H(k)), we recall that
XQ(G(k)) is a norm that measures the difference between data and model:

Z lyi — y(zi ‘0 )H2 _ zn:(fgk))?

i=1

Substituting into the update rule we have
glk+1) — g(k) _ )‘Z V(7 (k k) _ (vg(f§’“))2 et vo(&kw) .

As you can see from the linearity of the gradient, the term Vgx2(6®)) is
the same as repeated (sequential) additions of Vg(ﬁfk))2. We can take the
extreme case and add them one at a time:
for ¢ =1 ton do:

o+l = g — AV (7).
end for
(where the samples are shuffled randomly prior to the for loop)

It can be shown that this method also converges to a local extremum, if it
exists. Stochastic gradient descent is a popular algorithm for training a wide
range of models in machine learning (ML). In ML X is called the learning
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rate. When using during backpropagation, it is one of the best algorithms
for training artificial neural networks.

Normally, one uses a compromise between computing the true gradient and
the gradient in a single sample to compute the gradient against more than
one training samples (called a “mini-batch”) at each step. For example:

for i =1 to [n/m] do:
o0+ = g0 — A3 V()2
i=1

end for
(where the samples are shuffled randomly prior to the for loop)

This can perform significantly better than the stochastic gradient descent
whose steps are computed one sample at a time. It may also result in
smoother convergence, as the gradient computed at each step is averaged
over more training examples.

More generally speaking, one has a loss function l(z), v € R™ (denotes
model parameters), which is not required to be of the same form as x2. The
simplest algorithm to solve the smooth problem
s @)
is the gradient descent method z*+t1) = z(®) — pVI(z*)), where h > 0
is the step size and k£ = 0,1,... is the iteration number. The gradient
descent is an explicit Euler discretization of the gradient flow & = —Vi(z),
where = x(t). This deterministic minimization problem is replaced by the
stochastic counterpart:
min E[l(z; w)],

TzER™
where w € ) denotes the realization of a random process. We may view the
w’s training data, {w1,...,wn} so that l;(z) = l(x;w;) is a random variable.

We may invoke the LLN to approximate the above expectation value by the
empirical (arithmetic) average:

_ 1
l(x) = N ;li(x),
which is exact when N — oco. Thus, instead of computing
_ 1
Vi(z) = 2; Vii(x),

which may not be feasible, at each iteration of the algorithm we sample a
“minibatch” B of size S, drawn uniformly at random (without replacement)
from an index set {1,..., N} and compute the so-called stochastic gradient
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given by

Vi(z) = %Z Vii(z).

ieB

Note that when S = N the stochastic gradient becomes the true gradient of
the empirical loss. Importantly, when the dataset is very large, i.e. S < N
and N — oo, the central limit theorem states that

Vi(a) = Vi(z) + £(2)

where £(x) ~ N(0,X(z)). Thus, the stochastic gradient is an unbiased
estimator of the true gradient of the empirical loss.

6.3.1. Line search Method. In the update rule

0+ = k) _ AV (),
there is no general prescription for the value of A, the learning rate. d; =
Vox2(0%)) is called the descent direction. For a given descent direction,

A is chosen such that X2(0(k) + Adj) is minimized over some range \ €
[Amins Amaz]. Using this optimal value for A, we compute the update rule

0+ = %) _ Avgy2 (),

and keep iterating until convergence. A denotes the optimal value of A
obtained from the line search. This line search is repeated at each iteration
(for all k).

6.4. Random Search Method

The random optimization approach, as applied to the problem

mnin f(6)
where f is a differentiable function involves sampling a point y randomly
around the current position 6 (in accordance to a Gaussian distribution)
and move to y if f(y) < f(@). This method is discussed in the following
publications:

e C. Dorea, Expected number of steps of a random optimization method,

JOTA, 39(1983), pp.165-171.

e J. Matyas, Random optimization. Automation and Remote Control, 26
(1965), pp. 246253

e M. Sarma, On the convergence of the Baba and Dorea random optimiza-
tion methods, JOTA, 66 (1990), pp. 337-343.

An improvement of this method is discussed in the following publication:
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e B. Polyak, Introduction to Optimization. Optimization Software - Inc.,
Publications Division, New York, 1987.

In particular, it was mentioned that the scheme

gt+1) _ gy _ p, 70 + ) = F(6©)
Mo
where u is a random vector distributed uniformly over the unit sphere and
converges under assumption ur — 0. However, no explicit rules for choosing
the parameters were given, and no particular rate of convergence was estab-
lished. It appears that the most powerful version of this scheme corresponds
to ur — 0. Then we get the following process:

o+ = k) — (0% ),

where f/(0,u) is a directional derivative of the function f(0) along u € R™.
As compared with the gradient, the directional derivative is a much simpler
object. Its value can be easily computed even for non-convex non-smooth
functions by a forward differentiation. Or it can be approximated very well
by finite differences.

u,

6.5. Classical Momentum (CM) Method

Given an objective function f(€) to be minimized, classical momentum (CM)
method are of the form:

ki1 = oy, — Vo f(OF)
0(k+1) _ O(k) + Ukl

where € > 0 is the learning rate, p € [0, 1] is the momentum coefficient and
ng(H(k)) is the gradient with respect to o)

6.6. Nesterov Momentum Method

The Nesterov accelerated gradient (NAG) method converges faster than the
CM method. The idea of the NAG method is that in principle, we can get a
superior step direction by applying the momentum vector to the parameters
before computing the gradient.

The NAG update rule is:
Vg1 = MUE — eng(B(k) + po)
B(k,’-i-l) _ O(k) + Upt1
For more details on CM and NAG see:
http://www.cs.toronto.edu/ fritz/absps/momentum. pdf
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6.7. Adaptive Gradient (AdaGrad) Method

AdaGrad is a modified stochastic gradient descent algorithm that increases
the learning rate for sparser parameters and decreases the learning rate
for ones that are less sparse. This strategy often improves convergence
performance over standard stochastic gradient descent in settings where data
is sparse and sparse parameters are more informative.

The update rule is:

gk = Va1 f(0F)

ng =ng_1+ g;%g
k k-1 k
oF) — gk—1) _ )\m

where € is a fudge factor, 6 denote the parameters vector at step k — 1,
Vg-1) denote the gradient with respect to the parameters vector at the
previous step and ng is a norm vector.

(k1)

Since the square root of a vector is not defined, the last equation is best
understood in component form:

o) — g1 _ \_ (8K
(nk)i +e€

This algorithm divides the learning rate of every step by the Lo norm of
all previous gradients (gi) This slows down learning along dimensions that
have already changed significantly and speeds up learning along dimensions
that have only changed slightly, stabilizing the model’s representation of
common features and allowing it to rapidly “catch up” its representation of
rare features.

For more details, see:
http://cs229.stanford.edu/proj2015/054 _report . pdf

6.8. RMSProp Method

One notable problem with AdaGrad is that the norm vector n eventually
becomes so large that training slows to a halt, preventing the model from
reaching the local minimum; [16] go on to motivate RMSProp, an alternative
to AdaGrad that replaces the sum in nj with a decaying mean parameterized
here by v. This allows the model to continue to learn indefinitely.

gr = Vo f(0F)
ny =vng_1 + (1 — V)g,%

ok — gk—1) _ \__Bk
/N + €
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6.9. Adaptive Moment Estimation (Adam) Method

Adam combines the momentum-based and norm-based (AdaGrad, RM-
SProp) methods to provide the advantages of both. More specifically, Adam
combines CM (using a decaying mean instead of decaying sum) with RM-
SProp.

The steps of an Adam iteration are:

(1) gr = Vof(8*1)

(2) my, = pmy_y + (1 — p)gg

(3) ﬁlk = I,ﬁk

(4) np =vng_q + (1 —v)gs
(k) — glk=1) _ y_1h

(6) 6 0 )‘fkﬂ

6.10. AdaMax

The Lo norm can be replaced by the Lo, norm, eliminating the need for ng.
The updates are:

(1) gr = Vo f(@*+1)

(2) my, = ,umk 1+ (1 — p)gk
(3) ry, = {2k

(4) n; = max(vng_1,|gk|)
(5) 6% — g1 _ )\nk+6

6.11. Non-Linear Conjugate Gradient (NCG) Method

Let A be a symmetric n x n matrix (i.e. AT = A). We define an inner
product of two vectors dg,d; € R™ with respect to A as follows:

(dg,d1)4 = dl Ad; = d¥ Ad,

where the last equality follows by symmetry. Let f(@) be a function of
n variables to minimize. Its gradient V f(0) is the direction of maximum
increase. Let 80 be the starting position. We take the first step in the
opposite (steepest descent) direction:

do = —Vaf(6),

with a step size (learning rate) A that is chosen by performing a line search
in this direction until it reaches a minimum of f:

Ao = arg min £(0©) + \dy).
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This gives the new position:
) =0 + \odo.

After this first iteration in the direction dg, we perform the following steps
along a conjugate direction dg,

(1) Calculate the steepest descent direction
h; = —Vef(6™)

(2) Compute v, the step size using one of the following formulas:

__hihy hy (hy —hy_1) hy (hy —hy_1)
Vg =1 g 3 O ——————, OI T ,
by hy hy _ hy _dk_1(hk —hy_1)
h’h
or k —k

_dg—1(hk - hkfl)'
(These formulas were proposed by different authors.)
(3) Obtain the conjugate direction
dk = hk + dek—l
(4) Perform a line search

M\, = argmin (%) + Ady,)
A

(5) Update the position
ot = o) 1 \;dy.

This sequence of steps is repeated (iterated) until convergence. Search direc-
tions lose conjugacy over time, requiring the search direction to be reset to
the steepest descent direction after some time. However, resetting too often
would turn the method into steepest descent. The algorithm stops when
it finds the minimum, determined when no progress is made after a direc-
tion reset (i.e. in the steepest descent direction), or when some tolerance
criterion is reached.

6.12. Newton Method

Near a minimum 8®), y2 looks parabolic whereas at the minimum we have
Vox? = 0. Let us proceed as we did for the Newton-Raphson method (see



246 6. Non-Linear Least Squares Optimization

equation 6.1) by Taylor expanding! the gradient of y? near the minimum:
Vox*(0™ + hy) = Vox?(0™) + hy, - VoVex?(6™W) = 0,

where VgVgx? (0('“)) is the p x p Hessian matrix. We abbreviate it here as
H,.. Its matrix elements are:

82X2 82X2
967 " 96,00,
_ 2 k . .
Hj, = VoV *(0W) = | o
a2x2 82X2
90,00, ' 902

where y? = X2(0(k)). We must therefore solve the system of equations
Hyhy, = —Vox*(6"),

for hy, for example, using the method of LU factorization. Here, both hy
and —VgXQ(O(k)) are column vectors with p rows. If the Hessian matrix is
invertible,

hy = —H; 'V (™).
The update rule o+ — 0. + h;, is:

g+1) _ g(k) _ H;1V0X2(0(k)), (Newton)

This requires calculating and inverting a Hessian matrix. If Hy = 1/X (1 is
a p X p unit matrix) this method is equivalent to the steepest descent. Hy
is also called the curvature matrix because second partial derivatives, 02x?,
are indicative of the curvature of the function (x? here) along each direction
i.

6.13. Gauss-Newton Method

In the Newton method the update rule is:
o+ = o) —H,'vy?(0%)  (Newton)
It is a second-order method because it involves computing the Hessian (ma-

trix of second partial derivatives). We must also invert the Hessian matrix.
The Gauss-Newton method is also a “second order” method, but a simpler

lWe made use of flx+h) = f(z)+h Vf(x)+O(|h|?), where f(z) = Vx?(x) and x, h € RP. We
also note that 1

fl@+h) = f(@) +h-Vf(@@)+ Sh-VVF(@) - h+O(h),
The necessary condition for a minimum is Vj, f(x + h) = 0. This gives:

Va(f(2)+ - Vi(z) + %h~VVf(a:) “h) = V(z) + VV/(z) h=0.

Solving for h gives h = —(VV f(x)) "1V f(x).
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form of the Hessian matrix is used. Let

- = i — y(xi|0
=Y =T
=1

Q;

where n is the total number of data points. Define the n x p Jacobian matrix:
ORy ORy

001 e 00y
J.=JOW) = : :

Ry ORy,

20, "t o6,

Now, the gradient of y? is

which can be written compactly as Vgx? = Vg Yo ]:222 = 2JTR, where

R is the vector of normalized residuals (one entry for each of the n data
points):

The Hessian matrix is therefore:
9%x? 92 . OR; OR; . O’R;
H.)im = R =2 2 Ri———.
(H)im = 5906, — 00,06, Z P00, 00, Z 06,00,

neglect

where the last term is neglected since R; is small (O(1)) and normally dis-
tributed with mean 0 and variance 1. This yields Hy ~ 2J£J L, Which is
easier to evaluate than the full Hessian. This has the advantage of requiring
fewer steps to compute. The final update rule is:

gk+1) — g(k) _ (2J{Jk)_lvex2(0(k)) (Gauss-Newton)

The disadvantage of second-order methods is they don’t work well outside
parabolic surfaces. This led to the development of the Levenberg method
and Marquardt-Levenberg methods.

