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Preface

Los Angeles, CA

December 9, 2022

This is a collection of lecture notes, problem and solutions on the topic
of experimental measurements, data uncertainty and error analysis. These
notes were assembled over a period of approximately four years while teach-
ing chemistry 114 at UCLA, a physical chemistry laboratory course that
includes separate lectures in addition to the laboratory sessions. The course
was initially based on the excellent textbooks by J.R. Taylor, “An Introduc-
tion to Error Analysis” and Hughes & Hase, “Measurements and their Un-
certainties”, but was later revised to focus on the probabilistic foundations
of classical measurements. I do not consider these notes to be a substitute
to the book of Taylor, which I recommend to any newcomer for its strong
pedagogical value. Instead, I view these notes as providing a more in-depth
coverage of the probabilistic foundation. While the reader is assumed to
know calculus, no knowledge of probability theory is assumed; the required
concepts are introduced as needed in these notes.

I make frequent use of MATLAB while teaching the course because it is
important for young students to learn scientific computing. For those who
can’t afford MATLAB, a free software alternative can be download, called
GNU Octave. Many of the MATLAB examples herein should work on GNU
Octave either directly or with a small amount of conversion effort. An entire
chapter is dedicated to MATLAB sessions where the students are walked
through several examples. At UCLA these MATLAB sessions are done
during class time at the Science Learning Center. Problems and solutions

xi
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are included at the end of many chapters. The students should be aware
that more advanced analysis techniques exist (such as statistical learning)
and are not covered here due to the short (1-quarter) nature of this course. I
would encourage the reader wanting to learn more, to read books on modern
multivariate statistical techniques. Special thanks go to Alison Ly, a UCLA
undergraduate student, for redrawing most of the figures in this document.

Louis Bouchard



Chapter 1

Experimental
Uncertainties

Every measurement contains some amount of uncertainty due to a variety
of experimental factors (e.g. temperature fluctuations, Johnson noise, shot
noise, sample motion, vibrations, environmental fields, etc.). The uncer-
tainty is due to fluctuations in the physical quantities being measured and
in the measurement apparatus. Uncertainties can be thought as representing
the noise magnitude which affects our signal. The goal of the experimentalist
is to reduce uncertainties to an acceptable minimum either by repeating the
measurement several times or by designing a better experiment. Our goal
here is to understand where uncertainties come from and how to characterize
them.

1.1. Types of uncertainties

There are two main classes of uncertainties encountered by the experimen-
talist:

• Systematic errors: these errors originate because there is a bias in the
system. For example, performing the same experiment on a different day
could mean the ambient temperature is different, which could then lead
to a drift in some currents in the system. A good piece of equipment
should be designed to take into account temperature variations, for ex-
ample. However, not all instrumentation is designed to compensate for
environmental factors. Another example could be the measurement of
a magnetic field using a magnetometer. However, the presence of large
metal objects nearby could affect the magnetic field.

1



2 1. Experimental Uncertainties

• Random errors: these errors arise from random fluctuations in the elec-
tronics or the physical measurement under study. For example, if you are
measuring the voltage across the terminals of a load, there will be ran-
dom fluctuations in the voltage as function of time. These could be due
to Johnson noise, which is due to thermal fluctuations of electrons in the
resistance of the load and leads to random voltage fluctuations. Johnson
noise is also generally present in the measuring apparatus. Vibrations
could also give rise to random errors.

Note: Sometimes the distinction between systematic and random error may
depend on time scales. The systematic errors can be randomly fluctuating
quantities that change so slowly that they appear static on the timescale
of (rapid) measurements. Random errors are those due to fluctuations that
are rapid compared to the timescale of measurement. In the latter case, a
series of consecutive measurements appears to fluctuate randomly.

1.2. Histograms

The quantities measured in the laboratory are random variables. A random
variable is not a variable in the usual sense. It is instead characterized
by a probability distribution function that encodes all relevant statistical
information about the random variable.

Suppose that X is a random variable. For example, let X be the diameter
of CDs produced in a factory. If we example n CDs and measure their
diameters, we collect n measurements of X:

{x1, x2, . . . , xn}.
These values are all different because no two CDs are perfectly identical.
Because the values fluctuate from measurement to measurement, it is con-
venient to view X as a random variable. We shall denote a random variable
by its capital letter, X and its value by a lowercase letter x. The two are
related by x = X(ω). Here, ω notes a particular outcome of a random
experiment. For example, if the experiment consists of rolling a die, there
are 6 possible outcomes: ω ∈ {1, 2, 3, 4, 5, 6}; multiple outcomes of die roll
are denoted ω1, ω2, . . . , ωn. For the CDs ω denotes a particular instance of
diameter measurement; ωj denotes the j-th measurement of the diameter.
Suppose that we measure 10,000 CDs; we would get a list of diameter such
as:

119.73

117.10

122.76

119.20

119.12
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Figure 1.1. Histogram is a discrete approximation of the probability
distribution of a random variable. It is obtained from experimental
data.
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The list {xi = X(ωi)}ni=1 contains a total of 10,000 values (i = 1, . . . , n,
where n = 10, 000). The nominal diameter of a CD is 120 mm.

Now suppose that we we plot a histogram of these values as follows: bin the
horizontal axis into 20 bins (i.e. from 110 to 130), with each bin of width 1.
These bins could be centered on those values, for example: [109.5, 110.5],
. . . , [119.5, 120.5], [120.5, 121.5], [121.5, 122.5], . . . , etc. For each bin, count
the number of times X falls within the interval of the bin, i.e. # of times
you find a value in the above list that falls within that interval. Obviously,
the longer the list (the larger n is), the larger this count will be.

Plot this value (frequency of occurrence) vs diameter, as shown in Fig. 1.1.1

This histogram is a (discrete) approximation of the probability density func-
tion (PDF), which is a function that describes the distribution function of

1This plot was generated in GNU Octave using the following sequence of commands:

x=120+2*randn([10000 1]); and figure; hist(x,linspace(110,130,21)); The first com-
mand creates a “fake” data set that simulates the acquisition of experimental data with random

error (more specifically, a random variable x with mean 120 plus normally-distributed random
noise with standard deviation of 2).



4 1. Experimental Uncertainties

the random variable X. The finer the bins are, and the larger n is, the more
closely this histogram approximates a continuous function.

The histogram is also called empirical distribution. Mathematically, we
partition the horizontal axis in N “bins”, defined by the intervals (rk, rk+1],
where · · · < r0 < r1 < r2 < . . . , ri ∈ R ∪ {−∞,+∞}. Recall that {xi =
X(ωi)}ni=1 is our set of measurements of X (data points) and n the number
of points. In terms of this dataset the histogram is the function:

ĥ(x) =
1

n

N∑
k=1

I(rk,rk+1](x)

(rk+1 − rk)

n∑
i=1

1{xi∈(rk,rk+1]}

where 1{xi∈(rk,rk+1]} is an indicator function that equals 1 when xi ∈ (rk, rk+1]
and 0 otherwise. Similarly, I(rk,rk+1](x) is an indicator function that equals 1

when x ∈ (rk, rk+1] and 0 otherwise.
∑n

i=1 1{xi∈(rk,rk+1]} counts the number
of times a result xi = X(ωi) falls into the bin (rk, rk+1]. The coefficient∑N

k=1 I(rk,rk+1](x) ensures that x ∈ (rk, rk+1] (k is a counter that loops over
all bins, one at a time). In Problem 34, we prove that the histogram con-
verges to the PDF in the limit of large n.

The term “empirical distribution” often refers to the expression:

p(x) =
1

n

n∑
i=1

δ(x− xi)

where p(x) is a PDF and {xi}ni=1 is the set of experimentally measured data
points. Here, δ(x) is the Dirac delta function. This will be discussed in
Section 2.4.

1.3. Methods for reporting uncertainties

1.3.1. Method 1. When reporting a measured quantity x and its uncer-
tainty δx, we write

(measured value of x) = x± δx
For example, the length of a rod is measured to be (1.0 ± 0.1) m. In this
course we will present common ways to estimate the value of δx and which
value of x to report. In a certain sense, this notation means that most values
measured experimentally will fall within the interval [x− δx, x+ δx].

In reality, however, the measured value of x is the sum of the true value of
x, xtrue, systematic errors (bias) plus a random error (ξ):

(measured value of x) = xtrue + bias︸ ︷︷ ︸
“constant”

+ ξ︸︷︷︸
rapidly

fluctuating
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where ξ is a random variable whose outcomes fall within the interval [−δx, δx]
to a large extent. If the value of the bias is known, it can always be sub-
tracted from the measurement to obtain xtrue ± δx. In some cases it is
possible to design experiments to specifically measure bias.

1.3.2. Method 2 (notation). Another method for reporting uncertainties
uses brackets to list the digits that are uncertain:

1.234(55) m is a more-compact way of writing 1.234± 0.055 m.

1.3.3. Report your uncertainties with 1 or 2 significant figures.
Experimental uncertainties should be rounded to 1 or 2 significant figures.
For example,

(10.000± 0.123) m

should really be rounded to

(10.0± 0.1) m

or
(10.00± 0.12) m.

Two significant figures are normally used in precision measurements. In
most other cases, we keep only one significant figure. In this course, we will
stick to 1 figure because we are not doing precision measurements.

We round the uncertainty to the 1 significant figure and then report the
value of x to the same digits. For example, writing

(30.129± 0.1) m

does not make sense because the number of significant figures to the right
of the period differ for each number. We should instead report

(30.1± 0.1) m,

where the value of x has been rounded to the same decimal place as the
error.

In most calculations, it is advisable to keep many significant figures during
the calculation and only round off at the end, when the final uncertainty
has been determined. This is to avoid round-off errors.

When comparing two different reported values, we can determine if these
values differ significantly or not by looking at the interval defined by the
uncertainties. For example, if someone reports two different lengths,

(10± 5) m and (18± 5) m,

we see that the error bars overlap: the first interval is

[5, 15]
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Figure 1.2. Discrepancy between two measurements. We must look at
the errors bars, not just the nominal value. (left) No overlap (right)
Some overlap. In the second case, we cannot say for sure that the two
measured values are significantly different because of the overlap.

while the second is
[13, 23].

Since the error bars overlap, we cannot say for sure that the two numbers
differ significantly. On the other hand if the numbers reported are

(10± 1) m and (18± 1) m,

which correspond to intervals

[9, 11] and [17, 19].

In this case, we can say that the two values are significantly different from
each other.

Figure 1.2 illustrates the error bars for the case where resistance A is mea-
sured to be (15± 1) Ω and resistance B is measured to be (25± 2) Ω versus
the case where resistance C is measured to be (16 ± 8) Ω and resistance D
is (26± 9) Ω.

Since the error bars do not overlap, values A and B are said to be significantly
different from each other. Whereas measurements C and D do not differ
significantly because of the substantial overlap of their error bars. Even
though the xbest values differ by 10, in one case, the values are significantly
different whereas in the other case they are not.

1.4. Random Errors, Systematic Errors and Mistakes

There are three main types of errors encountered in experiments:
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Figure 1.3. Histograms tell us about accuracy (if the true value is
known) and precision. The latter is related to the spread of the dis-
tribution.

• Random errors: These errors are random fluctuations that influence
the precision (or “spread”) of the measurement, as shown in Fig. 1.3. The
width of the distribution provides a measure of the random error. The
common method for reducing random errors is by repeating the measure-
ment many times and taking the average. We will see later that this
method reduces the random error by a factor

√
n, where n is the number

of measurements. The random scatter in the data can be of technical
origin (due to the apparatus) or fundamental noise (e.g. Johnson noise,
shot noise).

• Systematic errors: These errors are caused by a bias in the system or a
mis-calibration of the instrument and typically cause the result to “tilt” or
“shift” or “drift” in some direction away from the accepted or predicted
value. Such errors can sometimes be difficult to detect or correct. To
diagnose systematic errors, we need to know the “true value” of a mea-
surement. Identification of the systematic “shift” can be accomplished by
performing an experiment with known conditions and parameters. Cor-
rection of the systematic error may involve a simple subtraction of the
shift or drift, or changes in the apparatus or experiment.

• Mistakes: These are user errors such as writing down the wrong value,
misreading the scales on the instrument, confusion over the units, or mal-
functions of the apparatus.

1.5. Uncertainty of a single measurement

Suppose that we want to determine the uncertainty of a single measure-
ment, so we can write xbest ± δx, where xbest here is the results of a single
measurement. The random error can be obtained as follows:
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0 cm 1 2 3

1112

Figure 1.4. It is customary to take the error bars associated with analog
measurements (from a ruler, here) to be half of the smallest division
(millimeters, here).

• From the measurement device: If you are using a digital device, use
the manufacturer’s specs or a full last digit, e.g.

(1.56± 0.01) Ω

For analog devices, report half of a division, e.g.

measure 8.5 m → report (8.50± 0.05) m

Here, there is no problem adding a zero to 8.5 because with the analog
device, we are able to “eyeball” the extra digit by estimating the posi-
tion between the two divisions. An example of analog device is shown in
Fig. 1.4.
It is also possible to estimate the uncertainty yourself if the divisions
are large enough. In that case, you can estimate the last digit based on
the position between two divisions and estimate the uncertainty in your
procedure. For example, the analog device may only have divisions every
1 cm. But you may be able to estimate up to the millimeter by eyeballing
the measurement. This procedure may not necessarily give you precision
to the 1 mm scale, but you may be able to estimate it within 3 mm.
Suppose the measurement is 5 cm according to the divisions available on
the analog device, and you estimate the last digit to be 5.3 cm. You would
then report 5.4± 0.3 cm.

• Using the standard deviation: The standard deviation can be used
to represent the error in a single measurement. The problem is that we
need many measurements to obtain the standard deviation, i.e. we need
to repeat the measurement n times and compute the “sample standard
deviation”

(1.1) σ̂n−1 =

√√√√ 1

n− 1

n∑
i=1

(xi − µ̂X)2 (sample standard deviation)
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where µ̂X is the mean X estimated from the arithmetic sum

µ̂X =
1

n

n∑
i=1

xi. (sample mean)

We use a hat notation (σ̂, µ̂) to indicate that the quantities (σ, µ) are
estimated from data {xi = X(ωi)}ni=1. The quantity µ̂X is called the
“sample mean” because it is the calculation of the mean from the samples
x1, . . . , xn. Other accepted names for these terms include “population
standard deviation” and “population mean”.2

Note: One problem with the second method is that the measurement preci-
sion may be limited by the finite resolution of the measurement device. For
example, it is possible that repeated measurements all give the same answer:

10.0 m, 10.0 m, 10.0 m, 10.0 m, . . . , 10.0 m.

If that is the case, use the first method (estimate the error bar from the
smallest division of the measurement device.)

1.6. Standard error

If you report for xbest a mean value calculated from repeated measurements,
the error in the measurement of xbest is the standard error, not the standard
deviation. The standard error is defined as the ratio of the sample standard
deviation to

√
n

α =
σ̂n−1√
n

If we collect n data points, each with uncertainty σ̂n−1 (“sample standard
deviation” of a single measurement), and calculate the sample mean µ̂X , the
uncertainty in the sample mean is α.

We report

µ̂X ± α = µ̂X ±
σ̂n−1√
n

The standard error is also called the “standard deviation of the mean”.

1.7. Reporting experimental results for a mean value

When doing experiments, we typically repeat a measurement many times to
reduce its random error. The number reported is the sample mean. (Even
if, as an experimentalist, you don’t do these repeats yourself, it is likely

2It may seem ridiculous to collect n measurements just to compute the error bar of a single mea-

surement; true, but it is nonetheless the correct way to obtain the error in a single measurement,
when repeated measurements are possible. If you can afford to perform n measurements, report

the mean value instead; in which case, the error in the mean is called the standard error, which
is defined below.
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that your measurement apparatus does this averaging for you.) Here is how
this procedure is handled (either manually by you or automatically by your
experimental apparatus):

• Given a random variable X to measure, collect experimental data as n
samples

x1, x2, . . . , xn

where xi = X(ωi).

• Calculate the sample mean µ̂X as the arithmetic sum µ̂X = 1
n

∑n
i=1 xi

while keeping all the significant figures.

• Calculate the standard error (error in the mean µ̂X), α = σn−1√
n

where

σn−1 =

√√√√ 1

n− 1

n∑
i=1

(xi − µ̂X)2,

while keeping all the significant figures.

• Decide how many significant figures to retain for the error. If many data
points are used, keep 2 significant figures. Otherwise keep only 1. In this
course, we will stick to retaining only 1 significant figure for the error bar.

• Round the mean to the appropriate decimal place.

Reporting errors:
If the experimental measurement of a random variableX can be repeated
many times (e.g., x1 = X(ω1), x2 = X(ω2), . . . , xn = X(ωn)), the most
common way to report the experimental value of X is:

(measured X) = µ̂X ±
σ̂n−1√
n

where µ̂X = 1
n

∑n
i=1 xi and σ̂n−1 =

√
1

n−1

∑n
i=1(xi − µ̂X)2. This as-

sumes that σ̂n−1 is a meaningful (non-zero) value, i.e. it is constructed
from non-identical measurements (such as 10.0, 10,0, 10.0, 10.0, etc).
If it is not possible to repeat the experimental measurement (due to
time constraint or other reason), then report the single measured data
point, x1, plus uncertainty as stated by the manufacturer or using a
pre-calculated value for the standard deviation.a

aAlthough calculating the standard deviation does require repeated measurements, this task

can be done at a more convenient time.

1.8. Precision vs. Accuracy

Precision and accuracy are different concepts.
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1.8.1. Accuracy. Suppose your know the “true value” of a physical quan-
tity. For example, the speed of light in vacuum is a universal physical
constant that is defined to be equal to

c = 299, 792, 548 m/s.

This figure is exact since the length of the meter is defined from this constant
and the international standard for time. The “true value” can be obtained
from other means. The accuracy is a measure of how close is the mean value
of your measurement from the true value.

1.8.2. Precision. Loosely speaking, precision is defined as the “spread” or
scatter of values around the mean. A precise measurement corresponds to
a small spread, whereas an imprecise measurement corresponds to a large
spread.

In Fig. 1.5, four distinct cases are illustrated: accurate and precise measure-
ment, accurate and imprecise measurement, inaccurate but precise measure-
ment and inaccurate and imprecise measurement. The graphs shown are
obtained by plotting histograms of the frequency of a given experimental
result versus the value measured.

If the “true value” corresponds to the dotted line, an accurate measurement
of x means that the average value of the measurement, which can be thought
of as the “center of mass” of the histogram, lies close to the dotted line. This
is true, regardless of the sharpness or spread around this mean value. An
inaccurate measurement is one where the measured values cluster far away
from the dotted line.

1.8.3. Fitting data to a model. As scientists, we often need to validate
theory with experiments. Physical quantities are related to one another
via some physical law (a mathematical formula). In which case, there is
an equation (model) available to fit your data to. By fitting data to your
model, you can see if the model suitably describes the physical situation.
(And there are situations, of course, where the model may not be known
and analysis of the data requires you to identify a suitable model.)

Experimental data comes with error bars. Plotting error bars on a graph
enables us to decide if experimental data is consistent with a given model.
Let us look at the example of Hooke’s law which describes the extension of
a spring from its equilibrium position when attaching a mass to its end.

Example: Hooke’s law. Hooke’s law says that the force F on the spring is
linearly proportional to the displacement x from equilibrium (x = 0):

F = kx
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Figure 1.5. Precision vs accuracy. Repeated measurements of an ob-
ject’s length x (arbitrary units). The nominal length (true value) is 11.3,
as indicated by the red dashed line.

If we attach a mass m to the spring, the force acting on the spring is the
gravitational force on the mass m:

F = mg,

where g is the gravitational acceleration constant, approximately g ∼ 9.8 m/s2.
The situation is illustrated in the figure below. Writing the Hooke’s law in
the form

x =
F

k
=
mg

k
= (

g

k
)m

immediately suggests a possible experiment for measuring the value of k: we
attach different masses m and measure the corresponding displacement x.
The slope of this graph yields g/k, from which we can obtain k (Fig. 1.6).
Figure 1.6 also shows an example where linear fit does not describe the data
well and a quadratic component must be added to the model.
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Figure 1.6. The plot on the left (right) shows a scenario where the
experimental data are well-described by a linear (quadratic) trend.

1.8.4. Fractional Uncertainties. It is sometimes convenient to express
values

(measured x) = xbest ± δx
in terms of fractional uncertainty

(fractional uncertainty) =
δx

|xbest|
If we multiply by 100 we get the percentage uncertainty:

(percentage uncertainty) =
δx

|xbest|
× 100

If we multiply by 1, 000, 000 we get “parts per million”:

(parts per million (ppm)) =
δx

|xbest|
× 106.

and similarly for “parts per billion” (ppb). The main advantage of fractional
uncertainty is that it is a dimensionless quantity (it has no units).

Examples:
10± 1 corresponds to 10± 10%

99± 1 corresponds to 99± 1%
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1.9. Rules for Rounding and Significant digits

1.9.1. Significant Digits. Here are accepted rules for reporting significant
digits

• All non-zero digits are significant:

2.998× 108 m/s has 4 significant figures

• All zeroes between non-zero digits are significant

6.022 141 79× 1023 mol−1 has 9 significant figures

• Zeroes to the left of the first non-zero digits are not significant

0.51 MeV has 2 significant figures

• Zeroes at the end of a number to the right of the decimal point are sig-
nificant

1.60× 10−19 C has 3 significant figures

• If a number ends in zeroes without a decimal point, the zeroes might be
significant:

270 Ω could have 2 or 3 significant figures

To avoid confusion, report instead:

2.70× 102 Ω or 2.7× 102 Ω

1.9.2. Rounding rules. To round a number at the N -th digit, where N
here will be taken as the tenths digit position for illustrative purposes, the
generally accepted practice is described below:

(1) If the next digit (N + 1) is 4 or lower, leave N unchanged:

6.6 2 × 10−34 becomes 6.6× 10−34 (2 sig figs)

since ‘2’ is lower than 4.

(2) If the next digit (N + 1) is 6 or higher, increase N by 1:

5.6 7 × 10−8 becomes 5.7× 10−8.

since ‘7’ is greater than 6.

(3) If the digit after last one to be retained (N + 1) is 5
(a) Leave last digit (N) unchanged if digit N is even:

9. 4 5 becomes 9.4 (2 sig figs)

since ‘4’ is even.
(b) Increase last digit (N) by 1 if digit N is odd:

9. 7 5 becomes 9.8 (2 sig figs)

since ‘7’ is odd.
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(4) If the digit after last one to be retained (N + 1) is 5 but there are
non-zero digits to the right of 5, round N up:

10.75 01 becomes 10.8 (2 sig figs)

since there are non-zero digits to the right of the ‘5’. Here, the
parity of the N -th digit ‘7’ does not affect the decision to round.

Rounding the result of addition and subtraction: We round-off the result to
the same number of decimal places as the number with the least number of
decimal places:

1.23 + 45. 6 = 46. 8

(We have dropped the ’3’ in 1.23 because 45.6 does not contain such a level
of precision; hence the ’3’ becomes meaningless when adding.)

This rounding rule is not arbitrary. It is grounded in the theory and methods
of error propagation (see Chapter 3). We will see that if two numbers are

added, Z = X + Y , the rules of error propagation give αZ =
√
α2
X + α2

Y ,

where αi, i = X,Y, Z is the error in X,Y, Z, respectively. In the above
example, suppose that αX and αY differ by at least an order of magnitude,
i.e. αX = 10nαY , n ≥ 1. Then, αZ = αX

√
1 + 10−2n ≈ αX is a good

approximation since
√
1 + 0.01 ≈ 1. If the error bars are assumed to be 1

unit of the last significant digit, αX = 10m, αY = 10m−n, then the error in
Z is at the same digit, 10m. The uncertainty in Z is therefore determined
by the number with the least number of decimal places.

1.9.2.1. Rounding the result of multiplication and division. We keep the
same number of significant figures as the component with the least num-
ber of significant figures:

1.2︸︷︷︸
2 sig figs

×345.6 = 414.72 = 4.1︸︷︷︸
2 sig figs

×102

We will be learning in Chapter 3 about methods of error propagation.

1.10. Problems

Problem 1. Partial differentiation: (a) Find the total differential of the
function f(x, y) = y exp(x + y). (The total differential of f(x, y) is defined

as df = ∂f
∂xdx+ ∂f

∂ydy.)

(b) Find the first and second partial derivatives of the function f(x, y) =

2x3y2 + y3, i.e. calculate ∂f
∂x ,

∂f
∂y ,

∂2f
∂x2 ,

∂2f
∂y2

, ∂2f
∂x∂y ,

∂2f
∂y∂x .
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(c) Suppose we have a function f(x, y) where y = y(x). The total derivative
of f with respect to x is

df

dx
=
∂f

∂x
+

(
∂f

∂y

)
dy

dx
.

Find the total derivative of f(x, y) = x2 +3xy with respect to x, given that
y = sin−1 x.

Solution. (a)

∂f

∂x
= y exp(x+ y),

∂f

∂y
= exp(x+ y) + y exp(x+ y).

df = [y exp(x+ y)]dx+ [(1 + y) exp(x+ y)]dy.

(b)

∂f

∂x
= 6x2y2,

∂f

∂y
= 4x3y + 3y2,

∂2f

∂x2
= 12xy2,

∂2f

∂y2
4x3 + 6y,

∂2f

∂x∂y
= 12x2y =

∂2f

∂y∂x

(c)
∂f

∂x
= 2x+ 3y,

∂f

∂y
= 3x,

dy

dx
=

1

(1− x2)1/2
and so

df

dx
= 2x+ 3y + 3x

1

(1− x2)1/2
= 2x+ 3 sin−1 x+

3x

(1− x2)1/2
.

■

Problem 2. Find the gradient of the following functions:

(a) r =
√
x2 + y2 + z2

(b) f(x, y, z) = x2 + y3 + z4

(c) f(x, y, z) = x2y3z4

(d) f(x, y, z) = ex sin(y) log(z)

Solution. (a) ∇r = r̂. (Since ∂xr = (1/2)(1/r)2x = x/r, etc.)

(b) ∂xf = 2x, ∂yf = 3y, ∂zf = 4z. So that ∇f = (2x, 3y, 4z).

(c) ∂xf = 2xy3z4, ∂yf = 3x2y2z4, ∂zf = 4x2y3z3. So that

∇f = (2xy3z4, 3x2y2z4, 4x2y3z3).

(d) ∂xf = ex sin(y) log(z), ∂yf = ex cos(y) log(z), ∂zf = ex sin(y)z−1.

So that ∇f = ex(sin(y) log(z), cos(y) log(z), sin(y)z−1). ■
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Problem 3. For the three questions below let r− r′ be the separation vector
from a fixed point (x′, y′, z′) to the point (x, y, z) and |r− r′| be its length. If
∇ indicates derivative with respect to the unprimed variables r, show that:

(e) ∇|r− r′|2 = 2(r− r′)

(f) ∇(1/|r− r′|) = −(r− r′)/|r− r′|3

(g) What is the general formula for ∇(|r− r′|n)?
(h) In problem (f) above you have computed∇(1/|r− r′|) = −(r− r′)/|r− r′|3.
Now calculate the quantity ∇′(1/|r− r′|), where ∇′ denotes the derivative
with respect to the primed variables r′ (instead of the unprimed variables
r).

Solution. For (e), the x component of the gradient is ∂x((x − x′)2 + (y −
y′)2 + (z − z′)2) = 2x, etc. so that ∇|r− r′|2 = 2(r− r′). For (f) the x

component is ∂x1/
√

(x− x′)2 + (y − y′)2 + (z − z′)2 = (−1/2)((x − x′)2 +
(y−y′)2+(z− z′)2)−3/2(2x) so that ∇(1/|r− r′|) = −(r− r′)/|r− r′|3. For
(g) we have ∇|r− r′|n = n (r−r′)

|r−r′| |r− r′|n−1. For (h) the only difference is a

negative sign. ■

Problem 4. Show that the Taylor expansion, up to quadratic terms in x−2
and y − 3, of f(x, y) = y exp(xy) about the point x = 2, y = 3, is:

f(x, y) = e6
{
3 + 9(x− 2) + 7(y − 3)+

(2!)−1
[
27(x− 2)2 + 48(x− 2)(y − 3) + 16(y − 3)2

]}
(Show all your calculations)

Solution. The Taylor expansion of a function of two variables is:

f(x+h, y+k) = f(x, y)+(h, k)·∇f(x, y)+1

2
[h k]

[
∂2xxf ∂2xyf

∂2yxf ∂2yy

] [
h
k

]
+O(|(h, k)|3)

To obtain the stated result, plug in x = 2 and y = 3 in the Taylor expansion
formula and take h = x − 2 and k = y − 3 as the step size, making use of
the following derivatives (evaluated at the point x = 2 and y = 3):

∂f

∂x
= y2 exp(xy),

∂f

∂y
= exp(xy) + xy exp(xy),

∂2f

∂x2
= y3 exp(xy),

∂2f

∂y2
= 2x exp(xy) + x2y exp(xy),

∂2f

∂x∂y
= 2y exp(xy) + xy2 exp(xy).

■

Problem 5. Shorthand notation: fx ≡ ∂f
∂x , fxy = ∂2f

∂x∂y , fxx = ∂2f
∂x2 , etc.

The multivariable Taylor expansion can be used to study the behavior of
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functions near extrema. All stationary points have fx = fy = 0 and these
points may be classified as:

(1) minima if both fxx and fyy are positive and f2xy < fxxfyy,

(2) maxima if both fxx and fyy are negative and f2xy < fxxfyy,

(3) saddle point if fxx and fyy have opposite signs or f2xy > fxxfyy.

Prove that the function f(x, y) = x4 + y4 has a minimum at the origin, but
that g(x, y) = x4 + y3 has a saddle point there.

Solution. We have fx ≡ ∂xf = 4x3 and fy ≡ ∂yf = 4y3, both of which are
zero at the origin. Thus the origin is a stationary point. To check that this is
a maximum, minimum or not, we need the second derivatives: fxx = 12x2,
fyy = 12y2, fxy = 0. Both fxx and fyy are zero at the origin, so the test
is inconclusive. However, both are positive in a small neighborhood of the
origin and f2xy < fxxfyy. Thus, we have a minimum. ■

Problem 6. Show that the function f(x, y) = x3 exp(−x2− y2) has a max-

imum at the point (
√

3/2, 0), a minimum at (−
√

3/2, 0). What about the
nature of the point at the origin?

Solution. Setting the first two partial derivatives to zero to locate the sta-
tionary points, we find

∂f

∂x
= (3x2 − 2x4) exp(−x2 − y2) = 0,

∂f

∂y
= −2yx3 exp(−x2 − y2) = 0.

For the second equation to be satisfied we require x = 0 or y = 0 and for
the first one to be satisfied we require x = 0 or x = ±

√
3/2. Hence the

stationary points are at (0, 0, (
√
3/2, 0) and (−

√
3/2, 0). We now find the

second partial derivatives:

fxx = (4x5 − 14x3 + 6x) exp(−x2 − y2)
fyy = x3(4y2 − 2) exp(−x2 − x2)
fxy = 2x2y(2x2 − 3) exp(−x2 − y2)

We then substitute the pairs of values of x and y for each stationary point
and find that at (0, 0)

fxx = 0, fyy = 0, fxy = 0

and at (±
√

3/2, 0)

fxx = ∓
√
3/2 exp(−3/2), fyy = ∓

√
3/2 exp(−3/2), fxy = 0.

Hence applying the above three criteria, we find that (0, 0) is an unde-

termined stationary point, (
√

3/2, 0) is a maximum and (−
√

3/2, 0) is a
minimum. The function is shown in Figure 1.7. ■



1.10. Problems 19

3 2
31 2

y
0 1

x
0

-0.4

-0.2

0

0.2

0.4

-1 -1-2 -2-3-3

(x3) exp (-x2-y2)

Figure 1.7. Plot of the function f .

Problem 7. Matrix inverse. (a) Derive the formula for matrix inverse of a
2x2 matrix:

A−1 =

[
a b
c d

]−1

=
1

det(A)

[
d −b
−c a

]
=

1

ad− bc

[
d −b
−c a

]
.

(b) Check that it satisfies the definition of the matrix inverse, namely check
that A−1A = AA−1 = I where I is the 2× 2 unit matrix.

(c) Prove that taking the inverse of n×n matrices A,B reverses the order
of matrices:

(AB)−1 = B−1A−1

(d) Prove that (k is a non-zero scalar)

(kA)−1 = k−1A−1

where A is an invertible matrix.

(e) Prove that taking the inverse of an invertible matrix twice recovers the
original matrix:

(A−1)−1 = A

Problem 8. Manipulation of matrices and matrix operations. (a) For two
arbitrary matrices A and B, write down the matrix products AB and BA.
What are the conditions on A and B for the matrix product to exist (and
be well-defined)?

(b) In general, does AB equal BA?

(c) Check that for matrices A,B and scalar c the following property holds:

(AT)T = A

where AT denotes matrix transpose.

(d) Prove that the transpose operation preserves the matrix addition:

(A+B)T = AT +BT
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(e) Prove that taking the tranpose of a product of matrices reverses the
orders of the matrices

(AB)T = BTAT

(f) Prove that a scalar is left invariant by the transpose operation:

(cA)T = cAT

(g) Prove that the dot product of two column vectors a and b can be com-
puted as

a · b = aTb

where aT denotes the transpose of a (i.e. a row vector). Verify this by
writing out explicitly the matrix product.

(h) Prove that the transpose of an invertible matrix is also invertible and
its inverse is the transpose of the inverse of the original matrix:

(AT)−1 = (A−1)T

Problem 9. Compute the following dimensionless quantity and find the
correct error bars (pay attention to the order of operations indicated by the
brackets):

[(0.0045± 0.0005) plus (0.3± 0.9)] divided by (1.5± 0.1) =?

Solution. From the first operation (addition) we have

αZ =
√

(αA)2 + (αB)2 =
√
(0.0005)2 + (0.9)2 = 0.9

and
Zbest = 0.0045 + 0.3 = 0.3045

which we round according to the error = 0.3045± 0.9 = 0.3± 0.9. Then we
perform the second operation (division). There, we have

Z ′
best =

0.3

1.5
= 0.2

and the error bar
αZ′

Z ′ =

√(αA

A

)2
+
(αB

B

)2
evaluates to

αZ′ = 0.2

√(
0.9

0.3

)2

+

(
0.1

1.5

)2

= 0.6.

And the final result is 0.2± 0.6. ■

Problem 10. Suppose that a random experiment consists of measuring the
length L of an object. (a) Explain the possible sources of randomness in
this measurement.
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(b) The “state space” of this random experiment consists of all possible
values L can take (without regards to the way L is measured, i.e. assume
infinite precision). Is this state space continuous or discrete?