6.14. Hessian-Free (HF) Method

The Hessian-Free (HF) method is a 2nd order optimization method that
does not require calculation of the Hessian matrix. Instead one computes
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so-called “Hessian-vector” products. The latter can be computed accurately
by the finite differences method, or other algorithms. HF differs from New-
ton’s method only because it is performing an incomplete optimization (via
un-converged conjugate-gradient, CG) in lieu of doing a full matrix inver-
sion. The linear CG method (as opposed to NCG) is powerful because it
approximates the optimization problem by a quadratic form. The quadratic
nature of the optimization problem it solves is used to iteratively generate
a set of “conjugate directions” and optimize along these directions indepen-
dently and exactly.

The updates of the gradient descent are not optimal for two reasons: 1)
the learning rate is unspecified; 2) the directions chosen do not lead to
the shortest path to the nearest extremum, as the directions may undo the
work of previous iterations. The conjugate gradient method requires that
our directions be conjugate to one another.

Consider the quadratic form
1
f(6) = 5¢9TA¢9 —0"b + ¢, 0.beR" ceR

where A € R™" is symmetric (A = AT) and positive definite (y? Ay > 0
for any y € R"), 67 denotes the transpose of the column vector 6. Here, 87b

is the dot product Y " 6;b;. 07 A0 is the quadratic form szzl 0;A;;0;.
The second derivative of f, also known as the Hessian matrix, is
VVf(8) =
This can be seen in component form:
j 0 wAasl
8 n
=20 Z (00 Aapfs + 00 Aasdp))
a,8=1
1 1
Z 5 (Ajs05i + 0aidaj) = 5 (Aji + Aij) = Ayj.

The last equality follows because A is symmetric. (The second term 0'b
was not included since its second derivative with respect to @ is zero.) The
necessary condition for an extremum is V f(6) = 0:

Vi(0)=A6—b=0.



6.14. Hessian-Free (HF) Method 249

This can be verified using components:

n

0 [1 ¢ . 1
s | 3 D Oadasts = 0ibj | =5 D (BiaAapby + OaAasdis) = D dijb;
v a,f=1 j=1 a,f=1 j=1

3

1
:E(Azﬁeﬁ + eaAai) - biv

which leads to Vg f(0) = A6 — b because A is symmetric. Thus, the con-
dition for an extremum of the quadratic form f(8) is equivalent to solving
the linear system of equations AO = b.

Conjugate gradient is an iterative method whereby iterations are chosen
conjugate to the previous direction. Suppose we want to find an extremum
of a function f. We approximate f the quadratic form shown above. Let
By be the initial position and dg initial direction. The issue of the learning
rate A\ can be resolved if we choose A such that

£(6© 4+ Ado) :%w(o) +Ado)"A (6 + Ado) — (6 + Ado) " + ¢

1 1
:§A2d§ Ady +dl' (A0 — b)) + (§0<0>TA9<0> —007Tp 4 ¢)
is an extremum. (Since f here is assumed to be a quadratic form, it has
either a minimum or a maximum, and that extremum is unique.) Taking

the derivative with respect to A, setting equal to zero and solving for A gives
_dfan 1)
dl’ Ad,
From this result, we start at 8) and iterate to get our first point ) =

00 — AV f(0). So far, this is identical to gradient descent except that A
has been explicitly derived for the case of a quadratic form.

We have already moved in the dy = —Vg f(8")) direction. In the conjugate
gradient method we choose the next direction to be conjugate to the previous
direction. This is done by starting with the gradient of #; and subtracting
off anything that is related to the previous direction:

di = Vo f(0W) + vodo,

where the amount 1y is derived by requiring that dy and d; be conju-

gate, i.e. dTAdy = 0. The definition of conjugacy can be viewed as

an orthogonality condition between dy and d;, where the inner product

is (dg,d1)4 = d} Ad; = dT Ady (symmetry). Expanding d; gives
(do,d1)a = d{ Adg = —Ve f(01)" Ady + rodj Ady = 0,

which leads to

_ Vaf(6")TAdy
N dfAd,
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This procedure is done iteratively. Each next move is conjugate to the
previous ones. At each iteration we choose the learning rate. The algorithm
for quadratic functions f(0) = 307 A6 —bT0 + ¢ is

(1) Let 8 be the initial guess. Compute the initial direction as dg =

~Vof(6).
(2) Find the learning rate (step size) using the equation

d’ (A6 —b)

- aTAd;

This is the direction that minimizes the function f(0® + A\d;).
(3) Update the position:

60+ = () 4 \d;.
(4) Update the direction:
dit1 = —Vef(0UY) + vd;

where v; is given by:

A:

_ Vef(0"V) Ad;
t d’Ad; '

(5) Repeat steps 2-4 until n directions have been found.

The conjugate gradient method can be used to find extrema of general func-
tions if we consider a Taylor expansion? of f around 6:

f(@+h) = f(0)+Vef(8)"h+h'Hh,
where H is the Hessian of f evaluated at the point 8. This is a quadratic form
and we can apply the algorithm as many times as needed until convergence.
We note that the Hessian matrix is not needed. The quantities that are

needed are Hessian-vector products, Hv where v is a vector. Notice that
Hv = VgVgf - v:

0 = Of

Hv] = — 3 2L
0; <= 96,

(0)v; = [VoDy f(6)):

where Dy f(6) is the directional derivative of f along v. Thus
e - vy 1 O+ ) = [O) 1 Vaf(0+ev) - Vs (6)

e—0 € e—0 €

2C0mparing
f(0+h)~ f(6) + Vo f(6)"h+h"Hh,
with
g(h) = %hTAh —hTb +¢ h,beR", ceR

We have the correspondence H = %A, b = —Vgf(0) and f(0) =c.
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This latest result is important because evaluation of the Hessian matrix is
avoided and reduced to the calculation of Hessian-vector product, which
involves two gradient calculations, Vg f(0 + ev) and Vg f(6). This method,
called Hessian-Free (HF), and was proposed by James Martens for use in
deep learning.

https://www.cs.toronto.edu/~ jmartens/docs/Deep_HessianFree.pdf

6.15. Quasi-Newton Methods, incl. BFGS

Quasi-Newton methods can be used if the Jacobian or Hessian is unavailable
or is too expensive to compute at every iteration. Suppose we want to find
a minimum of a function f(@). Taylor expansion around a point 6):

F(0%) 1) ~ £(6%) + Vo (0)h + 17 Bh,

where BT = B (symmetric) is an approzimation to the Hessian matrix.
Taking the derivative with respect to h,
0

o/ (0 +h) = Vo f(6") + Bh,

which, when setting this equal to zero gives h = —B_1ng(0(k)). The
Hessian approximation is chosen to satisfy %f(H(k) +h) = ng(H(k)) + Bh.
It is customary to start with By = const x I (I: unit matrix). Updates
Bj+1 are chosen close to By in some norm, By = argming |B — Bg||a,
where A is a positive definite matrix that defines the norm.

Starting from a point 0 the following steps are taken:

(1) Compute the step update
hy, = —\B, 'V f(0®),

where A is a step size. There is no rule for choosing Ax. You can
fix the step size or do a line search.

(2) Compute the next position
o+ — gtk) 4
(3) Compute the gradient at the new position V f(8%*+1)) and
v = Vol (0")) = Vof(6")
(4) Update the the approximate Hessian By, or directly its inverse

B,;il using the Sherman-Morrison formula (see table below).

The most popular update formulas are:
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Method Bri: A;,+1 = k+1
T T h Ys hyhl
BFGS By + 2k _ Brhp(Bihy) I— ky'» Ay (17— 2Rk kB
e vi e bl'Bhy, * Thk * i b
Broyden By + 73”0_]379]% h¥ o+ (hy — ATkyk)h Ak
hlng hp Apyg
BFGS/DFP (1 -— )BEE?S + kB}i’ff, pelo1] .
nT nhf A A
DFP I— L B.(I-— by ViV A A R M
( ykTh k yghk + yghk Kt nT Bk Yi A;\yk
(Y —Bghy)(yp—Byhy) (hy—Apyg)(hy— Ak y)”
SR1 B A
Pt (yp=Bghp)Thy + (hy —Ay) Ty

6.15.1. Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. The
most popular quasi-Newton method is BFGS. As mentioned earlier, Newton
methods obtain the search direction at stage k£ by solving the equation

H,d, = —Vaf(8%).

Quasi-Newton methods avoid working with the Hessian matrix Hy, directly.
Instead one uses By, an approximation to the Hessian matrix:

Bid, = —Va f(0W).

A line search is used to obtain the next point @%*+1) by minimizing f(O(k) +
Adj) over the scalar A > 0. The quasi-Newton condition is:

B, (0% — ")) = Vo f(0FT1)) — Vo (6M).

If we set yi = Vof(0¥+)) — Vof(0®) and hy = %+D) — %) then
Bjii1hy = yi. For Byiq to be positive definite we need ththk =
hyyr > 0. This condition on By is called the convexity condition, since
the Hessian matrix deals with curvature.

The approximate Hessian is updated by adding two matrices: Bg11 = Br +
Ug + V. To maintain symmetry and positive definitiveness of By, we
choose Bjy1 = By, + auu” + Bvv’. Imposing the condition By 1h; = yi
(ensuring that By is positive definite) and choosing u = y; and v = Byhy,
ie.,

Bkﬂhk = Bihy + aykyz“hk + BByhih/ Bl hy = vy,

we find a = yT—k and 8 = Substituting these into the equation

hTBh
for Bx11 we get the BFGS update rule:
yeyr  Bgsghi BT

(6.2) Bi1 =B+ -
" yihy, h!B;hy,

Starting from an initial position 0 and approximate Hessian Bg that is
positive definite (can be the unit matrix) the algorithm is:

(1) Choose the k-th direction by solving
B.dy = —Vaf(0*)
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(2) Do a line search to get the step size
A, = argmin £(8%) + Ady,)
A

(3) Set hy = A\xdi and obtain the next position:
o+ — g(k) 4,

(4) Compute the update to the approximate Hessian using the BFGS
rule (Equation 6.2), with y = Vo f(0r11) — Vo f(OF)).

In the first step we solve the system of equations Bpd; = —ng(B(k))
for dg. Alternatively we can use the inverse, B;l, and compute d; =
—B,;1Vg f (0('“)) direct. In that case, we update the inverse of the approxi-
mate Hessian. The rule for this can be derived using the Sherman-Morrison
formula. The end result is:

B;! <I - S’“yg) B! (I - yksg) | s

k+1 T T Ty "
Y Sk Yi Sk Y Sk

6.16. Levenberg Method

The steepest descent method works best on flat terrain (away from the min-
imum) whereas the Newton method works best near the minimum, which is
well approximated by a parabola. Levenberg proposed an improved update
rule which interpolates between the two methods:

D) — %) _ (Hy, + uI) " Vex2(0W), (Levenberg)

which is a modified Newton method. I is a p X p unit matrix. The term pul

is a regularization term and p is called “trust-region parameter”. When p

is large (denoting =" = ), |[Hy| < [|p1],?

(6.3) 0% =) — (Hy + ul) 7 Vox*(0") ~ 0% — (uI) "' Vox?(0™)

= 00— iVax*(0),

we recover the steepest descent method. On the other hand, when p is small,

[H ([ > [|u]]], and

(6.4) 0% = 0" — (Hy, + ul) "' Vox*(6™) = 6 — (Hy) "' Vox?(6™)
=0, — H, 'V *(6),

we recover the Newton method. Far from the minimum, we want to use
large values of u whereas close to the minimum we want to use small values
of p. The parameter u is adjusted at each iteration. We stop iterating when
x? does not change appreciably.

3Here [|[A]| denotes the norm of the matrix A. Any suitable norm can be used. For example, it
can be the largest of all matrix entires: ||A|| = max;; |A;;].



254 6. Non-Linear Least Squares Optimization

6.17. Marquardt-Levenberg Method

We recall the Levenberg update rule:
0+ = k) _ (Hy, + ul) ' Vox2(6W), (Levenberg)

which interpolates between steepest descent and the Newton method by way
of the regularization term, pf. Indeed, for large A we have the steepest de-
scent method and for small y we recover the Newton method. Far from the
minimum, we want to use large values of u whereas close to the minimum
we want to use small values of u.

An improvement over the Levenberg method was proposed by Marquardt
in the form of a modified update rule:

o+ — 9k _ (H,, + pdiag[Hy]) "' Vex2(0%). (Marquardt-Levenberg)

where diag[Hy| is the matrix Hy where all entries have been zeroed out
except those along the diagonal:

Hy1 Hio ... Hlp Hq, 0 0

. . Ho1 Hoy ... ng 0 Hoy ... 0

diag[Hy| = diag | . ) =1 . , .
Hy ... ... Hy 0 ... ... Hy

where H;; is the ij-th element of the matrix Hy. The Marquardt-Levenberg
method is equivalent to modifying the Hessian to H;; — Hj;(1 4+ p) and
H;j — H;; (i # j). For large p, the matrix Hy + pdiag[Hy] is said to be
“diagonally dominant”, i.e. it has the form

Hy1(14+p)  Hio Hip
. Hy1  Hao(l4p) ... Ho,
Hy, + pdiag[Hy] = .
Hy L Hy(lw)
Hyp 0 ... 0
0 Hss ... 0
~(l+p)f o 0o o0 (large )
00 . Hy
where H;; = % is the curvature of y? surface along i-th direction. The

kX3
inverse of a diagonal matrix involves taking the inverse of every diagonal
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element:

_1 -
im (1) 0
1 0 7 0
H, + pdiagH]) '~ —— 0 0

(Hy, + p diag[Hy]) T
i 1
[0 0 ... o]

This matrix then multiplies the column vector VQXQ(O(k)) to yield the up-
date rule:

0+ — oF) _ (Hy, + pdiag[Hy)) "' Vex2(8W),

where for large p, this approximates to:

— 31X2 —
(_‘k)l 8]?1)(2
(52 Oox”
~0F) — (1)t [ T2 = 0% — (14 )7 | 95X
) :
prp aPXQ
| 02,x? |
where we used the shorthand notations g, = V9X2(0(k)), 0;ix? = %—’5? and

'i2'iX2 = %29);. This update rule looks like the gradient (steepest) descent

method, exléept that each entry has been scaled in such a way that large
steps are made in the direction of low curvature (flat terrain) and small steps
in the direction with high curvature (steep incline). Levenberg-Marquardt is
considered one of the best “local optimization” algorithms and is widely used
in applications. In MATLARB, it is implemented in the function 1sqnonlin.

6.17.1. Adjusting Trust-Region Parameter for Levenberg and Marquardt-
Levenberg Methods. The parameter p (learning rate) is adjusted at each
iteration. We stop iterating when y? does not change appreciably. Hy

is called the curvature matrix. Here is a possible implementation of the
Levenberg-Marquardt method (or Levenberg method):

Pick initial guess for set of fitted parameters 0.

[}

e Compute x2(0).

e Pick a value for u, say u=0.1.

e (*) Denote the current step by k =0,1,.... Solve for 50 = —(Hg + p-

diag[Hy])"'Vgx2(0%)) (Marquardt-Levenberg update rule; for the Lev-
enberg method, use the Levenberg update rule instead) and evaluate
X2(0%) + 50,
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o If 2(0%) +50%)) > 42(6%), reject the move. Increase u by a factor of
10 and go back to (*).

o I 2(8%) 1 60%)) < x2(8™)), accept the move. Update the trial solution
0%+ %) 1 56() Increment k + k + 1. Decrease 1 by a factor
of 10. Go back to (*). [In other words, if the total distance error of the
updated parameters is less than the previous one, the updated parameters
are taken to be the current parameters and p is decreased.]

e Stopping criterion: changes in parameters that yield changes in x2 by an
amount < 1 are not statistically meaningful.

e When finished, use the Hessian to compute the errors in the fitted param-
eters (see section 6.18).

The parameter p can be initialized to be large so that first updates are small
steps in the steepest-descent direction. If an iteration happens to result in
a worse approximation, u is increased. As the solution improves, p is de-
creased, the Levenberg-Marquardt method approaches the Gauss-Newton
method, and the solution typically accelerates to the local minimum.

For more information about this algorithm see:

e M.ILA. Lourakis. A brief description of the Levenberg-Marquardt algo-
rithm implemented by levmar, Technical Report, Institute of Computer
Science, Foundation for Research and Technology - Hellas, 2005.

e K. Madsen, N.B. Nielsen, and O. Tingleff. Methods for nonlinear least
squares problems. Technical Report. Informatics and Mathematical Mod-
eling, Technical University of Denmark, 2004.

e D.W. Marquardt. “An algorithm for least-squares estimation of nonlinear
parameters,” Journal of the Society for Industrial and Applied Mathemat-
ics, 11(2):431-441, 1963.

6.17.2. Confidence regions. If we plot contour lines of equal x? (see
Fig. 6.5), the interior region of these contours can be associated with the
likelihood of a set of fitted parameters (random vector) lies within that
contour.

6.17.3. Local optimization techniques: summary of update rules.
The algorithms covered so far for nonlinear optimization are called “local
optimization” techniques, because they are designed to search for the nearest
minimum of x2. This minimum may not necessarily be the global minimum
of the x? surface. In subsequent lectures we will look at global optimization
techniques. We summarize in Table 6.1 some of the most important update
rules derived so far, for these local optimization techniques.
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.. 5 K\A){Z = 6.6 (99% of normally distributed data)
minimum y

Bt - - _ AY?=2.7(90%)

Ay =1 “one 6”
Ay? “two ¢”
Ay?’=9  “three 6”

AY?=23

Il
N

AY?’=1.0
“one standard deviation”
(68.3%)

Bi- g, B B JIr Oy, I
Figure 6.5. Confidence regions. Note: in this figure 8 should be re-
placed by 6.
Method Update rule (displacement at k-th iteration)
gradient descent hy = —AVex2(0%®)
Newton method hy = —(Hg) ' Vox2(0")
Gauss-Newton h, = —%(Jng)_lve;XQ(H(k))
Levenberg hy = —(Hy, 4 uI) "' Vex2(6%)

Levenberg-Marquardt h; = —(Hj, 4 pdiag[Hy]) "1 Vex2(0™)

Table 6.1. Various update rules for non-linear local optimization.

Note: the Newton, Gauss-Newton, Levenberg and Levenberg-Marquardt
methods do not have a learning rate as stated in the table. In practice, we
often use a learning rate, i.e., hy = —A(Hy,+puI) "' Vox2(8")) for Levenberg
and similarly for others.

6.18. Fitting Parameter Errors from Covariance Matrix

The errors in the fitted parameters @ can be extracted from the main diago-
nal of the covariance matrix (omitting the superscript & in o) momentarily
to avoid cluttering the notation):

var(61)| cov(01,602) ... cov(61,6,)
cov(fs, 6 var(6 ... cov(b,0

cov(6,9) = (62,01) '( 2) ' ('1 b)
cov(bp,01) cov(B,,02) ... |var(f,)

whereas the off-diagonal elements describe possible relationships (e.g. such
as redundancy) among the fitting parameters. But how do we obtain the
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matrix cov(8,0)? It can be shown (see Chapter 8 for proof) that the covari-
ance matrix can be obtained from the Hessian:

cov(8%), 9F)) = 2H, !

For this to work, of course, the matrix Hy needs to be invertible (non-
singular). This may not always be the case. (The subscript s here indicates
that covariances can be monitored in real-time, at every time step of the
iterative optimization process.)

6.19. Constrained Optimization

6.19.1. Method of Lagrange Multipliers.

df (z,y) =0
of ., f ,

df (z,y) = %dwﬂL oy

Vi) = (5 5
dr = (dz, dy)
df =Vf-dir=20
Vf=0
For the Lagrangian
dL(z,\) =0
VL=0
V(f=Xg)=Vf—AVg=0
Vf=AVyg

6.19.2. Inequality Constraints: The Karush-Kuhn-Tucker Condi-
tions. In mathematical optimization, the Karush-Kuhn-Tucker (KKT) con-
ditions, also known as the Kuhn—Tucker conditions, are first derivative tests
(sometimes called first-order necessary conditions) for a solution in nonlinear
programming to be optimal, provided that some regularity conditions are
satisfied. Allowing inequality constraints, the KKT approach to nonlinear
programming generalizes the method of Lagrange multipliers, which allows
only equality constraints. Similar to the Lagrange approach, the constrained
maximization (minimization) problem is rewritten as a Lagrange function
whose optimal point is a saddle point, i.e. a global maximum (minimum)
over the domain of the choice variables and a global minimum (maximum)
over the multipliers, which is why the Karush-Kuhn-Tucker theorem is some-
times referred to as the saddle-point theorem. The KKT conditions were
originally named after Harold W. Kuhn and Albert W. Tucker, who first
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published the conditions in 1951. Later scholars discovered that the neces-
sary conditions for this problem had been stated by William Karush in his
master’s thesis in 1939.

== Nonlinear optimization problem ==

Consider the following nonlinear [[optimization problem—minimization or
maximization problem]]:
Optimize f(x)
subject to
9i(x) <0,
hj (X) =0.

where x € X is the optimization variable chosen from a convex subset of
R™, f is the objective or utility function, g; (i = 1,...,m) are the inequality
constraint functions and h; (j = 1,...,¢) are the equality constraint func-
tions. The numbers of inequalities and equalities are denoted by m and /
respectively. Corresponding to the constraint optimization problem one can
form the Lagrangian function

L(x, 1, A) = f(x) + " g(x) + ATh(x)

where g(x) = (g1(x), ..., gm(x))", h(x) = (h1(x), ..., he(x))T. The “Karush-
Kuhn-Tucker theorem” then states the following.

Theorem. If (x*, u*) is a saddle point of L(x,u) in x € X, u > 0, then x*
is an optimal vector for the above optimization problem. Suppose that f(x)
and g;(x), i = 1,...,m, are convex in x and that there exists xy € X such
that g(x0) < 0. Then with an optimal vector x* for the above optimization
problem there is associated a non-negative vector p* such that L(x*, p*) is
a saddle point of L(x, u).

Since the idea of this approach is to find a supporting hyperplane on the
feasible set I' = {x € X : g;(x) <0,i=1,...,m}, the proof of the Karush-
Kuhn-Tucker theorem makes use of the hyperplane separation theorem.

The system of equations and inequalities corresponding to the KKT condi-
tions is usually not solved directly, except in the few special cases where a
closed-form solution can be derived analytically. In general, many optimiza-
tion algorithms can be interpreted as methods for numerically solving the
KKT system of equations and inequalities.

== Necessary conditions ==

Suppose that the objective function f : R® — R and the constraint functions
gi : R" — R and h; : R” — R are continuously differentiable at a point z* €
R™. If x* is a local optimum and the optimization problem satisfies some
regularity conditions (see below), then there exist constants p; (i = 1,...,m)
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and A; (j =1,...,¢), called KKT multipliers, such that the following four
groups of conditions hold:

Stationarity

For maximizing f(x):

ZIUZVQZ Z)\ Vh

For minimizing f(z):

+Z,u1VgZ +Z)\ Vhj(

Primal feasibility

gi(x*) <0, fori=1,...,m
hj(z*) =0, for j=1,...,¢

Dual feasibility

wi >0, fori=1,....,m

Complementary slackness

m
Z pigi(z*) =0
i=1
The last condition is sometimes written in the equivalent form:
wigi(x*) =0, fori=1,...,m

In the particular case m = 0, i.e., when there are no inequality constraints,
the KKT conditions turn into the Lagrange conditions, and the KKT mul-
tipliers are called Lagrange multipliers.

If some of the functions are non-differentiable, subdifferential versions of
KKT conditions are available.

=== Matrix representation ===

The necessary conditions can be written with Jacobian matrices of the con-
straint functions. Let g(z) : R® — R™ be defined as g(z) = (g1(2), . . ., gm(2))"
and let h(z) : R" — R’ be defined as h(z) = (hy(z),..., he(z))T. Let
p= (p1,. . pm)” and A = (A1,...,A)7. Then the necessary conditions
can be written as:

Stationarity
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For maximizing f(z):
Vf(z*) — Dg(z")" n— Dh(z*)"X =0
For minimizing f(z):

Vf(a*) + Dg(z*)"p + Dh(z")"A =0

Primal feasibility

g(z") <0
h(z*)=0
Dual feasibility
pn=>0
Complementary slackness
plg(a*) = 0.

== Sufficient conditions ==

In some cases, the necessary conditions are also sufficient for optimality.
In general, the necessary conditions are not sufficient for optimality and
additional information is required, such as the Second Order Sufficient Con-
ditions (SOSC). For smooth functions, SOSC involve the second derivatives,
which explains its name.

The necessary conditions are sufficient for optimality if the objective func-
tion f of a maximization problem is a concave function, the inequality con-
straints g; are continuously differentiable convex functions and the equality
constraints h; are affine functions. Similarly, if the objective function f of
a minimization problem is a convex function, the necessary conditions are
also sufficient for optimality.

It was shown by Martin in 1985 that the broader class of functions in which
KKT conditions guarantees global optimality are the so-called Type 1 invex
functions.

=== Second-order sufficient conditions ===

For smooth, non-linear optimization problems, a second order sufficient con-
dition is given as follows.

The solution z*, \*, u* found in the above section is a constrained local
minimum if for the Lagrangian,
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l
L(l‘ A [L +Z/«‘zgz +Z>‘jhj($)
j=1
then,

sTV2 L(z*, \*, u*)s > 0

where s # 0 is a vector satisfying the following,

Vaegi(z*), Viohy(@)T s =0

where only those active inequality constraints g;(x) corresponding to strict
complementarity (i.e. where u; > 0) are applied. The solution is a strict
constrained local minimum in the case the inequality is also strict.