(c) Random variables depend on how they are defined relative to an ex-
periment. Define X as the random variable which consists of the value L
measured with infinite precision. Is X a continuous or discrete random
variable?

(d) Let Y be the random variable which corresponds to the length L rounded
to the precision of the measuring instrument. Is Y a discrete or continuous
random variable?

(e) Let Z by the random variable which equals 1 if L is greater than 10
mm and 0 if L is less than or equal to 10 mm. (Such random variables are
called “indicator functions”, because they act as logical bits which are “on”
when certain conditions are met and “off” otherwise.) Is Z a discrete or
continuous random variable?

Solution. (a) Any experiment performed in the lab suffers from random er-
rors (fluctuations). Their origin could be any of: rapid thermal fluctuations,
mechanical vibrations, operator (the act of measurement can introduce er-
rors), fluctuations in the electrical power supply, etc.

(b) Continuous. (Since the values of L are not denumerable.)

(c) Continuous. (X can take an indenumerable number of values.)

(d) Discrete. (The number of values Y can take can be infinite, but still
denumerable.

(e) Discrete, since Z can only take 2 possible values: 0 and 1. ■

Problem 11. Let f be a differentiable real-valued function on R3 and vp a
tangent vector of R3 at a point p ∈ R3. Then

vp[f ] =
d

dt
(f(p+ tv))|t=0 directional derivative

is the (directional) derivative of f with respect to vp.

For example, suppose that f = x1x2x3, p = (1,−4, 2) and v = (1, 1, 0),
where x1, x2, x3 are the coordinate functions of R3.

(a) Find p + tv and show that f(p + tv) = 2(1 + t)(−4 + t). Show that
vp[f ] = −6 by direct computation of the limit.

(b) If vp = (v1, v2, v3) is a tangent vector of R3 at a point p, then

vp[f ] =
3∑

i=1

vi
∂f

∂xi
(p).

Prove this statement from the above definition (limit).
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(c) Use the definition of directional derivative in (b) to show that vp[f ] = −6.
(d) Let f and g be differentiable functions on R3, vp and wp tangent vectors
at a point p, and a and b real numbers. Prove the following 3 properties:

(i) (avp + bwp)[f ] = avp[f ] + bwp[f ],

(ii) vp[af + bg] = avp[f ] + bvp[g],

(iii) vp[fg] = vp[f ] · g(p) + f(p) · vp[g].

Solution. (a)

p+ tv = (1 + t,−4 + t, 2), f(p+ tv) = 2(1 + t)(−4 + t)

vp[f ] =
d

dt
2(1 + t)(−4 + t)|t=0 = 2(2t− 3)|t=0 = −6.

(b) Let p = (p1, p2, p3). Then,

f(p+ tv) = f(p1 + tv1, p2 + tv2, p3 + tv3).

Since (d/dt)(pi+ tvi) = vi, by putting xi = pi+ tvi and using the chain rule
we obtain the desired result.

(c)
∂f

∂x1
(p) = x2x3(p) = −8,

∂f

∂x2
(p) = x1x3(p) = 2,

∂f

∂x3
(p) = x1x2(p) = −4.

we obtain
vp[f ] = 1(−8) + 1(2) + 0(−4) = −6.

■

Problem 12. Report the following numerical distance correctly, with error
bars: X+Y , where X = 110.125± 0.003 m and Y = 85.6± 0.2 m.

Solution. Whether we use the σZ = σX + σY method or the quadrature
method, the error in X + Y is dominated by the error in Y (i.e. σY ≫ σX).
Thus the error bar is 0.2 m. Next, we round 110.125+85.6=195.725 to the
tenths digit, giving (195.7 ± 0.2) m. ■

Problem 13. How many significant figures are there in this expression:
3000000000 liters.

Solution. Anywhere between 1 and 10. ■

Problem 14. Express the following result in proper rounded form, with
suitable error bars: mass=19.1234 g with uncertainty 0.6789 g.
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Solution. First we need to round the error bar to 1 or 2 sig figs. Let’s do
1 sig fig: 0.7 g. Then we round the mass to this figure: 19.1 g. The result
is: 19.1(7) g. ■

Problem 15. Your experiment yielded the following measurement:

(4.1234 ± 0.4321) Joules.

Report this number with proper error bars and appropriate significant fig-
ures.

Solution. Either (4.1± 0.4) J or (4.12± 0.43) J. ■

Problem 16. How many significant figures are there in each of the following
expressions?

(i) 0.00082 s
(ii) 0.14800 psi
(iii) 6.24×106 l
(iv) -754.090×10−27 J
(v) 50 cm
(vi) 50 m

Solution. (i) 2
(ii) 5
(iii) 3
(iv) 6
(v) 1 or 2
(vi) 1 or 2 ■

Problem 17. Express the following result in proper rounded form, with
suitably truncated error bars: mass=8.4857 g with uncertainty 0.2554 g.

Solution. First we need to truncate the error bar to 1 or 2 sig figs. Let’s
do 1 sig fig: 0.3 g. Then we round the mass to this figure: 8.5 g. The result
is: 8.5(3) g. ■

Problem 18. You measure the length of an object with a ruler (or mea-
suring tape) whose smallest division is 1 mm. You measure the length 5
times with results in mm of 123.4, 123.5, 124.6, 123.7, 123.8 mm (the last
digit you have estimated by eyeballing). What is the average length and the
uncertainty in length?

Solution. Because this is an “analog” device (ruler’s smallest division is 1
mm), we should take 1/2 or the smallest division as our error. Namely, 0.5
mm. Thus, the result is 123.8(5). ■
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Problem 19. Compute the following dimensionless quantity and find the
correct error bars (pay attention to the order of operations indicated by the
brackets):

[(0.0045± 0.0005) plus (0.3± 0.9)] divided by (1.5± 0.1) =?

Solution. From the first operation (addition) we have

αZ =
√

(αA)2 + (αB)2 =
√
(0.0005)2 + (0.9)2 = 0.9

and
Zbest = 0.0045 + 0.3 = 0.3045

which we round according to the error = 0.3045± 0.9 = 0.3± 0.9. Then we
perform the second operation (division). There, we have

Z ′
best =

0.3

1.5
= 0.2

and the error bar
αZ′

Z ′ =

√(αA

A

)2
+
(αB

B

)2
evaluates to

αZ′ = 0.2

√(
0.9

0.3

)2

+

(
0.1

1.5

)2

= 0.6.

And the final result is 0.2± 0.6. ■



Chapter 2

Probability

Experimental measurements in the laboratory are random variables (rv).
Every time you measure a physical quantity you get a different number
because of random fluctuations (random errors). The random fluctuations
are called random errors. Thus, a statistical description of experimental
measurements is needed.

Here, we introduce tools to study random variables. Random variables can
be continuous or discrete, depending on whether they take continuous or
discrete values, respectively. An example of a continuous random variable
is the length of an object. Length is a random variable which can take pos-
itive real values in a continuous interval. An example of a discrete random
variable is the number of counts within a time interval. Counts can only
take discrete values (1, 2, 3, . . . ), in this case, the positive integers.

2.1. Continuous Random Variables

As mentioned in the previous chapter a random variable X is not a simple
variable; it is better described by associating it with a function that encodes
all of its statistical properties.1 We associate with X a probability density
function (PDF), p(x). As a matter of convention, we shall use capital letters
(X) to denote random variables and lowercase letters (x) for the value of X
in some particular experiment ω, i.e., x = X(ω).

1Think of an experiment performed on Monday. The value measured on Tuesday may be slightly
different than the one obtained on Monday because of random errors. Same story for measurements
performed on subsequent days — these values will also be different due to fluctuations.

25
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2.2. Probability Density Function

The probability density function (PDF) of a random variable X, denoted
p(x), is everywhere non-negative: p(x) ≥ 0 and is normalized to 1:∫ ∞

−∞
p(x)dx = 1.

We note that the PDF refers to a particular random variable (say, X). This
is sometimes emphasized by adding a subscript, e.g., pX(x) instead of p(x).
When working with a single random variable we do not need the subscript
because it should be clear that there is only one possible random variable
that p(x) refers to. However, when the problem involves more than one
random variable, we should use a subscript to avoid confusion between the
different PDFs.

2.3. Cumulative Distribution Function

We define the cumulative distribution function (CDF) as the integral of the
PDF:

P(X ≤ x) ≡
∫ x

−∞
p(x′)dx′

The CDF is the probability that X takes a value less than or equal to x.
The quantity {X ≤ x} is an example of a random event; the function P(·)
associates a number between 0 and 1 to this random event. The notation
{X ≤ x} is shorthand for the set {ω : X(ω) ≤ x}, i.e. the set of all
random outcomes ω such that X(ω) < x. We note that if p(x) is continuous,
then there is no distinction between P(X ≤ x) and P(X < x). When
discontinuities are present, we should be careful about the equality.

From this definition, we can solve for p in terms of P :2

p(x) =
dP(X ≤ x)

dx

∣∣∣∣
x

.

We note that

P(a ≤ X ≤ b) =
∫ b

a
p(x)dx =

(∫ b

−∞
−
∫ a

−∞

)
p(x)dx = P(X ≤ b)−P(X ≤ a).

2.3.1. Interpretation of PDF. The PDF, p(x), has the following inter-
pretation. The quantity p(x)dx is the probability that the random variable
X lies in the interval [x, x+ dx]:

p(x)dx = P(x ≤ X ≤ x+ dx),

2To differentiate the integral with respect to x, apply the Leibniz formula (see Section 12.3) for

differentiation of integrals. In the expression
∫ x
−∞ p(x′)dx′, the only dependence on x comes from

the upper limit of the integral. Thus, d
dx

∫ x
−∞ p(x′)dx′ = p(x).
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where dx is an infinitesimally small quantity and P(·) denotes the probability
of the event · occurring. The quantity p(x)dx by itself is rarely used, except
under the integral sign. Instead, one integrates this expression to find the
probability that X will take some value in a finite interval [a, b]:

P(a ≤ X ≤ b) =
∫ b

a
p(x)dx.

The last step follows from3

P(x ≤ X ≤ x+ dx) = P(X ≤ x+ dx)− P(X ≤ x) = dP(X ≤ x),

integrating P(x ≤ X ≤ x+ dx) = dP(X ≤ x) from a to b yields
∫ b
a dP(X ≤

x) = P(X ≤ b) − P(X ≤ a) = P(a ≤ X ≤ b) whereas integrating p(x)dx

yields
∫ b
a p(x)dx. Since the two are equal, we have that P(a ≤ X ≤ b) =∫ b

a p(x)dx.

2.3.2. Limit value of CDF. We note that the CDF approaches 1 in the
limit of large x. This follows from the normalization condition on the PDF.

2.4. Experimental Data: The Empirical Distribution

Suppose that our knowledge of the rv X is not its PDF, p(x) but instead a
series of data points obtained experimentally:

x1 = X(ω1), x2 = X(ω2), . . . , xn = X(ωn).

(An equivalent description that will be used in subsequent chapters is to
take n independent rv’s X1, . . . , Xn of the same distribution as X and fix ω.
The order in which rv’s are measured is immaterial since they are assumed
independent. Fixing ω implies that all random variables are measured si-
multaneously. The data is {xi = Xi(ω)}ni=1.)

We define the empirical PDF as follows:

p̂(x) =
1

n

n∑
i=1

δ(x− xi),

where δ(x) is the Dirac delta function. It is trivial to verify that
∫
p̂(x)dx = 1

and p̂(x) ≥ 0. The CDF corresponding to p̂(x) is:

P(X ≤ x) =
∫ x

−∞
p̂(x)dx =

1

n
#{i : xi ≤ x}.

Here, #{i : xi ≤ x} denotes the number of data points xi satisfying the
condition xi ≤ x. The empirical distribution p̂(x) is an approximation to
the true PDF p(x). This fact follows from the Law of Large Numbers (see
Problem 35).

3In calculus, recall that df(x) = f(x+ dx)− f(x).
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2.5. Mean Value of Continuous Random Variable

Let X be a continuous rv. The mathematical expectation of X, denoted
E(X), is defined as:

E(X) ≡
∫ ∞

−∞
x p(x)dx.

where the integral is over all values taken by the rv X (here, over the entire
real line). If the random variable takes values in the interval [0, 1] then the
limits of the integral range from 0 to 1.

That is, to obtain the mean value of X, we replace the rv X by a regular
variable x that represents its value, then multiply by p(x) and integrate over
all x.

Other names for E[X] include “mean value” (of X), or “expectation value”
or “average value”. Other symbols you may encounter in the literature
include X, µX , ⟨X⟩ or m(X).

We note that this expression differs from the sample mean µ̂X = 1
n

∑n
i=1 xi.

The sample mean is an estimate of the mean.4 Substitution of the empirical
distribution (Eq. 2.1)

(2.1) p̂(x) =
1

n

n∑
i=1

δ(x− xi)

into the above definition for E[X] gives the sample mean:∫ ∞

−∞
x
1

n

n∑
i=1

δ(x− xi)dx =
1

n

n∑
i=1

xi.

Here {xi}ni=1 denotes experimental measurements of X.

2.6. Indicator Functions

An indicator function, 1{x<y}(x) is a function that takes the value 1 when
x < y and 0 otherwise. Indicator functions can also be applied to random
events. Let X be a rv and A is a random event. The indicator function for
the random event X ∈ A is defined as:

1A(X) =

{
1 if X ∈ A
0 otherwise

where X ∈ A refers to the value of the rv X taken after a random experi-
ment. Another notation for 1A(X) you may encounter is 1X∈A. You may
also encounter IX∈A or χA(X) instead of 1X∈A. Taking the mathematical

4More specifically, the sample mean is the best estimate of the mean in the sense of least squares.
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expectation of 1X∈A and applying the definition of probability,

E[1X∈A] =

∫ ∞

−∞
1x∈A(x)p(x)dx =

∫
A
p(x)dx = P(A).

where A is a random event and the integral
∫
A means integral over all points

x that meet the condition x ∈ A (for example, X could be a coordinate, and
A = (−∞, y] indicates an event where the coordinate is less than y). In-
dicator functions are useful when dealing with experimental measurements.
See Problems 34, 29 and 36 for example uses of the indicator function.

2.7. Variance

The variance of X, denoted var(X) or σ2X , is defined as the sum of square
differences between X and its mean, µX ≡ E[X], weighted by the PDF:

σ2X ≡ var(X) =

∫ ∞

−∞
p(x)(x− µX)2dx

The square can be expanded to give
∫∞
−∞ p(x)(x2+µ2X − 2xµX)dx and thus

σ2X = E[X2]− (µX)2.

The square root of the variance is called the standard deviation and is com-
monly denoted σ.

2.8. Example PDFs

2.8.1. Point Distribution. LetX be a rv and p(x) its distribution (PDF).
The simplest known PDF is one concentrated at a single point x0:

p(x) = δ(x− x0).
It is trivial to verify that p(x) ≥ 0 and

∫∞
−∞ p(x)dx = 1. The CDF is easily

found:

P(X < a) =

∫ a

−∞
δ(x− x0)dx = θ(a− x0),

where

θ(x) =

{
1 if x > 0

0 otherwise

is the Heaviside step function. We note that the Heaviside function can be
expressed in terms of the indicator function as θ(x) = 1(0,∞)(x). We also

note that δ(x) = d
dxθ(x).
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2.8.2. Discrete Distribution. Let X be a rv that can take values {xi}Ni=1

in a set X . N is the number of possible values that X can take. The PDF

p(x) =

N∑
i=1

piδ(x− xi), pi ≥ 0,

N∑
i=1

pi = 1

is called discrete distribution because it can be used to describe discrete rv.
The set of number {pi}Ni=1 is called the probability mass function (PMF).
The xi represent the discrete values taken by the rv X. pi is the probability
of observing the discrete outcome xi ∈ X . The mean of X is:

µX ≡ E[X] =

∫ ∞

−∞
x

N∑
i=1

piδ(x− xi)dx =
N∑
i=1

pixi.

The variance is

var(X) =
N∑
i=1

pi(xi − µX)2.

2.8.3. Distribution After Rescaling Of Random Variable. Let X be
a rv. What is the distribution of 2X? Since we are multiplying all values of
X by 2, we at least expect the mean to be twice as large. What about the
remaining details of its distribution? First of all we note that:

P(2X < a) = P(X < a/2) =

∫ a/2

−∞
pX(x)dx.

Next, we differentiate this integral with respect to a to get the PDF:

d

da
P(2X < a) = pX(a/2) · 1

2
.

We conclude that the PDF of 2X is half as high and twice as spread out
compared to the distribution of X. If the mean of X is µX then the mean
of Y = 2X is

E[Y ] =
1

2

∫ ∞

−∞
ypX(y/2)dy =

1

2

∫ ∞

−∞
(2x)pX(x)(2dx) = 2µX .

The variance is:

var(Y ) =
1

2

∫ ∞

−∞
(y−µY )2pX(y/2)dy =

1

2

∫ ∞

−∞
(2x−2µX)2pX(x)(2dx) = 22var(X).

2.8.4. Cauchy Distribution. LetX be a rv with the Cauchy (or Lorentzian)
distribution. Its PDF is defined as:

pX(x) =
1

π

1

(1 + x2)
.
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The CDF is:

P(X < x) =

∫ x

−∞

1

π

1

(1 + x2)
dx.

We know from calculus that the derivative of tan−1(x) is 1/(1+x2). There-
fore, the last expression can be integrated:

P(X < x) =
1

π
tan−1(x) +

1

2
.

2.8.5. Rayleigh Distribution. Let X be a rv with Rayleigh distribution
(X ∼ Rayleigh). The Rayleigh distribution has a PDF:

p(x) =
x

σ2
e−x2/(2σ2),

where x ≥ 0 and σ is a parameter of the distribution. The CDF can be
shown to be:

P(X < x) = 1− e−x2/(2σ2),

where x ≥ 0. The reader can check that the mean of X is σ
√
π/2 and its

variance is σ2 4−π
2 .

2.8.6. Gaussian (Normal) Distribution. The normal distributionN (µ, σ2)
with parameters µ and σ2 is defined by the density:

p(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 ,

where x ∈ (−∞,∞). The prefactor 1√
2πσ2

is such that p(x) adds up to 1:∫ ∞

−∞
p(x)dx = 1.

This can be verified using the well-known result for a Gaussian integral∫∞
−∞ e−ax2

dx =
√
π/a, where a > 0. As an exercise, you should check that

this PDF is normalized to 1, the mathematical expectation of X ∼ N (µ, σ2)
is µ and its variance is σ2, i.e. EX = µ and E(X − µ)2 = σ2.

This probability density is plotted below. It is centered on µ and the width
is proportional5 to σ.

If a rv X follows a Gaussian distribution (Fig. 2.1) with mean µ and variance
σ2 we write X ∼ N (µ, σ2). For a Gaussian distribution, the CDF is called
the error function. See Figure 2.2.

5In fact, the full width at half maximum of the Gaussian is 2
√
2 log 2σ ≈ 2.355σ. You can check

this by finding the values of x for which 1
2

1√
2πσ2

= 1√
2πσ2

e
− x2

2σ2 or 1
2

= e
− x2

2σ2 , since the

maximum of the function is 1√
2πσ2

(set x = 0). Taking logs of both sides gives x = ±
√

2σ2 log 2.
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x

p(x)

x

σ
≈ 2.355 σ

Figure 2.1. Gaussian (bell shaped) distribution. The PDF has full
width at half-maximum of approximately 2.355σ.

x

Gaussian
PDF

xx

1

0

Erf

x

Figure 2.2. Error function is defined as the (cumulative) area under the
Gaussian PDF.

(2.2) erf(x)µ,σ =
1√
2πσ2

∫ x

−∞
e−

(x−µ)2

2σ2 dx.

The error function is an integral which cannot be evaluated analytically.
Instead it must be solved numerically. Values of the error function can be
obtained from tables, calculators or computer programs. The error function
for standard normal rv (mean 0, variance 1) is often tabulated in books.
In MATLAB the command normcdf(x,mu,sigma) will return values for
erf(x)µ,σ. See Section 2.9 for a discussion of the error function.

2.8.7. Log-Normal Distribution. In Section 2.8.6, we have introduced
the error function as the CDF of the Gaussian PDF (Eq. 2.2):

erf(x)µ,σ =
1√
2πσ2

∫ x

−∞
e−(x−µ)2/2σ2

dx.

If X ∼ N (µ, σ2) and Y = eX , then

P(Y < y) = P(eX < y) = P(X < log y),
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which leads to the CDF:

(2.3) P(Y < y) =

∫ log y

−∞

1√
2πσ2

e−(x−µ)2/2σ2
dx = erf(log y)µ,σ.

This is called the log normal distribution (Y ∼ log-normal). You can check,
using the Leibniz formula (see Section 12.3) for differentiation, that the PDF
of the log-normal distribution is:

pY (y) =
1√
2πσ2

e−(log(y)−µ)2/2σ2 · 1
y
.

2.9. Tabulated Values of Error Function

It is important to be able to use tabulated values of the error function. Let
X ∼ N (µ, σ2). Then,

ϕµ,σ(x) ≡ erf(x)µ,σ = P(X < x) =
1√
2πσ2

∫ x

−∞
e−(ξ−µ)2/(2σ2)dξ︸ ︷︷ ︸

let ζ=(ξ−µ)/σ,dζ=dξ/σ

=
1√
2π

∫ (x−µ)/σ

−∞
e−ζ2/2dζ = Φ

(
x− µ
σ

)
,

where Φ(·) denotes the normalized error function:

Φ(z) =
1√
2π

∫ z

−∞
e−ζ2/2dζ.

The latter is the CDF of the standard normal distribution, N (0, 1). z is
known as the z-score:

(2.4) z =
x− µ
σ

.

As an example, Eq. (2.3) can be expressed in this notation as:

erf(log y)µ,σ = Φ

(
log y − µ

σ

)
.

You should beware that there exist other conventions for the error function.
For example, MATLAB and EXCEL softwares define the error function as:

(2.5) erf(x) =
2√
π

∫ x

0
e−t2dt.

This is related to the normal CDF according to:

ϕµ,σ(x) = erf(x)µ,σ = Φ

(
x− µ
σ

)
=

1

2

(
1 + erf

(
x− µ
σ
√
2

))
.
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This expression can be used to calculate erf(x)µ,σ using data from tables,
where µ is the mean of the population and σ is the standard deviation of the
population. First, we form the “z-score” (Eq. 2.4). Then we use tabulated
values of the error function for this particular value of z.

For example, suppose that a manufacturer produces electrical resistors whose
nominal value is (100±2) Ω, where 2 Ω is the standard deviation (both could
be estimated, for example, using sample mean and sample variance). As-
suming that the distribution of the resistance X is Gaussian (i.e. X ∼
N (100, 22)), what is the probability that choosing a resistor at random will
yield a resistance of 95 Ω or less? We want to show that

P(X ≤ 95 Ω) = Erf(95)100,2 ≈ 0.0062.

Method 1 uses MATLAB:

>> normcdf(95,100,2)

ans =

0.0062

Method 2 uses tabulated values of Φ(z): The z-score is:

z =
x− µ
σ

=
95− 100

2
= −2.5,

which is negative. Unfortunately, tables of error function do not list negative
z values. However, notice that negative z values can be obtained from
positive ones:

Φ(−z) = 1− Φ(z).

Here, for positive z = 2.5 the value Φ(2.5) is 0.993790. Taking 1 − Φ(2.5)
gives 0.00621, the result we sought. Most books on statistics will have such
a table. Tables can also be generated in MATLAB by typing:

normcdf(linspace(0,3,50)’,0,1)

The results {(x,Φ(x))}, x ∈ [0, 3] are shown in Table 2.1.

2.10. The z-score

Let’s view the z-score as a random variable:

Z(ω) =
X(ω)− µ

σ

where µ ≡ E[X], σ ≡
√
var(X) and Z ∼ N (0, 1). The statement that

Z ∼ N (0, 1) follows automatically when X is normal with mean µ and
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x Φ(x) x Φ(x) x Φ(x) x Φ(x) x Φ(x) x Φ(x)
0 0.5000 0.5056 0.6934 1.0112 0.8440 1.5169 0.9353 2.0225 0.9784 2.5281 0.9943
0.0337 0.5134 0.5393 0.7052 1.0449 0.8520 1.5506 0.9395 2.0562 0.9801 2.5618 0.9948
0.0674 0.5269 0.5730 0.7167 1.0787 0.8596 1.5843 0.9434 2.0899 0.9817 2.5955 0.9953
0.1011 0.5403 0.6067 0.7280 1.1124 0.8670 1.6180 0.9472 2.1236 0.9831 2.6292 0.9957
0.1348 0.5536 0.6404 0.7391 1.1461 0.8741 1.6517 0.9507 2.1573 0.9845 2.6629 0.9961
0.1685 0.5669 0.6742 0.7499 1.1798 0.8810 1.6854 0.9540 2.1910 0.9858 2.6966 0.9965
0.2022 0.5801 0.7079 0.7605 1.2135 0.8875 1.7191 0.9572 2.2247 0.9869 2.7303 0.9968
0.2360 0.5933 0.7416 0.7708 1.2472 0.8938 1.7528 0.9602 2.2584 0.9880 2.7640 0.9971
0.2697 0.6063 0.7753 0.7809 1.2809 0.8999 1.7865 0.9630 2.2921 0.9891 2.7978 0.9974
0.3034 0.6192 0.8090 0.7907 1.3146 0.9057 1.8202 0.9656 2.3258 0.9900 2.8315 0.9977
0.3371 0.6320 0.8427 0.8003 1.3483 0.9112 1.8539 0.9681 2.3596 0.9909 2.8652 0.9979
0.3708 0.6446 0.8764 0.8096 1.3820 0.9165 1.8876 0.9705 2.3933 0.9917 2.8989 0.9981
0.4045 0.6571 0.9101 0.8186 1.4157 0.9216 1.9213 0.9727 2.4270 0.9924 2.9326 0.9983
0.4382 0.6694 0.9438 0.8274 1.4494 0.9264 1.9551 0.9747 2.4607 0.9931 2.9663 0.9985
0.4719 0.6815 0.9775 0.8358 1.4831 0.9310 1.9888 0.9766 2.4944 0.9937 3.0000 0.9987

Table 2.1. Numerical values of the error function Φ(x) =
1√
2π

∫ x

−∞ e−x2/2dx .

Fraction of data expected to
lie within one standard
deviation of the mean

x

σFWHM =

x

≈ 2.355 σ

p(x)

x + σx - σ

Figure 2.3. Confidence limits. The Gaussian distribution has a full
width at half-maximum of approximately 2.355σ.

variance σ2. In that case,

(2.6) P(X ≤ x) = P(σZ + µ ≤ x) = P(Z ≤ x− µ
σ

)

=
1√
2π

∫ (x−µ)/σ

−∞
e−ζ2/2dζ = Φ

(
x− µ
σ

)
.

This is result identical to the one in the previous section, but its derivation
did not require us to change variables of integration. Using the probability
function P(·) can sometimes save you a step.

2.11. Confidence Limits and Error Bars

Recall the Gaussian probability density which has a bell shape centered on
E[X] = µX and full width at half-maximum ≈ 2.355σ (Fig. 2.3). The area



36 2. Probability

under the curve bounded by the interval x ∈ [µX − σ, µX + σ] is given by:

1√
2πσ2

∫ µX+σ

µX−σ
e−

(x−µX )2

2σ2 dx = erf(µX + σ)µX ,σ − erf(µX − σ)µX ,σ ≈ 0.683

where

erf(x)µ,σ =
1√
2πσ2

∫ x

−∞
e−

(x−µ)2

2σ2 dx.

About 2/3 of the total area under the curve is within ±σ of the mean. Recall
that:

(value of x) = xbest ± δx
where we often take δx = σ. This choice for δx corresponds to the “68% con-
fidence level”. This means that we are confident, at the 68% level, that were
we to take another measurement, the value would lie within one standard
deviation of the mean. There are other possible conventions for choosing
δx. Common choices for δx are:

±σ → 68% level

±2σ → 95% level

±3σ → 99.7% level

2.11.1. Example: From CDF to PDF. It is important to be able to
convert from PDF to CDF and vice versa. Suppose that we have a CDF:

(2.7) P(Y < a) =

∫ a

−∞

1

π

dy

(1 + y2)

To get the PDF from this CDF we use the formula

dP(Y ≤ a)
da

= pY (a).

The result is:

pY (y) =
1

π

1

(1 + y2)
,

(We renamed a as y.) The differentiation is always with respect to the upper
bound of the integral. Another way to look at it is to write F (x) = P(X ≤ x)
and

dF (x)

dx
= pX(x) or

dF (a)

da
= pX(a).

Inspection of the Leibniz formula (see Section 12.3) for differentiation shows
that the differentiation step is completely trivial and amounts to simply
identifying the integrand. This is consistent with the definition of CDF:

(2.8) P(Y < a) =

∫ a

−∞
pY (y)dy.



2.13. Statistical Moments, Deviation and Dispersion 37

2.12. Calculating Probabilities: Single Variable

Probabilities of random events of the type {a ≤ X ≤ b} are calculated by
integrating the PDF from a to b:

P(a ≤ X ≤ b) =
∫ b

a
p(x)dx.

More generally, we deal with random events, which are statements of the
type {X ∈ A} where A is a set of points. The quantity P(X ∈ A) is a
number between 0 and 1, which gives the probability that the rv X will take
values in the set A:

P(X ∈ A) =
∫
{x|x∈A}

p(x)dx,

where {x|x ∈ A} is the set of points x that belong to the set A. The integral
is a Riemann summation over the set of points {x|x ∈ A} on the real line.
This notation is useful because we can transform the statement {x ∈ A} into
any equivalent statement, including one that involves a change of variables.
For example, the two following statements are equivalent:

{X < a} = {log(X) < log(a)}.
This is useful if another rv Y is defined as Y = log(X). In that case,
evaluating the probability of {Y < b}, b = log(a), gives the same numerical
result as evaluating the probability of {X < a}.

2.12.1. Average of f(X). The average (or mean, or expectation value) of
a function f of a rv X is defined as:

E[f(X)] ≡
∫ ∞

−∞
f(x)p(x)dx.

2.13. Statistical Moments, Deviation and Dispersion

2.13.1. Moments: Mean, Variance, Skewness, Kurtosis. Let X be
a rv. Take f(x) = xn in the above formula. This gives the n-th moment of
X:

E[Xn] ≡
∫ ∞

−∞
p(x)xndx.

The case n = 1 (first moment) is called the mathematical expectation or
mean value of X:

E[X] ≡
∫ ∞

−∞
xp(x)dx. “mathematical expectation”

We assumed that X takes values in the range (−∞,∞). When X takes
values in a set X the limits of integration in all our integrals must be changed
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accordingly:

E[X] ≡
∫
X
xp(x)dx.

We shall often write as shorthand:

µX ≡ E[X].

As we have seen in the previous lecture, the variance of X is defined as:

σ2 ≡
∫ ∞

−∞
p(x)(x− µX)2dx,

which also equals σ2 = E[X2]−µ2X . Thus, the variance is the second moment
of X minus the square of the average of X. Variance is also known as the
second central moment of X.

The n-th central moment of X is defined as:

E[X − µX ]n ≡
∫ ∞

−∞
p(x)(x− µX)ndx.

Why are moments important? Moments describe the probability distribu-
tion. There is a theorem of mathematics that says if we know the moments
of all orders, we can reconstruct the entire distribution function. You al-
ready know how to obtain the sample mean and variance. The mean is just
the center of mass of the distribution whereas the variance is related to its
width (about the mean).

Also of interest are the skewness (3rd central moment)

Skew[X] =
E[X − µX ]3

[E(X − µX)2]3/2
=

E[X − µX ]3

σ3
,

and the kurtosis (4th central moment):

Kurt[X] =
E[X − µX ]4

[E(X − µX)2]2
=

E[X − µX ]4

σ4
.

The skewness measures the asymmetry of the distribution about its mean
whereas the kurtosis is often used to assess by how much a distribution
deviates from the bell-shape. For example, if a distribution looks like a bell
shape but has much longer tails, the kurtosis will reflect this.

2.13.2. Median, Percentile. The median of a rv X is the value of x50
such that

P(X ≥ x50) = P(X ≤ x50) ≡
∫ x50

−∞
p(x)dx =

1

2
.
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The median is a special case of percentile. The 10-th percentile of X is the
value of x10 such that:

P(X ≤ x10) ≡
∫ x10

−∞
p(x)dx = 0.10.

The n-th percentile of X is the value xn such that:

P(X ≤ xn) ≡
∫ xn

−∞
p(x)dx =

n

100
.

2.13.3. Mode. The mode is the value that appears most often in a set of
data values. If X is a discrete rv, the mode is the value that is most likely
to be sampled. For example, in a sample {1, 1, 6, 7, 5, 9, 10, 1} the mode is
1. In a sample {1, 1, 6, 5, 7, 7} there are two modes: 1 and 7. A distribution
with more than one mode is called multimodal. The most extreme case of
a multimodal distribution occurs for uniform distributions, where all values
occur equally often. This definition can be adapted for continuous rv by
discretizing the PDF into a histogram and finding the value(s) of x for
which the histogram is highest.

Another definition of mode for continuous distribution is the set of local
maxima. When the PDF of a continuous distribution has multiple local
maxima those are called the modes of the distribution (any peak is a mode).
It may be tempting to define the mode of a PDF p(x) as the set of points x
for which dp(x)/dx = 0; however, this method does not always work. There
are shapes of PDFs that have a mode, but at which the derivative of the
PDF is not zero. The Laplace distribution being an obvious example:

p(x) =
1

2b
exp

(
−|x− µ|

b

)
.

The mode is µ but the derivative at µ does not exist since the derivative
of |x| does not exist at x = 0. We note that a continuous rv’s mode is
not the value of X most likely to occur, as was the case for discrete rv.
Furthermore, for some densities, even when the derivative is 0, it doesn’t
imply there’s a mode there. Consider the beta density as an example, where
setting p′(x) = 0 will find a local minimum rather than a maximum.

2.13.4. Average Absolute Deviation (AAD). We have seen that the
center of a distribution can be quantified by the mathematical expectation
(mean), the mode and the median. There are likewise many possible de-
scriptors of the dispersion of a rv. The variance is one example. Another
example is the average absolute deviation (AAD). AAD of a data set is the
average of the absolute deviations from a central point. The central point
can be a mean, median, mode or any other point of reference. The two most
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common AADs are the mean absolute deviation and the median absolute
deviation (MAD).

Let X be a rv. The mean absolute deviation of a random sample {xi =
X(ωi)}ni=1 of X is

MAD(x1, . . . , xn) =
1

n

n∑
i=1

|xi −m(X)|,

where m(X) is the reference value (typically, the mean or median). This
arithmetic average provides an estimate of the expectation value E|X −
m(X)| given a random sample. The median absolute deviation is defined
similarly, except that we compute the median of |X −m(X)| instead of its
mean.