If sTV2, L(z*,\*, u*)s = 0, the third order Taylor expansion of the La-
grangian should be used to verify if * is a local minimum. The minimiza-
tion of f(x1,29) = (w2 — 2%)(xa — 32%) is a good counter-example, see also
Peano surface.

Generalizations

With an extra multiplier po > 0, which may be zero (as long as (uo, p, A) #
0), in front of V f(z*) the KKT stationarity conditions turn into

(6.5) o V(x +va91 +ZA Vh;(z*) =0,

(6.6) pigi(x*) =0, i=1,...,m,

which are called the Fritz John conditions. This optimality conditions holds
without constraint qualifications and it is equivalent to the optimality con-
dition KKT or (not-MFCQ).

The KKT conditions belong to a wider class of the first-order necessary con-
ditions (FONC), which allow for non-smooth functions using subderivatives.

Example 6.1. Find the maximum of f(z,y) = zy subject to the constraint

g(z,y) = 2% +3? = 2. Lagrange’s method instructs us to solve the system
Vf = AVg and g(z,y) = 2. The solutions are found to be (z,y,\) =

(1,1, é) (—1,—1, %), (1,—1,—%)7 and (—1,1,—%). The critical points are

(+£1,£1) and the maximum value of f(z,y) is f(1,1) = 1.

This problem is simpler if we use polar coordinates x = rcosf, y = rsin#.

The expression for f and g are f(r,0) = (rcos@)(rsinf) = ;r sin 20 and

g(r,0) = (rcos0)?+ (rsin)? = r2. Thus the problem reduces to finding the
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maximum of f(r,0) = 1r?sin26, subject to the constraint r* = 2. We can
do that by solving the equation %(\/5,9) = 0; that is, 2cos20 = 0. The
critical points are (r,0) = (v/2,7/4 + (nw)/2), where n is any integer — the
same four points previously obtained.

Note that in the second solution the Lagrange multiplier A did not appear.
In polar coordinates the variable r was eliminated because it was constant on
the constrained curve, reducing the problem to the unconstrained maximum
problem in the remaining variable #. This example demonstrates the advan-
tage of thinking of the coordinate system not as an immutable quantity but

as something that can be adapted to the problem.

6.19.3. Method of Differential Forms. The algebraic machinery of dif-
ferential forms* also allows us to solve constrained optimization problems.
For the special case of optimizing a function f of three variables and a sin-
gle constraint, the Lagrange condition Vf = AVg can be reformulated as
Vf x Vg =0. The multiplier X is avoided because two vectors in space are
parallel if and only if their cross product is zero. In this special case, the
components of V f x Vg, together with the constraint, provide four equations
in three unknowns instead of Lagrange’s four equations in four unknowns.
In fact, the condition Vf x Vg = 0 is slightly better than Vf = AVyg,
because points where Vg = 0 are critical points that must be included as
candidates for the extremum.

The traditional statement of the Lagrange multiplier theorem considers only
points where the gradients of the constraints are linearly independent, so it
skirts an important consideration. The condition Vf x Vg = 0 is better
because it handles all possibilities simultaneously. Unfortunately, the cross
product is defined only for 3D vectors, so this approach is limited in scope.
However, there is a vector multiplication operation, similar to the vector
cross product, called the wedge product, that removes the dimensional re-
striction at little cost.

If uw and v are vectors, their wedge product uAv is a new object (sometimes
called a bivector). The set of all linear combinations of bivectors is a vector
space, and the wedge product operation has the following two properties:

(1) The wedge product is linear in each variable separately. That is, if
«a and 3 are scalars then

(cu+ pv) ANw = alu ANw) + v Aw)
u A (v + pw) = a(u Av) + B(u A w).

(2) The wedge product is anti-commutative: u A v = —v A u.

4This section is based on the paper: Zizza, F., 1998. Differential forms for constrained max-min
problems: eliminating Lagrange multipliers. The College Mathematics Journal, 29(5), pp.387-396.
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It follows that u A w = 0 for any vector u. A crucial fact for our purpose
is that u A v = 0 if and only if the pair {u,v} is linearly independent.
These properties are satisfied by the cross product, but the bivectors are new
objects, distinct from their vector factors and subject only to the conditions
above. The advantage gained is that the wedge product makes sense for
vectors of any dimension, not just vectors in 3D space.

Example 6.2. Let v = az + By and w = v + d9. Show that u A w =

ap
)

Z A ¢ and interpret this result geometrically in terms of (signed) area.

The other ingredient in our plan of eliminating the multipliers from La-
grange’s method is to replace gradients by differentials. Differentials of func-
tions are better behaved than gradients. If f is a function and (21, z2, ..., zy)
is a coordinate system valid in the domain of f, then the differential of f
expressed in this coordinate system is

of of of
df = —d —d e
! ox1 71+ 0x9 Tpheod 0%y
A geometric interpretation of the differential df can be obtained from a

contour diagram of the function f.

dxy,.

df|,=2
df|,=1
df|,=0
?\ Q
Q
f=c f=c+l f=c+2 Af=0 Af=1 Af=2

In the Figure (left), the contour at height ¢ (the set of points f~!(c)) is
labeled as f = c¢. Consider the point P on the contour of height ¢ as fixed
and the points @) as a variable. The change in f from P to @ is defined
as Af = f(Q) — f(P), which we think of as a function of ). Using this
definition, the contour of f at height c¢ is exactly the same as the contour of
Af at height 0. Therefore, we can re-label the contours f = ¢, f = c+1 and
f=c+2asAf=0,Af =1and Af = 2, respectively. When evaluated at

P, the differential df|, = 2L o

, dx + %’P dy becomes a linear function of
the variables dx and dy, which represent arbitrary changes in z and y from
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their values at P. An equation of the tangent line to the contour of f = ¢

.0 0
atPlsa—ip(x—xp)—ka?Jj (y—yp) =0, or af‘ dy+af‘ dy = 0.

Thus, in the (dz,dy) coordinate system, whose origin corresponds to the
point P the linear equation df|, = 0 gives the tangent at P to the contour
labeled Af = 0. Furthermore, the solutions of df|, =1 and df|, = 2 form
linear approximations to the contours Af =1 and Af = 2 as in the Figure
(right). This interpretation of df extends to functions whose domain is of
arbitrary dimension.

The gradient of the function f evaluated at a point P is a vector perpen-
dicular to the contour curve of f through P. The formula for the gradient
expresses this vector as a linear combination of the unit vectors perpendicu-
lar to the coordinate contours through P, so it changes with the coordinate

system. For example, in rectangular coordinates V[ = af ST+ gi;}, but in

polar coordinates V f = 8f 7+ (1/r) gé The expression for the differential
is the same no matter What coordinate system is used. In polar coordinates,
for instance, df = ar L dr +3 9 7d0.

The traditional explanatlon of Lagrange’s condition for maximizing or min-
imizing f, subject to one constraint of the form g = ¢, hinges on the ob-
servation that at a critical point the contours of f and g are tangent. For
example, the problem of finding the point on the ellipse 22 + 4(y — 3)? =
that is closest to the point (1,1). We can view this as the problem of mini-
mizing the squared distance function f(z,y) = (z — 1)? + (y — 1)2, subject
to the constraint g(z,y) = 2% +4(y — 3)? =

—
! / 4
P'
3
P

2
1

-1 0 1 2 -1 0 1 2

This Figure (left) shows several contours of f(z,y) — points at a fixed dis-
tance from (1,1). The minimum distance occurs at the point P where the
contours of f first make contact with the constraint ellipse, and the maxi-
mum distance occurs at P’, where the last contour of f touches the ellipse.
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At these critical points the two curves are tangent; for example, the tangent
lines df|p = 0 and dg|p = 0 are the same, as shown in the Figure (right).

But the lines df|p, = 0 and dg|p = 0 are the same when df|, is a multiple
of df|p. For example, the lines 2dz — 3dy = 0 and —4dx + 6dy = 0 are
identical because —4dx + 6dy is a multiple (A = —2) of 2dz — 3dy. In other
words, the equation df|p, = A dg|p between differentials is equivalent to
the traditional Lagrange condition V f|p, = X Vg|p; but geometrically the
differential condition says the tangent lines to the contour and the constraint
curves are identical, while the gradient condition says the normal vectors to
these lines are parallel.

-1 0 1 2

Normal vectors are parallel at critical points.

This Figure shows the (normalized) gradient vectors at several points along
the constraint ellipse and the contours of f. The gradient vectors are clearly
parallel at the critical points P and P’.

Example 6.3. Geometric interpretation of df A dg. As c varies, the equa-
tions df|p = c are the equations of all lines parallel to the tangent line
df|p = 0. If the lines tangent to the contours of f and g through P are not
parallel, then the points between the four lines whose equations are df|, = 0,
df|p =1, dg|p = 0 and dg|p = 1 form a parallelogram. Let A denote the
area of this parallelogram and show that df Adg|p, = £1(1/A)dz A dy (in
the xy-coordinate system).

How can we eliminate the multiplier A from Lagrange’s optimization crite-
rion V|p = A Vyg|p? Let’s return to a previous example and set up the
Lagrange multiplier equations using differentials, so we have df = ydz + xdy
and dg = 2xdx + 2ydy. The equations of the tangent lines are df = 0
and dg = 0; that is, ydz 4+ zdy = 0 and 2xdx + 2ydy = 0. The equation
df = Adg together with the constraint equation give the same system of
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three equations in z, y and A that we found earlier in solving Example 1 by
the traditional gradient version of Lagrange’s method. But now recall that
{df,dg} is linearly dependent precisely when df A dg = 0. (In the expres-
sions for df and dg, dx and dy are variables that we will consider as vector
quantities; x and y are the coordinates of the points we are seeking and will
be considered as unknown scalars.) Calculating this wedge product, we get

0 =df Ndg =(ydx + xdy) A (2zdz + 2ydy)
=2xydx A dx + 2y*dx A dy + 222dy A dz + 2zydy A dy
=0+ 2y%dz A dy — 22%dx A dy 4+ 0 = (2y* — 22%)dx A dy.

Thus the critical points (x,%) satisfy the two equations 2y% — 222 = 0,
z? 4+ y? = 2. Solving this system yields the same four critical points as
before. In fact, since % = %% + %% = (y)(~y) + ()(z) = 22 — ¢?,
we see that % = 0 and df A dg = 0 are equivalent, though not identical,
conditions. By expressing the Lagrange’s optimality condition in the form
df A dg = 0, we have succeeded in finding a system of equations equivalent

to that obtained by changing to polar coordinates.

To generalize the above differential method to handle more than one con-
straint, we need to extend the wedge product to an arbitrary number of
factors. That can be done in a unique way, such that the wedge product is
multilinear (linear in each variable) and is an alternating function (the sign
changes whenever two terms are transposed). Consider the case of three
vectors:

UNVNANW=——uNvNw=vANwAu=—-—wANvANuU=wAUNV=—u/NwAw.

In particular, if w = v then u A v A w = 0, since the only vector that
equals its opposite is the zero vector. The properties of the wedge product
lead to a simple way to recover the coefficients from a linear combination
z = au + Bv 4+ dw, we simply take the wedge product of z with v A w, the
product of all the vectors other than u, whose coefficient we wish to find:

zAvAw = (au+ Pv+ow)AN(vAw)=auAvAw+0+0=auAvAw.

Similarly,

zAuANw=PFvANuAw=—FBuANvAw
and

ZAUNV=0wAUAV=0uAvAwW.

So all three coefficients can be found as multipliers of u Av Aw. (This device
is reminiscent of the way we recover the Fourier coefficients of a vector
with respect to an orthonormal basis, by taking dot products with the basis
vectors. )
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Finally, the wedge product provides a simple test for linear independence:
The vectors {wy,ws, ..., wy} are linearly dependent if and only if wy Awa A

Example 6.4. Find the extrema of the function f(z,y, z) = xyz subject to
the constraints 22 + y? + 22 =4 and 22 + y? — 22 = 0.

Lagrange’s method uses the constraint functions g(z,y,z) = 2% + 3% + 22
and h(z,y, z) = #? +y? — 2% and directs us to solve the system of equations
df = Mg + ph, g(z,y,z) = 4, and h(z,y,z) = 0. This approach produces
the following system of equations:

yz =A\(2z) + u(2z), 2?4yt 22 =4

xz =A(2y) + u(2y), 2?4yt 22 =0

xy =A(22) + p(—22).
The wedge product reformulation replaces Lagrange’s (linear combination)
condition df = Adg + pdh; instead, it finds where df is a linear combination
of dg and dh by considering the condition df A dg A dh = 0. Calculating, we
find
df NdgNhdh = (yzdx+xzdy+rzydz)\(2edr+2ydy+2zdz) A (2xdr+2ydy—2zdz).

After some manipulations (distributing, interchanging of factors and sim-
plifying), this reduces to 8(z? — y?)22%dx A dy A dz. So the new system of
equations for the critical points is

8(z2 —yH)22 =0,
R e Sy
2yt 22 =0

We now have three equations and three unknowns instead of the Lagrange
method’s five equations and five unknowns. The solutions of both sides of
equations correspond to the critical points (41,41, 4+1/2). Not surprisingly,
computer algebra systems solve the second set of equations about 60% faster
than they solve the Lagrange set.

6.20. KFAC paper

Suppose we have data drawn from a distribution
Ty, N ~ q(7]0)

The likelihood function is N

[Ta(xl6)

i=1
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Then take -log

N N
F(0) = —10gHQ(l'i\9) == ZIOgQ(ﬂf‘iw)
i=1 i=1

Then minimize this with respect to 8. We may do gradient descent:
9k+1 =6, — angF(Gk)

In a sense, F' depends on the distribution ¢, i.e., F(8) = F(q) (by abuse of
notation), and we need to minimize F' with respect to the distribution ¢,
which is a parametric family:

min
q€{q(x|6),60€0}
Thus, maximum likelihood problem is actually an optimization problem with
respect to distribution ¢ that we choose to model our data.

However, distance in parametric space may not be a problem for optimiza-
tion. For example, in both cases below the Euclidean distance in parametric
space is 1. However, on the left the two distributions are completely differ-
ent. On the right, they are the same:

Consider level sets of function we optimize:
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A standard gradient descent will go in a zig-zag trajectory because it ignores
the curvature of the surface. We instead should choose the natural gradient.

Let’s take the directional derivative of our function F of 8 in some direction
d:
F'(8;d) = VoF(08)'d
and minimize with respect to d, within some small ball ||d||? < e.
Minimizing
L(d,\) = VoF(0)Td + \d"d — ¢)
with respect to direction (d)
VaL(d,\) = VoF(6)+2\f =0

gives
d=——VeF (0
2>\Ve (9)
The optimal A should be taken to satlsfy the condition [|d||? < e
2 _ 2
<
a2 = 5 IVoF (@) <
which implies A > ||VgF(0)]|(1/21/€). For X we can take the equality:
RAGONG
dopt
IVeF(0)]

Let us replace the optimization problem with the following more general
formulation:
min VeF(8)'d
subject to the condition
dT'G(6)d < ¢
involving a quadratic form. G(@) is some positive-definite matrix, i.e. G(0) >~
0. Repeating the optimization under these new conditions we get:

dopt < —(G(0)) "'V F(0)

This is called a natural gradient. Compare with Newton method, where
G(0) = VgVeF(0) (Hessian).
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Let us introduce the natural distance in the space of distributions. Distances
in the space of distributions are usually measured using the KL divergence.
KL divergence is not symmetric, but can be symmetrized:

90,0+ 50) = Dici,(a(x16) : a(w]6 + 98)) + Dicr(a(2]0 + 36) : (2]0))
Using the definition of KL divergence:
q(z|6) / q(z|0 + 60)
= z|@)log ——————dx + |0 + 00)log ———=dx
[ ataloyion 2P+ [ atalo + 5010 LET
~ [ (alal +56) ~ 4(a16)) (log a(cl6 + 56) ~ log a(z]6))dz
Taylor expand,

- / (Voa(2]6)750 + O([|36]2))(Vo log (2]0)"50 + O(|56]2))dx
Then apply {-} to get:

{Ve log q(z|0) = w

} = 567,10 Vo oz a(2]0)Vologq(x]8)56-+0(|56])
= p(0,0 + 00).
This is valid for small §. The first term gives G(0), the Fisher matrix:
G(0) = Ey(zj0) Ve log q(x]0) Vg log q(z]0)"
The natural gradient distance approach:
01 = Or — ai(G(0:)) ' Vo F(6y)
Then, it is possible to show that G is related to the Hessian:
G(8) = —Eyz10) V5 log q(2]6)

In our optimization problem we have (let’s add a factor of 1/N, which doesn’t
change the result of optimization)

5

1 N
F(60) = =+ D _logq(xil6)
=1

which should be minimized with respect to . From this, let’s estimate the
Hessian of F:
VoI (0) = —Eg,) Vg log q(x6)

5The matrix
v \YAY VgV vv

VVlogq:V(VlogQ)ZV(i): - qzq: .

q q q

— VlogqVlogq

q

does not equal to —V log ¢V log ¢ unless the first term, %, vanishes. That term is nonzero but

its expectation value is zero (see text).
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where ¢(x) is our empirical distribution (based on our data),

| X
=N Zé(w — ;).
i=1

This is almost the same as the Fisher matrix G(0), which depends on our
chosen model ¢(z0).

Derivation:

Voq(x|0)
q(x|0)
Via(z|8)q(z]6) — Voq(z]0)Veq(x]6)"
Vo logq(z(0) = =2
¢ (a(2(6))2
Vga(x|0) T
=2 _Vpyl 0)Vol 0
gy~ Veloga(@l6)Veloga(]6)
Then we need to take expectation of V3 logq(z|@) with respect to ¢(x|6),
ie. Ego)(-- ) The first term is:

Vglogq(z|0) =

0)
Eq(x\e $| /V q(z|0)dx = Vj /q(x]é))d:c = V2l =0.

Let’s consider the s1mplest possible ML estimation problem, where data is
approximated by 1-D normal distribution

21, xy NN (2, 0?)
The values x; € R. Taking the log of the density:

1 1
log N (x|, 0?) = —flog27r —logo — —=(x — p)?

22
5o loEN = (o= p)
0 1 (@—p?
0 8N =gt

Eqy(zl0) Vo log q(x]0) Vg log q(2|6)" N Zvo log q(x:|6) Ve log q(z;]6)"
=1

where x; ~ q(z]0).
Levenberg-Marquardt
d=—(G(OW) +7.I)'VeF(8W), 7, >0

If we choose d from this expression, it is the same thing as saying that our
function F' is modeled by a quadratic function like this:

1
F(O® +d) = mp(d) = F(OW) + Vor(0®)"d + Zd"(G(6") + nD)d
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Minimizing this expression for F' with respect to d gives the above result for
d.

Since G(0) is positive semi-definite matrix we have the constrained mini-
mization problem:

PKOwU—%V%PKOwDTd+—%dTG(0@Ud

ld])* < Ak
This is a convex minimization problem because this expression for F' is
convex quadratic and the constraint set is also convex. Since the set is
convex, we can formulate the first order necessary condition using Lagrange
function. There is a 1-to-1 correspondence between 7, and Ag. The smaller
Ay, is, the larger 7 is. The expression F(O(k)) +V9F(0(k))Td—|— %dTG(O(k))d
without the constraint ||d||> < Ak is a plain natural gradient method.
By adjusting 7, we have a simple trust-region approach for our natural
gradient, e.g.
=1
for k=0,1,2,...
Estimate G(0®*))
d=—(GOP) + D) 'VeF(0W) (%)
if F(8%) +d) > F(o™)

this means our model is “untrustworthy” and we need to narrow the region
(lower Ay, which means increase 7). Go back to ().
Then we compare the change in our function (numerator) to the forecast of
this difference taken from our model:

FOF +d) — F(er)

mi(d) — my(0)

This quantity is positive. If it is close to 1, then our model forecast is very
good. If it is close to 0, our model is not good.

If p < 1 (our quadratic model is less trustworthy), then 75 + 27 (switch
towards gradient descent).

If p > 2 (our model is good, we should trust it more), then 7, « 2 (we
decrease 71, moving towards plain natural gradient).

In all cases, this is followed by
Tk+1 = Tk + d,

i.e., we do not reject the steps. Only the size of the trust-region is varied.
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For neural networks, our G is estimated using our current mini-batch:
A 1
G(OW) = oA > Vologg(x:|0)Velog g(x:]0)"
k 1€y,
G(OW) = (1 - e)G(OW) + o G(8"Y)
A simple heuristic rule is
€x = min(1 — 1/k,0.95),
which says that initially, we use our mini-batches, but as time goes by we
use G from the past.

KFAC. Neural networks has layers:

ag =2
a;_
S; = Wzaz—la ai—1 = |: Zl 1:|
a; = o(8;), i=1,...,1
z2(x,0) = q
Our optimization problem is:
N

F(9) = ¥ ZL(yz‘, 2(x;,0))
=1

which is minimized with respect to 8. The parameters are stored in the
following column vector:

0= [vec(Wl)T, . ,vec(VVl)T}T

Here we don’t have any statistical model, so we cannot apply natural gradi-
ent method. However, we can require that this loss function is not arbitrary,
but is taken as the log of some real distribution:

N
1
— 2 loga(yil=(x:,0))
=1

which is minimized with respect to 8. So we have an optimization with
respect to distribution ¢:

min F
q(y,7,0)4(x) (@)

i.e. conditional distribution of target variables given the inputs, ¢(y|z,8),
times empirical distribution of Fisher matrix ¢(z). Note: there are two
distributions shown here, ¢(y,z,0)¢(x), because our data is in the form
(y1,21), -, (YN, TN).

Define:

0
Duv = ~ 50 log q(y|2(x, 0))
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In this notation our Fisher matrix is denoted:
G(0) = Eq(y/=(2.0))i(x) PODO"
where G is a [ x [ block matrix:
Gij(0) =Edid],  d; = vec(DW})
The derivative of our output function, according to the chain rule, is:
DW; = Ds; - a@i—1"
where @77 is the derivative of s; with respect to W;.
Then, using the relationship vec(uv?)
vec(DW;) = vec(Dsiarl ) = Gi_1 ® Ds;
Therefore, our Fisher matrix is
Gi;(0) = Edid? = Evec(DWi)vec(DWj)T = E[a;—1 ® Ds;][a;—1 ® Dsj]
=E[@i—1a,_, ® Ds;Ds!| ~ E[a;_1a, ;] ® E[Ds;Ds] |
The last step is called the KFAC approximation. It is a product of two

terms, the first is obtained by forward propagation. The second is obtained
by backpropagation. It is of the form of a Khatri-Rao product.

=0 Qu,

Block diagonal approximation:

Gij=0  Vi#]
éii = Eai_laf,l & ]E'DSiDSzT
We need to invert the matrix:
G;' = (Ea;qal_,) "' @ (EDs;Ds! )~?
If we have:
n; inputs
m; outputs
then éu is a n;m; X n;m; matrix, whereas Edi_laiT_l is n; x n; and EDsiDsiT
is m; xm;. Thus, KFAC provides a clear computational advantage. In KFAC
each block corresponds to one layer.

Then to compute u = G~ 'v, we can make use of the identity (A®B)vec(X) =
vec(BX AT) to get

U; = (EDs;Ds? ) ' Vi(Ea;_qal ;)
where v maps to (Vi,Va,...,V}) and v maps to (Uy,Us,...,U;) in an anal-
ogous way® to how @ maps to (W1, Wa, ..., W)).

6Recall that 6 = [vec(W1)Tvec(W2)T ... vec(W;)T]T.
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For Levenberg-Marquardt what we need to invert is (Gj; +7,I) . Consider
the following approximation based on the Kronecker product trick:

¢ 1
(Gis + 1) =~ (Baiya]y + mi/Tid) @ (EDsiDs{ + — /1)
T

1
= Eai_la;-r_l®E'DS{DSZT—|—7T“/T]CI X E’DSZ'DS? + ;\/ﬁEai_lazr_l QI +71,IR1
i

which differs from the matrix (G;; + 7xI) by the two terms denoted by the
underbrace. These two terms can be minimized with respect to m;

1
Ti/Thl| I @ EDs;DsT || + ;.kaai_laﬁl 1.
1

Then,
o |Eaiaal @Il |[Eai-ia] ||

oot = | [ @ EDs; - Dsl s ||[EDs;iDsT |

6.20.1. Line search vs Trust region. These are two different philoso-
phies. We can choose to do line search and pick the best learning rate that
lowers I’ the most. Or we can vary the size of the trust region. If our trust
region is good, d (direction) will vary accordingly.

6.21. Problems

Problem 121. Regarding the problem of data fitting, where we need gra-
dients, Jacobians, etc. (review lecture notes for the definitions of Vx2(5),
Jp, etc.). (a) Take y(z) = Az + B as the fitting model. Calculate Vx2(55),
Ji, H; and the covariance matrix.

(b) Let the fitting model be given by y(z) = A+ Bx + C cos(Dx). Calculate
VXZ(,Bk) and Jk.

(¢) The model is y(z) = Aexp(—Bz) + C. Calculate Vx2(5;), J5 and Hy,.

Solution. Let’s do the Jacobian here for (i), the linear model. From the
definition of the Jacobian, this is a n x p matrix of first partial derivatives
of the normalized residuals. The rows are the data points and the columns
are the fitting parameters (here, A and B):

OR1 OR;

9A OB
Jp=1 :

OR, OR,

0A oB
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where R; = %ﬁf’q’m and y(z;; A, B) = Az; + B. Thus,

z 1

(03] a1
Ji =

Zn 1

Qn Qn

Problem 122. The following model is to be used for data fitting
y(x) = 40Blog z? + 4Acosx + 24

where A and B are parameters to be determined from the experimental data.
In terms of this model, find the Jacobian, Hessian and covariance matrices
and explain their role/purpose. Indicate which entries of the covariance
matrix measure the redundancy between the fitting parameters.