More generally, a dispersion can be defined by

Dp(x1, . . . , xn) =
p
√
E|X −m(X)|p ≈ p

√√√√ 1

n

n∑
i=1

|xi −m(X)|p,

where p = 0, 1, 2, . . . ,∞ and {x1, . . . , xn} is a random sample of X. For
p = ∞ we get the maximum absolute deviation. For p = 1 we get the
average absolute deviation. For p = 2 we get the mean squared error.

2.13.5. Remark: ⟨f(X)⟩ is NOT the Same as f(⟨X⟩).
2.13.5.1. Example 1: Suppose that the kinetic energy, K(v) = 1

2mv
2, of an

object of mass m is to be calculated using experimentally measured values
of the velocity v. Thus, v is a rv. Since v is a random variable, K(v) is also a
random variable. We may denote it as V . You determine from experiments
that the velocities, V , are Gaussian-distributed around 100 m/s, with a

standard deviation of 1 m/s, i.e. p(v) = 1√
2π
e−(v−100)2/2. What is the

average kinetic energy, E[K(V )]? You expect that E[K(V )] should be close
to K(100) = 1

2m(100)2. However, the exact value of E[K(V )] will depend
on the distribution p(v). We need to calculate:

E[K(V )] =

∫ ∞

−∞

1

2
mv2

1√
2π
e−(v−100)2/2dv

=
m

2
√
2π

∫ ∞

−∞
v2e−(v−100)2/2dv ≈ m

2
1.0001 · 104.

So fairly close to K(100) but slightly higher.

2.13.5.2. Example 2: Suppose that f(θ) = cos(θ) and p(θ) = 1 for θ ∈
[−1

2 ,
1
2 ] and p = 0 elsewhere (uniform distribution). Denote the random

variable as Θ. Using p(θ) you can easily check that Θ =
∫ 1/2
−1/2 θ dθ = 0. The
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average of cos(Θ) is:

cos(Θ) =

∫ 1/2

−1/2
cos(θ)dθ ≈ 0.9589.

Note: it is not equal to 1 even though the average of Θ is 0.

2.13.5.3. Example 3: In physics and chemistry, the notations ⟨r⟩ and r are
used interchangeably to denote the mathematical expectation. Consider
the dipole-dipole interaction between two electric dipoles. The energy of
interaction depends on 1/r3, where r is the distance separating the two
point dipoles. It is easy to show that in general,

〈
1
r3

〉
̸= 1

⟨r⟩3 . r is a rv due

to molecular diffusion. It has an average value r and deviation δr:

r = r + δr,

where r is deterministic and δr is random with zero mean. The average of
1/r3 is Taylor-expanded about the mean r:〈

1

r3

〉
=

〈
1

(r + δr)3

〉
=

〈
1

r3

〉
−
〈

3

r4
δr

〉
+

〈
12

r5
(δr)2

〉
+O(|δr|3)

The first term is 1/r3 since r is deterministic. In the second term, 3
r4

can
come out of the angle bracket because it is a deterministic quantity. Similarly
for 12

r5
in the third term. Thus,〈

1

r3

〉
=

1

⟨r⟩3
− 3

⟨r⟩4
⟨δr⟩+ 12

⟨r⟩5
⟨(δr)2⟩+O(|δr|3)

and you can see that
〈

1
r3

〉
is in general different from 1

⟨r⟩3 . Since ⟨δr⟩ = 0

we have:6 〈
1

r3

〉
=

1

⟨r⟩3
+

12

⟨r⟩5
⟨(δr)2⟩+O(|δr|3).︸ ︷︷ ︸

extra terms (nonzero)

We sometimes see in the literature 1
⟨r⟩3 in lieu of

〈
1
r3

〉
. This is technically

incorrect. However, for small values of ⟨|δr|⟩/⟨r⟩, it is a good approximation.

2.13.6. Jensen’s Inequality. A topic related to the previous section is
Jensen’s inequality. Let φ(x) be a convex function, i.e.

φ(tx1 + (1− t)x2) ≤ tφ(x1) + (1− t)φ(x2), x1 < x2, t ∈ [0, 1]

This can be generalized for λ1 + · · ·+ λn = 1, λi ≥ 0 as:

φ(λ1x1 + λ2x2 + · · ·+ λnxn) ≤ λ1φ(x1) + λ2φ(x2) + · · ·+ λnφ(xn),

for any x1, . . . , xn. Let X be a rv. Then,

φ(E[X]) ≤ E[φ(X)]

6For our definition r = r + δr to hold, we need ⟨δr⟩ = 0.
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Proof:

φ(E[X]) =φ

(∫ 1

0
xp(x)dx

)
= lim

n→∞
φ

 2n∑
j=0

2−n(j · 2−np(j · 2−n))


≤ lim

n→∞

2n∑
j=0

2−nφ
(
j · 2−np(j · 2−n)

)
=

∫ 1

0
φ(xp(x))dx = E[φ(X)].

As an example application of this inequality we have:

(E[|X − µX |])2 ≤ E[|X − µX |2] = var(X).

Taking the square root of both sides:

E[|X − µX |] ≤
√
var(X).

We conclude that the mean absolute deviation from the mean is less than
or equal to the standard deviation.

2.13.7. Remark: Discrete Random Variables as Special Case. Sup-
pose that we roll a die and a rv X (i.e. value of the top face of die) takes
values in a discrete set, such as X = {1, 2, 3, 4, 5, 6}. It is said to be a discrete
rv because the set X is countable. In the general case X may take values
in a discrete set {x1, . . . , xN}. Let pi ≥ 0 be the probability of observing
the value xi. Define the PDF in terms of Dirac delta functions and PMF
{pi}Ni=1:

p(x) =
N∑
i=1

piδ(x− xi)

Since the PDF is normalized, we must have:∫ ∞

−∞
p(x)dx =

∫ ∞

−∞

N∑
i=1

piδ(x− xi)dx =
N∑
i=1

pi = 1.

All of our previous definitions hold if we replace integrals by summations.
For example:

µX ≡ E[X] =

∫ ∞

−∞
x · p(x)dx =

∫ ∞

−∞
x ·

N∑
i=1

piδ(x− xi)dx =

N∑
i=1

pixi.

The variance:

var(X) =

∫ ∞

−∞
(x− µX)2p(x)dx =

N∑
i=1

pi(xi − µX)2.

Similarly,

Ef(X) =

∫ ∞

−∞
f(x) · p(x)dx =

N∑
i=1

pif(xi).
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Here, xi ∈ X are the possible values X can take, whereas pi ≡ P(X = xi)
are the corresponding probabilities.

2.14. Two (Continuous) Random Variables

If we are to compute the average of an expression that is a function of more
than one rv, we need to use the joint probability density pXY (x, y), which
is everywhere non-negative (pXY (x, y) ≥ 0) and integrates to 1:∫ ∞

−∞

∫ ∞

−∞
pXY (x, y)dxdy = 1.

The joint PDF is obtained from the joint CDF analogously to the single-
variable case:

(2.9) pXY (x, y) =
∂2

∂x∂y
P(X < x, Y < y).

The average of a function g(X,Y ) would be:

E(g(X,Y )) =

∫ ∞

−∞

∫ ∞

−∞
pXY (x, y)g(x, y)dxdy.

Given a joint probability density function, pXY (x, y), the marginal density
function for X is obtained by integrating over y:

pX(x) =

∫ ∞

−∞
pXY (x, y)dy.

Similarly, the marginal density for Y is obtained by integrating over all x:

pY (y) =

∫ ∞

−∞
pXY (x, y)dx.

Note: you can easily check that both marginals pX(x) and pY (y) are bona
fide densities, i.e. nonnegative and normalized to 1.

2.15. Statistical Independence

The marginal density is a useful concept if you are asked to check whether or
not two rv are statistically independent. Two rv X and Y are statistically
independent if the joint probability density is written as the product of
densities of each variable:

pXY (x, y) = pX(x) · pY (y),

where pX(x) and pY (y) are the marginal densities of X and Y , respectively.
They can be computed from pXY (x, y) by integrating.

There are at least two consequences of statistical independence that we can
immediately point out. First, one concerns expectation values. Consider



44 2. Probability

the average of a function g(X,Y ) of two rv X and Y :

E(g(X,Y )) =

∫ ∞

−∞

∫ ∞

−∞
pXY (x, y)g(x, y)dxdy

=

∫ ∞

−∞

∫ ∞

−∞
pX(x)pY (y)g(x, y)dxdy.

If g factors as a product of a function of X times a function of Y , for example
g(X,Y ) = XY then the expectation value of XY is equal to the product of
expectation values of X and that of Y :

E(XY ) =

∫ ∞

−∞

∫ ∞

−∞
pX(x)pY (y)xy dxdy =

∫ ∞

−∞
pX(x)xdx ·

∫ ∞

−∞
pY (y)ydy

= E(X) · E(Y ).

Thus, the expectation value of a product of rv’s factorizes as a product of
expectation values for each rv:

E(XY ) = E(X) · E(Y ).

The second consequence pertains to the calculation of probabilities in gen-
eral, which also factors as a product. For example, the joint probability:

P(X ∈ A, Y ∈ B) =

∫
{(x,y)|x∈A,y∈B}

pXY (x, y)dxdy

=

∫
{(x,y)|x∈A,y∈B}

pX(x)pY (y)dxdy

=

∫
{x|x∈A}

pX(x)dx ·
∫
{y|y∈B}

pY (y)dy

=P(X ∈ A) · P(Y ∈ B).

As a special case, take the intervals A = (−∞, x] and B = (−∞, y] and we
get the result that the CDFs also factorize:

P(X ≤ x, Y ≤ y) = P(X ≤ x) · P(Y ≤ y).

2.16. Calculating Probabilities: Two Variables

Probabilities of an event A are calculated by integrating the PDF over the
relevant set of points which make the event A true. That is, for a single rv
X:

(2.10) P(X ∈ A) =
∫
{x|x∈A}

pX(x)dx,
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where {x|x ∈ A} denotes the set of all points x such that x ∈ A. For
example, if A = [a, b] (interval), we have:

P(a ≤ X ≤ b) =
∫ b

a
pX(x)dx.

If A is the union of two disjoint (non-overlapping) intervals [a, b] and [c, d],
i.e. A = [a, b] ∪ [c, d], then the probability of X taking a value in A is the
sum of two integrals:

P(X ∈ A) =
∫ b

a
pX(x)dx+

∫ d

c
pX(x)dx.

For two or more rv’s we integrate the joint probability density over all such
points (x, y) that meet the sought criterion:

P(X ∈ A, Y ∈ B) =

∫ ∫
{(x,y)|x∈A,y∈B}

pXY (x, y)dxdy,

where {(x, y)|x ∈ A, y ∈ B} denotes the set of all points (x, y) such that
x ∈ A and y ∈ B.

In general, for a given set of points over which the probability needs to
be calculated, we must translate what this means in terms of the upper
and lower limits of integration. Let us look at some specific examples. Let
(X,Y ) be a 2-dimensional (bivariate) rv with joint density pXY (x, y). The
probability that the vector (X,Y ) will lie in the first quadrant of the 2D
plane is:

P(X > 0, Y > 0) =

∫ ∫
{(x,y)|x>0,y>0}

pXY (x, y)dxdy

=

∫ ∞

0

∫ ∞

0
pXY (x, y)dxdy.

Suppose again that we have a random experiment involving two rv X and Y .
The probability that the outcome will lie in one of the first two quadrants:

P(X > 0) = P(X > 0, Y ∈ (−∞,∞)) =

∫ ∫
{(x,y)|x>0}

pXY (x, y)dxdy

=

∫ ∞

−∞

(∫ ∞

0
pXY (x, y)dx

)
dy.

2.16.1. Product of X and Y . Let X and Y be independent rv’s and let
Z = XY . The PDF of Z is:

pZ(z) =

∫ ∞

−∞
pX(x)pY (z/x)

1

|x|
dx.
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Proof:

P(Z ≤ z) =P(XY ≤ z) = P(XY ≤ z,X > 0) + P(XY ≤ z,X ≤ 0)

=P(Y ≤ z/X,X > 0) + P(Y ≥ z/X,X ≤ 0)

=

∫ ∞

0
pX(x)

∫ z/x

−∞
pY (y)dydx+

∫ 0

−∞
pX(x)

∫ ∞

z/x
pY (y)dydx

Differentiating with respect to z, we get the PDF:∫ ∞

0
pX(x)pY (z/x)

1

x
dx−

∫ 0

−∞
pX(x)pY (z/x)

1

x
dx =

∫ ∞

−∞
pX(x)pY (z/x)

1

|x|
dx.

See also Problem 26.

2.16.2. Sum of X and Y . Here is another application of the Leibniz
formula (see Section 12.3). Suppose we have two rv’s X,Y with joint density
pXY (x, y). What is the density of their sum, X + Y ? Since the density is
the derivative of the CDF:

pX+Y (z) =
d

dz
P(X + Y < z) =

d

dz

∫
{(x,y)|x+y<z}

pXY (x, y)dxdy

=
d

dz

∫
{(x,y)|x<z−y}

pXY (x, y)dxdy

=

∫ ∞

−∞

∂

∂z

(∫ z−y

−∞
pXY (x, y)dx

)
dy

=

∫ ∞

−∞
pXY (z − y, y)dy.

This is as far as we can go without further information about X,Y . If X and
Y are independent, the joint PDF factorizes into a product, pXY (z−y, y) =
pX(z − y) · pY (y), and the last operation becomes a convolution:

pX+Y (z) =

∫ ∞

−∞
pX(z − y) · pY (y)dy.

Thus, the PDF of Z = X + Y is the convolution of the PDFs of X and Y ,
whenever X and Y are statistically independent.

2.17. Several Variables

Suppose we have several rv’s X1, X2, . . . , Xn. Probabilistic expressions in-
volving these rv’s can be evaluated if we know the joint distribution:

P(X1 < b1, . . . , Xn < bn) =

∫ b1

−∞
dx1· · ·

∫ bn

−∞
dxn pX1,...,Xn(x1, . . . , xn),

where pX1,...,Xn(x1, . . . , xn) is the joint PDF of X1, . . . , Xn and P(X1 <
b1, . . . , Xn < bn) is the joint CDF.



2.18. Additional Properties of rv’s 47

We can also ask about the probability of the following event:

{X1 ∈ B1, X2 ∈ B2, . . . , Xn ∈ Bn}.
Then, using the joint PDF:

P{X1 ∈ B1, . . . , Xn ∈ Bn} =
∫
B1

dx1· · ·
∫
Bn

dxn pX1,...,Xn(x1, . . . , xn).

As in the single-variable case, we can write probabilities over intervals in
terms of the CDFs. For example, let X,Y be two rv’s and let B1 = (a1, a2)
and B2 = (b1, b2). Then,

P(X ∈ B1, Y ∈ B2) =P(a1 < X < a2, b1 < Y < b2)

=

∫ a2

a1

dx

∫ b2

b1

dy pXY (x, y)

=

∫ a2

a1

dx

(
∂

∂x
P(X < x, Y < b2)−

∂

∂x
P(X < x, Y < b1)

)
=P(X < a2, Y < b2)− P(X < a1, Y < b2)

− P(X < a2, Y < b1) + P(X < a1, Y < b1).

We have made use of Eq. (2.9), i.e.

pXY (x, y) =
∂2

∂x∂y
P(X < x, Y < y),

and invoked the fundamental theorem of calculus (twice).

2.18. Additional Properties of rv’s

2.18.1. Linearity of the Expectation Value. Let X and Y be rv’s and
a, b constants. From the linearity of the expectation value operator:

E[aX + bY ] =

∫ ∞

−∞

∫ ∞

−∞
(ax+ by)pXY (x, y)dxdy

=a

∫ ∞

−∞

∫ ∞

−∞
xpXY (x, y)dxdy + b

∫ ∞

−∞

∫ ∞

−∞
ypXY (x, y)dxdy

=a

∫ ∞

−∞
xpX(x)dx+ b

∫ ∞

−∞
ypY (y)dy

=aE[X] + bE[Y ],

where pXY (x, y) is the joint probability density of x and y.7 pX(x) is the
marginal density of X. Similarly for pY (y). This can be generalized to any

7Note: while the exact form of pXY (x, y) may be unknown, its knowledge was not required to
demonstrate linearity.
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number of rv’s, e.g. for X = X1 +X2 + · · ·+Xn it also follows that

E[X] = E[X1] + E[X2] + · · ·+ E[Xn].

It is also trivial to show that the same result holds in the case of discrete
rv’s.

2.18.2. Scaling Property of the Variance. From the definition of the
variance of a rv X (let µX ≡ E[X]),

var(X) ≡ E[(X − µX)2] = E[X2]− 2E[XµX ] + (µX)2 = E[X2]− µ2X
we deduce that

var(aX) = a2var(X).

2.18.3. Variance of a Product of Independent Random Variables.
Let v be the velocity of a particle and t the time variable. If both are
statistically independent rv’s, the mean displacement factors as a product
of means, E[vt] = E[v] · E[t], whereas its variance is

var(vt) =E[(vt)2]− (E[vt])2

=E[v2t2]− (E[v])2(E[t])2

=E[v2] · E[t2]− (E[v])2(E[t])2.
Thus, by statistically independence, we can express the mean and variance
of the displacement x = vt in terms of the mean and variance of v and t.

2.18.4. Variance Between Pairs of Random Variables: The Co-
variance. The covariance of X and Y is defined as (let µX ≡ E[X] and
µY ≡ E[Y ]):

cov(X,Y ) ≡ E[(X − µX)(Y − µY )] = E[XY ]− µX · µY .

We note that the covariance of two independent rv’s is zero since E[XY ] =
E[X] · E[Y ] = µX · µY .

2.18.5. Variance of the Sum of Two Random Variables. Using the
covariance, we may write the variance of the sum X + Y as

var(X + Y ) =E[(X + Y − E[X + Y ])2]

=E[(X − µX)2] + E[(Y − µY )2] + 2E[(X − µX)(Y − µY )]
=var(X) + var(Y ) + 2cov(X,Y ).(2.11)

If X and Y are statistically independent, cov(X,Y ) = 0, and var(X+Y ) =
var(X) + var(Y ), i.e. the error in X + Y is related to the errors in X and
Y by adding the variances.
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2.18.6. Corollary: Adding Experimental Errors. Suppose X and Y
are independent rv’s with standard deviations σX and σY , respectively. Let
Z = X + Y . Then the variances add quadratically:

σZ =
√
σ2X + σ2Y .

This formula is often used in the analysis of laboratory experimental results.
It is only valid in the case where X and Y are independent. How can you
verify of X and Y are statistically independent?

2.18.7. Sample Covariance. In Formula (2.11) the covariance must be
added to get the error in the sum of two rv’s, X + Y . The covariance is
zero if the two rv’s are statistically independent. It is difficult to check
for independence. However, it is easy to check for statistical correlation
by computing the sample covariance. Suppose that the following pairs are
measured experimentally {(xi, yi)}ni=1. This random sample is described by
the empirical joint PDF:

p̂XY (x, y) =
1

n

n∑
i=1

δ(x− xi)δ(y − yi).

Substitution into the definition of covariance:

cov(X,Y ) ≡E[(X − µX)(Y − µY )]

=

∫ ∞

−∞

∫ ∞

−∞
(x− µX)(y − µY )

1

n

n∑
i=1

δ(x− xi)δ(y − yi)dxdy

=
1

n

n∑
i=1

(xi − µX) · (yi − µY )

where µX and µY are the means of X and Y , respectively. Since we have
experimental data at our disposal, we take them to be sample means. This is
normally adjusted by replacing 1/n by 1/(n− 1) on the basis that a degree
of freedom has been lost due to our use of experimental data to obtain
statistical estimators for the means (µ̂X and µ̂Y ):

covn−1(X,Y ) =
1

n− 1

n∑
i=1

(xi − µ̂X) · (yi − µ̂Y ).

This formula provides us with an explicit prescription for computing the
covariance of X and Y from experimental data. One may as well directly
use Formula (2.11), since it enables us to determine the amount of covariance
between them, and add its contribution to the error estimate, if needed.
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2.18.8. Correlation Coefficient. A concept that is related to the covari-
ance is the correlation coefficient:

ρ(X,Y ) =
cov(X,Y )

σX · σY
,

where σX =
√
var(X) and σY =

√
var(Y ). ρ takes values in the range −1 ≤

ρ(X,Y ) ≤ 1. The correlation coefficient is a measure of linear dependence
between X and Y . It is more useful than the covariance in the sense that
ρ is a dimensionless quantity which is normalized to the magnitude of X
and Y . A value of ρ = 1 means that X and Y are correlated. A value of
ρ = −1 means they are anti-correlated. A value of ρ = 0 means they are
uncorrelated. Please note that if X and Y are independent then ρ = 0.
However, the converse is not true. That is, ρ = 0 does not always imply
that X and Y are independent.

The reader can easily check8 that if Y = aX + b (a, b constants) we have
cov(X,Y ) = a · var(X) and

ρ(X,Y ) =
a

|a|
=

{
1 a > 0

−1 a < 0
.

Thus, the correlation coefficient is a measure of linear dependence. In this
example, ρ = 1 if Y = aX + b and a > 0 (X and Y are correlated), whereas
ρ = −1 if a < 0 (X and Y are anti-correlated). This result is independent of
the magnitude of a; it only depends on its sign. For example, Y = 0.00001·X
and Y = 10000 ·X both give ρ = 1.

Q: Can you find examples of rv’s X and Y where ρ is not equal to −1, 0 or 1
but some intermediate value (say 0.5)? What is the meaning of a correlation
coefficient that is not equal to 0 or 1?

2.18.9. Linear Correlation. Suppose that two random variables X and
Y depend on each other linearly:

Y = a+ bX.

The correlation coefficient becomes:

ρ(X,Y ) =
cov(X,Y )

σX · σY
=
cov(X, a+ bX)

σX · σY
=
b · cov(X,X)

σX · σY
=
b · σX
σY

Therefore, the slope b is related to the value of the correlation coefficient (as
well as the variances of X and Y ):

b = ρ(X,Y )
σY
σX

.

8Start by the numerator: cov(X,Y ) = cov(X, aX+ b) = E[(X−µX)(aX+ b−µaX+b)], but since

µaX+b = aµX + b, this reduces to cov(X, aX + b) = E[(X −µX)(aX − aµX)] = aE[(X −µX)2] =
a · var(X).
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2.18.10. Sample Correlation Coefficient. Let X,Y be rv’s with mean
µX and µY , respectively. Let x1, x2, . . . , xn be measurements ofX. Similarly
for Y . The correlation coefficient can be estimated from experimental data,
{(xi, yi)}ni=1, using the sample correlation coefficient:

rX,Y =
1

n−1

∑n
i=1(xi − µ̂X) · (yi − µ̂Y )√

1
n−1

∑n
i=1(xi − µ̂X)2 ·

√
1

n−1

∑n
i=1(yi − µ̂Y )2

,

where n is the number of data points and µ̂X is the sample mean

µ̂X =
1

n

n∑
i=1

xi,

and similarly for µ̂Y . They are uncorrelated if rX,Y = 0. You can also check
for possible correlation between X and Y using a scatter plot. This is done
by plotting the set of ordered pairs {(xi, yi)} as points on the same graph.

2.18.11. Uncorrelated but not Independent. Let X and Y be rv’s
related by Y = X2. Let µX be the mean of X, µX2 its second moment, etc.
Clearly, these rv’s are not independent of each other. However,

cov(X,Y ) = cov(X,X2) = E[(X − µX)(X2 − µX2)] = µX3 − µXµX2 .

If the distribution of X is such that µX3 = µXµX2 (for example, if the
mean and skewness are zero, which is the case for a zero-mean normal dis-
tribution), then cov(X,Y ) = 0 and the rv’s X and Y are uncorrelated even
though they are clearly dependent on each other.

This can easily be illustrated in MATLAB. Let’s create two plots. One for
the equation Y = X + η (linear case), where X and η are independent
standard normal rv’s:

1 X=randn([1 10000]);
2 Y=X+randn([1 10000]);

and one for Y = X2 + η (quadratic case), where X and η are independent
standard normal rv’s.

1 X=randn([1 10000]);
2 Y=X.ˆ2+randn([1 10000]);

You can think of the linear case as in the familiar form Y = a+ bX, but for
the special case of a = 0, b = 1, and noise added (η). Same for the quadratic
equation, it has noise added to it, as a way to simulate the outcome of a
random experiment.
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Figure 2.4. Correlations between rv’s (X,Y ).

In each case, a plot is generated by typing figure;plot(X,Y,'.') (see
Fig. 2.4). The sample correlation coefficient is obtained using the corrcoef
command, e.g. for the linear case

>> corrcoef(X,Y)

ans =

1.0000 0.7025

0.7025 1.0000

whereas for the quadratic case we get:

>> corrcoef(X,Y)

ans =

1.0000 -0.0089

-0.0089 1.0000

The diagonal elements are 1 (since X is perfectly correlated to X, as is Y
correlated to Y ). The off-diagonal elements are the correlation coefficients
of X and Y . In the linear case, we have strong (≈ 0.7) correlation between
X and Y . We would expect 1 without the additive noise, η (you can check
this by reducing the amplitude of the additive noise). In the quadratic case,
the correlation coefficient is nearly 0, as it should because the Gaussian rv
X has zero skewness and zero mean.

2.19. Calculating Probabilities

If you are asked to compute the probability of a random event involving
X, your first reflex should be to write down an integral of the PDF, pX(x),
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over the set of points that represent this event. Recall the formula (2.12)
introduced in the previous lecture:

(2.12) P(X ∈ A) =
∫
{x|x∈A}

pX(x)dx,

In two dimensions you do the same thing except that the joint PDF is to be
used, e.g.

P(a ≤ X ≤ b, c ≤ Y ≤ d) =
∫
{(x,y)|a≤x≤b,c≤y≤d}

pXY (x, y)dxdy

=

∫ b

a

∫ d

c
pXY (x, y)dxdy.

This is for the specific case where the random even is {a ≤ X ≤ b, c ≤ Y ≤
d}. For a general random event, we integrate over the set of points (x, y)
such that the event is true. It is not possible to enumerate all possible events
we may encounter. Some examples are:

{X ∈ A, Y ∈ B}, {X/Y < a}, {X + Y > b},
{a < cos(X) · log(Y ) < b}, etc.

In each case, we integrate the joint PDF of X and Y , pXY (x, y), over the
set of points (x, y) that obey the conditions specified in the event.

To summarize the procedure involved when calculating probabilities, there
are two main steps. The first step is to write down the right hand side, but
keeping in mind that the random event will need to be expressed in a form
suitable for integration. The second step involves writing the integral in a
form that can be solved. This sometimes involves a change of variables, if
the integration region needs to be simplified.

2.19.1. Single-Variable Case. In the first step, we often invoke some
algebraic manipulations in order to transform the logical statement X ∈ A
into a form that allows us to apply the information known to us. Let use
revisit the example already covered in Sections 2.9 and 2.8.7. Let Y = eX

and X ∼ N (µ, σ2). You are asked to find the distribution of Y given the
distribution X (a normal law in the present case). At first sight, you may
think that P(Y < y) cannot be easily calculated because you are not given
the distribution of Y . However, the distribution of X is provided. So your
goal is to transform the statement Y < y into one that involvesX instead. In
Section 2.8.7 we worked out the case of the log-normal distribution, Y = eX

where X ∼ N (µ, σ2).

2.19.2. Two Variables Case. Another example is Y = U/V where U
and V are independent standard normal variables, i.e U ∼ N (0, 1) and
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V ∼ N (0, 1). The CDF of Y is:

P(Y < a) = P(U/V < a) =

∫∫
{(u,v)|u/v<a}

pU (u)pV (v)dudv

Effecting a change of variables Y = U/V , Z = V (inverse: V = Z, U = ZY )
under the integral sign and using the Jacobian of the transformation:

dudv =

∣∣∣∣∂(u, v)∂(y, z)

∣∣∣∣dydz, where
∂(u, v)

∂(y, z)
≡
∥∥∥∥∂yu ∂zu
∂yv ∂zv

∥∥∥∥ =

∥∥∥∥z y
0 1

∥∥∥∥ = z

where ∥·∥ denotes “matrix determinant”, whereas |·| denotes absolute value.
Then,

P(Y < a) =

∫∫
{(y,z)|y<a}

pU (yz)pV (z)|z|dzdy

=
1

2π

∫ ∞

−∞

{∫ a

−∞
e−

1
2
y2z2e−

1
2
z2 |z|dy

}
dz.

Using the change of variables w = 1
2z

2, dw = zdz and replacing
∫∞
−∞ dz by

2
∫∞
0 dz (this replacement is allowed since its integrand is positive):

P(Y < a) =
1

π

∫ a

−∞

{∫ ∞

0
e−

1
2
z2(1+y2)zdz

}
dy

=
1

π

∫ a

−∞

{∫ ∞

0
e−w(1+y2)dw

}
dy =

∫ a

−∞

1

π

dy

(1 + y2)
.

This is known as the Lorentzian (or Cauchy) distribution. The PDF of the
Lorentzian distribution is obtained by differentiating with respect to a:

pY (y) =
1

π

1

(1 + y2)
.

In another example we can ask what is the probability that a rv X takes on
exactly the value x:

P(X = x) = lim
dx→0

P(x < X ≤ x+dx) = lim
dx→0

∫ x+dx

x
p(x)dx = lim

dx→0
p(x)dx = 0

provided that p(x) is continuous. If p(x) is discontinuous at x, this result is
not necessarily zero. In this course, we will not be dealing with discontinuous
probability functions.

2.20. Probability of Mutually Exclusive Random Events

If random events A1, A2 and An are disjoint sets, i.e. Ai ∩Aj = ∅, then the
probability of any of the Ai events is a sum of probabilities:

(2.13) P(A1 ∪A2 ∪ · · · ∪An) = P(A1) + P(A2) + · · ·+ P(An).



2.20. Probability of Mutually Exclusive Random Events 55

A B

Figure 2.5. Mutually exclusive random events A and B.

A ∩ BA B

Figure 2.6. Events that are not mutually exclusive share common out-
comes (as represented here by the overlap region).

Such a set of random events is called mutually exclusive events. The “union”
A1∪A2∪· · ·∪An of random events is equivalent to a “logical OR” operation,
i.e.

P(A1 ∪A2 ∪ · · · ∪An) = P(A1 or A2 or . . . or An).

Suppose that we measure the number of radioactive counts within a 1-second
time interval. When we make the statement “12 or fewer counts were ob-
served” (during a 1-second time interval),

12 or fewer counts = 1 count or 2 counts or ... or 12 counts.

In other words, let X be a rv that represents the # of counts (in the 1-second
time interval).

{X ≤ 12} = {X = 1} ∪ {X = 2} ∪ {X = 3} ∪ · · · ∪ {X = 12}.
Decomposing the event {X ≤ 12} as a union of mutually exclusive random
events, i.e. {X = 1} ∩ {X = 2} = ∅, etc., offers some advantages when
calculating the probabilities of events. It enables us to invoke formula (2.13).

Two mutually exclusive events A and B have no overlap can be represented
as shown in Fig. 2.5. What should we do if the random events are not
mutually exclusive? For simplicity, consider only 2 events, A and B. Mutual
exclusivity means that A ∩ B = ∅. If the intersection is nonzero, then we
have the situation illustrated in the Venn diagram (Fig. 2.6).
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In this case, we should avoid overcounting by subtracting the intersection:

P(A ∪B) = P(A) + P(B)− P(A ∩B).

Let us look at the example of rolling a die. Let X be the numerical result of
the die roll (# appearing on the top face). Define two random events, A and
B, as follows: A = {X ≤ 3} and B = {X is odd}. It is helpful to decompose
these random events into a union of mutually exclusive “elementary events”:

A = {X ≤ 3} = {X = 1} ∪ {X = 2} ∪ {X = 3},
and

B = {X is odd} = {X = 1} ∪ {X = 3} ∪ {X = 5}.
The union of A and B is:

A ∪B = {X = 1} ∪ {X = 2} ∪ {X = 3} ∪ {X = 5}.
The intersection of A and B is:

A ∩B = {X = 1} ∪ {X = 3}.
If the die is unbiased, i.e. P(X = xi) = 1/6 for xi ∈ {1, 2, . . . , 6}, then
P(A∪B) = 2/3, P(A) = 1/2, P(B) = 1/2 and P(A∩B) = 1/3. This verifies
the formula P(A ∪ B) = P(A) + P(B)− P(A ∩ B) for this particular choice
of random events.

2.21. Discrete Random Variables

A discrete rv X takes values in a discrete set X = {xi}Ni=1, where N is the
number of possible values X can take (cardinality of the set X ) and xi ∈ X
are the possible values. The word discrete refers to the “state space”. X ,
which is countable (discrete) and in the present case, contains N elements
(N can also be infinite). Discrete rv’s can be described using the PDF
formed with Dirac delta functions:

pX(x) =
N∑
i=1

piδ(x− xi), pi ≥ 0,
∑
i

pi = 1.

In this section we explicitly state the main formulas pertaining to the prop-
erties of discrete rv’s by way of discrete sums and the “probability mass
function” or PMF. Either description is valid.

2.21.1. Properties of Discrete Random Variables. The rv is defined
by the probability distribution {pi} (also known as the “probability mass
function” or PMF), where pi ≥ 0 for all i. The normalization condition is

N∑
i=1

pi = 1
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pi: probability that rv X takes the value xi.

N : can be finite or infinite; in any case, the {pi} must sum to 1.

We note that from the definition of pi as the probability thatX takes the dis-
crete value xi, and the fact that the events {X = xi} are mutually exclusive
random events, it follows that

P(X ≤ xj) =P({X = x1} ∪ {X = x2} ∪ · · · ∪ {X = xj})

=

j∑
i=1

P({X = xi}) =
j∑

i=1

pi.

The mean value of X is

E[X] =

N∑
i=1

pixi.

The n-th moment of X is

E[Xn] =

N∑
i=1

pix
n
i .

The mean or mathematical expectation of f(X) is

E[f(X)] ≡
N∑
i=1

pif(xi).

The variance of X is (let µX = EX)

σ2 = Var(X) = E[X − µX ]2 =
N∑
i=1

pi(xi − µX)2.

The variance is also equal to E[X2]− (µX)2. When calculating averages of
functions of rv’s, we proceed by replacing the rv X by its value xi, multi-
plying the expression by pi and summing over all i. For example,

E[exp(−X)] =
∑
i

pi exp(−xi), E[g(X)] ≡
∑
i

pig(xi).

This is analogous to the continuous case covered in the previous lecture
where

∫
p(x) replaces

∑
i pi:

E[exp(−X)] =

∫ ∞

−∞
p(x) exp(−x)dx, E[g(X)] =

∫ ∞

−∞
p(x)g(x)dx.

When we deal with two discrete rv’s X and Y , the joint probability can be
written

pij ≡ P(X = xi ∩ Y = yj)
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where P(X = xi ∩ Y = yj) denotes the probability of X taking the value xi
and Y taking the value yj . The pij are normalized to 1:∑

i,j

pij = 1.

The average of a function g(X,Y ) is:

E[g(X,Y )] =
∑
ij

pijg(xi, yj).

As before, if X and Y are statistically independent, the mean of XY equals
the product of the means of X and Y :

E[XY ] =
∑
ij

xiyjP(X = xi ∩ Y = yj)

=
∑
i

xiP(X = xi)
∑
j

yjP(Y = yj) = E[X] · E[Y ],

and similarly, we have:

E[XnY m] = E[Xn] · E[Y m].

A consequence of this result is

E[f(X)g(Y )] = E[f(X)] · E[g(Y )],

because sufficiently nice functions f, g can be expanded as a power series,
enabling us to apply the result E[XnY m] = E[Xn] · E[Y m] to each term of
the expansion.

2.21.2. Poisson Distribution. The Poisson distribution is a discrete prob-
ability distribution which is frequently used to describe counts of rare events.
The main assumptions are:

• The events counted are rare events.

• All events are statistically independent.

• Average count rate does not change over time.

The typical application of this distribution is radioactive counting (for ex-
ample, with a Geiger counter), where the average count n in a given time is
given by the formula:

n = λτ

where λ is average count rate and τ is time interval. For example: λ = 1.5
s−1, τ = 10 s gives n = 15. n does not have to be an integer number.
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Figure 2.7. Poisson distribution (PMF) for two different parameter val-
ues.

2.21.2.1. Probability Mass Function. The probability distribution is com-
pletely described by a single parameter, n,9

P(n;n) =
e−nnn

n!
, n = 0, 1, 2, . . .

In the usual interpretation, P (0;n) gives the probability of observing 0
counts in a time interval τ , P (1;n) gives the probability of observing 1
count, etc. It is easy to check that this PMF is normalized to 1:

∞∑
n=0

P(n;n) =
∞∑
n=0

e−nnn

n!
= e−n

∞∑
n=0

nn

n!
= e−nen = 1,

since the Taylor expansion of exp(x) is
∑∞

k=0 x
k/k!. Figure 2.7 shows plots of

the Poisson distribution for n = 3 and n = 10. Notice that the distribution
looks more like a Gaussian at large n.

These plots were generated in MATLAB using the commands:

1 Nbar=2;N=0:20;figure;plot(N,exp(-Nbar)*(Nbar.ˆN)./factorial(N),'o');
2 Nbar=5;N=0:20;figure;plot(N,exp(-Nbar)*(Nbar.ˆN)./factorial(N),'o');
3 Nbar=10;N=0:20;figure;plot(N,exp(-Nbar)*(Nbar.ˆN)./factorial(N),'o');
4 figure;ezplot('exp(-((x-10)ˆ2)/(2*10))',[0,20]);

Two more properties of the Poisson distribution which you can easily verify
are:

average of n =
∑

P(n;n)n = n, var(n) = σ2 = n = λτ.

Thus, the mean and variance are both equal to n. The standard deviation,
σ =

√
n, gives the error in the measurement. For the mean, the proof is

9This is in contrast to the Gaussian distribution, whose description requires two parameters: X
and σ2.
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trivial and left as an exercise. For the variance, the proof is easy but requires
more steps.10

2.21.2.2. Error Bars of a Measurement. If the experiment yields a mean
count of n, the best estimate of the error11 in this quantity is

√
n. We

report this measurement as

n±
√
n.

While it may seem that the error grows with n, the fractional uncertainty
actually decreases with n:

δn

n
=

√
n

n
=

1√
n

i.e., larger n result in smaller fractional uncertainty.

2.21.2.3. Poisson Counts. This example was taken from the book by Hughes
& Hase and modified. A bridge cannot hold too many cars at once due to
the potential for structural damage. A particular bridge is designed to hold
less than 13 cars (safe level) per time interval (1 min.). In a random sample,
the total number of cars recorded crossing the bridge in 10 hours was 1980.

Q: What is the average number of cars crossing per minute and its error?
A: λ = 1980

10×60 = 3.30 cars/min.

δλ =

√
1980

10× 60
= 0.07 cars/min.

Q: What is the probability that during a random one-minute interval 13 cars
will be observed crossing? A: n = λτ = 3.30, with n = 13

P(n = 13; 3.3) =
e−3.33.313

13!
= 3.3× 10−5

Q: What is the probability that the bridge will fail (due to too many cars
crossing)? A:

P(13 or more cars) =1− P(12 or fewer cars)

=1− {P(0; 3.3) + P(1; 3.3) + · · ·+ P(12; 3.3)}
=4.2× 10−5.

During 1 minute of observation, this is the probability that the bridge will
fail.

10A proof can be found at: https://proofwiki.org/wiki/Variance of Poisson Distribution
11Sometimes, all we have is 1 count. While this may not be the mean count, it is all that we have.
The best we can do in this case is report n±

√
n.
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2.21.2.4. Poisson Distribution in the Limit of Large Means. For large means,
the Poisson distribution converges to a Gaussian distribution:

e−nnn

n!
≈ 1√

2πµX
exp

(
−(x− µX)2

2µX

)
where:

n (discrete)→ x (continuous)

n→ µX (variance, mean)
√
n→ √µX (standard deviation)

The proof makes use of Stirling’s approximation

log n! ≈ n log n− n+O(log n),

and
|n− n|
n

≪ 1.

These two conditions (Stirling approx. and n close to n) imply that our
proof is valid in the limit of large means. If the mean is not large, the
Stirling approximation cannot be used.

e−nnn

n!
= exp {−n− log n! + n log n}

= exp {−n− n log n+ n+ n log n}
= exp {(n− n) + n log(n/n)}

= exp

{
(n− n) + n log

[
1 +

(
n− n
n

)]}
≈ exp

{
−(n− n)2

2n

}
≈ exp

{
−(n− n)2

2n

}
The first step was to invoke the Stirling’s approximation, log n! ≈ n log n−n.
The second step was to expand about mean (n) for large n). Then we Taylor
expanded log(1 + x) ≈ x− x2/2 +O(x3). In the last step we have used the
approximation n ≈ n near the mean for the denominator in the argument
of the exp.

The prefactor 1√
2πn

could have been recovered had we used the slightly more

accurate form of the Stirling’s formula:

n! ≈
√
2πn

(n
e

)n
,

and of course, followed by the application of |n−n|
n ≪ 1 to justify replacing√

2πn by
√
2πn. See Problem 40.
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2.21.3. Statistical Independence (Discrete Case). The notion of sta-
tistical independence is the same as in the continuous case. Let X and Y be
two rv’s. Independence of X and Y means that the joint probability factors
as a product:

(2.14) pXY
ij = pXi · pYj , for all i, j

where pXY is the joint PMF for X and Y . pXi is a marginal PMF:

pXi ≡
∑
j

pXY
ij .

Likewise, pYj is also a marginal PMF:

pYj ≡
∑
i

pXY
ij .

2.21.4. Example 1. Consider a random experiment that involves rolling
a die

X ∈ {1, 2, 3, 4, 5, 6}
and tossing a coin

Y ∈ {H,T}.
You are asked to determine whether or not X is statistically independent
from Y . Intuitively, this should be the case (i.e., why would a coin toss
affect the outcome of rolling a die?).

For this random experiment, there are 12 possible “elementary” outcomes:

(X,Y ) =(1, H), (X,Y ) =(1, T ),

(X,Y ) =(2, H), (X,Y ) =(2, T ),

(X,Y ) =(3, H), (X,Y ) =(3, T ),

(X,Y ) =(4, H), (X,Y ) =(4, T ),

(X,Y ) =(5, H), (X,Y ) =(5, T ),

(X,Y ) =(6, H), (X,Y ) =(6, T ).

To get the joint PMF we must repeat this experiment many times and
record the results. Suppose that we repeat the experiment 10,000 times and
count the number of times each elementary outcome occurs. Let’s do this
in MATLAB:

>> X=randi([1 2],[1 10000]);

>> Y=randi([1 6],[1 10000]);

We then plot a 2D histogram (see Fig. 2.8):

>> figure; h=histogram2(X,Y)
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Figure 2.8. Bivariate histogram of the die & coin experiment.

h =

Histogram2 with properties:

Data: [10000x2 double]

Values: [2x6 double]

NumBins: [2 6]

XBinEdges: [0.5000 1.5000 2.5000]

YBinEdges: [1x7 double]

BinWidth: [1 1]

Normalization: ’count’

FaceColor: ’auto’

EdgeColor: [0.1500 0.1500 0.1500]

The histogram is an approximation to the PMF. As you can see, this distri-
bution is uniform. The values used to plot the histogram are:

>> h.Values

ans =

818 816 807 827 870 831

861 847 824 837 811 851

Dividing by the number of experiments performed (10,000):

>> h.Values/10000

ans =
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X\Y heads tails sum

1 1/12 1/12 1/6
2 1/12 1/12 1/6
3 1/12 1/12 1/6
4 1/12 1/12 1/6
5 1/12 1/12 1/6
6 1/12 1/12 1/6

sum 1/2 1/2

Table 2.2. Joint PDF for an experiment that involves rolling a die (X ∈
{1, 2, 3, 4, 5, 6}) and tossing a coin (Y ∈ {H,T}).

0.0818 0.0816 0.0807 0.0827 0.0870 0.0831

0.0861 0.0847 0.0824 0.0837 0.0811 0.0851

gives an approximation to the joint PMF. Each entry is approximately equal
to 1/12. A PMF with entries equal to 1/12 can be represented as a matrix
(see Table 2.2). The marginal PMFs for X and Y are obtained by summing
along rows and columns, respectively. You can check that for the data
shown in Table 2.2), Eq. (2.14) holds for all i, j. Therefore, X and Y are
statistically independent.

We also know that statistical independence implies the variables are uncor-
related. Let’s check this by computing the correlation coefficient:

>> corrcoef(X,Y)

ans =

1.0000 -0.0115

-0.0115 1.0000

The MATLAB command corrcoef computes the matrix of correlation coef-

ficients,
[
ρ(X,X) ρ(X,Y )
ρ(Y,X) ρ(Y,Y )

]
. The diagonal elements should be 1 (since X is fully

correlated with X; same for Y ) whereas the off-diagonal elements should be
zero. Indeed, the off-diagonal elements are two orders of magnitude smaller
than 1, indicating the lack of correlation between X and Y .

A counter-example illustrating statistical dependence would be the joint
PMF shown in Table 2.3, which differs from Table 2.2 only in the second
row. Namely, when the result from rolling the die is 2, the coin toss always
yields “tails”. (Don’t try too hard to imagine how this can possibly happen
in the lab; it is perhaps easier to imagine that a magician is doing the
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X\Y heads tails sum

1 1/12 1/12 1/6
2 0/12 1/6 1/6
3 1/12 1/12 1/6
4 1/12 1/12 1/6
5 1/12 1/12 1/6
6 1/12 1/12 1/6

sum 1/2 1/2

Table 2.3. Joint PDF for an experiment that involves rolling a die (X ∈
{1, 2, 3, 4, 5, 6}) and tossing a coin (Y ∈ {H,T}). This joint PMF is the
same as that of Table 2.2 except for the second row.

experiment for you.) Because pXY
2,1 = 0 ̸= pX2 · pY1 = 1

6 ·
1
2 , we are unable to

prove statistical independence of X and Y .

2.21.5. Example 2. The joint distribution of the bivariate rv (X,Y ) is
given by

pXY (xi, yj) =

k
|xi|
2yj

xi = −1, 1; yj = 1, 2, 3, . . . (to infinity)

0 otherwise

(a) k is a constant. Find the value of k.∑
i

∑
j

pij = k2
∑
j

1

2yj
= k2 · 1 = 2k. k = 1/2.

(b) Find the marginal probability distributions of X and Y .

pX(xi) =
∑
j

pij =
∑
j

1

2
|xi|

1

2yj
=

1

2
|xi|. xi = −1, 1.

pY (yj) =
∑
i

pij =
1

2yj
. yj = 1, 2, 3, . . .

(c) Are X and Y statistically independent?

Forming the product of marginal distributions,

pX(xi)pY (yj) =
1

2
|xi| ·

1

2yj
= pXY (xi, yj)

Hence X and Y are independent.

2.21.6. Cross-Correlation in Image Analysis. The concept of covari-
ance leads to the cross-correlation analysis. Cross-correlation is a type of
covariance that involves comparing two signals (or images) together through
pixel-by-pixel multiplication of a window (or ROI) that is translated across
different regions of a target signal (or image). If the two signals (or images)
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are of the same size, a single value is obtained. If the sliding window is
smaller than the target signal (or image), the output is a function of the
translation coordinate(s).

The 2D cross-correlation of a M ×N matrix, X, and a P ×Q matrix, H, is
a matrix C, of size M + P − 1 by N +Q− 1. Its elements are given by:

C(x, y) =
M−1∑
m=0

N−1∑
n=0

X(m,n)H(m−x, n−y),

{
−(P − 1) ≤ x ≤M − 1,

−(Q− 1) ≤ y ≤ N − 1,

where the bar denotes complex conjugation. Likewise, a 1D signal can also
be compared to another signal, for purposes of comparison or pattern recog-
nition. The true cross-correlation sequence of two random samples {xn} and
{yn} is

Rxy(m) = E[xn+my
∗
n] = E[xny∗n−m],

where −∞ < n < ∞ and asterisk denotes complex conjugation. The raw
cross-correlation is computed as:

R̂xy(m) =

{∑N−m−1
n=0 xn+my

∗
n, m ≥ 0,

R̂∗
xy(−m), m < 0.

In MATLAB these two commands are implemented as xcorr2 and xcorr,
respectively. For more information including examples, see the MATLAB
documentation:
https://www.mathworks.com/help/signal/ref/xcorr2.html

https://www.mathworks.com/help/matlab/ref/xcorr.html

2.22. Conditional Probability and Conditional Expectation

2.22.1. Conditional densities. The conditional density of X given Y is
defined as

pX|Y (x|y) =
pX,Y (x, y)

pY (y)
,

where pX,Y (x, y) is the joint PDF of X and Y , pY (y) is the marginal PDF
of Y . This is a consequence of the formula for conditional probability,

P(A|B) =
P(A ∩B)

P(B)

with A = {X = x} and B = {Y = y}, i.e.

P(x < X ≤ x+ dx|y < Y ≤ y + dy)dx

=
P(x < X ≤ x+ dx, y < Y ≤ y + dy)dxdy

P(y < Y ≤ y + dy)dy
.
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An interpretation of pX|Y (x|y) is obtained by integrating it:

P(a < X ≤ b|Y = y) =

∫ b

a
pX|Y (x|y)dx

(i.e. the probability that X ∈ [a, b] given that Y = y). However, the left
hand side {Y = y} is an event with probability zero, which is ill-defined.
We instead use a limit to circumvent this difficulty:

P(a < X ≤ b|Y = y) = lim
ϵ→0

P(a < X ≤ b||Y − y| < ϵ).

The conditional expectation of X given Y = y is defined as

E[X|Y = y] =

∫ ∞

−∞
xpX|Y (x|y)dx.

A consequence of this definition is:

E[Y ] =

∫ ∞

−∞

∫ ∞

−∞
ypX,Y (x, y)dxdy

=

∫ ∞

−∞

∫ ∞

−∞
y
[
pY |X(y|x)pX(x)

]
dxdy

=

∫ ∞

−∞

[∫ ∞

−∞
ypY |X(y|x)dy

]
pX(x)dx

=

∫ ∞

−∞
E[Y |X = x]pX(x)dx.

An analogous concept of “conditional probability mass” exists for the case
of discrete rv’s. See Problems 57 and 58 for more on conditional densities.

2.22.2. Conditional Expectation. We may also calculate expectation
values under some condition. This is the same idea as calculating the normal
expectation value, except that we use the conditional density instead of the
regular density. For (a) the condition involves a random event H. If X is a
rv, H is a random event and pX|H(x) is the conditional density of X under
the condition H, the expectation value of X under the condition H is:

E[X|H] ≡
∫
xpX|H(x)dx,

where the integral is over all possible values of X (i.e., the “range” of X).
As an example, the event H could be H = {Y = 10}, or it could be
H = {Y = y} (where the value y remains unspecified). You can check
that E[X|H] is still linear in X. For (b) the condition is a rv, e.g., E[X|Y ].
The conditional expectation E[X|Y ] is obtained by calculating E[X|Y = y].
The result will be a function of y. Then replace y by the rv Y . Notice that
the end result for E[X|Y ] is itself a rv. In other words, to get E[X|Y ] we
use E[X|Y = y] together with y = Y (ω). The meaning of E[X|Y ] is “the
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function of Y that best approximates X”.

From these definitions many properties follow. For example, it is easy to
check that

E[E[Y |X]] =

∫ ∞

−∞

[∫ ∞

−∞
y pY |X(y|x) dy

]
pX(x) dx =

∫ ∞

−∞
y pY (y) dy = E[Y ].

We used the definitions of conditional probability pY |X(y|x)pX(x) = pXY (x, y)

and marginal density pY (y) =
∫∞
−∞ pXY (x, y)dx. More properties of condi-

tional expectations can be found at this site (click on Proof to obtain the
proofs of various results):

https://www.randomservices.org/random/expect/Conditional.html

In Problem 59 you are asked to calculate expectation values under some
condition.

2.23. Signal Averaging Reduces Relative Error

An important concept in experimental science is that of “signal averaging”.
This is done to reduce the noise error, or equivalently, to reduce the size
of the error bars relative to the measurement. Suppose X is a rv and we
perform n measurements of X. We obtain the data set {xi = X(ωi)}ni=1.
Another way to view this experiment is to consider the simultaneous mea-
surement of n independent rv’s X1, . . . , Xn, each of which has the same
distribution as X: each has mean µX and variance (var(Xi) < ∞). We
form the average:

Xav(ω) =
X1(ω) +X2(ω) + · · ·+Xn(ω)

n
,

where a single value of ω is used, as we assumed simultaneous measurement
of X1, . . . , Xn. The variance of this sum is

var(Xav) =

∑n
i=1 var(Xi)

n2
∝ 1

n
,

where we used the property var(aX) = a2var(X). The noise is the square

root of the variance σ =
√
var(Xav). Thus, signal averaging reduces the

noise from random errors.

We have just derived the formula for standard error: the mean of Xav(ω) =
X1(ω)+X2(ω)+···+Xn(ω)

n is µX (where µX = EX) and its standard deviation is√
var(X)/n = σX/

√
n. We recognize this as the standard error.
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If the Xi are iidrv the signal-to-noise ratio (SNR) is defined as:

SNR =
signal

noise
=

Xav√
var(Xav)

∝
√
n

Thus, SNR improves with signal averaging.

2.24. Some Theorems on Random Variables

2.24.1. Normal Linear Transform Theorem. The normal linear trans-
form theorem is:

α+ βN1(µ, σ
2) = N2(α+ βµ, β2σ2).

(We denoted N with subscripts 1 and 2 to emphasize that they are different
rv’s, i.e., the rv on the right hand side is created from the rv on the left
hand side.)

Proof: Let Y = α+ βX, where X ∼ N1(µ, σ
2). Write

P(Y < a) = P(α+ βX < a) = P(X < (a− α)/β)

=

∫ (a−α)/β

−∞

1√
2πσ2

e−(x−µ)2/2σ2
dx.

and make a substitution of variables y = α+βx, dy = βdx to get an integral
of the form

∫ a
−∞ pY (y)dy:

=

∫ a

−∞

1√
2πσ2

e−((y−α)/β−µ)2/2σ2
(dy/β) =

∫ a

−∞

1√
2πβ2σ2

e−(y−α−βµ)2/2β2σ2
dy,

which is the CDF of a normal rv with mean α + βµ and variance β2σ2. In
the special case µ = 0, σ2 = 1 we have:

α+ βN1(0, 1) = N2(α, β
2).

2.24.2. Normal Sum Theorem. The normal sum theorem is:

N3(µ1 + µ2, σ
2
1 + σ22) = N1(µ1, σ

2
1) +N2(µ2, σ

2
2),

where on the right-hand-side is the sum of two statistically independent rv’s.
In other words, let X ∼ N1(µ1, σ

2
1) and Y ∼ N2(µ2, σ

2
2) be independent

rv’s. (We denoted N with subscripts 1, 2 and 3 to emphasize that they
are different rv’s.) We are asking what is the distribution of the new rv
U = X + Y . The proof of this involves handling a 2D integral of the joint
PDF of X and Y :

P(X + Y < a) =
1

2πσ1σ2

∫∫
{(x,y)|x+y<a}

e
− (x−µ1)

2

2σ2
1 e

− (y−µ2)
2

2σ2
2 dxdy.
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With some effort, you should be able to simplify this double-integral and
show that it is the CDF of the rv X + Y (use the change of variables
V = X + Y , Z = Y ).

2.24.3. Sum of Independent Gaussians. Suppose that X1, . . . , Xn are
iidrv and normal, say, N (0, 1). The distribution of their sum is also normal.
This can be proven by induction, using the result from Section 2.24.2.

2.24.4. Sum of Two Independent Cauchy’s. Let X,Y be independent
Cauchy rv’s. What is the distribution of their sum X + Y ? We start with
the CDF:

P(X + Y < a) =

∫∫
{(x,y)|x+y<a}

1

π2
1

(1 + x2)

1

(1 + y2)
dxdy.

Let us effect a change of variables: u = x + y and v = y. The inverse is
y = v and x = u− v. The area element is:

dxdy =

∣∣∣∣∂(x, y)∂(u, v)

∣∣∣∣dudv =

∣∣∣∣det(1 1
0 1

)∣∣∣∣dudv = dudv.

In the new coordinates, the integral is:

P(X + Y < a) =
1

π2

∫ a

−∞
du

∫ ∞

−∞
dv

1

(1 + (u− v)2)
1

(1 + v2)
.

To solve the integral over v go to www.wolframalpha.com and type:

integrate (1/(1+(u-v)^2))*(1/(1+v^2)) from v=-infinity to infinity

The result is: ∫ ∞

−∞
dv

1

(1 + (u− v)2)
1

(1 + v2)
=

2π

4 + u2
.

This gives the CDF in integral form. Differentiating with respect to a gives
the PDF:

pX+Y (a) =
1

π

2

(4 + a2)
=

1

π

1

2(1 + (a/2)2)
.

The general Cauchy distribution has PDF p(x) =

[
πγ

(
1 +

(
x−x0
γ

)2)]−1

,

where x0 is the center and γ is the scale parameter (related to the width).
Thus, adding two Cauchy rv’s centered at 0 with “scale parameter” of γ = 1
results also in a Cauchy distribution centered at 0, but with γ = 2 (i.e. it is
twice as broad as the γ = 1 case).

2.24.5. Central Limit Theorem. One of the most important theorems
in probability theory is the central limit theorem (CLT). The CLT describes
many important physical phenomena observed in nature that arise from the
sum of many independent random effects (e.g. microscopic forces). Loosely
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speaking, the central limit theorem states that regardless of the distribution
of these random effects, the limiting distribution is Gaussian.

Let (X1, . . . , Xn) be a sequence of iidrv (independent identically distributed
rv), each having mean µX and variance σ2. Then,

lim
n→∞

rv

{
1

n

n∑
i=1

(Xi − µX)

}
d→ 1√

n
N (0, σ2).

This is equivalent to saying that the arithmetic average 1
n

∑n
i=1Xi con-

verges12 (in distribution) to a normal law with mean µX and variance
σ2

n
:

lim
n→∞

rv

{
1

n

n∑
i=1

Xi

}
d→ N

(
µX ,

σ2

n

)
.

The quantities {Xi} are rv’s. Their sum is also a rv; the CLT states that
the sum will be Gaussian-distributed.

Note: that the arithmetic average should also have the mean µX comes as

no surprise. But also that the variance σ2

n scales as 1/n should come as no
surprise if you recall the definition of standard error, which states that the
error in the mean scales as 1/

√
n.

The central limit theorem is very important in the physical sciences because
many physical measurements yield Gaussian distributions as a result of the
effects of many small additive forces. For example, the Brownian motion
of a particle is the result of many small collisions with solvent molecules,
yielding a Gaussian distribution for the net displacement.

The CLT is illustrated in Fig. 2.9. The histogram on the left represents the
probability distribution of a single rv, X1. The histogram in the center is
the distribution of the average of two such iidrv 1

2(X1+X2). The histogram

on the right is the distribution for the average of 10 iidrv, 1
10(X1 + X2 +

· · ·+X10). As can be seen, while each rv has a uniform (flat) distribution,
as the histogram on the left shows, the more rv’s we average, the closer the
distribution of the average approaches a normal (bell-shaped) distribution.

2.24.5.1. Random Walk in One Dimension. The random walk, which is an
application of the CLT, is important in the physical sciences. Brownian
motion is a limit of the random walk.

12Convergence in distribution means that the distribution functions converge pointwise:

lim
n→∞

P(Xn ≤ x) = Fn(x),

where Fn(x) denotes the CDF of the normal random variable with mean µ and variance σ2/n and

Xn = 1
n
(X1 + · · ·+Xn).
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Figure 2.9. Illustration of the central limit theorem.

Let Xi be the rv which denotes the displacement at the i-th step

Xi ∈ {−σ,+σ}
and each outcome occurs with equal probabilities, i.e.

pσ =
1

2
and p−σ =

1

2
.

These displacements at different points in time are assumed to be statisti-
cally independent. After n such steps the net displacement is

Sn = X1 + · · ·+Xn,

where Xi =
1
2σ + 1

2(−σ) = 0. Therefore, Sn = 0. Also, varXi =
1
2(σ

2) +
1
2(−σ)

2 = σ2. Then,

varXi = X2
i −Xi

2
= σ2.

By statistical independence of the Xi’s:

S2
n =

n∑
i=1

varXi = nσ2,

The total duration of the random walk is t = n∆t. We have

S2
n =

(
σ2

∆t

)
t = 2D t.

The quantity D = σ2

2∆t is called the diffusion constant (or diffusion coeffi-

cient). D has units of length square divided by time (e.g. m2/s).

By the central limit theorem, we have that

lim
n→∞

Sn = X1 + · · ·+Xn ∼ N (0, nσ2)
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limSn ∼ N (0, nσ2) means that its PDF is

pSn(x, t) =
1√
4πDt

exp

[
− x2

4Dt

]
.

This PDF is also called transition probability density.13 It is the probability
of finding the particle at (x, t) under the condition that it was at position
x = 0 at time t = 0.

The average position of the random walker after the n-th step is zero: Sn =
0. This means that if we repeat the random walk experiments, say 10,000
times, the average position after n steps will be zero. It does not mean
that the random walker automatically returns to the origin. It is merely a
statement about the random walk when the walk is repeated many times.

On the other hand, the result S2
n = 2D t about the mean square displace-

ment being proportional to t (or root mean square displacement, x, being
proportional to

√
t) should be contrasted to the case of ballistic motion for

which x = vt (displacement proportional to t). The different powers of t
reflect the fact that in diffusional motion, there is a lot of back-and-forth,
leading to a shorter displacement over time.

2.24.5.2. Random Walk in Three Dimensions. In three dimensions, the dis-
placement is a 3-components vector R = (X,Y, Z). If the components
X,Y, Z are statistically independent of each other, the joint probability den-
sity is a product:

pXY Z(x, y, z, t) = pX(x, t)pY (y, t)pZ(z, t),

where pX(x, t) = 1√
4πDt

exp
[
− x2

4Dt

]
, etc. (for each component). Applying

the result of the previous section for each direction (component), we obtain
the joint probability density for the 3D random walk:

pXY Z(x, y, z, t) =
1

(4πDt)3/2
exp

(
− r2

4Dt

)
where r2 = x2 + y2 + z2, r⃗ = (x, y, z).

In 3D the mean square displacement (MSD) is14

E[r2] = E[x2 + y2 + z2] = E[x2] + E[y2] + E[z2] = 2Dt+ 2Dt+ 2Dt = 6Dt.

In the general case of d dimensions, r⃗ = (x1, . . . , xd), the MSD is:

E[r(t)2] = E[x21 + · · ·+ x2d] = 2dDt.

13A transition probability density is written p(x, t|y, s) to the denote the probability of finding a
particle at position x at time t given that it was initially at position y at some earlier time s.
14

E[r(t)2] ≡
1

(4πDt)3/2

∫∫∫
R3

r2 exp

(
−

r2

4Dt

)
d3r

.
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2.25. Importance Sampling

2.25.1. Law of Large Numbers (LLN). Let X1, . . . , Xn be a sequence
of iiddv each with mean µ. We form the sample mean:

Xn =
1

n

n∑
i=1

Xi =
1

n
(X1 + · · ·+Xn).

Then, for any ϵ > 0,

lim
n→∞

P(|Xn − µ| > ϵ) = 0.

This is the weak law of large numbers (WLLN). For a proof of the WLLN,
see Problem 36. Xn is the sample mean. The strong law of large numbers
is15

P
(
lim
n→∞

|Xn − µ| > ϵ
)
= 0.

Both weak and strong LLN are statements about how the sample mean
converges to the real mean. However, there is an important difference: the
weak LLN tells us how sequences of probabilities (P) converge whereas the
strong LLN tells us how the sequence of rv Xn behaves in the limit. The
CLT, on the other hand, is a much stronger16 statement: the sample mean
(arithmetic average) rv converges (in distribution) to a normal law. The
central limit theorem (CLT) should not be confused with the LLN.

2.25.1.1. WLLN In Words. The statement limn→∞ P(|Xn − µ| > ϵ) = 0 for
any ϵ > 0 simply means that if we take any sequence of iidrv’s X1, . . . , Xn,
their arithmetic average tends to their mathematical expectation as n→∞.
Thus, we can approximate mathematical expectations (which may be diffi-
cult to compute, especially if the distribution is unknown), using arithmetic
averages formed using experimental data. The larger n is, the better the
approximation of the mathematical expectation.

Since Xi are rv’s, the WLLN formulation also applies to functions of rv’s,
Yi = f(Xi), since the latter are also rv’s. If desired, f could be almost
any formula. For example, suppose that Xi is the acceleration of a particle,
ai (i.e., Xi ≡ ai). The force is mass times acceleration: F (Xi) = ma =
mXi. The WLLN allows us to compute not only the average acceleration,
E[Xi], but the average force, E[F (Xi)], by simply renaming Yi = f(Xi) and
applying it to the sequence {Yi}.

15The proof of the strong law requires the Borel-Cantelli lemma, which we have not covered.
16This is a stronger statement because it is a statement about the entire distribution law of a rv,
not just its mean and variance.
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2.25.2. Expectation With Respect To Probability Measure. The
mathematical expectation of X was defined as:

E[X] =

∫
R
xp(x)dx,

where p(x) is the PDF of X and the integral is taken over the range of X
(here, R). p(x)dx is the probability measure. It will be useful to use the no-
tation Ep[X] to emphasize that the PDF used to calculate the mathematical
expectation is p. This way, there is no ambiguity as to which probability
measure is used. For example, if the PDF of Y is q(y), then we write:

Eq[Y ] =

∫
yq(y)dy.

(Note: y is a dummy integration variable; the choice of symbol is unimpor-
tant.) The WLLN states that if Y is distributed according to q(y), then its
mathematical expectation can be approximated by the arithmetic average:

Eq[Y ] ≈ 1

n

n∑
i=1

Yi,

where the Yi’s are sampled according to the distribution q. If instead the
PDF of Y had been some other function f , we would have written Ef [Y ]
for
∫
yf(y)dy. The two numerical values Ef [Y ] and Eq[Y ] can, of course, be

different, since f and q may be different functions.

As far as the WLLN is concerned, it is meant to enable us to approximate
mathematical expectations of rv’s (or functions of rv’s) by arithmetic av-
erages constructed using experimental data. We present several examples
below to illustrate applications of the WLLN. The WLLN is best explained
by working out specific examples.

2.25.3. Numerical Integration by Monte-Carlo Method. Monte-Carlo
methods can be used to estimate the numerical value of integrals. For ex-
ample, suppose we want to compute the integral:

I =

∫ b

a
h(x)dx

which is the same as

I =

∫ b

a

h(x)(b− a)
(b− a)

dx =

∫ b

a
u(x)p(x)dx = Ep[u(X)]

where Ep denotes the mathematical expectation with respect to the PDF
p(x) and

u(x) = h(x)(b− a), p(x) =
1

(b− a)
.
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Thus, p(x) is the PDF of a uniformly distributed rv. This integral can
be evaluated by generating random numbers X1, . . . , Xn that are iidrv and
uniformly distributed on the interval [a, b]. By the WLLN, the following
estimator converges to I:

Î =
1

n

n∑
i=1

u(Xi)→ Ep[u(X)] =

∫ b

a
u(x)p(x)dx = I.

This gives us a way to evaluate integrals by generating random numbers.
For multi-dimensional integrals, this method has important advantages.
Namely, the generation of random numbers followed by estimation of I is less
computationally intensive than the direct numerical integration (by quadra-
tures) of the multi-dimensional integral.

There is no special reason to pick the uniform distribution. In fact, any
distribution p(x) can be used. In some cases, special choices of p(x) may be
advantageous. For example, sampling the domain [a, b] may be a waste of
time if most of the points within that interval correspond to regions where
h(x) is zero or nearly zero. In that case, we instead want to sample regions
of the domain where |h(x)| > 0 is concentrated.

In other words, let

I =

∫ b

a
h(x)dx =

∫ b

a

h(x)

p(x)
p(x)dx = Ep[u(X)], u(x) =

h(x)

p(x)

and choose p(x) such that the “peaks” of p correspond to the peaks of h.
The numerical value of I can be estimated by sampling iidrv X1, . . . , Xn

according to p(x) and computing the sum:

I ≈ 1

n

n∑
i=1

u(Xi) =
1

n

n∑
i=1

h(Xi)

p(Xi)
, Xi ∼ p(x).

2.25.4. Change of Distribution. Suppose that X is a rv with PDF p(x)
and we want to calculate the average of a function, f(X) of X. Let q(x) > 0
be another PDF on the same probability space as p. Then,

Ep[f(X)] =

∫
f(x)p(x)dx =

∫
f(x)p(x)

q(x)
q(x)dx = Eq

(
f(X)p(X)

q(X)

)
.

Here, Ep[f(X)] denotes the mathematical expectation of f calculated us-

ing the PDF p(x) for X, whereas Eq

(
f(X)p(X)

q(X)

)
is the expectation of fp/q

calculated by associating the PDF q(x) to X instead.