Problem 123. Write MATLAB code to implement the Levenberg algorithm
(not Levenberg-Marquardt) to minimize the following functions:

(a) f(z,y) = sin(5y) sin~!(z) — sin(5x) sin~!(y) on the domain [-1, 1]2.
(b) f(z,y) = — |sin(z) cos(y)e/DN=VIzIHWI| on the domain [~10,10]2.

Instead of using a for loop for the iterations, use a while loop instead. (No
credits will be awarded if you use a for loop.) Monitor the running average
of f(z,y) (say, using the last 5 iterations) and if changes in f(z,y) from
iteration to iteration differ by less than 1079, stop the loop. For f(z,v),
make sure to use the normalized f(z,y), i.e. divide f(z,y) by the number
of points in the summation.






Chapter 7

Global Optimization

The algorithms discussed so far can only take us to the nearest minimum.
Once a minimum has been reached, there is no built-in mechanism to es-
cape the minimum. If this minimum is not a global minimum, the solution
obtained is not optimal. A general x?(0), @ € RP surface:
n 2
i — y(x;|0
X2 (0) = Z w (textbook writes «; instead of o;)

ok
i=1 ¢

could potentially have several minima, as shown in Fig. 7.1 for the 2D case
0 = (61,62).

Figure 7.1. Global optimization aims to find the global minimum of the
x? surface. Note: in this figure 8 should be replaced by 6.

279
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The reason that gradient (or Hessian) based methods failed to see the global
minimum is because they only possess knowledge of the first and second
derivative of x? near the point . This local neighborhood of 8 does not
extend very far into the parameter space.

Global optimization algorithms tend to rely on the use of multiple random
initial guesses, or on the use of evolution steps that may include some el-
ement of randomness, or a combination of both. These random elements
are essential in order to “push” the search toward regions of the parame-
ter space (6) that gradient-based techniques would otherwise not be able to
reach. While global optimization schemes may or may not also use gradient-
based searches as part of the optimization strategy, the “global” nature of
the algorithm generally owes to the addition of some element of randomness.

Here we will cover two such global methods: the simulated annealing (Me-
tropolis) method and the genetic algorithm. You should, however, be aware
that there are many additional methods in use: quantum annealing, stochas-
tic tunneling, tabu search, reactive search optimization, stochastic gradi-
ent descent, graduated optimization, ant colony optimization, cross-entropy
method, harmony search, particle swarm optimization, intelligent water
drops and parallel tempering. Each method has its advantages and dis-
advantages. Another ideal setting for these global optimization methods is
in cases where derivative information is not available.

7.1. The Metropolis Algorithm (Simulated Annealing)

The Metropolis algorithm (Kirkpatrick, 1983) - also known as Metropolis
Monte-Carlo - is a version of simulated annealing (SA) that utilizes the so-
called Metropolis criteria [due to Metropolis (1953) and Hastings (1970)].
It is inspired by the annealing process in metallurgy. Annealing involves
heating and controlled cooling of a metal or alloy to produce a high quality
crystalline lattice. Heat increases thermal motion of the atoms and eases
diffusional motion. The subsequent cooling causes the atoms to migrate to
sites of local minimum energy, which usually translates into a lower amount
of defects and a global energy minimum.

The algorithm can be summarized as follows:
(1) Choose an initial configuration 6 € RP for the fitting parameters.
The starting parameters can be selected randomly.

(2) Choose a starting temperature 7' > 0. Temperature should be high
enough, as the goal of this algorithm is to cool (by annealing) over
a long period of time.

(3) Calculate x?(8) for this configuration.
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(4) Let 40 by a random change to this configuration. The new config-
uration is 0 4 6.

(5) Calculate the new energy x2(0 + §6)
(6) Accept the move with probability
min (1, exp(—(x*(0 + 660) — x*(9))/T)) -

This step is called the Metropolis criterion. If the move is accepted,
the new configuration @ + 66 is taken to be the current configura-
tion, 6. If the move is rejected, the old configuration 6 is kept
unchanged.

(7) Repeat steps 3-6 until convergence while lowering the temperature
T.

A few words are in order. First, the temperature T is dimensionless and is
not a real temperature but a parameter that simulates the effects of tem-
perature. The higher the temperature, the closer to 1 is the probability of
acceptance, meaning that almost every state is accessible. At low tempera-
tures, the exp(-) (Boltzmann) factor is smaller and acceptance of the moves
is less likely unless the energy of the system (as measured by x?) decreases
as a result of the new move.

Finite temperatures correspond to “thermal energy” supplied by a reservoir
to the thermodynamic system. If the temperature is not lowered, the system
will remain with the same average energy per unit volume and moves will
continue to be accepted at the same rate. In order to find the “ground state”
of the system the goal is to reach a point where the majority of moves are
rejected. This can only happen at or near T' = 0.

If the Boltzmann factor

exp (— [X*(0") = x*(0)] /T) = e 2F/T
has AE = x%(0') — x?(0) > 0, the new move results in a higher energy
configuration. In this case, rather than rejecting it, the move is accepted
with probability e 2#/T < 1. This allows for the possibility of random
jumps that could lift the system out of a local minimum. On the other hand,

AFE < 0 corresponds to a move that lowers the energy of the system. In this
case, e /T > 1 and the move is accepted with probability 1 (always).

7.2. Accepting a Move With Probability P

What does it mean when we are asked to accept a move with probability

P? For example,
P = AEIT,
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Given a probability P € [0, 1], regardless of the probability distribution
it originates from, we may decide whether or not a random experiment
occurs with probability P as follows:

e Generate a uniformly distributed random number R in the interval
R e [0,1]

e If P > R, accept the move (the event has occurred).
o If P < R, reject the move (the event did not occur).

The rationale for this reasoning is explained in the section below.

7.3. Sampling From a Distribution

In the Metropolis scheme and many other algorithms, we are asked to sample
from a distribution, such as the exponential distribution. However, your
random number generator may not be able to generate samples from the
distribution of your choice. It is likely able to generate uniformly distributed
samples U([0,1]) in the interval [0,1]. For example, the command rand in
MATLAB will generate uniformly distributed random numbers:

>> help rand

rand Uniformly distributed pseudorandom numbers.
R = rand(N) returns an N-by-N matrix containing pseudorandom
values drawn from the standard uniform distribution on the open
interval(0,1). rand(M,N) or rand([M,N]) returns an M-by-N matrix.
rand(M,N,P,...) or rand([M,N,P,...]) returns an M-by-N-by-P-by-...
array. rand returns a scalar. rand(SIZE(A)) returns an array
the same size as A.

Fortunately, MATLAB has another command, randn which can generate
random numbers sampled from a Gaussian distribution:

>> help randn

randn Normally distributed pseudorandom numbers.
R = randn(N) returns an N-by-N matrix containing
pseudorandom values drawn from the standard
normal distribution. randn(M,N) or randn([M,N]) returns
an M-by-N matrix. randn(M,N,P,...) or randn([M,N,P,...])
returns an M-by-N-by-P-by-... array. randn returns a
scalar. randn(SIZE(A)) returns an array the same size as A.
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(1/sart(2 m)) exp(-(x2)/2) 0.5 (1+erf(x))
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Figure 7.2. Sampling from an arbitrary distribution with the help of
its CDF and the uniform distribution.

But to my knowledge in the basic version of MATLAB there are no random
number generators for other distribution functions. The problem also exists
with many programming languages such as C or FORTRAN, where random
number generators exist but only for uniform distributions.

Luckily, a random number sampled from the uniform distribution, U ([0, 1]),
can be used to generate random samples from any distribution function.
Suppose that we want to generate Gaussian random numbers X ~ N (0, 1)
for a given random variable X . The probability density is px (x) = \/%e*ﬁ/ 2,
In the figure below, we plot the CDF as the graph (z,y(x)):

xT

ylx) =P(X <x) = \/127_ /m e "2y = / px (z)dx

in the case of a Gaussian density. The left-most plot shows a PDF px (z)
corresponding to some random variable X. On the right, we have its cu-
mulative distribution function y(x) = [*_ px(x)dz. We generate uniformly
distributed samples y in the interval [0, 1] and invert y = y(z) to produce a
sample z according to the desired distribution px (x). This is illustrated in
Figure 7.2.

If we consider the y axis as a random variable Y ~ U([0, 1]) which is sampled
uniformly on the interval [0, 1], let us check that a uniform distribution for
Y gives rise to the desired distribution for X.

P(Y < y(z)) =P <Y < /w pX(x)d:U> = /sz“’pX(x)dgﬁ 1-dy

—00
x

:/ px(z)de = P(X < z).

—00
Therefore, a uniform distribution for Y implies picking X according to the
density px (z).
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7.4. Genetic Algorithms

Genetic algorithms (Holland, 1975) enable us to to find global minima. In
the early days, GAs have been applied to least squares curve fitting (Karr,
1991; Rogers 1991). Nowadays, GAs are applied to many different optimiza-
tion problems in the physical and social sciences. Software packages such as
MATLAB, IDL, Mathematica or Octave feature implementations of genetic
algorithms (GA) that are relatively easy to use. One advantage of GA codes
is they are inherently parallel and easily implemented on parallel hardware.
Another advantage is they can handle large data sets. Their main disad-
vantage is they are slow. The general idea consists of generating candidate
solutions and sending them to an evaluator for testing. If a candidate solu-
tion is not optimal, then the procedure is repeated. In genetic algorithms,
the procedure is repeated iteratively over a large set of candidate solutions.
Because this set can be large, a significant number of possible solutions can
be tested simultaneously.

They are a type of parallel heuristic search method inspired by the laws of
nature (genetics) that govern evolution of biological organisms. Each can-
didate solution is called an organism. A chromosome is a list of elements
called genes. In the simplest case, an organism consists of a single chro-
mosome (haploid), although there are cases when the organism consists of
dual-strand chromosomes (diploid). Chromosomes usually consist of linear
lists of genes. A gene can assume any of a number of values called alleles,
which are taken from the base set. Generally, problem solutions are encoded
as strings of alleles (most commonly, strings of 0’s and 1’s).

7.4.1. General idea. Let us look at an example strategy for a possible ge-
netic algorithm. The algorithm below is purposely left vague so you can see
the main steps involved and the parallel with evolution. In real implemen-
tations, the specifics of the algorithm strongly depend on the application.
We will look at a specific example later.

(1) Generate a large population of random chromosomes {8}, where
09 cRP andi=1,..., M.
(2) Each chromosome is assigned a fitness score F' proportional to some

goodness-of-fit parameter, e.g. X2(0(i)). This fitness score F' should
increase as y? decreases.

(3) Select the top fitness scores. These “parent” chromosomes, {8°¢'},
will be used to breed the next generation (“offspring”).

(4) Generate “offspring” from the parent chromosomes: {6}, where
0% ¢ R? and i = 1,..., M.
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Parent 1 Parent 2

Choose crossover
point randomly >

Copy part of chromosome
from parent 2 onto parent 1

Figure 7.3. Crossover of chromosomes.

(5) Introduce random changes in the genetic code in the form of crossover
and mutations. Mutations are “tweaks” to the chromosome con-
tents (e.g. flip a 0 to a 1). Crossover involves picking a gene at
random and generating a new chromosome that consists of chro-
mosome 1 up until that gene followed by the rest of chromosome 2,
as indicated in Fig. 7.3.

(6) Repeat steps 2-5 until solution is found.

The inherently parallel nature of the algorithm is embodied in steps 2 and 4,
where the GAs search large numbers of candidate solutions simultaneously.
A decision is made only after all the candidate solutions have been gener-
ated. The objective function used by genetic algorithms is based on actual,
problem-specific information, rather than auxiliary information, such as a
gradient or a Hessian.

Step 3 is analogous to natural selection. Like its natural selection counter-
part in biology, the selection operation selects pairs of highly fit organisms
for mating. This focus toward the highly fit individuals is what drives ge-
netic algorithms.

The genetic algorithm analogy to mating is called crossover. The crossover
operation provides a mixing of the genes from the parents, and globally it
mixes the genetic material of the whole population. It is the mixing of the
genes, the stirring of the pot of genetic material, that gives robustness to
the genetic algorithm.

The two organisms chosen by selection are combined to form a new individ-
ual with similarities to both parents. If the mixing is done carefully, then a
large amount of genetic material can be tested. Although selection focuses
on the genetic algorithm, it is crossover that adds variety.

The method based on the random selection of a single crossover point de-
scribed above is the simplest implementation of crossover. More complicated
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implementations are possible. There is no specific guidelines as to what rule
should be used. One could, for example, take the average of two chromo-
somes, their product, their difference or their sum. Which implementation
is best suited depends on application.

Problem 124. (a) Is the genetic algorithm a “local” or “global” optimiza-
tion algorithm? Explain.

(b) What element of this algorithm gives it its “local” or “global” nature?

(c) Discuss what is meant by local / global optimization, and give examples
of algorithms (genetic or not) which achieve local vs. global optimization.

Problem 125. Solve analytically the following minimization problem for
the unknown vector g:
argmin ||Ug — k|
g

where g is a column vector with P entries whose values are unknown quan-
tities that you are to solve for, k is a column vector with N rows. U is a
N x P matrix (N rows, P columns). The minimization is to be carried out
by searching over all possible vector g with finite entries.