In the first case, X1, . . . , Xn random numbers are sampled from the distri-
bution p(x) and the integral is estimated as:

Ep[f(X)] ≈ 1

n

n∑
i=1

f(Xi).
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Convergence is assured by the LLN. In the second case, X1, . . . , Xn are
sampled from the distribution q(x) and the integral is estimated as

Eq

(
f(X)p(X)

q(X)

)
≈ 1

n

n∑
i=1

f(Xi)p(Xi)

q(Xi)
.

The correction factor p/q is called the likelihood ratio. This method, of
course, requires us to be able to compute the ratio p/q for any value of X
that we may sample. The idea is to choose an importance distribution q that
leads to faster convergence than the nominal distribution p. We generally
want to choose q such that its spikes correspond to those of fp; in fact, it
can be shown that q should be proportional to fp. Choosing q can be done
using an “educated guess” or by random sampling of the function.

2.25.5. Calculation of Probabilities. Since probabilities are expecta-
tion values of indicator functions, the WLLN can also be used to speed up
the calculation of probabilities. This is especially useful for rare events. For
example, suppose we want to calculate the probability of an event {X ∈ A},
where the PDF for X is p(x). From experimental measurements X1, . . . , Xn,
this would normally be approximated by

P(X ∈ A) = Ep[1X∈A] =

∫
R
1A(x)p(x)dx ≈

1

n

n∑
i=1

1A(Xi) =
# draws in A

n

where 1A(x) is the indicator function of A, i.e. it is a function that equals 1
when x ∈ A and 0 otherwise. However, if p(x) is such that this event rarely
happens, we are going to need n very large or else the result will be zero.

On the other hand, the WLLN enables us to reweigh the integral, if we can
find a better distribution q(x) that samples values that are closer to the set
A:

Ep[1X∈A] = Eq

[
1A(X)p(X)

q(X)

]
≈ 1

n

n∑
i=1

1A(Xi)p(Xi)

q(Xi)
. Xi ∼ q(x)

If the event is rare, the ratio p/q will be small (yielding the correct probabil-
ity for the rare event), whereas the summation will count several non-zero
terms, giving a more accurate answer (for the same n).

A special case of P(X ∈ A) is the estimation of the CDF, P(X < x), which

can be expressed as Ep[1{X<x}], and which equals to Eq

[
1{X<x}p(X)

q(X)

]
. And

if q(x) is a better distribution than p(x), we can use the latter formula,
together with the WLLN, to approximate the CDF by a summation.

2.25.6. Generalization to d-Dimensions. All of the above formulas are
valid in d-dimensions. x ∈ R and X ∈ R are replaced by x ∈ Rd andX ∈ Rd,
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respectively. Likewise, dx stands for ddx, the d-dimensional volume element
in the d-dimensional integral.

2.26. Comparing Distributions

Given some random samples x1, . . . , xn and y1, . . . , yn of two rv’s X and Y ,
respectively. It is natural to compare them to see if there is a difference
between them. We have already mentioned that one may compare sample
means, sample variances and sample covariance. However, these statistical
quantifiers are the lowest order moments (first, second) of the distributions.
They do not provide a complete comparison. Two rv’s are identical if and
only if their distributions match. To compare distributions, we must use dis-
tance metrics. In this section we discuss a number of popular methods: the
Kolmogorov-Smirnov test, the cross entropy, the Bhattacharyya distance,
Wasserstein metric and the Kullback-Leibler divergence.

In mathematics a metric on a set X is a function d : X ×X → [0,∞) that
obeys the following conditions for all x, y, z ∈ X: 1) d(x, y) = 0 if and only
if x = y. 2) d(x, y) = d(y, x) (symmetry). 3) d(x, y) ≤ d(x, z) + d(z, y)
(triangle inequality).

2.26.1. Kolmogorov-Smirnov test.

2.26.2. Cross entropy.

2.26.3. Bhattacharyya distance.

2.26.4. Wasserstein metric.

2.26.5. Kullback-Leibler divergence and the Relative Entropy.

2.26.5.1. Entropy. Suppose we have a rv X taking values x in the set X
each with probability p(x). The Shannon entropy

H[X] = −
∑
x∈X

P(X = x) logP(X = x) (discrete rv X)

or

H[X] = −
∫
p(x) log p(x)dx (continuous rv X)

quantifies the “lack” of information about the system described by p(x). For
example, if we have a system that can be found in 6 possible states with
probabilities (1, 0, 0, 0, 0, 0), the entropy is lowest (H = 0). On the other
hand, if the probability distribution is (1/6, 1/6, 1/6, 1/6, 1/6, 1/6) (uniform
distribution) the entropy is maximal. The uniform distribution shows the
system can be found in any of its 6 states with equal probability; therefore
we do not know anything about its state. In the case of the first distribution
we know exactly which state the system is in (the first state). If entropy
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quantifies the lack of information, the negative of the entropy quantifies
information.

There are other measures of entropy. The Renyi entropy measure is

HR
α [X] =

1

1− α
log
∑
x∈X

P(X = x)α.

The Tsallis entropy measure is

HT
α [X] = c

∑
x∈X P(X = x)α − 1

1− α
.

Here, α > 0 is a positive parameter and c is a positive constant depending
on the particular units used. Both of these families include the Shannon
measure as a special case in the limit α→ 1, where HR

1 (p) = HT
1 (p) = H(p).

We may interchangeably write H(p) for H[X] and vice versa, since X is
defined by its distribution p. From this, we see that

H(p) = − 1

n
log p(xn)

where p(xn) =
∏n

i=1 p(xi). This expression for H(p) is called the empirical
entropy of the empirical probability distribution.

2.26.5.2. Empirical entropy. The above definitions presume that we know
the distributions. Suppose that instead we have data x1, x2, . . . , xn all taking
values in the discrete set X . The empirical PMF is:

p(x) =
1

n

n∑
i=1

δx(xi),

where δx(xi) is the Kronecker delta function and x ∈ X . Using the definition
of entropy:

H(p) = −
∑
x∈X

p(x) log p(x) = −
∑
x∈X

1

n

n∑
i=1

δx(xi) log p(x) = −
1

n

n∑
i=1

log p(xi).

In the last step we have interchanged the order of the two sums and used∑
x∈X

δx(xi) log p(x) = log p(xi).

2.26.5.3. KL Divergence. Suppose that we have two PDFs q(x) and p(x)
defined on the same probability space (i.e. the range of values is the same
x ∈ X , and the set of all possible random events is identical) with PDFs q(x)
and p(x). Here we assume that the range is X = (−∞,∞). The relative
entropy between q and p is defined by:

DKL[p(x) : q(x)] =

∫ ∞

−∞
p(x) log

(
p(x)

q(x)

)
dx.
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This can easily be generalized to discrete rv’s by taking

p(x) =
N∑
i=1

piδ(x− xi), q(x) =
N∑
i=1

qiδ(x− xi),

where N is the number of possible values x ∈ X the rv can take. This gives:

DKL[p : q] =
∑
x∈X

p(x) log

(
p(x)

q(x)

)
=

N∑
i=1

pi log

(
pi
qi

)
.

We note that DKL is not symmetric, i.e. DKL[p : q] ̸= DKL[q : p], and
nor does it satisfy the triangle inequality. Therefore, it is not technically
a metric. It is possible to make it symmetric by taking the sum DKL[p :
q] +DKL[q : p] in order to obtain a metric.

2.26.5.4. Relationship to cross-entropy. Cross-entropy is closely related to
relative entropy or KL-divergence that computes distance between two prob-
ability distributions. For example, in between two discrete PMFs, the rela-
tion between them is:

H(p, q) = −
∑
x∈X

p(x) log q(x) cross entropy

H(p) = −
∑
x∈X

p(x) log p(x) entropy

DKL[p : q] =
∑
x∈X

p(x) log

(
p(x)

q(x)

)
relative entropy

H(p, q) = H(p) +DKL[p : q]

Expressing the KL divergence in the form

DKL[p : q] =
∑
x∈X

p(x) log p(x)−
∑
x∈X

p(x) log q(x)

yields the interpretation of the KL divergence to be something like the fol-
lowing: if P is the “true” distribution, then the KL divergence is the amount
of information “lost” when expressing it via Q.

2.26.6. Density Estimation. So far we have worked dealt with paramet-
ric statistics meaning that we assumed knowledge of the PDF in order to
compute statistics involving rv’s. For example, concepts such as mean and
variance were defined in terms of PDFs. The PDF is either given to us, or it
is estimated from the data by fitting its parameters (e.g. mean, variance) to
the histogram. This procedure has limited capabilities, as it requires choos-
ing a model for the PDF. Non-parametric statistics makes no assumptions
about the form of the PDF. The density function (PDF) is instead derived
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from the data. Recall that (rescaled) histograms are a discrete approxima-
tion to the PDF. In this section, we will show that non-parametric estimates
of the density can be constructed using a sum of kernel functions.

2.26.6.1. Kernels. Kernels are best described informally as “bump func-
tions”. An example is the Gaussian function, also known as radial basis
function

Kx(y) = K(x, y) = e−
∥x−y∥2

2σ2 ,

which is a fundamental solution to the heat equation describing the response
to a point source of heat in thermodynamics. Another example is the poly-
nomial kernel:

Kx(y) = K(x, y) = (x · y + 1)d.

Kernels in statistics must be non-negative, real-valued integrable functions
Kx : R → X satisfying symmetry, Kx(−y) = Kx(y) and normalization,∫∞
−∞Kx(y)dy = 1.

A reproducing kernel Kx operates on a Hilbert space H of functions that
are defined on a set X. A function K : X × X → R defined by the inner
product on H:

K(x, y) = ⟨Kx,Ky⟩H
that has the property of taking a function f and evaluating it at x:

⟨f,Kx⟩H = f(x),

is called reproducing because it maps a function f to its value f(x). An
example is the Dirac measure δx(y) and the Hilbert space L2(R):

⟨f, δx⟩L2 =

∫ ∞

−∞
f(y) · δx(y)dy =

∫ ∞

−∞
f(y)δ(x− y)dy = f(x).

2.26.6.2. Kernel Density Estimation. Kernel density estimation (KDE) is
method for estimating the probability density function of a rv. It can also be
viewed as a data smoothing technique where inferences about the population
are made (PDF), based on a finite data sample (histogram).

Let (x1, x2, . . . , xn) be independent and identically distributed samples drawn
from some univariate distribution with an unknown density f at any given
point x. We are interested in estimating the shape of this function f . Its
kernel density estimator is

f̂h(x) =
1

n

n∑
i=1

Kh(x− xi) =
1

nh

n∑
i=1

K
(x− xi

h

)
whereK is the kernel — a non-negative function — and h > 0 is a smoothing
parameter called the bandwidth. We note that Kx(y) in the previous section
is now denoted K(y − x).
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A kernel with subscript h is called the scaled kernel and defined as Kh(x) =
(1/h) · K(x/h). The KDE can be though of as a weighted average, where
the weight is:

wi =
1

h
K
(x− xi

h

)
.

The choice of bandwidth h matters in practice. Wider bandwidths smooth
out the data more (low variance). Narrower bandwidths result in noisier
data (high variance). Obviously, if we pick too low a bandwidth, the density
estimation has a generally greater bias because the moving average (trend-
line) is less responsive to changes in the data points.

Suppose that we measure a signal Yi that is the sum of the underlying signal
f(xi) and some additive noise ξi:

Yi = f(xi) + ξi

where one usually assumes that

ξi ∼ N (0, σ2).

Here, xi represents some internal variables that are not directly measured.
We denote them as xi rather than Xi, to emphasize that those variables
have already been “fixed” at the time of the measurement, i.e.

f(xi) = E[f(Xi)|Xi = xi].

Taking the conditional expectation given Xi = xi we find:

E[Yi|Xi = xi] = E[f(Xi)|Xi = xi].

We will obtain in the next section an expression for E[Yi|Xi = xi].

2.26.6.3. Kernel Regression. The problem of kernel regression can be sum-
marized as follows. We want to estimate the conditional expectation E[Y |X =
x], which is a function of x. First note that:

E[Y |X = x] =

∫
ypY (y|x)dy =

∫
y
pXY (x, y)

pX(x)
dy.

However, this requires knowledge of the densities. We use the following
kernel density estimates:

p̂XY (x, y) =
1

n

n∑
i=1

Kh(x− xi)Kh(y − yi), p̂X(x) =
1

n

n∑
i=1

Kh(x− xi),
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where the hat denotes estimate. We get the following estimate:

Ê[Y |X = x] =

∫
y
∑n

i=1Kh(x− xi)Kh(y − yi)∑n
j=1Kh(x− xj)

dy,

=

∑n
i=1Kh(x− xi)

∫
yKh(y − yi)dy∑n

j=1Kh(x− xj)
,

=

∑n
i=1Kh(x− xi)yi∑n
j=1Kh(x− xj)

,

We have used the reproducing property of kernels:∫
yKh(y − yi)dy = yi.

2.27. Problems

Problem 20. The height of a person is measured over time, every month
from birth to The data set consists of the person’s age in months and her
height in centimeters. The summary statistics for the data are provided
below:

x = age, in months

y = height, in centimeters

x = 44 sx = 8.5 y = 82 sy = 4.1

Also, the correlation coefficient between x and y is r = 0.860

(a) What is the slope of the LSRL? (Round to the nearest hundredth.)
(b) What is the y-intercept of the LSRL? (Round to the nearest hundredth.)
(c) Find the equation of the least-squares regression line (with y as the
response variable)
(d) What percentage of the variation in predicted height can be explained
for by the LSRL

Problem 21. Suppose that we have an amplifier that takes a voltage and
amplifies it by a factor of 10×, i.e. f(x) = 10x. Suppose that we feed this
amplifier the following input voltages:

X = {2.53, 2.55, 2.45, 2.49, 2.50, 2.52, 2.47, 2.48, 2.56, 2.49}

(a) What is the sample variance at the output of the amplifier?

(b) Suppose that we have two rv’s, X and Y and they are statistically in-
dependent. Furthermore, suppose that var(X)=2.7 and var(Y )=2.5. Com-
pute the value of var(X + Y ) and var(X − Y ).

(c) Given that var(X)=2.7, var(Y )=2.5 and ρ(X,Y )=0.9 (correlation coef-
ficient), what is var(X + Y ) and var(X − Y )?
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(d) IfX, Y and Z are statistically independent and var(X)=1.7, var(Y )=2.3
and var(Z)=1.4. What is var(0.3X + 0.7Y + 0.5Z)?

Solution. (a) First, calculate the sample variance ofX and then multiply by
100. Then multiply each Xi by 10 and then calculate the sample variance of
the multiplied values. The sample variance of the X’s is 0.001249. Multiply
this by 100 to get 0.1249. Multiplying each X by 10 and taking the sample
variance we get 0.1249, which is the same as the first method. From this we
confirmed the validity of the formula var(aX) = a2var(X).

(b) By statistical independence we have

var(X + Y ) = var(X) + var(Y ) = 2.7 + 2.5 = 5.2.

Then from
var(aX + bY ) = a2var(X) + b2var(Y ),

with a = 1 and b = −1 we have

var(X−Y ) = (1)2var(X)+(−1)2var(Y ) = var(X)+var(Y ) = 2.7+2.5 = 5.2.

From this, we conclude that when X and Y are statistically independent,
var(X + Y ) = var(X − Y ) = var(X) + var(Y ).

(c) From the definition of the correlation coefficient

ρ(X,Y ) =
cov(X,Y )√
var(X)var(Y )

we have cov(X,Y ) = ρ(X,Y )
√
var(X)var(Y ). Then, inserting this into:

var(X + Y ) = var(X) + var(Y ) + 2cov(X,Y )

we get:

var(X + Y ) = var(X) + var(Y ) + 2ρ(X,Y )
√
var(X)var(Y )

from which we can obtain a numerical value:

var(X + Y ) = 2.7 + 2.5 + 2(0.9)[(2.7)(2.5)]1/2 = 9.877.

For var(X − Y ) we have:

var(X − Y ) = var(X) + var(−Y ) + 2ρ(X,−Y )
√
var(X)var(−Y )

and since var(−Y ) = (−1)2var(Y ) = var(Y ), we have:

var(X − Y ) = var(X) + var(Y ) + 2ρ(X,−Y )
√
var(X)var(Y )

Now, using the property cov(aX, bY ) = ab · cov(X,Y ), we see that

ρ(aX, bY ) =
cov(aX, bY )√
var(aX)var(bY )

=
ab · cov(X,Y )

|a||b|
√
var(X)var(Y )

=
ab

|a||b|
ρ(X,Y ).
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For a = 1 and b = −1,

ρ(1 ·X,−1 · Y ) =
(1) · (−1)
|1|| − 1|

ρ(X,Y ) = −ρ(X,Y ).

Hence,

var(X − Y ) = var(X) + var(Y )− 2ρ(X,Y )
√
var(X)var(Y )

and then we have

var(X − Y ) = 2.7 + 2.5− 2(0.9)[(2.7)(2.5)]1/2 = 0.5235.

We conclude that var(X + Y ) is not equal to var(X − Y ) when X and Y
are correlated to some extent.

(d) If X, Y and Z are statistically independent, then we can write:

var(aX + bY + cZ) = a2var(X) + b2var(Y ) + c2var(Z),

where a, b, c are constants. Hence,

var(0.3X + 0.7Y + 0.5Z) = (0.3)2var(X) + (0.7)2var(Y ) + (0.5)2var(Z)

= (0.3)21.7 + (0.7)22.3 + (0.5)21.4 = 1.630.

■

Problem 22. Suppose thatX is a rv with distribution pX(x) and Y = g(X)
is another rv related to X via a continuous differentiable function g. Prove
that the density of Y can be written as:

pY (y) =

∫ ∞

−∞
pX(x)δ(y − g(x))dx.

Solution. Starting with the CDF:

P(Y < a) = P(g(X) < a) =

∫
{x:g(x)<a}

pX(x)dx =

∫ ∞

−∞
1g(x)<a(x)pX(x)dx.

Using the fact that the Dirac delta function is the derivative of the Heaviside
function:

δ(x) =
d

dx
θ(x), θ(x) := 1x>0(x)

And if the origin is shifted to x0, we may change variables to x = x̃− x0:

δ(x̃− x0) =
d

dx̃
θ(x̃− x0), θ(x̃− x0) := 1x̃>x0(x̃)

Taking the derivative with respect to a we get the PDF, pY (a):∫ ∞

−∞

d

da
1a>g(x)(x)pX(x)dx =

∫ ∞

−∞
δ(a− g(x))pX(x)dx.

■
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Figure 2.10. Partition of the region x2 + y2 > 1 into 4 regions.

Problem 23. Find the probability distribution function of the rv Z =
X2 + Y 2 in terms of the distribution of X and Y .

Solution. The probability that the vector (X,Y ) lies outside the unit circle
{(x, y)|x2 + y2 = 1} is:

P(X2 + Y 2 > 1) =

∫∫
{(x,y)|x2+y2>1}

pXY (x, y)dxdy.

This can be calculated explicitly by splitting the integration domain (R2 −
{unit disc}) into 4 regions (Fig. 2.10).

P(X2+Y 2 > 1) =

∫ ∞

−∞

(∫ −1

−∞
pXY (x, y)dx

)
dy︸ ︷︷ ︸

Region 1

+

∫ ∞

−∞

(∫ ∞

1
pXY (x, y)dx

)
dy︸ ︷︷ ︸

Region 4

+

∫ 1

−1

({∫ −
√
1−x2

−∞
+

∫ ∞

√
1−x2

}
pXY (x, y)dy

)
dx.︸ ︷︷ ︸

Regions 2 and 3

Another way to calculate this would be to convert pXY (x, y) to polar coor-
dinates pR,Θ(r, θ) and integrate from r = 1 to ∞ while letting θ range from
0 to 2π. ■

Problem 24. Find the probability distribution function of the rv Z =√
X2 + Y 2 in terms of the distribution of X and Y .

Solution. Suppose that X,Y ∼ N (0, σ2) (zero-mean Gaussians) are inde-
pendent rv’s. Consider the transformation to polar coordinates:

R =
√
X2 + Y 2, Θ = tan−1(Y/X).
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The inverse transformation is:

x = r cos θ, y = r sin θ.

What is the distribution of Θ and R? Let us do R. The CDF of R is found
by writing:

P(R < r) =

∫∫
{(x,y)|

√
x2+y2<r}

1

2πσ2
e−(x2+y2)/(2σ2)dxdy.

It will be convenient to transform to polar coordinates. The Jacobian of the
transformation yields the new area element:

dxdy =

∣∣∣∣∂(x, y)∂(r, θ)

∣∣∣∣drdθ,
where

∂(x, y)

∂(r, θ)
=

∥∥∥∥∂rx ∂θx
∂ry ∂θy

∥∥∥∥ =

∥∥∥∥cos θ −r sin θsin θ r cos θ

∥∥∥∥ = r.

Then,

P(R < r) =
1

2πσ2

∫ 2π

0
dθ

∫ r

0
dre−r2/(2σ2) · r = 1

σ2

∫ r

0
dre−r2/(2σ2) · r.

The corresponding PDF is obtained by differentiating with respect to r:

pR(r) =
r

σ2
e−r2/(2σ2).

We have recovered the Rayleigh distribution, by constructing the rv R =√
X2 + Y 2, where X,Y ∼ N (0, σ2).

The derivation of the distribution for Θ is trivial. Recall that Θ = tan−1(Y/X).
Then,

P(Θ < θ) =

∫∫
{(x,y)| tan−1(y/x)<θ}

1

2πσ2
e−(x2+y2)/(2σ2)dxdy.

Transformation to polar coordinates gives:

P(Θ < θ) =

∫ θ

0
dθ

∫ ∞

0
dr

1

2πσ2
e−r2/(2σ2)r.

The integral over r can be solved with the substitution w = r2/(2σ2), dw =
rdr/σ2. Thus, our CDF is:

P(Θ < θ) =
1

2π

∫ θ

0
dθ =

θ

2π
,

where θ ∈ [0, 2π]. The PDF is that of a uniform distribution:

pΘ(θ) =
1

2π
,
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Figure 2.11. Scatter plot of the ordered pairs {(Xi, Yi)}10,000i=1 , where
Xi, Yi ∼ N (0, 1) are all independent.

with θ ∈ [0, 2π]. Thus, R is Rayleigh whereas Θ is uniform. This can be seen
in Fig. 2.11, which is a scatter plot of the pairs (X,Y ), whereX,Y ∼ N (0, 1).
This plot was generated in MATLAB as follows:

>> X=randn([1 10000]); Y=randn([1 10000]);

>> figure;plot(X,Y,’.b’);title(’(X,Y)~N(0,1)’);

>> set(gca,’fontsize’,16);

The distributions of R and Θ can be plotted by taking the pairs (X,Y ) and
generating R,Θ. Histograms of R and Θ are shown in Fig. 2.12. It can be
seen that R is Rayleigh and Θ is uniform. These plots were generated in
MATLAB using the following commands:

>> R=sqrt(X.^2+Y.^2); theta=atan(Y./X);

>> figure;hist(R,50);

>> set(gca,’fontsize’,16);

>> title(’R=(X^2+Y^2)^{1/2}’);
>> figure;hist(theta+pi/2,50);set(gca,’fontsize’,16);

>> title(’\theta=tan^{-1}(Y/X)’);

■

Problem 25. The median of a finite list of numbers is the “middle” number,
when those numbers are listed in order from smallest to greatest. (A set of
an even number of observations has no distinct middle value and the median
is usually defined to be the arithmetic mean of the two middle values.)

(a) Prove that given a random sample x1, . . . , xn (take n as odd, so there is
a middle value) of a rv X, the median is the value x50 that is the middle
data point in the ordered list of the random sample.
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Figure 2.12. Histograms of R and Θ, as generated from a sequence of
rv’s {(Xi, Yi)}10,000i=1 , where Xi, Yi ∼ N (0, 1) are all independent.

(b) Explain the relationship between median and mean. When would you
use one vs the other?

Solution. (a) The median is defined as the value x50 satisfying:∫ x50

−∞
p(x)dx =

1

2
.

Substituting the empirical distribution

p(x) =
1

n

n∑
i=1

δ(x− xi),

into the definition of median:

1

2
=

∫ x50

−∞

1

n

n∑
i=1

δ(x− xi)dx =
1

n
(n/2),

i.e. for this integral to equal 1/2 it must evaluate to (n/2)/n = 1/2. In
other words, half the terms in the summation contribute. Which terms?
The integral is over the range (−∞, x50], i.e. begins at −∞ and ends at x50.
Integration will therefore pick out all the terms labeled xi that are found in
the interval (−∞, x50]. Each term is a Dirac delta function that integrates
to 1. Thus, it is a counter of sorts. Once we have found the midway point
of the ordered list, the corresponding value x50 is called the median.

(b) The median, like the mean, attempts to produce some kind of average of
a random sample. The media ignores the extreme and outlier values since
it only picks the central value. The mean is affected by outliers. ■
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Problem 26. We have learned that given two independent rv’s X and Y ,
we may form a new rv Z that is the sum of X and Y , i.e. Z = X + Y ,
and that the probability density of Z is the convolution of the densities of
X and Y , i.e.

pX+Y (a) =

∫ ∞

−∞
pX(a− y)pY (y)dy

or in terms of CDFs:

P(X + Y ≤ a) =
∫∫

{(x,y):x+y≤a}

pX(x)pY (y)dxdy

=

∫ ∞

−∞

(∫ a−y

−∞
pX(x)dx

)
pY (y)dy

=

∫ ∞

−∞
P(X ≤ a− y)pY (y)dy

Please note: limits of integration (−∞,∞) should be replaced by the domain
of definition of the rv if different from (−∞,∞).

(a) Suppose that X and Y are independent and let X ∼ Uni(0, 1), Y ∼
Uni(0, 1) (uniformly distributed over the interval [0,1]), i.e. PDF is pX(x) =
1 for 0 ≤ x ≤ 1 and same for pY (y). What is the PDF of X + Y ?

(b) Show that if X ∼ N (µ1, σ
2
1) and Y ∼ N (µ2, σ

2
2) then X + Y ∼ N (µ1 +

µ2, σ
2
1 + σ22).

(c) Suppose that you play 2 lotteries. In the first lottery you either win
$1000 with probability 1/2 or lose (with probability 1/2) and get nothing.
In the second lottery you are guaranteed of winning something; however the
payout is less: the payout follows a Rayleigh distribution with mode equal to

$100. (The Rayleigh PDF is pY (y) = (y/σ2)e−x2/(2σ2), where σ is the mode,

the mean is σ
√
π/2.). You can assume that X and Y are independent.

What is the PDF describing the total payout from both lotteries? Plot the
PDF. What is the average amount you’d expect to win?

(d) Consider Newton’s law, F = ma, where m is mass and a is acceleration.
Given the distributions of m and a as N (10, 1) and N (10, 0.1), respectively.
What is the distribution of F?

(e) Find the mode of the following PDF, which approximates the thumb
length X in inches in a particular country:

p(x) =

{
π
4 sin

(
π(x−2)

2

)
, 2 ≤ x ≤ 4

0, elsewhere
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Solution. (a) The convolution is

pX+Y (a) =

∫ 1

0
pX(a− y)pY (y)dy =

∫ 1

0
pX(a− y)dy =

∫ 1

0
1[0,1](a− y)dy,

where 1A(y) is the indicator function over the set A. The latter results in an
integral equal to zero unless a−y ∈ [0, 1], or −y ∈ [0, 1]−a or y ∈ a+[−1, 0].
The overlap between a + [−1, 0] and the limits of integration [0, 1] can be
split into 2 regions: a ∈ [0, 1] and a ∈ [1, 2]. In the first region the overlap
progressively increases; in the second region it decreases. Performing the
integral we obtain the tent function:

pX+Y (a) =

∫ 1

0
1[0,1](a− y)dy =


∫ a
0 dy = a 0 ≤ a ≤ 1∫ 1
a−1 dy = 2− a 1 < a ≤ 2

0 otherwise

(c) Let Z = X + Y and pX(x) = p0δ(x − xl) + p1δ(x − xw), with xl = $0
and xw = $103. pY (y) is given to us with σ = $100. The PDF of Z is the
convolution (a > 0):

pX+Y (a) =

∫ ∞

0
pX(a− y)pY (y)dy

=

∫ ∞

0
[p0δ(a− y) + p1δ(a− y − xw)]

y

σ2
e−y2/(2σ2)dy

=p0
a

σ2
e−a2/(2σ2) + p1

(a− xw)
σ2

e−(a−xw)2/(2σ2)1[xw,∞)(a),

where σ = $100, xw = $103, p1 = 1/2 and p0 = 1/2.

0 500 1000 1500 2000
a

0
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The mean value:

EZ =
p0
σ2

∫ ∞

0
a2e−a2/(2σ2)da+

p1
σ2

∫ ∞

0
(a− xw)ae−(a−xw)2/(2σ2)1[xw,∞)(a)da

=p0σ

√
π

2
+
p1
σ2

∫ ∞

0
a′(a′ + xw)e

−(a′)2/(2σ2)da′

=p0σ

√
π

2
+
p1
σ2

(5× 105)(20 +
√
2π) ≈ $562.50

which is right about somewhere between the two peaks, as we would expect
the average to be, based on the center-of-mass of this PDF. (We have used
wolframalpha.com to obtain a numerical value for this integral in the last
line.)

(d) Let Z = XY . The PDF of Z is:

pZ(z) =

∫ ∞

−∞
pX(x)pY (z/x)

1

|x|
dx (∗)

Plugging in the distributions for X and Y : N (10, 1) and N (10, 0.1), we
have:

pZ(z) =
1√
2π

1√
2π(0.12)

∫ ∞

−∞
e−(x−10)2/2e−(z/x−10)2/2(0.12) 1

|x|
dx

A proof is:

P(Z ≤ z) =P(XY ≤ z) = P(XY ≤ z,X > 0) + P(XY ≤ z,X ≤ 0)

=P(Y ≤ z/X,X > 0) + P(Y ≥ z/X,X ≤ 0)

=

∫ ∞

0
pX(x)

∫ z/x

−∞
pY (y)dydx+

∫ 0

−∞
pX(x)

∫ ∞

z/x
pY (y)dydx

Differentiating with respect to z, we get the PDF:

pZ(z) =

∫ ∞

0
pX(x)pY (z/x)

1

x
dx−

∫ 0

−∞
pX(x)pY (z/x)

1

x
dx

=

∫ ∞

−∞
pX(x)pY (z/x)

1

|x|
dx

(e) The mode here can be found by setting the derivative to zero: p′(x) =

0. In the nonzero region 2 ≤ x ≤ 4 the derivative of π
4 sin

(
π(x−2)

2

)
is

p′(x) = π2

8 cos
(
π(x−2)

2

)
. Setting the derivative equal to zero we must solve

cos
(
π(x−2)

2

)
= 0. Taking the inverse cosine, π(x−2)

2 = π
2 + kπ, k ∈ Z, or

x − 2 = 1 + 2k and x = 3 + 2k. The solution in the interval 2 ≤ x ≤ 4 is
x = 3. ■
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Problem 27. The Poisson’s law with parameter a (a > 0) is defined by:

P[k events] = e−aa
k

k!
,

where k = 0, 1, 2, . . . . With a = λτ , where λ is the average number of events
per units time and τ is the length of the interval (t, t + τ), the probability
of k events in τ is

P(k; t, t+ τ) = e−λτ (λτ)
k

k!
.

This equation assumes that λ is independent of t. If λ depends on t, the

product λτ gets replaced by the integral
∫ t+τ
t λ(ξ)dξ, and the probability of

k events in the interval (t, t+ τ) is

P(k; t, t+ τ) = exp

[
−
∫ t+τ

t
λ(ξ)dξ

]
1

k!

[∫ t+τ

t
λ(ξ)dξ

]k
.

The parameter λ is called the rate parameter. λ(t) is the rate function.
Suppose that a company manufactures superconducting wire. Upon close
examination of the product on the assembly line, you find that the defect
density along the length of the wire is not uniform. For wire strips of length
D, the defect density λ(x) along the wire length x varies as

λ(x) = λ0 +
1

2
(λ1 − λ0)

(
1 + cos(

2πx

D
)

)
, λ1 > λ0

for 0 ≤ x ≤ D due to greater wire contamination at the edges x = 0 and
x = D.

(i) What is the meaning of λ(x) in this case?

(ii) What is the average number of defects for a wire strip of length D?

(iii) Find an expression for the probability of k defects on a wire strip of
length D?

Solution. (i) Bearing in mind that λ(x) is a defect density, i.e., the average
number of defects per unit length at x, we conclude that λ(x)∆x is the
average number of defects in the tape from x to x+∆x.

(ii) Given the definition of λ(x) we conclude that the average number of
defects along the whole wire is merely the integral of λ(x), i.e.,∫ D

0
λ(x)dx =

∫ D

0

[
λ0 +

1

2
(λ1 − λ0)

(
1 + cos

2πx

D

)]
dx =

λ0 + λ1
2

D = Ω.

(iii) Assuming the Poisson law holds, use the equation with x and ∆x (dis-
tances) replacing t and τ (times). Thus,

P(k;x, x+∆x) = exp(−
∫ x+∆x

x
λ(ζ)dζ)

1

k!
(

∫ x+∆x

x
λ(ζ)dζ)k.
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Figure 2.13. Integration in the x < y region.

In particular, with x = 0 and x+∆x = D, we obtain

P(k; 0, D) = Ωk e
−Ω

k!
■

Problem 28. Let X and Y be independent rv’s having the exponential
distribution with parameters λ and µ respectively. (Recall that if rv X
has exponential distribution with parameter λ > 0, its CDF is P(X <
x) ≡ 1 − e−λx, x ≥ 0, whose density is dP(X < x)/dx = λe−λx.) Let
U = min{X,Y }, V = max{X,Y } and W = V − U . Find the probability
P(U = X) = P(X ≤ Y ). Show that U and W are statistically independent.

Solution. First you should realize that the logical statements U = X and
X ≤ Y mean the same thing. Indeed, U = min{X,Y } less than or equal
to X implies that both X ≤ X (if min{X,Y } = X) and Y ≤ X (if
min{X,Y } = Y ). The former (X ≤ X) is a trivial statement which is
true at all times. Thus, it can be ignored. The only non-trivial statement
left is Y ≤ X, hence the equivalence of the two statements U = X and
X ≤ Y . If the two statements are equivalent, then their probabilities are
also equal: P(U = X) = P(X ≤ Y ).

P(U = X) = P(X ≤ Y ) can be computed since it is in terms of X and Y
whose distributions are known. Since P(X ≤ Y ) involves both X and Y we
must integrate the joint PDF of X and Y over the set of all points (x, y)
such that x < y is satisfied:

P(X ≤ Y ) =

∫
{(x,y)|x<y}

pXY (x, y) dxdy.

Let’s integrate along horizontal strips, as shown in Fig. 2.13. Thus,

P(X ≤ Y ) =

∫ y

0
dx

∫ ∞

0
dy pXY (x, y) =

∫ y

0
dx

∫ ∞

0
dy pX(x)pY (y),
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where in the second equality we invoked the statistical independence of X
and Y and wrote the integrand as a product of densities in X and Y . Now,
we invoke the shorthand notation P(X ≤ y) =

∫ y
0 pX(x)dx and use the fact

that pY (y) = µe−µy and rewrite this as:

P(X ≤ Y ) =

∫ ∞

0
P(X ≤ y)µe−µydy =

∫ ∞

0
(1− e−λy)µe−µydy =

λ

µ+ λ
.

For w > 0, P(U ≤ u,W > w) = P(U ≤ u,W > w,X ≤ Y ) + P(U ≤ u,W >
w,X > Y ).17 Thus, there are two terms to calculate. For the first one:

P(U ≤ u,W > w,X ≤ Y ) =P(X ≤ u, Y > X + w)

=

∫∫
{(x,y)|x≤u,y>x+w}

pXY (x, y) dxdy

=

∫ u

0
dxλe−λx

∫ ∞

x+w
dy µe−µy︸ ︷︷ ︸

−e−µy ]∞x+w

=

∫ u

0
λe−λxe−µ(x+w)dx

=
λ

λ+ µ
e−µw(1− e−(λ+µ)u)

and similarly, P(U ≤ u,W > w,X > Y ) = µ
λ+µe

−λw(1 − e−(λ+µ)u). Hence,

for 0 ≤ u ≤ u + w < ∞, we have an expression which factorizes into
the product of a function of u with a function of w. Hence U and W are
independent:

P(U ≤ u,W > w) = (1− e−(λ+µ)u)

(
λ

λ+ µ
e−µw +

µ

λ+ µ
e−λw

)
.

■

Problem 29. A coin is flipped n times. The outcome is a rv X, which can
take the value heads or tails (X = heads or X = tails). For n measure-
ments, there are n such rv’s (and corresponding results): X1, X2, . . . , Xn.
The coin is possibly biased. Therefore, the probabilities of each outcome
are not necessarily 1/2. Instead they are given in term of a parameter
−1/2 ≤ θ ≤ 1/2 quantifying the bias:

P(X = heads) = 1/2 + θ, P(X = tails) = 1/2− θ.

(a) Explain how the numerical value of the bias parameter, θ, can be de-
termined experimentally (empirically) by flipping the coin several times, i.e.

17Since the two events {U ≤ u,W > w,X ≤ Y } and {U ≤ u,W > w,X > Y } are mutually

exclusive whereas the event {X ≤ Y } ∪ {X > Y } is always true. Recall that two events A and B
are mutually exclusive if there is no overlap: A ∩B = ∅.
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find an explicit formula for θ̂n, the estimator of θ, in terms of X1, . . . , Xn.
Show that, under specific circumstances, θ̂n converges to θ in probability,
i.e. show that P(|θ̂n − θ| > ϵ)→ 0, as n→∞ for any ϵ > 0.

(b) Denote the number of times where you get heads as the result by H (and
H is a rv, because its value may differ each time this experiment is done).
Write down an explicit expression for H in terms of the experimental data.
Find the mathematical expectation of H.

(c) Find the variance of H. For which value(s) of θ is the variance a mini-
mum? A maximum?

(d) Calculate the “signal-to-noise ratio” of H. Explicitly give the depen-
dence of SNR on n.

(e) For a fixed value of n, find the conditions for which the SNR is 1) infinite
and 2) undetermined/undefined. Give a physical explanation of those two
different situations.

(f) Find the limiting (n large) distribution of H.

Solution. (a) The probability P(X = heads) can be determined by count-
ing the number of heads, i.e. let fH be the empirical probability

fH =
1

n

n∑
i=1

1{Xi=heads},

where 1{Xi=heads} equals 1 if Xi = heads and 0 otherwise. Taking the
mathematical expectation we get

EfH =
1

n

n∑
i=1

E1{Xi=heads},

where

E1{Xi=heads} =
∑

{xi:xi=heads}

P(Xi = heads) = P(Xi = heads)

Therefore (the Xi are iidrv, with the same distribution as X),

EfH = P(X = heads).

By the law of large numbers (LLN), fH converges to P(Xi = heads) as n
increases. Now, since P(X = heads) = 1/2 + θ, which is also equal to EfH ,

we take our estimator θ̂ to be:

θ̂n =

(
1

n

n∑
i=1

1{Xi=heads}

)
− 1

2
,

which implies that θ̂n converges to P(X = heads)− 1
2 , as n increases. How-

ever, P(X = heads)− 1
2 is also equal to θ, by the LLN. Thus, θ̂n → θ.
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(b)

H =
n∑

i=1

1{Xi=heads}

where 1Xi=heads equals 1 when Xi = heads and 0 when Xi = tails. Taking
expectation value:

EH =
n∑

i=1

E1{Xi=heads} =
n∑

i=1

P({Xi = heads}) =
n∑

i=1

(1/2+θ) = n(1/2+θ).

(c) Variance:

var(H) =

n∑
i=1

var(1{Xi=heads}) =

n∑
i=1

E[(1{Xi=heads})
2]− [E(1{Xi=heads})]

2

= n(1/2 + θ)− n(1/2 + θ)2.

since (1{Xi=heads})
2 = 1{Xi=heads}. The variance reaches a maximum when

θ = 0 and a minimum when θ = ±1/2.
(d) Find the dependence of SNR on n:

SNR =
n(1/2 + θ)
√
n
√
1/4− θ2)

∝
√
n.

(e) SNR is undetermined when θ = −1/2 (probability of heads=0). 1) SNR
is infinite when θ = 1/2 (probability of heads=1).

(f) By the CLT, the limiting distribution is Gaussian. The mean is n(1/2+θ)
and variance is n(1/2 + θ)− n(1/2 + θ)2. ■

Problem 30. Consider a die which is unbiased. (a) You roll the die once.
What is the probability of getting a “1” vs a “4”?

(b) You roll the die twice. What is the probability of getting a total of
“2” (i.e. “1” on both trials) versus the probability of getting a total of “7”
(“Total” means you add the two results together.)

(c) You roll the die 10,000 times and record the results. What is the prob-
ability distribution of the mean (i.e. the mean of all the results), its first
moment and variance?

Solution. (a) 1/6 and 1/6

(b) 2: 1/6 times 1/6 = 1/36

7: 6 times 1/6 times 1/6 = 1/6

(c) by the CLT the distribution converges to the normal law,N (3.5, σ2/10000),
where the value of σ2 is:

σ2 =

6∑
i=1

(xi − µ)2pi = 2.917
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■

Problem 31. What power of t (time) does the root-mean-square displace-
ment in a 1D random walk depend on? How does this differ from the case
of ballistic motion. Explain.

Solution. For random walk the root mean square displacement is propor-
tional to

√
t whereas for ballistic motion it depends on t. The

√
t dependence

can be explained by the large number of “back-and-forth” steps in the ran-
dom walk. ■

Problem 32. Consider the normal (Gaussian) distribution with parameters
µ and σ2, i.e. let X ∼ N (µ, σ2). Show all calculations.

(a) Calculate moments of all orders (n = 0, 1, 2, 3, . . . ) for X.

(b) Calculate the central moments of all orders for X.

(c) Define a new function K(t) = logE(etX), and Taylor expand K(t) in
powers of t:

K(t) =
∞∑
n=1

κn
tn

n!
.

Find a general expression for the coefficients κn.

(d) Define a new function M(t) = exp(K(t)). Show how the moments can
be obtained from M(t) in terms of the κn’s.

(e) Show how the density of X, p(x), can be constructed from a knowledge
of the statistical moment, or from the central moments, or from the κn’s.

(f) Explain why the method in (e) of reconstructing p(x) is important from
an experimental science standpoint.

Solution. (a) The moments of odd orders are all zero because the integral of
an odd function (n-th moment of X, where n is odd) times an even function
(Gaussian PDF) vanishes because the integrand is odd. On the other hand,
the moment E(Xn), where n is even are non-zero. They are calculated as
follows:

E(Xn) =

∫
R

1√
2πσ2

e−(x−µ)2/2σ2 · xn dx,

where we use ∫ ∞

0
e−ax2

xndx =
(n− 1)!!

2n/2+1an/2

√
π

a
for n even. The result is:

E(Xn) = σn(n− 1)!!.
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The first few moments are:

order moment central moment

n = 1 µ 0

n = 2 µ2 + σ2 σ2

n = 3 µ3 + 3µσ2 0

n = 4 µ4 + 6µ2σ2 + 3σ4 3σ4

n = 5 µ5 + 10µ3σ2 + 15µσ4 0

see https://en.wikipedia.org/wiki/Normal distribution#Moments

(b) See solution to (a).

(c) Expand etX =
∑∞

i=0
tiXi

i! and take the average, EetX =
∑∞

i=0
tiE(Xi)

i! .
On the other hand, take the exponential of K(t),

eK(t) = e
∑∞

n=1 κn
tn

n! = 1+
∞∑
n=1

κn
tn

n!
+
1

2

( ∞∑
n=1

κn
tn

n!

)2

+
1

3!

( ∞∑
n=1

κn
tn

n!

)3

+ . . . .

We can now identify the like powers of t (let µr = EXr):

t1 :µ1 = κ1 µ1 = κ1

t2 :µ2/2 = κ2/2 + κ21/2 µ2 = κ2 + κ21

t3 :µ3/6 = κ3/6 + κ1κ2/2 + κ31/6 µ3 = κ3 + 3κ1κ2 + κ31
...

...

This can be “inverted” to give:
κ1 = µ1
κ2 = µ2 − µ21
κ3 = µ3 − 3µ2µ1 + 2µ31
...

(d) M(t) = E(etX) = E
∑∞

i=0 t
iXi/i! =

∑∞
i=0 t

iE(Xi)/i!. The moments are
obtained by differentiation with respect to t and setting t = 0:

µr ≡ E(Xr) =
dr

dtr
M(t)

∣∣∣∣
t=0

.

(e) Consider the quantity E(etX),

M(t) =
∞∑
r=0

trµr
r!

= E(etX) ≡
∫ ∞

−∞
etxp(x)dx.
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We can solve for p(x) by invoking the inversion formula:

1

2πi
lim
T→∞

∫ γ+iT

γ−iT
e−stM(s)ds =

1

2πi
lim
T→∞

∫ γ+iT

γ−iT
e−st

[∫ ∞

−∞
esxp(x)dx

]
ds.

=
1

2π
lim
T→∞

∫ ∞

−∞

∫ T

−T
eγ(x−t)ei(x−t)τp(x)dxdτ.

Then integrating over τ and invoking δ(x− a) = 1
2π

∫∞
−∞ ei(x−a)tdt:

=

∫ ∞

−∞
eγ(x−t)δ(x− t)p(x)dx = p(t).

(f) This is important because if we know all the moments, we can reconstruct
p(x). The moments can be estimated from experimental data. ■

Problem 33. The scores in a chemistry class from 2016 were as follows
(out of 100):

40.311 33.386 44.142 65.631 41.066 47.051 42.322 50.752 30.730 28.777 50.885
45.143 29.997 34.107 31.045 39.684 25.157 38.825 41.838 35.716 26.620 44.827
50.506 63.251 32.622 59.843 56.967 50.783 51.961 39.746 50.895 36.447 26.660
49.376 29.302 37.166 33.532 33.627 34.030 34.816 52.107 58.384 50.539 37.568
39.806 54.394 42.399 40.042 47.231 21.915

(a) If the course policy is to assign ’A’ grades to the top 10-percentile of the
class and ’F’ to the rest, how many students obtained an F?

(b) Draw a histogram of the exam results.

(c) Calculate the mean, standard deviation and median of the exam and
indicate those quantities on the histogram. (Explain how those quantities
are calculated from the data.)

(d) In units of standard deviation (σ), how far is the 10-percentile from the
mean?

(e) Reconstruct the PDF of this rv X (score), using the numerical data.

(f) Suppose that the 2017 scores were:

59.378 102.006 54.660 39.713 61.877 46.731 17.570 45.646 71.654 19.959
58.948 57.506 78.838 31.859 20.175 31.766 39.408 41.096 31.092 52.754 53.712
67.778 66.991 37.362 57.768 72.032 48.005 78.559 46.742 84.157 66.175 90.976
72.627 40.335 19.464 60.673 51.911 34.235 35.143 39.269 48.814 83.537 50.505
40.340 47.480 58.682 72.354 56.195 74.103 50.013
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Figure 2.14. Histogram.

Plot histogram and calculate distribution parameters. Are these scores sig-
nificantly different from those of 2016? (Why/why not?)

Solution. (a) The top 10-percentile is called the 90th percentile, and is the
value of x90 such that ∫ x90

−∞
p(x)dx = 0.90.

Numerically, there is a function in MATLAB called prctile that will com-
pute this for us. I get 55.68 for the above data. This means that all scores
below this get an ’F’; we count 45 of those.

(b) See Figure 2.14.

(c) Mean = 41.679 (use formula for sample mean), std = 10.372 (use formula
for sample standard deviation), median = 40.177 (order the numbers and
pick the middle one).

(d) In MATLAB, we simply type (prctile(d,90)-mean(d))/std(d) and
obtain 1.3500.

(e) From the raw data we can calculate the moments of the distribution:

r raw moment central moment

1 41.679 9.4502× 10−15

2 1842.5 105.43

3 8.5908× 104 325.47

4 4.1974× 106 2.6805× 104

5 2.1355× 108 2.0898× 105

and using the inversion formula, we can obtain p(x).
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(f) The mean/std are 53.371 ± 19.136. Compare this to 41.679 ± 10.372.
These two numbers are not significantly different because their error bars
overlap considerably. ■

Problem 34. Prove, using the law of large numbers, that the histogram of
a rv X converges to its PDF, p(x).

Solution. Let X have CDF F (x). Let X1, X2, . . . , Xn be a random sample
of F . Define the indicator function 1(−∞,x](y) to be equal to 1 if y ≤ x and
zero otherwise. Then,

E1(−∞,x](Xi) =

∫ x

−∞
p(xi)dxi = P(Xi ≤ x) = F (x).

For each n, the histogram of the random sample is:

Fn(x) =
1

n

n∑
i=1

1(−∞,x](Xi)

Its expectation value is:

EFn(x) =
1

n

n∑
i=1

E1(−∞,x](Xi) = F (x).

It then follows from the law of large numbers that Fn(x) converges to F (x).
If the CDFs converge, the PDFs also converge. ■

Problem 35. Prove, using the law of large numbers, that the empirical
distribution of random variable X, p̂(x) converges to its PDF, p(x).

Solution. The solution is identical to that of Problem 34. The empirical
distribution p̂(x) = 1

n

∑n
i=1 δ(x− xi) has the empirical CDF:

P(X ≤ x) =
∫ x

−∞
p̂(x)dx =

1

n
#{i : xi ≤ x},

where #{i : xi ≤ x} denotes the number of data points xi satisfying the
condition xi ≤ x. Let’s denote the random variables as Xi and xi, their
corresponding values. Since n data points are used to construct this CDF
let us denote it as Fn(x). Its expectation value is

EFn(x) =
1

n
E#{i : Xi ≤ x} =

1

n
E

n∑
i=1

1(−∞,x](Xi) = F (x),

where F (x) is the CDF of p(x) and #{i : Xi ≤ x} =
∑n

i=1 1(−∞,x](Xi). It
then follows from the law of large numbers that Fn(x) converges to F (x).
Since the CDFs converge, the PDFs also converge, as the PDF is obtained
from the CDF by differentiation. ■
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Problem 36. Consider the weak law of large numbers (WLLN): Let X1,
X2, . . . be iidrv with mean µ and variance σ2 < ∞. Then, (1/n)

∑n
i=1Xi

converges to µ in probability.

(a) Prove the WLLN.

(b) Illustrate it using a numerical example, i.e. choose ϵ > 0, generate
random sequences X1, . . . , Xn, compute the sample mean Xn, record this
value as m1. Generate a second random sequence, and obtain the sample
mean as m2. Repeat this process many times (r times) and plot a histogram
of the sample means (m1,m2, . . . ,mr). Then increase n and repeat this
process. You should now have several histograms as function of n. Then
plot the probability P(|Xn − µ| ≥ ϵ) as a function of n and show that it
converges to 0 as n increases. Since we are dealing with experimental data,
the probability should be calculated empirically:

P(|Xn − µ| ≥ ϵ) =
1

r

r∑
j=1

1|mj−µ|≥ϵ

where 1|mj−µ|≥ϵ is an “indicator function”, i.e. equals 1 when |mj − µ| ≥ ϵ
and equals 0 otherwise.

Solution. (a) Weak law: let Xn = (1/n)(X1 +X2 + · · ·+Xn), var(Xn) =
(1/n2)n · var(X1) = σ2/n, and xn = x1+···+xn

n . Then,

P(|Xn − µ| ≥ ϵ) =
∫
{(x1,...,xn)||xn−µ|≥ϵ}

p1(x1) · · · · · pn(xn)dx1 . . . dxn

≤
∫
{|xn−µ|≥ϵ}

(xn − µ)2

ϵ2
p1(x1) · · · · · pn(xn)dx1 . . . dxn

≤
∫
Rn

(xn − µ)2

ϵ2
p1(x1) · · · · · pn(xn)dx1 . . . dxn

=
var(Xn)

ϵ2
=

σ2

nϵ2
→ 0 as n→∞.

This completes the proof of the WLLN. The first inequality is justified be-

cause |xn − µ| ≥ ϵ, and therefore, 1 ≤ |xn−µ|
ϵ , and consequently (squaring

both sides), 1 ≤ |xn−µ|2
ϵ2

. The second equality is justified because the integral
is everywhere non-negative. Therefore, extending the region of integration
from the restricted set {(x1, . . . , xn) : |xn − µ| ≥ ϵ} to the whole space Rn

leads to an upper bound. This proof assumes the existence of the variance
σ2 of Xi.

(b) There are many possible solutions here. Here is mine. I used this code
in MATLAB to generate the random numbers and required plots:



104 2. Probability

0 2000 4000 6000 8000 10000
88

92

96

100

104

108

70 80 90 100 110 120 130 140
0

2

4

6

8

10

12

14

60 80 100 120 140
0

100

200

300

400

500

600

Figure 2.15. Law of large numbers illustrated.

1 m=10000; r=10000;
2 X=10*randn([m,r])+100;
3 for j=1:r,
4 Xn(j)=(1/j)*squeeze(sum(X(1:j,j),1));
5 end;
6 figure;plot(Xn);
7 figure;hist(X(100,1:100),20);
8 figure;hist(X(10000,1:10000),50);

Here we generated random variables∼ N (100, 100). The first plot (Fig. 2.15)
illustrates the LLN because the arithmetic averages are shown to converge
to the true mean (100) as the number of terms in the sum increases. The
histograms show that with only a few terms, we do not get a nice Gauss-
ian, whereas using 10,000 terms, we get a nice bell curve. (If you chose a
distribution other than normal, these histograms should reflect the chosen
distribution.) ■

Problem 37. Derive the probability distribution of a biased random walk
(i.e. let pσ = 1/2 + δ and p−σ = 1/2− δ for some bias 0 ≤ δ ≤ 1/2).

Solution. By the CLT, the distribution will be Gaussian, of course. The
mean step size is µi = EXi = σ(pσ − p−σ) = σ(1/2+ δ− 1/2+ δ) = 2σδ. So
the total displacement

Xtot = X1 +X2 + · · ·+Xn

has expectation value
EXtot = 2σδn,

instead of 0. (i.e. it “drifts” linearly with time at constant speed 2σδ.)

The variance is var(Xi) = E(Xi− µi)2 = pσ(σ− 2σδ)2 + p−σ(−σ− 2σδ)2 =
(1/2 + δ)σ2(1− 2δ)2 + (1/2− δ)σ2(1 + 2δ)2 = σ2(1/2 + δ)(1− 4δ + 4δ2) +
σ2(1/2− δ)(1 + 4δ + 4δ2) = σ2[1− 4δ2]. The total variance is:

var(Xtot) = var(X1) + · · ·+ var(Xn) = σ2[1− 4δ2]n,

as opposed to σ2n. Thus, the variance is reduced. When δ = ±1/2 (meaning
steps are always to the left, or always to the right), then the variance is zero
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because the path is no longer random, but instead becomes deterministic.
■

Problem 38. Prove that in 3D the mean square displacement is 6Dt, and
in the general case of d dimensions, it is equal to 2dDt (a direct calculation
of the d-dimensional integral requires the spherical volume element in d-dim,
which includes some Gamma functions).

Solution. In 3D the mean square displacement is

E(r(t)2) ≡ 1

(4πDt)3/2

∫
R3

r2 exp

(
− r2

4Dt

)
d3r

=
1

(4πDt)3/2

∫
R3

r2 exp

(
− r2

4Dt

)
r2drd(cos θ)dϕ

=
4π

(4πDt)3/2

∫ ∞

0
r4 exp

(
− r2

4Dt

)
dr

To integrate this we use the famous result
∫∞
−∞ e−ax2

dx =
√
π/a, differenti-

ate wrt a twice:
∫∞
−∞ x4e−ax2

dx = 3
4

√
πa−5/2.

4π

(4πDt)3/2

∫ ∞

0
r4 exp

(
− r2

4Dt

)
dr =

4π

(4πDt)3/2
3

8

√
π(4Dt)5/2 = 6Dt.

In the general case of d dimensions, the mean square displacement is:

E(r(t)2) = E(x21 + · · ·+ x2d) = 2dDt.

There is no d-dimensional integral needed here, as each x21 contributes 2Dt,
and there are d such terms, for a total of 2dDt. ■

Problem 39. Prove that for the Poisson distribution the mean and variance
are both equal to the parameter of the distribution.

Solution. Proofs can be found here:
http://filestore.aqa.org.uk/subjects/AQA-MS03-W-2-SM.PDF

https://proofwiki.org/wiki/Variance of Poisson Distribution ■

Problem 40. Prove that Poisson distribution converges to a Gaussian in
the limit of large n. However, obtain the coefficient of the exponential as well
(the prefactor), making use of the slightly more accurate Stirling’s formula.
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Solution. The calculation we did previously was:

e−nnn

n!
= exp {−n− log n! + n log n}

= exp {−n− n log n+ n+ n log n}
= exp {(n− n) + n log(n/n)}

= exp

{
(n− n) + n log

[
1 +

(
n− n
n

)]}
≈ exp

{
−(n− n)2

2n

}
≈ exp

{
−(n− n)2

2n

}
The prefactor 1√

2πn
is recovered by using

n! ≈
√
2πn

(n
e

)n
.

Now, replace e−nnn

n! by 1√
2πn

e−nnn

(n
e )

n = 1√
2πn

e−nnne−n logn+n. This gives the

desired result with the correct prefactor. ■

Problem 41. Let X ∼ N (0, 1). Generate iid random numbers on a com-
puter (say, 10,000 numbers). Those are the different realizations of X, i.e.
x1, x2, . . . , x10,000. Next, consider another random variable, Y .

(a) Let Y = X + 1, so that we now have 10,000 pairs of points: (x1, y1),
(x2, y2), . . . , (x10,000, y10,000). Plot these 10,000 pairs {(xi, yi)} as dots on
scatter plot. Fit a straight line. What slope do you get? From the data,
calculate the sample correlation coefficient. Is Y correlated to X? Why?

(b) Let X be as previously defined. Let Z be distributed identically to
X, but independent of X. Generate random numbers on a computer to
obtain pairs {(xi, zi)} of random numbers. Define a new random variable
Y = X +Z. Is Y correlated to X? Why? (Plot XY pairs on a scatter plot,
fit a straight line, calculate rX,Y .)

(c) Let X be as defined previously. Let Y ∼ N (0, 1). Generate random
numbers for X and Y , and plot the resulting pairs {(xi, yi)} on a scatter
plot. Are X and Y correlated? Why?

Solution. (a) Y is correlated to X (r = 1). On a scatter plot, we should
see a perfect straight line (no deviation from it).

(b) cov(X,Y ) = cov(X,X + Z) = cov(X,X) + cov(X,Z) = var(X) = 1,
hence r = 1. Here on a scatter plot there will be random deviations from a
straight line due to Z. However, fitting a straight line will still give a slope
of 1.

(c) Totally uncorrelated, since X and Y are independent. (Scatter plot looks
random.) ■
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Problem 42. Choose a distribution we have not used in class. Fix (choose)
the parameters of the distribution. Let X be a random variable distributed
accordingly. Calculate the mean and variance of X analytically (i.e. using
the distribution function). Use a computer to generate random numbers
according to the distribution of X. (How do you generate such random
numbers?) Plot the histogram of X, compare to the PDF or PMF of X (plot
both on the same graph). Calculate numerically the mean and variance of
X (using the random numbers you generated). Compare to the true values
of mean and variance obtained from the PDF or PMF.

Problem 43. Let X be the result of rolling a die. Generate n random
numbers on a computer and obtain the random sampleX1, X2, . . . , Xn. Take
the arithmetic average: Xn ≡ 1

n

∑n
i=1Xi. Plot Xn versus n. What do you

conclude? What theorem does this exercise illustrate?

Solution. This illustrates the law of large numbers. See the article for the
plot:
https://en.wikipedia.org/wiki/Law of large numbers ■

Problem 44. Let Y be a Poisson rv with parameter λ. Prove that Y can
be written as the sum

Y = X1 +X2 + · · ·+Xn,

where Xi are independent identically distributed rv’s, also with the Poisson
distribution. What should be the lambda parameter of the Xi?

Solution. Let’s do the case of two rv’s. Let Z = X + Y where X and Y
are Poisson, with parameters λ and µ, respectively. Then the PMF of Z is:

P(Z = z) =
z∑

x=0

e−λλx

x!

e−µµz−x

(z − x)!
=
e−(λ+µ)

z!

z∑
x=0

(
z

x

)
λxµz−x

Thus, Z is also Poisson, but with mean λ + µ. This can be extended to n
Poisson variables. Their sum will also be Poisson. If Y = X1+ · · ·+Xn has
parameter λ, then each Xi must have parameter λ/n. ■

Problem 45. Let X1, . . . , Xn be a sequence of independent random vari-
ables with CDF’s Fn (Xi has CDF Fi, i = 1, . . . , n). Let X be a random
variable with CDF F . The sequence Xn is said to converge in distribution
if the CDF’s converge pointwise, i.e.,

lim
n→∞

Fn(x) = F (x),

at all points x for which F is continuous.

(a) Show that convergence of the CDF’s also implies the PDF’s. i.e. let fi
be the PDF of independent rv’s Xi (i = 1, . . . , n) and f be the PDF of X.



108 2. Probability

Prove that convergence of the CDF’s implies:

lim
n→∞

fn(x) = f(x)

for all x.

(b) Prove that the sequence of independent rv’s Xi ∼ N (1/n, 1) converges
in distribution to a standard normal random variable.

Solution. Since

1√
2π

exp

(
−1

2

[
x− 1

n

]2)
→ exp

(
−x

2

2

)
,

it follows that Xn converges in distribution to X N (0, 1). ■

Problem 46. Let Xn ∼ N (0, 1/n) and let X = 0. Prove that for any ϵ > 0,

P(|Xn| > ϵ)→ 0

as n → ∞. This is an example of convergence in probability, i.e. P(|Xn| >
ϵ)→ 0 implies that Xn converges in probability to X (=0), since P(|Xn| >
ϵ) = P(|Xn −X| > ϵ).

Solution. First we note that P(|Xn| > ϵ) = P(|Xn|2 > ϵ2). The latter is
the integral:∫

{x2
n>ϵ2}

p(xn)dxn ≤
∫

{x2
n>ϵ2}

x2n
ϵ2
p(xn)dxn ≤

∫
R

x2n
ϵ2
p(xn)dxn

=
EX2

n

ϵ2
=
var(Xn)

ϵ2
=

1

nϵ2
→ 0

■

Problem 47. Let Xi be iidrv with uniform distribution over the interval
[0,1]. Take the sum Sn = X1 + X2 + · · · + Xn. Find the distribution
of Xn analytically (i.e. find its CDF and PDF). Show numerically (i.e.
by generating random numbers on a computer) the histogram of Sn from
n = 1, 2, . . . , 10. What do you conclude?

Solution. This is straightforward and will be left as an exercise (simply
generate random numbers in MATLAB to construct Sn, and plot using
the hist function). S1 has the uniform distribution. S2 has the “tent”
distribution. etc. whereas Sn for large n looks more and more Gaussian as
n increases, thanks to the CLT. Convergence to a Gaussian is very fast and
does not require n to be very large. ■

Problem 48. Suppose that X has a PDF, p(x) = 1
2 sin(x), where x ∈ [0, π],

and equals zero elsewhere. Calculate its mean and variance. Calculate its
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skewness and kurtosis. Compare skewness and kurtosis to those of a normal
distribution (with same mean and variance).

Solution. We will do the first two moments (others are obtained similarly):

E(X) =

∫ π

0

1

2
sin(x)xdx =

π

2
.

E(X − π

2
)2 =

∫ π

0

1

2
sin(x)(x− π

2
)2dx =

1

4
(π2 − 8).

Those results can be obtained from WolframAlpha by typing:
integrate x*(1/2)*sin(x) from 0 to Pi

integrate ((x-Pi/2)^2)*(1/2)*sin(x) from 0 to Pi ■

Problem 49. Let X ∼ N (0, 1). What is the distribution of Y = X3 + 5?

Solution.

P(Y < y) = P(X3 + 5 < y) = P(X ≤ 3
√
y − 5) =

∫ 3√y−5

−∞

1√
2π
e−x2/2dx.

It is also ok to calculate its PDF by differentiating the above CDF with
respect to y, making use of the Leibniz formula. ■

Problem 50. Calculate the mean and the variance of a random variable X
distributed according to the PDF:

p(x) =
γ

(x− µ)2 + γ2
.

Solution. For the mean we have an integral of the type (set γ = 1, µ = 0
without loss of generality, since I analyze the “tail” of the function here):∫ ∞

−∞

1

x2 + 1
xdx

When x is large, this integral behaves like
∫
1/x ∼ log(x), which diverges

with x. Thus, the mean does not exist. For the variance, we have an integral
of the type ∫ ∞

−∞

1

x2 + 1
x2dx ∼

∫
dx ∼ x→∞

which also diverges. Thus, it has no variance. ■

Problem 51. The probability of k successes in n trials is (k = 0, 1, . . . , n,
0 ≤ p ≤ 1):

P(k successes) =

(
n

k

)
pk(1− p)n−k.

B is a random variable distributed as such. Prove that B has mean np and
variance np(1− p).
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Solution. See https://en.wikipedia.org/wiki/Binomial distribution

■

Problem 52. Suppose that you have a string instrument (e.g., electric
guitar) whose strings, when plucked, behave like oscillators. The potential
energy of the string is modeled by an anharmonic oscillator which consists
of the sum of quadratic and quartic terms:

V (x) = ax2 + bx4. a, b non-negative constants

The potential V is transferred to kinetic energy, which is then measured by
the guitar’s pick-up coils and sent to the amplifier. The noise statistics of
V are important for the design of the guitar amplifier circuits.

If the position x (x: extension of the center of the string from its equilib-
rium position) is measured experimentally using an interferometer whose
instrument noise is known to be normally distributed with mean µ and vari-
ance σ2, what would you expect the noise statistics of V to look like? (i.e.
find the probability distribution of V ) Note: you can assume there are no
temporal correlations in the noise.

(a) When b = 0 and a is nonzero (no anharmonicity).

(b) When a = 0 and b is nonzero (anharmonic part only).

Solution. (a) When V = ax2, the probability of V < v, P(V < v), is:

P(ax2 < v) = P(−
√

v
a < x <

√
v
a) =

1√
2πσ2

√
v
a∫

−
√

v
a

e−(x−µ)2/2σ2
dx.

Differentiating with respect to v gives the PDF, pV (v) =
dP(V <v)

dv :

e−(
√

v/a−µ)2/2σ2

√
2πσ2

· d
dv

√
v/a−(lower limit) =

e−(
√

v/a−µ)2/2σ2
+ e−(

√
v/a+µ)2/2σ2

√
8avπσ2

(b) When V = bx4 the probability of V < v, P(V < v), is (imaginary roots
are discarded, because probabilities are non-negative quantities):

P(bx4 < v) = P(−(v/b)
1
4 < x < (v/b)

1
4 ) =

1√
2πσ2

(v/b)1/4∫
−(v/b)1/4

e−(x−µ)2/2σ2
dx.
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The PDF is obtained by differentiation, pV (v) =
dP(V <v)

dv :

e−((v/b)1/4−µ)2/2σ2

√
2πσ2

· d
dv

(v/b)1/4 − (lower limit)

=
1

v3/4
e−((v/b)1/4−µ)2/2σ2

+ e−((v/b)1/4+µ)2/2σ2

√
32πσ2 b1/4

■

Problem 53. The joint density of X and Y is

pXY (x, y) =

{
2 if 0 ≤ x ≤ y ≤ 1;

0 otherwise.

Another rv Z is independent from X and Y and has the same distribution
as X. (a) Find the covariance matrix of the vector (X,Y, Z). (b) Calculate
the first two moments of a new rv that is the sum of all 3, i.e. X+Y +Z. (c)
Compute cov(X,Y + Z). (d) Compute the covariance matrix of the vector
(X,X + Z, Y + Z).

Solution. (a) Let v = (X,Y, Z). Then, since Z is independent of X and
Y , we can immediately put 0’s in a few places:

cov(v,v) =

cov(X,X) cov(X,Y ) cov(X,Z)
cov(Y,X) cov(Y, Y ) cov(Y, Z)
cov(Z,X) cov(Z, Y ) cov(Z,Z)


=

 var(X) cov(X,Y ) 0
cov(Y,X) var(Y ) 0

0 0 var(Z)


For var(X) and var(Y ), we need the marginal PDFs:

pX(x) =

∫
{y∈[0,1]|y>x}

pXY (x, y)dy =

∫ 1

x
2dy = 2 y|y=1

y=x = 2(1− x).

pY (y) =

∫
{x∈[0,1]|x<y}

pXY (x, y)dx =

∫ y

0
2dx = 2 x|x=y

x=0 = 2y.

where 0 ≤ x, y ≤ 1. Using the marginal PDFs,

EX =

∫ 1

0
xpX(x)dx =

∫ 1

0
x2(1− x)dx =

1

3
,

var(X) =

∫ 1

0
(x− 1

3
)2pX(x)dx =

1

18
.