(a) Find the exact solution to the minimization problem.

(b) Explain how this minimization problem can be used to fit experimental
data to a model (linear or non-linear model). Explain what would be the
roles of U, g and k in this context.

Problem 126. Solve the following equation giving the unknown x number
of moles of a substance needed in a reaction:

4sin(2x) + 5log(22%) — 1000 + z2 exp(5z) = 0.

(a) Derive an algorithm and write a working computer program or use a
spreadsheet or calculator to obtain a correct value for x. Explain how to do
it.

(b) Find the value z such that the left hand side of the equation is a mini-
mum. You found a local minimum. Explain how you found a local minimum.
Is it possible to find a global minimum?

(c) Find a minimum of the function f(z,y) = 2 cos(2z) cos(2y) near the
point (z,y) = (100,100). Explain all the details of how you proceeded to
find the minimum.

(d) Fit data points (95,85), (85,95), (80,70), (70,65), (60,70) (data given
in the form (z;,y;)) to a model y(z) = A+ Bz and find the values for A and
B. Show all your work.

Solution. (a) Set f(z) = 4sin(2z) + 5log(2z?%) — 1000 + 22 exp(5x) and use
Newton Raphson (41 = 2, — f(zy)/f (2,)) using some initial guess (.
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(b) f(z) = 4sin(2z)+5 log(22%)—1000+z2 exp(5x) and use Newton Raphson
applied to the first derivative, 11 = z, — f'(z)/f"(zy), and a suitable
initial guess for xg. You can find infinitely many local minima because of
the sin(2z) term. The function does not have a global minimum due to the
singularity at the origin, lim,_,olog(22?) = —oo0.

(c) Use any of the gradient-based search algorithms (steepest descent, New-
ton, Gauss-Newton or Levenberg-Marquardt. Set initial conditions to (100, 100).

(d) Use the formulae, A = Zx?ZyifAZx¢iny¢7 B= nzxiyilzmizyi, A=
n> 22 — (3 x;)?, and plug in the data provided to compute A and B.
I get the results: A = 26.768 and B = 0.644, i.e. the model is y(z) =
26.768 + 0.644z. |

Problem 127. Write MATLAB code to find the global minimum of:
flz,y) = 100(962 — y)2 +(1- x)2 on the domain [—3, 3]2.

You may use MATLAB’s ga command. Another option is to write your
own code instead of using the built-in ga command. If you write you own
code, and if your code is short and easy to understand, your homework will
be weighed twice (100% bonus points). It’s possible to write fairly short ga
code (under 30 lines) to solve this problem. For the code to work efficiently,
the objective function will need to be vectorized, i.e. take vectors/matrices
as input, and output a vector. Element-wise operations will be required.

Problem 128. For the two functions of problem 123, compare the local
(Levenberg) search to the global (ga) search. Modify your Levenberg code
to explore the domain and find global extrema; compare results with ga.
Comment on whether this method (using a local search algorithm to perform
a global search, instead of using a true global search algorithm) is practical
in the general case of arbitrary function and domain.

Problem 129. In problem 137(b), I have provided code for simulated an-
nealing. Compare the speed of convergence for our simulated annealing code

to the ga command, i.e. plot x? vs iteration. (Usually, one uses a semi-log

graph to study convergence.) In a third calculation, use the built-in MAT-

LAB command simulannealbnd for this optimization:
https://www.mathworks.com/help/gads/simulated-annealing-examples.html
https://www.mathworks.com/help/gads/simulannealbnd.html

Compare performance for all 3 algorithms. Which of the 3 algorithms is
fastest?

Problem 130. Use the ga command to fit an exponential decay function
to the fake dataset of problem 139.






Chapter 8

Errors in the Fitted
Parameters during
Nonlinear Fitting

Given that nonlinear fitting methods are based on computer algorithms,
how can we obtain estimates of the error in the fitting parameters? We no
longer have the option of deriving analytical formulas. It turns out that the
covariance matrix provides estimates of the errors in the fitting parameters.
In this lecture we show that cov(8y, 8) = 2(Hy) ™!, where Hy, is the Hessian
matrix at the k-th iteration.

8.1. Linear least squares

In linear least squares, we assume a model of the form

model
where i = (y1,...,yn)? is the column vector of measured data points. There
are n data points collected. A is called the design matrix and has dimensions
n x p. The model parameters are stored in the vector 8 = (6y,...,0,)". Fi-
nally, the errors in each measurement are stored in a vector € = (ey, ..., e,)7.

The errors ¢; are random variables assumed to be independent and identi-
cally distributed (iid rv) according to a normal law

e ~ N(0,0?%), i=1,...,n

289
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In general n > p, since we want a model with much fewer parameters
than there are data points collected to construct it. In a sense, data fitting
amounts to doing data compression. Some effort must be devoted to finding
an adequate model that accurately describes the key features of the problem
with as few parameters as possible. In components form, the above equation

can be written as ,
Yi = Zaijej + €
i=1

where a;; are the elements of the design matrix A.

Let us look at some examples of design matrix A. This matrix is found in
the expression i = A0 + €. Consider the model

yz:A—i—B:L'iwLCx%—kei, i=1,....n
We find, by inspection

1 = 22 .

1 xo 33% A y1 !
A= . ) 0= |B ) g - ) €= :

- C

1 z, 22 Yn e

Another example is
= A+ Blogx; + Ccosz(xi) + €
We find, by inspection that

1 logz; cos?(x)
1 logzy cos?(xo)

1 logz, cos®(zy,)

8.2. MLE

Recall that with least squares, the fitting parameters are obtained by ap-
plying the principle of maximum likelihood, which consists of solving for
the model parameters 8 for which the probability density of the observed
deviations (data minus model) is a maximum. Maximizing L is equivalent
to maximizing its logarithm l:

e e T T W

’L

Here, our assumption will be that €; are Gaussian 11d rv. Therefore, the
joint probability distribution of all (e,...,€,) is a product of individual
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distributions for each of the ¢;, each of which is Gaussian with mean 0 and
standard deviation o.

In this special case, the “likelihood function” is

Hlf;lexp{—% (v = 81 a0 ) /a}
o (2m)n/2
S S (TS S B W
- on(2m)n/2

L is the probability density for observing the set of deviations {¢;} or, equiv-
alently, the set of measurements ¥ given a model and its parameters y(z;|0).

L(8,0°|§) = p(416,0%) =

Taking the natural log of this expression yields the “log likelihood”

2
1 n
l_logL—const—nlogU—f Z Yi — Zaw /o2,
=1
where const = —(n/2)log(2x). This term will be 1gnored since it will not

be needed.

The principle of “maximum likelihood” tells us we should compute the ex-
tremum of this function with respect to its parameters. The parameters are
0 and o.

8.2.1. MLE of the Model Parameters 5 Differentiating with respect
to 0, i.e. 91/00, = 0, gives the following equation:

n p
Zair yi_zaijej =0, (r=1,...,p)
i1 j=1

or,

This can be expressed in a more compact notation if we write C = (¢;;) for
the ij-th element of the p x p matrix C = ATA. We note that this matrix
is symmetric (CT = C) since CT = (ATA)T = ATA = C. This allows us
to write the bracketed term on left hand 81de as

n

cij = Y (AT Ag; = Zakzzak;]

k=1
so the left hand side becomes

Z Cr]‘g = Z AirYi = Z )M'yi

1=1
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or
(CO), = (AT§),, r=1,...,p
Thus, we have obtained the so-called “normal equations”

co=ATy C=ATA

The solution to these normal equations is obtained by multiplying both
sides of the equation on the left by the inverse of C, which is simply C”
(since C is a symmetric matrix). Since the vector 6 has been obtaining
from the extremum condition 91/00 = 0 we denote this particular

A

vector as 0:

60 =C'AT7=(ATA)'AT§y  ”normal equations”
provided that the symmetric matrix C = AT A is invertible. We note
that the normal equations are linear in ¢. They are also linear in 6,
meaning that we can easily solve for 8. In the case of nonlinear models,
we will see that the normal equations are generally not linear functions
of the parameters.

Finally, to summarize what we have done, we note that maximizing the
likelihood function L is entirely equivalent to minimizing the sum of
square errors with respect to the choice of 6

2
n

P
dovi=D aiyb | = G- A0)T(7-A9) =EE
i=1 j=1

The solution to this problem is given by the solution to the normal
equations. The term €’€ is an inner product of € with itself. This is
often expressed in terms of the norm (length) of the vector € as follows:

€l'e = ||€l|?, where ||€]] is the length of €.

To illustrate the use of the normal equations in solving linear least squares
problems, let us look at the example of a linear model (y; = A+ Bx;). This
equation must be written in the form ¢(#|@) = A€ where A is the design
matrix. By inspection we see that

1 1 Y1
zo 1 Y2
Ty 1 Yn

The experimentally measured data points i are expressed as the sum of the
model (Z|0) = A@ plus the random errors €

J=A0+¢E
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where
y1 €1
. Y2 B . €2
y = y 9 = |:A:| , € =
Yn €n

This is nothing more than a restatement of the fact that € is simply the
deviation § — A@ of experimentally measured data ¢ from the model A6.
That is, € = § — A@. We recall that x? involves a summation over such
deviations.

We now compute the product C~'AT¢, where C = ATA. First, the prod-
ucts C = AT A and ATy are, respectively

X1 1
C_ ATA _ |1 22 -0 n 33.2 1 _ >, a? Eixi7
1 1 ... 1 : YuTioon
Ty, 1

and >
ATz — [ ﬂﬁzyz} ‘

Next, the inverse C~! of this 2x 2 matrix is computed from the usual formula

a B\ 11 d b
c d ad—be \—-c a )’

You can easily check by direct multiplication that this matrix meets the

conditions required to be the inverse: C™1C = CC™! = (}9).

2
2 T Z;lz’] is

2w

_”Zﬂ%_ZﬂCiijj —iw o ap ]

In our case, the inverse of C = [

N

Therefore, 6 = [g} is equal to

C-1AT7 — 1 [ nziwiyi—zimizﬁ-yj ]
nZzwf =T ijﬂj —ZijfL’jyj + 227 ijj
This result is nothing new: this is exactly the same result we have derived in
Lecture 4 by applying the maximum likelihood principle to the minimization
of x2. Here, we simply verified that our normal equation is in agreement
with the result already derived previously.
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8.3. MLE of the Parameter o

There is yet another parameter that can be estimated via maximum likeli-
hood, 0. While ¢ does not appear at first glance to be a ”model” parameter
in the sense of the model expressed as ¢(Z|0) = A(Z)0, we initially stated
the assumption that our deviations € = §— 7/(#]0) were distributed as Gaus-
sians with mean 0 and standard deviation o. In this sense, ¢ is an unknown
parameter that can be solved for in terms of the data and the model.

Differentiation of the log likelihood

2
n

1
l_logL—const—nloga—f Z Yi — Zaz] /02-
=1

with respect to the parameter o gives
2

ol 1 & P
w0 = ﬁ *32 Zl%ﬂj =0
: J:

At the extremum, we will denote the value of 8 by 6. Similarly, let us de-
note the value of o as & at the extremum. The quantities 0 and & are called
mazximum likelihood estimators. Solving for o we get, for the maximum
likelihood estimator:

2

1< L
ZEZ yi_zaijej

i=1 j=1

8.4. The Covariance Matrix

An important concept that will be used later in this course is the covariance
matrix. We recall near the end of Lecture 2 we had defined the covariance
of two random variables X and Y:

cov(X,Y)=(X-X)(Y -Y)=XY -X.Y.

Covariance is important because in the case Y = X it reports the variance
whereas for X # Y it tell us to what extent the random variable X is corre-
lated to Y. The covariance matrix is used when X is a vector in which we
have collected all random variables of interest, i.e. X = (X,Y,...,2)T. Ttis
defined as the matrix whose elements are cov(X;, X;). It can be computed
most easily using the matrix form

cov(X,X) = (X - X)(X - X)T.
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Here, we are interested in the covariance matrix of the fitted model param-
eters cov(0,0). The diagonal elements are the variances (errors squared) of
each model parameters. The off-diagonal elements are the covariances. The
matrix elements are important because we are interested in knowing from
the fitting procedure what are the uncertainties in each fitted parameter and
the extent to which model parameters are redundant (correlated). Using the
definition 8 = C~'AT§ we find:

cov(0,0) =C-1AT (7 — 3)(C1AT(y — )T
=CT'AT(7-7)(7 - p)TA(CTH.

We recognize the term (7 — %) (7 — 7)T as a variance. Since' the elements
of § are statistically independent with variance o2 (by assumption), the
off-diagonal elements are zero and this variance evaluates to

o2 0 ... 0

0 o2 ... 0
G-9G-9"=|. . . .|=071

0 0 ... o2

where 1 is the unit matrix. In the second line we have used the property
(AB)T = BT AT to write the term (C*AT (7 — 7)) as
(CAD (7-7) = (-7 ACTH".
Next, we use the fact that inverse of a matrix and transpose operations are
interchangeable, i.e. (CT)~! = (C™HT. But since C = CT (symmetric
matrix) we have:
cov(8,0) =C'ATo?1AC™ ! = 2C'ATAC ! = s2C .
——
C

We will see later that the covariance matrix is related to the inverse of the
Hessian matrix. This is useful because we have seen in previous lectures that

the Hessian matrix could be estimated from the Jacobian matrix during the
course of a data fitting procedure (c.f. Gauss-Newton method).