EY =

∫ 1

0
ypY (y)dy =

∫ 1

0
y2ydx =

2

3
,
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var(Y ) =

∫ 1

0
(y − 2

3
)2pY (y)dy =

1

18
.

Finally, for cov(X,Y ) we use the joint PDF:

cov(X,Y ) = E(X − EX)(Y − EY ) =

∫ 1

0
dx

∫ 1

x
(x− 1

3
)(y − 2

3
)2 dy

=

∫ 1

0

1

9
(1− 3x)2(1− x)dx =

1

36
.

The covariance matrix is:

cov(v,v) =

 1
18

1
36 0

1
36

1
18 0

0 0 1
18

 .
(b) First moment:

m1 = E(X + Y + Z) = EX + EY + EZ = 2EX + EY =
2

3
+

2

3
=

4

3
.

Second moment:

m2 = E(X + Y + Z)2 = EX2 + EY 2 + EZ2 + 2EXY + 2EY Z + 2EXZ.
Since Z is independent of X and Y and has the same distribution as X:

m2 = 2EX2 + EY 2 + 2EXY + 2EY EZ + 2EXEZ.
where

EX2 =

∫ 1

0
x22(1− x)dx =

1

6

EY 2 =

∫ 1

0
y22ydx =

1

2

EXY =

∫ 1

0
dx

∫ 1

x
xy2 dy =

∫ 1

0
(x− x3)dx =

1

4
.

Therefore,

m2 = 2 · 1
6
+

1

2
+ 2 · 1

4
+ 2 · 2

3
· 1
3
+ 2 · 1

3
· 1
3
= 2.

(c) By linearity, and independence of Z from X:

cov(X,Y + Z) = cov(X,Y ) + cov(X,Z) = cov(X,Y ) =
1

36
.

(d) Let v = (X,X + Z, Y + Z). The covariance matrix is:

cov(v,v) =

 var(X) cov(X,X + Z) cov(X,Y + Z)
cov(X + Z,X) var(X + Z) cov(X + Z, Y + Z)
cov(Y + Z,X) cov(Y + Z,X + Z) var(Y + Z)


=

[
var(X) cov(X,X)+cov(X,Z) cov(X,Y )+cov(X,Z)

cov(X,X)+cov(Z,X) var(X+Z) cov(X,Y )+cov(X,Z)+cov(Y,Z)+cov(Z,Z)
cov(Y,X)+cov(Z,X) cov(X,Y )+cov(X,Z)+cov(Y,Z)+cov(Z,Z) var(Y+Z)

]
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Since Z is independent of X and Y , this simplifies to:

=

[
var(X) var(X) cov(X,Y )
var(X) var(X) cov(X,Y )+var(Z)
cov(Y,X) cov(X,Y )+var(Z) var(Y )

]
=

 1
18

1
18

1
36

1
18

1
18

1
36 + 1

18
1
36

1
36 + 1

18
1
18


=

 1
18

1
18

1
36

1
18

1
18

3
36

1
36

3
36

1
18


■

Problem 54. The covariance matrix of the vector (X,Y, Z) iscov(X,X) cov(X,Y ) cov(X,Z)
cov(Y,X) cov(Y, Y ) cov(Y,Z)
cov(Z,X) cov(Z, Y ) cov(Z,Z)

 =

2 0 1
0 4 −1
1 −1 4

 .
(a) Calculate the variance of the rv X+Y +Z. (b) Compute cov(X,Y +Z).
(c) Compute the covariance matrix of the random vector (X,X+Z, Y +Z).

Solution. (a)

var(X+Y +Z) = cov(X+Y +Z,X+Y +Z) = 2+4+4+1+1−1−1 = 10.

(b)
cov(X,Y + Z) = cov(X,Y ) + cov(X,Z) = 0 + 1 = 1.

(c) Let v = (X,X + Z, Y + Z). Then,

cov(v,v) =

 cov(X,X) cov(X,X + Z) cov(X,Y + Z)
cov(X + Z,X) cov(X + Z,X + Z) cov(X + Z, Y + Z)
cov(Y + Z,X) cov(Y + Z,X + Z) cov(Y + Z, Y + Z)


=

[
cov(X,X) cov(X,X)+cov(X,Z) cov(X,Y )+cov(X,Z)

cov(Z,X)+cov(X,X) cov(X,X)+2cov(X,Z)+cov(Z,Z) cov(X,Y )+cov(X,Z)+cov(Z,Y )+cov(Z,Z)
cov(Y,X)+cov(Z,X) cov(Y,X)+cov(Y,Z)+cov(Z,X)+cov(Z,Z) cov(Y,Y )+2cov(Y,Z)+cov(Z,Z)

]

=

 2 2 + 1 0 + 1
1 + 2 2 + 2(1) + 4 0 + 1 + (−1) + 4
1 + 0 0 + (−1) + 1 + 4 4 + 2(−1) + 4

 =

2 3 1
3 8 4
1 4 6


■

Problem 55. Distribution of the sum of two random variables. (a) Prove
that the sum of two discrete and independent rv’s (e.g. X + Y , where
X and Y are independent) has distribution function (PMF) given by the
convolution of two PMFs (one for X, one for Y ), i..e,

P(X + Y = k) =
k∑

l=0

P(X = l)P(Y = k − l).
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Let X and Y be two independent rv’s. X is Poisson with parameter 2. Y is
Poisson with parameter 3. (b) Find the expectation and the variance of the
sum X+Y . (c) Find the probability mass function (PMF) of the rv X+Y .

Solution. (a) Let Z = X + Y (X and Y are independent), then

P(X + Y = k) =
∑

x+y=k

P(X = x, Y = y)

=

k∑
x=0

P(X = x, Y = k − x)

=

k∑
x=0

P(X = x)P(Y = k − x)

(b) For Z Poisson with parameter λ, EZ = var(Z) = λ. Thus, EX = 2,
EY = 3 and E(X+Y ) = EX+EY = 2+3 = 5. Next, we have var(X) = 2,
var(Y ) = 3 and since X and Y are independent, we have var(X + Y ) =
var(X) + var(Y ) = 2 + 3 = 5. Then,

P(X + Y = k) =
k∑

x=0

e−λλx

x!

e−µµk−x

(k − x)!

=
e−(λ+µ)

k!

k∑
x=0

(
k

x

)
λxµk−x

=
e−(λ+µ)(λ+ µ)k

k!
and the sum of two Poisson rv’s is also Poisson with additive parameters
λ+µ. Therefore, X+Y is Poisson with parameter 2+3=5. The distribution
is P(X + Y = k) = e−5ek/k! for k = 0, 1, 2, . . . . ■

Problem 56. X1, X2, . . . , Xn are independent rv’s, such that Xj is Poisson
with parameter 2, j = 1, 2, . . . , n. Find the expectation, the variance and
standard deviation of the variable:

X =
X1 +X2 + · · ·+Xn

n
.

Solution. If Z is Poisson with parameter λ, EZ = var(Z) = λ. Here, Xj

is Poisson with parameter 2. We have EX = E 1
n

∑n
j=1Xj =

∑n
j=1

1
nEXj =

1
nn ·2 = 2. Since X1, . . . , Xn are independent we have var(X) = 1

n2 var(X1+

X2+· · ·+Xn) =
1
n2 (var(X1)+· · ·+var(Xn)) =

1
n2n·2 = 2

n and σX =
√

2
n . ■

Problem 57. Let X ∼ N (0, 1) and Y ∼ N (0, 4) be independent rv’s. What
is the conditional density of Z = X+Y givenX = 3 (i.e. under the condition
X = 3).
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Solution. Recall that the sum of two independent Gaussians is also Gauss-
ian with additive means and variances. Since Z = X + Y we have that
Z given X = 3 has the same distribution as 3 + Y given X = 3. Since
Y is independent from X and 3 + Y ∼ N (3, 4) this yields that the rv
Z|X = 3 ∼ N (3, 4). Thus, pZ|X=3(z) =

1
2
√
2π

exp(−1
8(z − 3)2). ■

Problem 58. X1, X2, . . . , X10 are iidrv’s with Xj ∼ N (0, 4), j = 1, . . . , 10.
Find the conditional density of X1 under the condition X1+X2+· · ·+X10 =
3.

Solution. We have Y = X2+X3+ · · ·+X10 ∼ N (0, 9 ·4) = N (0, 36). Using
the definition of conditional probability

pX1|X1+Y=3(x1) =
pX1,X1+Y (x1, 3)

pX1+Y (3)
=
pX1,Y (x1, 3− x1)

pX1+Y (3)
.

Since X1 and Y are independent, we have

pX1,Y (x1, 3− x1) = pX1(x1)pY (3− x1)

=
1

2
√
2π

exp(−1

8
(x1)

2)
1

6
√
2π

exp(− 1

72
(3− x1)2).

We also haveX1+Y ∼ N (0, 10·4) and pX1+y(3) =
1√
80π

exp(− 1
803

2). Finally

we find that pX1|X1+Y=3(x1) =
1√

2π·18/5
exp(− 1

2·18/5(x1 − 0.3)2). ■

Problem 59. Exercise on conditional expectations: (a) By applying the
above definitions, check the trivial case E(X|X) = X. Here, X is a random
variable, i.e., E[X|X](ω) = X(ω). (b) Check also that E[Y |X] = E[Y ] when
X and Y are independent. Here, E[Y ] is the random variable taking the
constant value E[Y ] for any ω, i.e. E[Y |X](ω) = E[Y ](ω).

Let X ∼ N (0, 1) and Y ∼ N (0, 4) be independent rv’s. Let Z = X +Y . (c)
Compute E[Z|X = 3] (expectation value calculated using the conditional
density of Z under the condition X = 3). (d) Calculate E[Z|X].

Solution. (a) First let’s check that E[X|X] = X. First we start with
E(X|X = x′), whose definition is E[X|X = x′] =

∫
xpX,X=x′(x)dx. Notice

that pX,X=x′(x) = δ(x − x′) is the only possible PDF (i.e. the probability
that X = x given that X = x′ can only be non-zero iff x = x′). Hence,
E[X|X = x′] = x′. Replace x′ by X and get E[X|X] = X.

(b) To prove E[Y |X] = E[Y ], we write pY |X=x(y) =
pY,X(y,x)
pX(x) = pY (y)pX(x)

pX(x) =

pY (y) sinceX and Y are independent. Then, E[Y |X = x] =
∫
ypY |X=x(y)dy =∫

ypY (y)dy = E[Y ]. Therefore, E[Y |X] = E[Y ].

(c) From Problem 57 we have already calculated the conditional density of Z.
Using that density, we get that E[Z|X = 3] = 3. (d) Conditional expectation
is linear: E[Z|X] = E[X + Y |X] = E[X|X] +E[Y |X] = X +E[Y ] = X. ■
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Problem 60. Let X1, . . . , X10 be iidrv with Xj ∼ N (0, 4), j = 1, . . . , 10.
Let S = X1 + · · ·+X10. (a) Calculate E[X1|S = 3]. (b) Calculate E[X1|S].

Solution. (a) Using the conditional distribution obtained in Problem 6,
we get E[X1|S = 3] = 0.3. Another solution: by symmetry, for j =
1, 2, . . . , 10 we get E[X1|S = 3] = E(Xj |S = 3). Hence 10E[X1|S = 3] =∑10

j=1 E[X1|S = 3] =
∑10

j=1 E[Xj |S = 3] = E[
∑10

j=1Xj |S = 0] = E[S|S =

3] = 3. Hence E[X1|S = 3] = 0.3. (b) In a similar way as in (a), using
symmetry we get E[X1|S] = S/10. ■

Problem 61. Choose a space craft pilot in the nearest galaxy at random
and call N the number of accidents during a year for this pilot. The number
of accidents N depends on another random variable, P , which quantifies
the pilot’s skills. The number of accidents given some skillset P = p has
Binomial(4, p) distribution, i.e., N |P = p ∼ Binomial(4, p). The parame-
ter P among the population of pilots has P ∼ U([0, 1]) (uniform distribu-
tion). (a) Find the marginal distribution of N . (b) Find E[N |P ]. (c) Find
EN .

Solution. (a) The marginal distribution of N reads as

P(N = n) =

∫ 1

0
P(N = n|P = p)pP (p)dp =

∫ 1

0

(
4

n

)
pn(1− p)4−ndp

for n = 0, 1, 2, 3, 4 (this may be calculated explicitly but it is a bit time
consuming). (b) N |P = p ∼ Binomial(4, p) we have E[N |P = p] = 4p thus

E[N |P ] = 4P . (c) We have EN = E[E[N |P ]] = E[4P ] = 4EP = 4
∫ 1
0 p·1dp =

41
2 p

2
∣∣p=1

p=0
= 2. ■

Problem 62. Let X be a random variable with the following distribution
function (PMF):

P(X = 1) = 0.2

P(X = 2) = 0.3

P(X = 3) = 0.3

P(X = 4) = 0.2

Find EX, EX2, the variance and skewness.

Solution. The mean is:

E(X) = 1 ∗ 0.2 + 2 ∗ 0.3 + 3 ∗ 0.3 + 4 ∗ 0.2 = 2.5

Second moment:

E(X2) = 1 ∗ 0.2 + 4 ∗ 0.3 + 9 ∗ 0.3 + 16 ∗ 0.2 = 7.3

Variance:

σ2 = var(X) = E(X2)− (EX)2 = 7.3− (2.5)2 = 1.05
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Skewness:

E(X − EX)3

σ3

=
0.2 ∗ (1− 2.5)3 + 0.3 ∗ (2− 2.5)3 + 0.3 ∗ (3− 2.5)3 + 0.2 ∗ (4− 2.5)3

(1.05)3/2
= 0

■

Problem 63. A random variable X has binomial distribution B(3, 0.4). See

https://en.wikipedia.org/wiki/Binomial distribution

Find P(X = 0), P(X = 2) and P(X = 10). Calculate the standard deviation
of X.

Solution. Variance is npq, where p = 0.4 and q = 1 − p = 0.6. Thus,
npq = 0.72. Standard deviation is the square root:

√
0.72 ≈ 0.8485. The

PMF is (
n

k

)
pkqn−k

P(X = 0) =

(
3

0

)
p0q3−0 =

3!

0!(3− 0)!
(0.4)0(0.6)3 = 0.63 = 0.216

P(X = 2) =

(
3

2

)
p2q3−2 =

3!

2!(3− 2)!
(0.4)2(0.6)1 = 0.288

P(X = 10) does not exist since 10>3. ■

Problem 64. Let X be Poisson with parameter 4. For which value k =
0, 1, . . . doesX attain the greatest probability? Calculate or estimate P(X ≤
3) and P(X ≥ 5).

Solution. For k = 0, 1, . . . we have P(X=k+1)
P(X=k) = e−44k+1/(k+1)!

e−44k/k!
= 4

k+1 . Thus,
P(X=k+1)
P(X=k) > 1 for k = 0, 1, 2, P(X=k+1)

P(X=k) = 1 for k = 3 and P(X=k+1)
P(X=k) < 1 for

k = 4, 5, . . . and we have P(X = 0) < P(X = 1) < P(X = 2) < P(X = 3) =
P(X = 4) > P(X = 5) > . . . . X attains with the greatest probability values
3 and 4.

■

Problem 65. Find the value of the constant c such that f : R→ R,

pX(x) =

{
0 if x < 1
c
x2 if x ≥ 1

is a bona fide PDF of a continuous rv X. Calculate P(X ≤ 2), P(X = 2),

P(X ∈ [2, 3]). Compute EX2 and E
√
X.
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Solution. We calculate 1 =
∫∞
−∞ pX(x)dx =

∫∞
1

c
x2dx =

∫∞
1 cx−2dx =

cx
−2+1

−2+1

∣∣∣∞
1

= c(− 1
x)
∣∣∞
1

= c(− 1
∞ − (−1

1)) = c(0 + 1
1) = c. Therefore, c = 1.

We have P(X ≤ 2) =
∫ 2
−∞ pX(x)dx =

∫ 2
1

1
x2dx = (− 1

x)
∣∣2
1
= −1

2 − (−1
1) =

1
2 ,

P(X = 2) =
∫ 2
2 pX(x)dx = 0, P(X ∈ [2, 3]) =

∫ 3
2 pX(x)dx =

∫ 3
2

1
x2dx =

(− 1
x)
∣∣3
2
= −1

3 − (−1
2) = 1

6 . Next, we calculate EX2 =
∫∞
−∞ x2pX(x)dx =∫∞

1 x2 1
x2dx = x|∞1 = ∞ − 1 = ∞, thus EX2 does not exist. E

√
X =∫∞

−∞ x1/2pX(x)dx =
∫∞
1 x1/2 1

x2dx =
∫∞
1 x−3/2dx = x−3/2+1

−3/2+1

∣∣∣∞
1

= 0− 1
−1/2 =

2, thus E
√
X is finite. ■

Problem 66. Compute the fourth moment of the normal random variable.

Solution. Solutions can be found at:

https://arxiv.org/pdf/1209.4340.pdf

https://www.le.ac.uk/users/dsgp1/COURSES/MATHSTAT/6normgf.pdf

Integrals can be computed explicitly. Let Ik(a) denote:

Ik(a) =
1√
2π

∫ ∞

a
uke−u2/2du

The k = 0 case is given in terms of the standard normal CDF:

I0(a) =
1√
2π

∫ ∞

a
e−u2/2du = 1− Φ(a)

The k = 1 case is obtained by direct integration:

I1(a) =
1√
2π

∫ ∞

a
ue−u2/2du = − 1√

2π

[
e−u2/2

]∞
a

=
1√
2π
e−a2/2.

The k = 2 case is obtained by integration-by-parts:

I2(a) =
1√
2π

∫ ∞

a
u2e−u2/2du = − 1√

2π

[
ue−u2/2

]∞
a

+
1√
2π

∫ ∞

a

[
e−u2/2

]
du

=
1√
2π
ae−a2/2 + (1− Φ(a))

These are solved using integration by parts For k = 3, we can also integrate
by parts:

I3(a) =
1√
2π

∫ ∞

a
u3e−u2/2du =

1√
2π

∫ ∞

a
u2
[
ue−u2/2

]
du

=− 1√
2π

[
u2e−u2/2

]∞
a

+ 2
1√
2π

∫ ∞

a
u
[
e−u2/2

]
du

=
1√
2π
a2e−a2/2 +

1√
2π

2e−a2/2
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For k = 4, we have

I4(a) =
1√
2π

∫ ∞

a
u4e−u2/2du =

1√
2π

∫ ∞

a
u3
[
ue−u2/2

]
du

=− 1√
2π

[
u3e−u2/2

]∞
a

+ 3
1√
2π

∫ ∞

a
u2
[
e−u2/2

]
du

The last integral was already solved in the k = 2 case. Substituting that
results gives:

I4(a) =
1√
2π
a3e−a2/2 + 3

[
1√
2π
ae−a2/2 + (1− Φ(a))

]
We are, of course, interested in the limit a → −∞. For a normal N (µ, σ2)
rv we simply make the substitution u = x−µ

σ and use the above formulae.
Specifically,

EX4 =

∫ ∞

−∞
x4

1√
2πσ2

e−(x−µ)2/2σ2
dx

The substitution u = x−µ
σ , du = dx/σ:

EX4 =

∫ ∞

−∞
(σu+ µ)4

1√
2π
e−u2/2du

Expanding

(σu+ µ)4 = µ4 + σ4u4 + 4σ3u3µ+ 6σ2u2µ2 + 4µ3σu

gives

EX4 =
1√
2π

∫ ∞

−∞

[
µ4 + σ4u4 + 4σ3u3µ+ 6σ2u2µ2 + 4µ3σu

]
e−u2/2du

=µ4I0(−∞) + σ4I4(−∞) + 6σ2µ2I2(−∞) + 4µ2σI1(−∞)

=µ4 + σ4 · 3 + 6σ2µ2 + 4µ2σ · 0 = µ4 + 3σ4 + 6σ2µ2

The fourth moment of the normal distribution N (µ, σ2) is: µ4 + 6µ2σ2 +
3σ4. ■

Problem 67. Find the formula for P(X > t) of X and the CDF of X when
X has the PDF:

pX(x) =

{
0 if x < 1
2
x3 if x ≥ 1

Solution. The CDF is P(X ≤ t) =
∫ t
−∞ pX(x)dx. For t < 1 we have 0 since

the PDF is zero in that region. For t ≥ 1, P(X ≤ t) =
∫ t
1

2
x3dx = 2x−3+1

−3+1

∣∣∣t
1
=

2
(
t−2

−2 −
1−2

−2

)
= 1− 1

t2
. Finally, P(X > t) = 1−P(X ≤ t) = 1 for t < 1 and

1
t2

for t ≥ 1. ■
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Problem 68. Let rv X be Erlang-distributed with parameters 2 and 5, see
for details:

https://en.wikipedia.org/wiki/Erlang distribution

Find the formula for P(X > t) of X and the CDF of X.

Solution. Erlang(2,5) distribution has PDF 52xe−5x. Then,
∫
xe−5xdx =∫

x(−1
5e

−5x)′dx = - x1
5e

−5x +
∫
x′ 15e

−5xdx = -15xe
−5x + 1

5

∫
e−5xdx = -

1
5xe

−5x - 1
52
e−5x = - 1

25e
−5x(5x+1). For t > 0, P(X > t) =

∫∞
t 25xe−5xdx =

25
∫∞
t xe−5xdx− e−5x(5x+ 1)

∣∣∞
x=t

= 0+e−5t(5t+1) while for t ≤ 0 we have
P(X > t) = 1. The CDF of X is P(X ≤ t) = 1− P(X > t), which equals 1
for t < 0 and 1− e−5t(5t+ 1) for t ≥ 0. ■

Problem 69. Let the rv X have the following PMF (k = 1, 2, . . . ):

P(X = k) =
1

k4
− 1

(k + 1)4
.

Find the CDF of X. Compute P(X ≥ k) for k = 0, 1, 2, . . . .

Solution. For k = 1, 2, . . . we have P(X ≤ k) =
∑k

i=1 P(X = i) =∑k
i=1

(
1
i4
− 1

(i+1)4

)
= 1

14
− 1

24
+ 1

24
− 1

34
+ · · · + 1

k4
- 1

(k+1)4
= 1 − 1

(k+1)4
.

Now, for any t ∈ R we have P(X ≤ t) = 0 for t < 1. Also, P(X ≤
t) = P(X ≤ ⌊t⌋) = 1 − 1

(⌊t⌋+1)4
for t ≥ 1. To calculate P(X ≥ k) for

k = 1, 2, . . . we write P(X ≥ k) =
∑∞

i=k P(X = i) =
∑∞

i=k

(
1
i4
− 1

(i+1)4

)
=

1
k4
− 1

(k+1)4
+ 1

(k+1)4
− 1

(k+2)4
+ · · · = 1

k4
. ■

Problem 70. Let (X,Y ) be a pair of continuous rv’s whose joint density is

pXY (x, y) =
1

2
1[0,1](x)1[0,2](y),

where 1A(x) is the indicator function of the set A, i.e.

1A(x) =

{
1 if x ∈ A
0 otherwise

Find the CDF of the vector (X,Y ).

Solution. Let s ≥ 0, t ≥ 0. The CDF is:

P(X < s, Y < t) =
1

2

∫ s

0
1[0,1](x)dx

∫ t

0
1[0,2](y)dy =

(s ∧ 1)(t ∧ 2)

2

where u ∧ v is the minimum of u and v. ■

Problem 71. The joint PMF of (X,Y ) is
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Y=1 2 3

X=0 0.2 0.1 0
1 0.1 0.3 0
2 0 0 0.3

Find the marginal probability mass functions of X and Y . Find the condi-
tional probabilities P(X = 0|Y = 1), P(X = 1|Y = 1), P(X = 2|Y = 1),
P(X = 0|Y = 2), P(X = 1|Y = 2), P(X = 2|Y = 2).

Solution. The definition of conditional probability is P(A|B) = P(A∩B)
P(B) . To

calculate

P(X = 0|Y = 1) =
P(X = 0, Y = 1)

P(Y = 1)
=

0.2

0.3
=

2

3
,

where P(Y = 1) = 0.2 + 0.1 + 0 = 0.3 and P(X = 0, Y = 1) = 0.2. Other
conditional probabilities are calculated similarly. We find:

P(X = 1|Y = 1) =
0.1

0.3
=

1

3

P(X = 2|Y = 1) =
0

0.3
= 0

P(X = 0|Y = 2) =
0.1

0.4
=

1

4

P(X = 1|Y = 2) =
0.3

0.4
=

3

4

P(X = 2|Y = 2) =
0

0.4
= 0

■

Problem 72. The random vector (X,Y ) is uniformly distributed over the
following region in the 2D plane:

D = {(x, y) ∈ R2 : x2 + y2 ≤ 2}
i.e., the joint PDF is

pXY (x, y) =
1

2π
1D(x, y) =

{
1
2π if x2 + y2 ≤ 2;

0 if x2 + y2 > 2.

Find the marginal densities of X and Y .

Solution. We apply the formula

pX(x) =

∫ ∞

−∞
pXY (x, y)dy =

1

2π

∫ ∞

−∞
1D(x, y)dy

For x < −
√
2 and x >

√
2 we have x2 + y2 > 2. Thus, 1D(x, y) = 0

and pX(x) = 0. Assume that x ∈ [−
√
2,
√
2]. We have 1D(x, y) = 1

iff y ∈ [−
√
2− x2,

√
2− x2] and otherwise 1D(x, y) = 0. Then, pX(x) =
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1
2π

∫∞
−∞ 1D(x, y)dy = 1

2π

∫ √
2−x2

−
√
2−x2 1dy = 1

π

√
2− x2. Similarly, pY (y) = 0 for

y < −
√
2 and y >

√
2, and pY (y) =

1
π

√
2− y2 for y ∈ [−

√
2,
√
2]. ■

Problem 73. Prove that X and Y , whose joint PDF is defined in Prob-
lem 72, are statistically independent. Calculate the covariance between X
and Y .

Solution. Using the marginal densities obtained in Problem 72,

pX(x) = 1
π

√
2− x2 for x ∈ [−

√
2,
√
2]

pY (y) =
1
π

√
2− y2 for y ∈ [−

√
2,
√
2],

and

pXY (x, y) =
1

2π
1D(x, y) =

{
1
2π if x2 + y2 ≤ 2;

0 if x2 + y2 > 2.

D ={(x, y) ∈ R2 : x2 + y2 ≤ 2}
we find that pXY (x, y) ̸= pX(x)pY (y). Thus X and Y are not statistically
independent. The covariance is defined as

cov(X,Y ) = E[(X − EX)(Y − EY )] = E[XY ]− E[X]E[Y ]

Via direct computation:

E[XY ] =
1

2π

∫ ∞

−∞
dx

∫ ∞

−∞
xy 1D(x, y) dy =

1

2π

∫∫
D
xy dxdy

=
1

2π

∫ 2

−2
dx

√
2−x2∫

−
√
2−x2

xy dy

=
1

2π

∫ 2

−2
x
1

2

[
(2− x2)− (2− x2)

]
dx = 0

Also, we have that E[X] = 0 and E[Y ] = 0 since their marginal densities are
symmetric. Therefore, cov(X,Y ) = 0. This is an instance of two random
variables that are statistically independent but uncorrelated. ■

Problem 74. Let X and Y be rv’s whose joint PMF is given by:

Y=1 2 3

X=0 0.2 0.1 0
1 0.1 0.3 0
2 0 0 0.3

Compute the covariance and correlation matrix of the random vector (X,Y ).
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Solution. Let X = (X,Y ). The covariance matrix is:

cov(X) =

[
cov(X,X) cov(X,Y )
cov(Y,X) cov(Y, Y )

]
=

[
E(X − µX)2 E(X − µX)(Y − µY )

E(Y − µY )(X − µX) E(Y − µY )2
]

The correlation matrix is the covariance matrix whose entries are normalized
(see correlation coefficient):

corr(X) =

 E(X−µX)2

σ2
X

E(X−µX)(Y−µY )
σXσY

E(Y−µY )(X−µX)
σXσY

E(Y−µY )2

σ2
Y

 =

[
1 E(X−µX)(Y−µY )

σXσY
E(Y−µY )(X−µX)

σXσY
1

]
Computing the matrix elements:

µX = EX = 0.4 + 2 ∗ 0.3 = 1

µY = EY = 1 ∗ (0.2 + 0.1) + 2 ∗ (0.1 + 0.3) + 3 ∗ (0.3) = 2

σ2X = E(X−µX)2 = (0.2+0.1)∗(0−1)2+(0.1+0.3)∗(1−1)2+0.3∗(2−1)2 = 0.6

σ2Y = E(Y−µY )2 = (0.2+0.1)∗(1−2)2+(0.1+0.3)∗(2−2)2+0.3∗(3−2)2 = 0.6

The off diagonal element is:

E(X − µX)(Y − µY ) =0.2 ∗ (0− 1)(1− 2) + 0.1 ∗ (0− 1)(2− 2)

+ 0.1 ∗ (1− 1)(1− 2) + 0.3 ∗ (1− 1)(2− 2) + 0.3 ∗ (2− 1)(3− 2) = 0.5

Thus, we arrive at:

cov(X) =

[
1 0.5
0.5 2

]
, corr(X) =

[
1 0.25

0.25 1

]
■

Problem 75. Let rv X and Y have a joint PDF

pXY (x, y) =

{
1
2 if 0 ≤ x ≤ y ≤ 2;

0 otherwise
.

Are X and Y statistically independent? Compute the correlation matrix of
the random vector (X,Y ).

Solution.

EXY =

∫ ∞

−∞

(∫ ∞

−∞
xy pXY (x, y)dy

)
dx =

∫ 2

0

(∫ 2

x

1

2
dy

)
dx =

1

2

∫ 2

0
x

(∫ 2

x
ydy

)
dx

=
1

2

∫ 2

0
x
1

2
y2
∣∣y=2

y=x
dx =

1

4

∫ 2

0
x(4− x2)dx =

1

4

∫ 2

0
(4x− x3)dx =

1

4
(4
1

2
x2 − 1

4
x4)

∣∣∣∣x=2

x=0

=
1

4
(2 · 22 − 1

4
24) = 1.
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Next,

EX =

∫ ∞

−∞
x

(∫ ∞

−∞
pXY (x, y)dy

)
dx =

∫ 2

0
x

(∫ 2

x

1

2
dy

)
dx =

1

2

∫ 2

0
x

(∫ 2

x
1dy

)
dx

=
1

2

∫ 2

0
x · y|y=2

y=x dx =
1

2

∫ 2

0
x(2− x)dx =

1

2

∫ 2

0
(2x− x2)dx =

1

2
(2
1

2
x2 − 1

3
x3)

∣∣∣∣x=2

x=0

=
1

2
(22 − 1

3
23) =

2

3
and

EX2 =

∫ ∞

−∞
x2
(∫ ∞

−∞
pXY (x, y)dy

)
dx =

∫ 2

0
x2
(∫ 2

x

1

2
dy

)
dx =

1

2

∫ 2

0
x2
(∫ 2

x
1dy

)
dx

=
1

2

∫ 2

0
x2 · y|y=2

y=x dx =
1

2

∫ 2

0
x2(2− x)dx =

1

2

∫ 2

0
(2x2 − x3)dx

=
1

2

(
2
1

3
x3 − 1

4
x4
)∣∣∣∣x=2

x=0

=
1

2

(
2
1

3
23 − 1

4
24
)

=
2

3
.

We also have

EY =

∫ ∞

−∞
y

(∫ ∞

−∞
pXY (x, y)dx

)
dy =

∫ 2

0
y

(∫ y

0

1

2
dx

)
dy =

1

2

∫ 2

0
y

(∫ y

0
1dx

)
dy

=
1

2

∫ 2

0
y · x|x=y

x=0 dy =
1

2

∫ 2

0
y2dy =

1

2

1

3
y3
∣∣y=2

y=0
=

1

6
23 =

4

3

and

EY 2 =

∫ ∞

−∞
y2
(∫ ∞

−∞
pXY (x, y)dx

)
dy =

∫ 2

0
y2
(∫ y

0

1

2
dx

)
dy =

1

2

∫ 2

0
y2
(∫ y

0
1dx

)
dy

=
1

2

∫ 2

0
y2 · x|x=y

x=0 dy =
1

2

∫ 2

0
y3dy =

1

2

1

4
y4
∣∣y=2

y=0
=

1

8
24 = 2.

Then,

ρ(X,Y ) =
cov(X,Y )

σXσY
=

EXY − EXEY√
EX2 − (EX)2

√
EY 2 − (EY )2

=
1− 2

3
4
3√

2
3 − (23)

2
√
2− (43)

2
=

1
9√
2
9

√
2
9

=
1

2

and the correlation matrix of (X,Y ) reads[
1 1

2
1
2 1

]
.

Since ρ(X,Y ) ̸= 0 the variables X and Y are dependent. ■

Problem 76. There is a bridge in Durham, NC nicknamed the “can opener”
bridge. Watch this 10-minutes long compilation:
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https://www.youtube.com/watch?v=USu8vT tfdw

The meaning of the bridge’s name should be apparent from this video. Con-
sider all oversized trucks shown in the video. The trucks either get through
with significant damage (can opener) or with minimal damage. We consider
2 different scenarios:

(A) While the truck is significantly oversized, the truck driver goes through
anyways, causing the truck to undergo carnage and decapitation.

(B) Truck either follows the sign and turns away, or goes through anyways
and the truck suffers minimal damage (small bump, then backing out) or
barely scraping under (lucky driver).

Count the number of times you observe scenarios A and B. From this data,
assign probabilities for events A and B. Suppose that type A events are
associated with a low IQ truck driver (IQ=60), whereas type B events are
associated with a higher IQ driver (IQ=140). Compute the average IQ of
a truck driver in Durham, NC. (Note: This problem is a joke; we are not
implying that truck drivers from anywhere are idiots.)

Solution. Suppose we count 15 severely damaged trucks and 5 mildly dam-
aged ones. The probability of A is

P(A) =
15

20
= 0.75

The probability of B is:

P(B) =
5

20
= 0.25

The average IQ is:

E(IQ) = IQ(A) · P(A) + IQ(B) · P(B) = 60 · 0.75 + 140 · 0.25 = 80.

■

Problem 77. Watch 10 minutes of traffic video (preferably traffic that is
not too dense, so you are able to count events). This webcam appears
suitable:

https://www.youtube.com/watch?v=5 XSYlAfJZM

Choose a landmark such as a line on the road. Pick a lane of traffic. Count
the time interval τ between consecutive vehicles crossing that lane. Plot a
histogram of the time intervals. Compute the average ⟨τ⟩. What distribution
does τ follow? Fit the histogram to a suitable distribution. Obtain the
parameters of the distribution.
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Solution. An example data set is:

By inspection of this graph, ⟨τ⟩ ≈ 4 · 10−4 hours. The distribution is
called “headway distribution” or gap distribution. The commonly used
distributions include the “displaced exponential” (for low-medium flows)
and “Schuhl’s composite exponential” (for normal-heavy flows) distribu-
tions. ■

Problem 78. For the traffic problem (#2) pick a time interval, say 4 min-
utes. Count the number of cars, n, that pass through the intersection/line
(in a given lane) during that time interval. Plot of histogram of n. Find the
distribution of n. Obtain the parameters of the distribution.