1Recall that ¥ = AO + € is a sum of a deterministic (non-random) quantity A€ plus a random

quantity € which we have assumed the elements of which to be iid rvs with N(0,02). Thus,

var(¢) = var(€) = o2.
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This formula cov(#,0) = 02C~! we have derived is simply a tool that
enables us to compute the covariance matrix cov(8, ) from the condi-
tions of the experiment. The covariance matrix is important because
its diagonal elements are the variances in the fitted parameters. Let us
look at a simple example: that of the linear model y; = A+ Bx;. Then,
0 = (B, A)" and therefore

We have also seen that

c'=

1 [ n — gz]
HZW?—Z@%ZJ% — i Ti i L5
Thus, we have an explicit expression for the formula cov(é, é) =02C~
and can use it to compute the errors in the fitted parameters A and
B from the experimental conditions (design matrix). We note that the

{y;}-dependence of the errors and covariances originates from the factor
2
o°.

1

8.5. Nonlinear Least Squares

Suppose that we have n observations (#;,y;), ¢ = 1,...,n and a nonlinear
model

yi = [(Ti]0) + e, i=1,...,n
or

y=f(Z0)+¢€
where f(Z|6) is a nonlinear function of @. We assume that the elements of
€ are independent identically distributed random variables with mean 0 and
variance 2. Furthermore, we assume they are normally distributed. Thus,
the estimates 6 will also be known as maximum likelihood estimators.

Given this nonlinear model, let us obtain the least squares estimates of 0
and o, which we denote @ and & respectively, starting from the likelihood
function

" — f(&:]0))2
L(97‘72) Ep(ngUQ) = Wexp (—; Z W)
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The log likelihood is (ignoring constants)

l(@,ag)———loga ~ 5, 22 f(Z:]0)]?

8.5.1. MLE 6. The condition 9l/00? = 0 gives the maximum likelihood

estimator:
n

52 = LS - r@e)?

n
i=1
which is indeed a "maximum” likelihood (for a given ) as the second de-

rivative is negative?:

I —n+Z?1[yif(fi\9)]T_

d(02)2 ~ 802 | 202 2(02)?

02 2 3 Z $z|0

in which we substitute the value of 6, namely < &€ Where él'e = Sy lyi —
f(%]0))? to get
02l B n? n3 (T = n? (1
o0~ ATer @y T (@2

hence 6 and 62 maximize [(8|0?). The maximum value of p(76, o2) is

1)<0

- 1
— A2\ —n/2
p(y|0,0’ ) - (27'('6‘2)”/26 .

8.5.2. MLE 6. The estimator  satisfies the condition Oe'e/00, |, = 0,
r=1,2,...,p. We now write f;(8) = f(Z;|0) as shorthand notation. Then,

F(0) = (f1(0), ..., f2(0).

Since f is a vector, its gradient is a matrix:

9f1 of1

2?1 g@

2 2

F(0) = V/(0) = 0f(6) _[0fi(0)] _ |am - o,
o 00 00; : :
Ofn Ofn

001 00,

We now use the shorthand notation F = F(6) and F = F(8). The sum of
squares that must be minimized is

e'eo) =g f0)"lg- f0)] =5 f(0)]*

2 Another way to see this, since &7 &(0) > &7 &), we have 1(8) — 1(8) = —(n/2)log 62 — (n/2) —
1(0) > —(n/2)logé? /o f(n/2)+(1/2)€T€(9)/0 = —(n/2)(log62/0? +1—6%/0 > 0 as logz <
@ — 1 for £ > 0. We have denoted éL&®) for L€ evaluated at the point 6.
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where €7 €(0) denotes €’ € evaluated at the point 0. Setting d¢’ €(8) /06,

0 leads to the result o
9fi(0) T F
i — 1:(0 =0 0=F — f(0
S = HO} 57|, = )

€

We get the normal equations for this nonlinear model

0=FT.¢
This is the equation that must be solved for nonlinear models. We
note that the model parameters are contained implicitly in the matrix

F as partial derivatives. Thus, if the model f is nonlinear, the matrix
elements of F could also be nonlinear functions of the parameters 6.

In general, these normal equations cannot be solved analytically and
iterative methods of the type covered previously will be necessary.

In order to better understand how to use the normal equations we illustrate
this concept by looking at examples.

Consider the linear model
yi = A+ Bz +e€;
———
data model

The normal equations are 0 = FT . ¢ The vector € is simply the vector of
deviations between experimental data i and the model 7(x|0):

y1 — A — Bz
. yo — A — Bxg
E=y—9y(@0)=y— A— B¥ = _
yn — A — B,
or, in component form, €; = y; — A — Bx;. Next, we need the matrix FT,
% . g
91 2n
which is computed from F(8)T = 0?2 0?2 , where f; = A+ Bx; and
on  od

a6p T 9bp

0 = (A, B)T, but with two parameters (p = 2)

r |9 O 1 .01
F0) = |5/ o7 | = [l, ]
002 e 005 T
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The condition FZ - & = 0 then reads
Z(yZ — A — Bﬂ?l) =0
i
i
The two linear equations and two unknowns can be solved for A, B (taking
care of noting that the second term in the first equation is ) , A = nA):

B_”Ziyimi_zz‘xiz]‘yj A_Zix?ijj_Ziyixiijj
nsz?—ZmZm nsz?—lezZ]%

This is identical to the solution derived earlier using the normal equations
for the linear case.

Consider the nonlinear model
yi:aaziBJrei (1=1,...,n)
This model can describe, for example, the dependence of mass of an object
(y) on a side length (x) in 5 dimensions. The normal equations are:
Z(Z/i - aa:f)xf =0
i
Z(yi - am?)axf log z; =0
i

These equations do not admit analytical solutions for a and S.

8.6. Linearizing a nonlinear model

—

In the nonlinear case, the minimization of ||§ — f(@)||* with respect to 0
yielded the normal equation 0 = FT . ¢, where F = 0f/08 is generally non-

I

— A

linear in @ and é = §— f(0) is also nonlinear in 8. These “normal equations”,
although formally correct, generally cannot be solved algebraically. In many
cases, we resort to linearizing the nonlinear model, as we have done with
the Newton-Raphson method. This approach does not yield the solution
in a single step, but instead allows us to get progressively closer after each
iteration of an update rule.

In order to do this, we first recall the following tool that we will use later.
We have previously found that the minimization of ||€]|? = || — A@|* has
the following solution

6= (ATA) ATy
This was obtained by minimizing ||€]|? with respect to 6, i.e. 9|/€]|?/060 = 0.
This solution is not specific to data fitting, but is a general result from
calculus.
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— — —

Taylor expanding f(6) near 6 = 0 to first order gives 0) ~ f (é) + FAf
where A@ =0 — 6. Th
|7~ F(8)]* ~ |7 — f(6) — FAG|”.
Substitution of ¢ = § — f(6) for f() yields
|é — FAQ|?.
Invoking the above theorem from calculus, we find that the solution of this
linearized problem is given by

AQ = (FTF)"'FTe.

us,

Incidentally, this condition
AG=0-6=F'F)'Fle (v
is exactly equivalent to the update rule we derived previously for the Gauss-

Newton method
where the Hessian matrix Hy, is approximated by 2J£J r with

_ 1 Oy(=16™) 1 9y(z1]6™)
o1 001 T o1 90,
I, =J(0W) = : :
_ 1 9y(za|8™®) _ 1 9y(za]8™)
On 001 e On 89p

and Vx? = 2J£}~% with R is the column vector of residuals ]N%Z = (y; —
y(2:]0%))) /o;. For the two rules to be equivalent we must take the errors
to be identical o; = o. In that case,

(y1 = y(2116")) /o (y1 = y(2110")) /o

H,_ 23] : = (237 3,,) 23] :
(Yn — y($n|)0(k)))/a (Yn — y(iﬂnI@(k)))/U
and we can now write J;, = —(1/0)F to get
(51 — y(116™)) /o
= —o?(2FTF)"12(1/0)FT : = —(FTF)"'FTe

(yn = y(a|0W)) /o
which gives an update rule identical to (x)

o+ — ™) + (FTF)'F'e

8.7. Relationship between Hessian and Covariance Matrices

The covariance matrix, cov(6, 0), is important because it contains informa-
tion about the statistics of the fitted parameters. Let us see how it can be
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computed in the case of an iterative algorithm for nonlinear data fitting. In
the linear case, we found an explicit formula:

cov(0,0) = 0°C™1 = o2(ATA) L. (linear case)

In the nonlinear case, we can linearize such that the matrix A becomes
F = 0f/00, the gradient of f:

cov(8,0) = o?(FTF)L. (nonlinear case)
Let us recall the definition of x?
2= Zivi = fi0)? _ g = fO) _ e
2

o o2 o2
and compute the Hessian matrix,
@), = O _ & 7 - @)1 9 |7—f(6) —FA6|?
K 89189] 89189] O'2 89189] 0'2
_® [§- f(6) - FAG)[j — [(6) ~ FAB)
06,00, o2
9 (G- f0)"(5 - f(6) +2(-FAO) (5 - f(6)) + (FAO)T(FAO)
06,00, o2

= A~

The first term, (7 — £(8))7 (7 — f(6), depends on 8 but is independent of
0 and its derivative with respect to 0 is therefore zero. The second term,
2(—FAB8)T (7 — f(6)) depends linearly on beta, and so its second derivative
with respect to @ vanishes. This leaves only the third term as non-zero.
Using the facts that A@ = 0 — 0 and F = 8f(0)/80|9:é is independent of

6, we compute the derivative:
0% (FAO)T(FAG) 1 0?

R —- TxT
(H)Z] 8(918(9] 0'2 O'2 8013(%0 F O
I
=——— 0pn(FTF)pbn
o2 06,0, z; (F"F)
1 0

:ﬁa@@(FTF)men + %j O (FTF)j)

1 2
=5 (®TF);i + (F'F)y) = S5 (F'F)y,

where in the second equality we have replaced A@ by @ because the derivative
operation with respect to 8. This leads to:

H=(2/0?)(FTF).
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8.7.1. Summary: relationship between Hessian and covariance ma-
trix. Thus, we have shown that the covariance matrix is proportional to the
inverse of the Hessian

cov(8®), 0y = 2(H,,) ™
(The factor of 2 would go away had we defined the Hessian as the derivative
of the log likelihood function; can you show this?) Recall that the covariance

matrix contains variances of the fitted parameters 6 along the diagonal and
covariances of these parameters as off-diagonal elements:

var(01)  cov(01,62) ... cov(B1,6,)
cov(fs,0 var (6 ... cov(f,60

cov(6.6) ( 2 1) ( 2) . ( G b)
cov(Bp,01) cov(By,02) ... wvar(f,)

For example, if we require the error bars on the fitted parameters, we may
extract the diagonal elements of the matrix 2(Hj)™!

var(61) 0 e 0

0 var(fs) ... 0

diag(cov(0,0)) = ) ) , .
0 0 ... var(6y)

For this to work, of course, we need the matrix Hy to be invertible (non-
singular). This may not always be the case. We have seen in the previous
demo how to compute matrix inverses and how to compute Hessians in
Matlab if analytical expressions are used. In the case where the Hessian is
computed numerically by finite differences we may use the approximation
2JT 3.

Problem 131. The following model is to be used for data fitting
y(z) = Ax® + Bx + 2Bz}
where A and B are parameters to be determined. In terms of the above
model: (a) Derive the Jacobian matrix.
(b) Derive the design matrix.
(c) Derive the Hessian matrix.
(d) Derive the covariance matrix.
(

e) Derive the normal equations for this model.



Chapter 9

Pearson’s Chi-Square
Test

In this section we will describe the chi-square test. It can be used in at least
two ways:

e In Regression Analysis: to determine the distance between the data and
the fit. Here, the sum is over all data points.

e Test of Expected Distribution: here the test works on categorical data
and we use it to determine the distance between two “histograms”. Here,
the sum is over all bins of the histogram.

9.1. \? test

Suppose that we have v independent random variables X; (i = 1,...,v) each
normally distributed with mean j; and variance o2. Chi-square is defined
as:

(9.1)

o (Xi—m)? (X2 —p2)? (Xy =)~ (X — i)’ e
X“ = + o7 = ~ - T = RZ.
Since X1,..., X, are random variables so is x2. Therefore, we will denote

it as x? (boldface type). Because the data is normally distributed, the
normalized residuals are close to 1 (66% of all R; values are within +1 of
0). Hence, given a set of measurements {X;} (i = 1,...,v), if we have
chosen the u; and af correctly, we may expect that a calculation of y? will
be approximately equal to v. If it is, then we may conclude that the data
are well described by the 