Solution. Suppose that we have 180 time windows (each lasting 4 seconds)
and record the following observations (x: number of vehicles arriving per 4
second interval):
x Obs. freq. Total vehicles Probability P (x) Theoretical freq.
0 94 0 0.539 97.0
1 63 63 0.333 59.9
2 21 42 0.103 18.5
3 2 6 0.021 3.8
> 3 0 0 0.004 0.8
Total 180 111 1.000 180.0
To get the histogram, we plot the vector of observed frequencies vs x. In
MATLAB, we could type

plot([94 63 21 2 0],’o’);

The graph doesn’t quite look like an exponential decay. On the other hand,
a Poisson distribution seems suitable. The probability distribution function
for Poisson takes the form:

P (k) =
mke−m

k!
where λ is a parameter to be derived from the data. Its physical interpre-
tation is the average number of cars per 4-second time interval. Since there
are 180 time intervals in our experiment, and the total number of vehicles
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observed is 111:

m =
total vehicles

total periods
=

111

180
= 0.617; e−.617 = .539

P (x) =
(0.617)x

x!
e−.617 =

(.617)x(.539)

x!
In the above table the column P (x) is the probability calculated using the
Poisson formula. The calculated “theoretical frequency” is equal to 180
P (x). ■

Problem 79. For problems 76, 77 and 78 describe the probability space,
the set of elementary outcomes, the random variable and the random events
considered.

Solution. For problem 76, the set of possible outcomes, Ω, is the set of all
possible trajectories ω ∈ Ω that a given truck can take (this is best left as
abstract). There are two events considered here: A(ω) (high impact), B(ω)
(low or no impact). The random variable considered here is the IQ of a
driver: IQ(ω), where ω refers to a particular truck/driver trajectory.

For problem 77, the set Ω of possible outcomes (ω ∈ Ω) is the traffic flow,
i.e. all traffic scenarios giving rise to all possible gaps between consecutive
cars (or some similar idea). We may consider events of the type {τ = t}.
Each of these events has probability zero (since the time intervals/bins have
zero duration), however, for purposes of plotting a histogram we need to con-
sider finite intervals of the form {t1 ≤ τ ≤ t2}. The random variable is τ(ω).

For problem 78, the set of outcomes is the same as in Problem 2, since the
physical random experiment is the same (traffic flow). The random variable
is n(ω), the number of cars in a given time interval. The events are of the
form {n = x}, where x is an integer value (0, 1, 2, 3, ...). ■

Problem 80. In probability theory we often use integrals over sets. This is
the same integral as you are used to, but written differently. For example,
the integral of the exponential distribution, e−x, over the set [0, 1] is:∫

[1,3]
e−xdx =

∫ 3

1
e−xdx = − e−x

∣∣3
1
= e−1 − e−3 = 0.318

Let A be a set over the positive real numbers. Denote:

Q(A) =

∫
A
e−xdx

Compute:
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(a) Q([5,∞))

(b) Q([1, 3] ∪ [3, 5])

(c) Q([0,∞))

Solution. (a) ∫ ∞

5
e−xdx = − e−x

∣∣∞
5

= e−5 ≈ 0.007

(b) ∫ 3

1
e−xdx+

∫ 5

3
e−xdx =

∫ 5

1
e−xdx ≈ 0.36114

(c) ∫ ∞

0
e−xdx = 1

■

Problem 81. The same can be done for multiple variables. For A ⊂ Rn,
define the set function:

Q(A) =

∫
· · ·
∫
A
dx1dx2 . . . dxn,

provided the integral exists. For example, if A = {(x1, x2, . . . , xn) : 0 ≤
x1 ≤ x2, 0 ≤ xi ≤ 1, for i = 2, 3, . . . , n}, then

Q(A) =

∫ 1

0

[∫ x2

0
dx1

]
dx2 ·

n∏
i=3

[∫ 1

0
dxi

]
=
x22
2

∣∣∣∣1
0

· 1 =
1

2
.

Let B = {(x1, x2, . . . , xn) : 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ 1}. Calculate the
numerical value of Q(B).

Solution.

Q(B) =

∫ 1

0

[∫ xn

0
. . .

[∫ x3

0

[∫ x2

0
dx1

]
dx2

]
. . . dxn−1

]
dxn =

1

n!

where n! = n(n− 1) . . . 3 · 2 · 1. ■

Problem 82. Solve the following problems using set theory:

(a) Find the union C1 ∪ C2 and the intersection C1 ∩ C2 of the two sets C1

and C2, where C1 = {(x, y) : 0 < x < 1, 0 < y < 3}, C2 = {(x, y) : 0 < x <
2, 2 ≤ y < 3}.

(b) Find the complement Cc of the set C with respect to the space C if
C = {(x, y) : x2 + y2 ≤ 1}, C = {(x, y) : |x|+ |y| < 1}.
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(c) Prove, using Venn diagrams, that the following statements are true:

(A ∩B)c = Ac ∪Bc

(A ∪B)c = Ac ∩Bc

Illustrate with an example. Generalize these statements to countable unions
and intersections.

(d) Consider the space C to be the set of points enclosed by a rectangle
containing the circles C1, C2 and C3. Use Venn diagrams to compare the
following sets:

C1 ∪ (C2 ∩ C3) and (C1 ∪ C2) ∩ (C1 ∪ C3)

(e) Show that the following sequences of sets, {Ck}, are nondecreasing
(nested upwards), i.e. Ck ⊂ Ck+1 for k = 1, 2, 3, . . . . For such a sequence,
define

lim
k→∞

Ck = ∪∞k=1Ck.

Take the following sequence:

Ck = {(x, y) : 1/k ≤ x2 + y2 ≤ 4− 1/k}, k = 1, 2, 3, . . .

Find the limit limk→∞Ck.
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(f) Show that the following sequence of sets, {Ck}, where
Ck = {x : 2 < x ≤ 2 + 1/k}, k = 1, 2, 3, . . . ,

is nonincreasing. A sequence of sets {An} is said to be nonincreasing if
An ⊃ An+1 for n = 1, 2, 3, . . . . In this case, we define

lim
n→∞

An = ∩∞n=1An.

Find limk→∞Ck.

(g) For every two-dimensional set C ⊂ R2, let Q(C) =
∫ ∫

C(x
2 + y2)dxdy.

If C1 = {(x, y) : −1 ≤ x ≤ 1,−1 ≤ y ≤ 1}, C2 = {(x, y) : −1 ≤ x = y ≤ 1},
and C3 = {(x, y) : x2 + y2 ≤ 1}, find Q(C1), Q(C2) and Q(C3).

(h) To join a club, a person must be either an idiot or a truck driver, or
both. Of the 35 members in this club, 25 are idiots and 17 are truck drivers.
How many persons in the club are both an idiot and a truck driver? How
will these people fare when they encounter the “can opener” bridge? (Note:
this problem is a joke; we are not implying that truck drivers are idiots.)

Solution. Union is a L-shaped region in the 2D plane defined by the coor-
dinates:

C1 ∪ C2 = {(x, y) : 0 < x < 1, 0 < y < 3 or 0 < x < 2, 2 ≤ y < 3}
Intersection is a small square

C1 ∩ C2 = {(x, y) : 0 < x < 1, 2 ≤ y ≤ 3}
(Notice the equality signs.)
The following MATLAB code can be used to plot the region

x=3*rand([1 10000]);

y=3*rand([1 10000]);

ll1=find(x>0 & x<1 & y>0 & y<3);

ll2=find(x>0 & x<2 & y>2 & y<3);

ll3=intersect(ll1,ll2);

ll3=union(ll1,ll2);

figure;

plot(x(ll3),y(ll3),’.’);

axis([0 2 0 3]);
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(b)
Cc = {(x, y) : |x|+ |y| ≥ 1 and x2 + y2 ≤ 1}

The following MATLAB code can be used to plot the region

x=rand([1 10000]);

y=rand([1 10000]);

ll1=find(x.^2 + y.^2 < 1);

ll2=find(abs(x) + abs(y) > 1);

ll3=intersect(ll1,ll2);

figure;

plot(x(ll3),y(ll3),’.’);
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(c) Generalization is:
∩i∈IAi ≡ ∪i∈IAi

∪i∈IAi ≡ ∩i∈IAi

where I is some, possibly uncountable, indexing set.
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(d)

(e) The sequence is nondecreasing since

{(x, y) : 1/k ≤ x2+y2 ≤ 4−1/k} ⊂ {(x, y) : 1/(k+1) ≤ x2+y2 ≤ 4−1/(k+1)}
for all k. The limit is

{(x, y) : 0 < x2 + y2 < 4}
Note: the equality signs are gone because the end points are not part of the
infinite union.

(f) The sequence is nonincreasing since

{x : 2 < x ≤ 2 + 1/k} ⊃ {x : 2 < x ≤ 2 + 1/(k + 1)}
for all k. The limit set is:

{x : 2 < x ≤ 2}
Note: the equality sign remains because the term 1/k > 0 for all k (even in
the limit k →∞).

(g)

Q(C1) =

∫ 1

−1
dx

∫ 1

−1
(x2 + y2)dy =

8

3
≈ 2.66667

Q(C2) =

∫∫
C

(x2 + y2)dxdy = 0 since the set C is a thin line with zero area

Q(C3) =

∫∫
{(x,y)|x2+y2<R2}

(x2 + y2)dxdy =

∫ R

0
rdr

∫ 2π

0
dθr2 =

πR4

2
=
π

2

(h) 25+17=42. 42-35=7. In all likelihood, the bridge shall open 7 cans of
sardines. ■

Problem 83. Let Ω be the set of elementary outcomes and E a subset of Ω,
called “event”. Denote F the collection of all possible events. Technically, F
is called a “σ-field of subsets”. Let P be a real-valued function defined on F .
P is a probability set function of it satisfies the following three conditions:

(1) P(A) ≥ 0, for all A ∈ F .

(2) P(Ω) = 1.
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(3) If {An} is a sequence of events in F and Am∩An = ∅ for all m ̸= n,
then

P (∪∞n=1An) =
∞∑
n=1

P(An).

A collection of events whose members are pairwise disjoint is said to be a
mutually exclusive collection and its union is often referred to as a dis-
joint union. The collection is further said to be exhaustive if the union of
its events is the sample space, in which case

∑∞
n=1 P(An) = 1. We say that

a mutually exclusive and exhaustive collection of events forms a partition
of Ω.

Using the above definition of probability:

(a) Prove that for each event A ∈ F , P(A) = 1− P(Ac).

(b) Prove that the probability of a null set is zero, i.e. P(∅) = 0.

(c) Prove that if A and B are events such that A ⊂ B, then P(A) ≤ P(B).

(d) Prove that for each A ∈ F , 0 ≤ P(A) ≤ 1.

(e) Prove that if A and B are events in Ω, then

P(A ∪B) = P(A) + P(B)− P(A ∩B)

(f) For a finite sample space Ω = {x1, x2, . . . , xm} with m elements, let
p1, p2, . . . , pm be such that 0 ≤ pi ≤ 1 for i = 1, 2, . . . ,m and

∑m
i=1 pi = 1.

Construct a probability set function P(A) on F (for all subsets A ∈ F) such
that all 3 above conditions are satisfied.

(g) Let Ω = {x1, x2, . . . , xm} be a finite sample space. Find the set of ele-
mentary probabilities pi for all i = 1, 2, . . . ,m such that P(A) = #(A)/m,
where #(A) denotes the number of elements in A. Prove that P is a proba-
bility on Ω.

(h) Let Ω = {x : 0 < x < ∞}. Let C ⊂ Ω be defined by C = {x : 0 < x <

10}. Define the function P(A) =
∫
A

1
2e

−x/2dx for any event A ⊂ Ω. Show
that P(Ω) = 1. Evaluate P(C), P(Cc) and P(C ∩ Cc).
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Solution. (a) We have Ω = A ∪ Ac and A ∩ Ac = ∅. Thus from conditions
2 and 3 it follows that

1 = P(A) + P(Ac)

(b) Take A = ∅ so that Ac = Ω. Using the result from (a),

P(∅) = 1− P(Ω) = 1− 1 = 0.

(c) Writing B = A ∪ (Ac ∩B) and A ∩ (Ac ∩B) = ∅, condition 3 gives

P(B) = P(A) + P(Ac ∩B)

From condition 1, P(Ac ∩B) ≥ 0. Hence, P(B) ≥ P(A).

(d) Since ∅ ⊂ A ⊂ Ω, we have by the results of part (c) that

P(∅) ≤ P(A) ≤ P(Ω)
or 0 ≤ P(A) ≤ 1, the desired result.

(e) Each of the sets A∪B and B can be represented, respectively, as a union
of nonintersecting sets as follows:

A ∪B = A ∪ (Ac ∩B) and B = (A ∩B) ∪ (Ac ∩B).

These identities hold for all sets A and B, according to set theory. (You can
also verify them using Venn diagrams.) From condition 3 we have

P(A ∪B) = P(A) + P(Ac ∩B)

and
P(B) = P(A ∩B) + P(Ac ∩B).

If the second of these quantities is solved for P(Ac ∩ B) and this result is
substituted in the first equation, we obtain

P(A ∪B) = P(A) + P(B)− P(A ∩B).

(f) We can take pi = 1/m and P(A) = #(A)/m. See (g).

(g) Take the equilikely distribution pi = 1/m. Define:

P(A) =
∑
xi∈A

1

m
=

#(A)

m
.

Then, P is a probability on Ω. It is trivial to check that all 3 condi-
tions are satisfied: P(A) ≥ 0, P(Ω) = m/m = 1, and for disjoint sets
P(A ∪B) = P(A) + P(B).
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(h)

P(Ω) =
∫ ∞

0

1
2e

−x/2dx =
[
−e−x/2

]∞
0

= 0− (−1) = 1

■

Problem 84. You write 3 letters and in a rush, put a random letter in each
envelope. (There are 3 envelopes, 3 letters, 1 letter per envelope.). What is
the probability that at least one letter is in the correct envelope?

Solution. Let Ci be the event that the i-th letter is in the correct envelope.
Expand P(C1 ∪ C2 ∪ C3) to determine the probability:

P(C1 ∪ C2 ∪ C3) = P(C1) + P(C2) + P(C3)− P(C1 ∩ C2)− P(C1 ∩ C3)

−P(C2 ∩ C3) + P(C1 ∩ C2 ∩ C3)

All pairwise terms P(C1 ∩C2), P(C1 ∩C3) and P(C2 ∩C3) are zero because
it’s not possible to have only 2 letters in correct envelopes without have all
3. Then,

P(C1 ∪ C2 ∪ C3) = P(C1) + P(C2) + P(C3) + P(C1 ∩ C2 ∩ C3).

Now the probabilities: There are 3!=6 ways to place 3 letters in 3 envelopes
(order matters). There is 1 way to place letter 1 in envelope 1 (and only
1 way to place envelopes 2 and 3 in the remaining incorrect envelopes).
Therefore P(C1) = 1/6. Same for P(C2) and P(C3). For the last term,
P(C1 ∩ C2 ∩ C3), we need to know the number of ways we can place all
3 letters in the correct envelopes. There’s only 1 way to do that. Hence,
P(C1 ∩ C2 ∩ C3) = 1/6. Thus,

P(C1 ∪ C2 ∪ C3) =
4

6
.

■

Problem 85. A random experiment consists of choosing a random number
in the interval (0, 1). (This number can be rational or irrational.) For
any interval (a, b) ⊂ (0, 1) it seems reasonable to define the probability
P((a, b)) = b − a, i.e. as equal to the length of the interval. Choose an
appropriate sequence of subsets of (0, 1) and use the following result:

lim
n→∞

P(Cn) = P( lim
n→∞

Cn) = P (∩∞n=1Cn)

where {Cn} is a decreasing sequence of events (i.e. Cn+1 ⊂ Cn), to show
that P({a}) = 0, for all a ∈ (0, 1).

Solution. Construct the following decreasing sequence of events:

Ck = {x : a− 1/k < x < a+ 1/k}
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You can check that these events are open intervals (a− 1/k, a+1/k). Their
intersection/limit is the point {a}:

lim
k→∞

Ck ≡ ∩∞k=1Ck = {a}.

Meanwhile,

P((a− 1/k, a+ 1/k)) = a+ 1/k − (a− 1/k) = 2/k.

Taking the limit k →∞, we see that (applying the above ‘result’)

P( lim
k→∞

Ck) = P({a}) = lim
k→∞

P((a− 1/k, a+ 1/k)) = lim
k→∞

2

k
= 0.

Therefore, P ({a}) = 0. ■

Problem 86. Calculate the following probabilities:

(a) Consider a probability space where the set of elementary outcomes is the
interval Ω = (0, 1), i.e. a number X (random variable) is chosen at random
within that interval. Define a probability measure over that interval as

P(X ∈ (a, b)) = b− a, for 0 < a < b < 1.

Find an expression for the CDF. Derive a PDF from P (or the CDF). Com-
pute the probability that X is less than an eighth or greater than seven
eights. Would it be possible to use a discrete probability model for this
experiment?

(b) In a random experiment we will an unbiased die. The set of outcomes is
Ω = {1, 2, 3, 4, 5, 6}. Let X be the random variable that indicates the result
(top face of die) of the experiment. X can take the value ∈ {1, 2, 3, 4, 5, 6}.
Its PMF is pi = 1/6 for i = 1, . . . , 6. Plot the CDF of X, i.e. F (x) vs x.
Recall that the CDF is defined as F (x) ≡ P(X ∈ (−∞, x]). For x < 1 define
F (x) = 0. What is the limiting value of F (x) (i.e. as x → ∞)? Using the
CDF, can you obtain the PMF? Explain.

(c) Let X be a random variable representing a real random number cho-
sen between 0 and 1. Obtain the CDF of X. You may assume that
P(X ∈ (a, b)) = b − a for 0 < a < b < 1. Sketch the CDF. Obtain the
PDF. State the connection between CDF and PDF.

(d) Let X be a random variable with the CDF F (x). Then for a < b, prove
that the probability P(a < X ≤ b) = F (b)− F (a).

(e) If X is a random variable and F (x) its CDF, then for all a and b, if
a < b then F (a) ≤ F (b) (F is nondecreasing). Also, it can be shown that



2.27. Problems 137

limx→−∞ F (x) = 0 (the lower limit of F is 0), limx→∞ F (x) = 1 (the upper
limit of F is 1), limx↓x0 F (x) = F (x0) (F is right-continuous).

Let X be the half-life of a radioactive isotope. Assume that X has the CDF

F (x) =

{
0 x < 0

1− e−x 0 ≤ x.
Obtain the PDF of X. Show that the derivative of the CDF does not ex-
ist at x = 0, but that does not affect our ability to compute probabilities.
Compute the probability that the half-life is between 1 and 3 years.

(f) The conditions expressed at the beginning of problem (e) show that CDFs
are right-continuous and monotone. Such functions can be shown to have at
most a countable number of discontinuities. For any random variable, prove
that P(X = x) = F (x)− F (x−), for all x ∈ R, where F (x−) = limz↑x F (z).
This results is not a mere curiosity; it allows us to deal with discontinuities
in the distribution. Recall that for {Cn} a nondecreasing sequence of events,

lim
n→∞

P(Cn) = P( lim
n→∞

Cn) = P (∪∞n=1Cn)

Similarly for a decreasing sequence of events,

lim
n→∞

P(Cn) = P( lim
n→∞

Cn) = P (∩∞n=1Cn)

(g) Let X have a CDF:

F (x) =


0 x < 0

x/2 0 ≤ x < 1

1 1 ≤ x.

Compute the value P(−1 < X ≤ 1/2) and P(X = 1) (the value is not zero!).

(h) Let X have the PMF

p(x) =

{
cx x = 1, 2, . . . , 10

0 elsewhere

for an appropriate constant c. Find the value c.

(i) Let X have the PDF

f(x) =

{
cx3 0 < x < 2

0 elsewhere

for a constant c. Compute c. Compute the probability P(1/4 < X < 1).
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(j) Let Ω = {x : 1 < x < 2} be the space of X. If D1 = {x : 1 < x ≤ 4/3}
and D2 = {x : 4/3 < x < 2}, find P(D2) if P(D1) = 1/3.

(k) Choose five cards at random and without replacement from a normal
deck of playing cards. Find the PMF of X, the number of hearts in the five
cards. Determine P(X ≤ 1).

Solution. (a) PDF is obtained by differentiating the CDF. CDF is

F (x) ≡ P(X ∈ (0, x]) =

∫ x

0
dx = x.

Then PDF is:

f(x) =

{
1 0 < x < 1

0 elsewhere

P({X < 1/8} ∪ {X > 7/8}) =
∫ 1/8

0
dx+

∫ 1

7/8
dx = 1/4.

Discrete: no, because the probability P({X = a}) = 0 for all a ∈ (0, 1).

(b) The CDF is defined as the right-continuous function:

F (x) =
∑

{i:xi≤x}

pi

where the notation {i : xi ≤ x} means “sum over all i such that xi ≤ x”.
Plotting this function gives a right-continuous function:

The PMF is given to us: {pi}. From the CDF we can obtain the PDF by
differentiating:

f(x) =
dF (x)

dx
=
∑
i

piδ(x− xi),

where δ(x−xi) are Dirac delta functions. What about the PMF? The PMF
is defined as P(X = x), the probability that X takes a specific value x.
Obviously this is zero unless x = xi, the points where the CDF “jumps”
(discontinuities of F ). The size of the discontinuity gives pi. Formally, the



2.27. Problems 139

probability of xi is obtained by integrating the PDF:

P(X = xi) =

∫
{xi}

f(x)dx = lim
ϵ→0

∫ xi+ϵ

xi−ϵ
f(x)dx = lim

ϵ→0

∫ xi+ϵ

xi−ϵ

∑
j

pjδ(x−xj)dx = pi.

The PMF can also be obtained form the CDF as follows:

P(X = xi) = lim
ϵ→0

P(xi− ϵ < X ≤ xi+ ϵ) = lim
ϵ→0
{F (xi + ϵ)− F (xi − ϵ)} = pi.

(c) Recall that the CDF is defined as F (x) = P(X ∈ (−∞, x]). Since
the domain of definition of X is (0,1), we take 0 instead of −∞ as the
lower limit and we make sure that x does not exceed 1. We can take
P(X ∈ (a, b)) = b− a, replace a by 0 and b by x:

F (x) = P(X ∈ (0, x]) =


0 x < 0

x x ∈ (0, 1)

1 x > 1

The graph looks like:

The PDF is obtained from the CDF by differentiating:

f(x) =
dF (x)

dx
= 1

where x ∈ (0, 1). This is the uniform distribution on the interval (0, 1).

(d) Note that

{−∞ < X ≤ b} = {−∞ < X ≤ a} ∪ {a < X ≤ b}.
The proof follows immediately because the union on the right side of this
equation is a disjoint union.

(e) The PDF is obtained by differentiating

f(x) =
dF (x)

dx
=

{
e−x 0 < x <∞
0 elsewhere
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The derivative of a function F (x) at the point a exists if the limit

lim
x→a

F (x)− F (a)
(x− a)

exists.

That limit is also the slope of the tangent line to the curve y = F (x) at
x = a. That limit does not exist when the curve y = F (x) does not have a
tangent line at x = a or when the curve does have a tangent line, but the
tangent line has infinite slope. In the present case, there is no tangent line
at x = 0 because this point is a sharp corner (plot the graph of F (x) to see).

This is of no consequence when computing probabilities involving X because
P(X = 0) = 0 (see problem f below). Therefore, we can assign f(0) = 0
without changing the probabilities involving X.

Finally,

P(1 < X ≤ 3) = F (3)− F (1) =
∫ 3

1
e−xdx.

(f) For any x ∈ R, we have

{x} =
∞⋂
n=1

(
x− 1

n
, x

]
that is, {x} is the limit of a decreasing sequence of sets. Hence,

P(X = x) = P

( ∞⋂
n=1

{x− 1

n
< X ≤ x}

)
= lim

n→∞
P(x− 1/n < X ≤ x)

= lim
n→∞

[F (x)− F (x− 1/n)] = F (x)− F (x−)

which is the desired result. The difference, F (x)−F (x−) measures the dis-
continuity at x.

(g)

P(−1 < X ≤ 1/2) = F (1/2)− F (−1) = 1

4
− 0 =

1

4
.

P(X = 1) = F (1)− F (1−) = 1− 1

2
=

1

2
.

(h)

1 =

10∑
x=1

p(x) =

10∑
x=1

cx = c(1 + 2 + · · ·+ 10) = 55c.

Hence, c = 1/55.
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(i)

1 =

∫ 2

0
cx3dx = x

[
x4

4

]2
0

= 4c.

Hence, c = 1/4. Also,

P(1/4 < X < 1) =

∫ 1

1/4

x3

4
dx =

255

4096
= 0.06226.

(j) The two sets are disjoint, D1∩D2 = ∅. Since, D1∪D2 = Ω, the collection
of sets {D1, D2} forms a partition of Ω. Then,

P(D1 ∪D2) = P(D1) + P(D2) = P(Ω) = 1.

Hence,
P(D2) = 1− P(D1) = 1− 1/3 = 2/3.

(k) Let’s assume a standard 52-card deck. There are 4 suits, 13 cards per
suit. The number of ways to choose 5 cards without replacement, and with-
out regard to order is:(

52

5

)
=

52!

(52− 5)!5!
= 2, 598, 960.

First we consider the case X = 1. The number of ways to choose a heart is(
13
1

)
. Cards 2-5: number of ways to choose 4 non-hearts is

(
51
4

)
. Number of

ways to choose 1 heart, 4 non-hearts:(
13

1

)(
39

4

)
.

The probability of X = 1 is

P(X = 1) =

(
13
1

)(
39
4

)(
52
5

) ≈ 0.4114

Similarly,

P(X = 2) =

(
13
2

)(
39
3

)(
52
5

) ≈ 0.2743

P(X = 3) =

(
13
3

)(
39
2

)(
52
5

) ≈ 0.0815

P(X = 4) =

(
13
4

)(
39
1

)(
52
5

) ≈ 0.0107

P(X = 5) =

(
13
5

)(
39
0

)(
52
5

) ≈ 0.0005
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For P(X ≤ 1) we need to consider two disjoint events: {X = 0} and {X =
1}. Then,

P(X ≤ 1) = P({X = 0}) ∪ {X = 1}) = P(X = 0) + P(X = 1)

■

Problem 87. Let X have the PMF

pX(x) =

{
3!

x!(3−x)!

(
2
3

)x (1
3

)3−x
x = 0, 1, 2, 3

0 elsewhere

Find the PMF pY (y) of the random variable Y = X2.

Solution. The transformation y = g(x) = x2 maps the set {x : x =
0, 1, 2, 3} into {y : y = 0, 1, 4, 9}. In general, y = x2 does not define a
one-to-one transformation. Here, however, it does, as there are no negative
values of x in the set (for x). That is, we have the single-valued inverse
function x = g−1(y) (not −√y), and so

pY (y) = pX(
√
y) =

3!

(
√
y)!(3−√y)!

(
2

3

)√
y (1

3

)3−√
y

, y = 0, 1, 4, 9

■

Problem 88. Consider a sequence of independent flips of a coin, each re-
sulting in a head (H) or a tail (T). On each flip, we assume that H and T are
equally likely. The sample space consists of sequences TTHTHTHTHT....
Let the random variable X equal to the number of flips needed to obtain
the first head. For example, X(TTHTHHT · · · ) = 3. The space of X is
Ω = {1, 2, 3, 4, . . . }. We see what X = 1 when the sequence begins with an
H and P(x = 1) = 1

2 . Likewise, X = 2 when the sequence begins with TH,

which has probability P(X = 2) = (12)(
1
2) = 1

4 (assuming statistical inde-
pendence). More generally, if X = x, where x = 1, 2, 3, 4, . . . , there must be
a string of x − 1 tails followed by a head. That is, TT· · ·TH, where there
are x− 1 tails in TT· · ·T. Thus, from independence,

P(X = x) =

(
1

2

)x−1(1

2

)
=

(
1

2

)x

, x = 1, 2, 3, . . .

the space of which is countable. Calculate the probability of the event that
the first head appears on an odd number of flips, i.e. X ∈ {1, 3, 5, . . . }. Let
Z = (X − 2)2. Compute the PMF of Z.

Solution. For the first part of the question,

P (X ∈ {1, 3, 5, . . . }) =
∞∑
x=1

(
1

2

)2x−1

=
1

2

∞∑
x=1

(
1

4

)x−1

=
1/2

1− (1/4)
=

2

3
.
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For Z = (X − 2)2, the space of Z is {0, 1, 4, 9, 16, . . . }. Note that Z = 0 if
and only if X = 2. Z = 1 if and only if X = 1 or X = 3. For the other
values of the space there is a one-to-one correspondence given by x =

√
z+2,

for z ∈ {4, 9, 16, . . . }. Hence, the PMF of Z is

pZ(z) =


pX(2) = 1

4 for z = 0

pX(1) + pX(3) = 5
8 for z = 1

pX(
√
2 + 2) = 1

4

(
1
2

)√z
for z = 4, 9, 16, . . .

You can show that the PMF of Z sums to 1 over its space. ■

Problem 89. Suppose that we have a unit circle and select a point at
random within the interior of the circle. Let X be the distance of the point
to the origin (Euclidean distance). The sample space for the random point
is Ω = {(w, y) : w2 + y2 < 1}. If the points (chosen at random) have
equal probability, write down a formula for the probability of the point
landing within an area A contained within the interior of the circle. The
event {X ≤ x} means the point lies in a circle of radius x. Compute the
probability P(X ≤ x). Write down the CDF of X. Obtain the PDF of X.
Calculate the numerical value of P(1/4 < X ≤ 1/2).

Solution.

P(A) =
area of A

π
For 0 < x < 1, the event {X ≤ x} is equivalent to the point lying in a circle
of radius x. By this probability rule, P(X ≤ x) = πx2/π = x2. Hence, the
CDF of X is

F (x) =


0 x < 0

x2 0 ≤ x < 1

1 1 ≤ x
■

Problem 90. Suppose that a phone company operates a computerized
switchboard designed to route phone calls across the busy telephone net-
work. Let X be the random variable that is the time in seconds between
(consecutive) incoming telephone calls. Suppose that the PDF of X is

f(x) =

{
1
4e

−x/4 0 < x <∞
0 elsewhere

Show that f(x) is normalized (to 1) and that f(x) ≥ 0. Calculate the
probability that the time between successive phone calls exceeds 4 seconds,
i.e. P(X > 4). Plot this PDF and illustrate the area under the graph that
corresponds to this probability. Is this distribution skewed? Compute the
skewness of the distribution and explain the value obtained.
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Solution.

f(x) =

{
1
4e

−x/4 0 < x <∞
0 elsewhere

P(X > 4) =

∫ ∞

4

1

4
e−x/4dx = e−1 = 0.3679.

■

Problem 91. Obtain the distribution of Y = X2, where the CDF of X is

FX(x) =


0 x < 0

x2 0 ≤ x < 1

1 1 ≤ x

Both X and Y have the same support, i.e., the interval (0, 1).

Solution. Let y be the support of Y , i.e., 0 < y < 1. The CDF of Y is

FY (y) = P(Y ≤ y) = P(X2 ≤ y) = P(X ≤ √y) = FX(
√
y) =

√
y2 = y.

It follows that the PDF of Y is

fY (y) =

{
1 0 < y < 1

0 elsewhere

■

Problem 92. Let X be a continuous random variable with PDF

f(x) =
ex

(1 + 5ex)1.2
, −∞ < x <∞.

Obtain the CDF of X. Plot the PDF. Compute the 3 quantiles: 0.25, 0.50
and 0.75 for X. Indicate on the graph of the PDF the position of the 3
quantiles. Definition (quantile): Let 0 < p < 1. The quantile of order p of
X is a value ξp such that P(X < ξp) ≤ p and P(X ≤ ξp) ≥ p. It is known as
the (100p)th percentile of X.

Solution. The CDF of X is

F (x) = 1 + (1 + 5ex)−.2 −∞x <∞,
which is confirmed by differentiation, F ′(x) = f(x). The quantiles are

q1 = −0.4419242
for 25%,

q2 = 1.824549

for 50% and
q3 = 5.321057
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for 75%.

■

Problem 93. Let fX(x) = 1/2, −1 < x < 1, zero elsewhere, be the PDF
of X. X has uniform distribution within the interval of support (−1, 1).
Define Y = X2. Find the PDF and CDF of Y .

Solution. If y ≥ 0, the probability P(Y ≤ y) is equivalent to
P(X2 ≤ y) = P(−√y ≤ X ≤ √y).

Accordingly, the CDF of Y is given by

FY (y) =


0 y < 0∫ √

y

−√
y

1
2dx =

√
y 0 ≤ y < 1

1 1 ≤ y
■

Problem 94. Let X have a distribution

F (x) =


0 x < 0
x+1
2 0 ≤ x < 1

1 1 ≤ x
.

Calculate the value P(−3 < X ≤ 1/2) and P(X = 0) (not zero!). Plot
the graph of F (x). Comment on any discontinuities and on the discrete (or
non-discrete) nature of the distribution.

Solution.

P(−3 < x ≤ 1/2) = F (1/2)− F (−3) = 3

4
− 0 =

3

4

P(X = 0) = F (0)− F (0−) = 1

2
− 0 =

1

2
.

■

Problem 95. Compute the following expectation values of X:
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(a) Let X have the PDF

f(x) =

{
4x3 0 < x < 1

0 elsewhere

(b) For x = 1, 2, 3, 4 the corresponding PMF is p(x)=4/10, 1/10, 3/10 and
2/10, respectively. Here, p(x) = 0 if x is not equal to one of the first four
positive integers.

(c) Let X be continuous rv with PDF f(x) = 2x, which has support on the
interval (0, 1). Suppose Y = 1/(1 +X). Find E(X) and E(Y ).

(d) Let X have the PDF

f(x) =

{
2(1− x) 0 < x < 1

0 elsewhere

Calculate E(X), E(X2) and E(6X − 3X2).

(e) Let X have the PMF

p(x) =

{
x
6 x = 1, 2, 3

0 elsewhere

Compute E(6X3 +X).

(f) Divide randomly a line segment of length 5 into two parts. If X is the
length of the left-hand part, it is reasonable to assume that X has the PDF

f(x) =

{
1
5 0 < x < 5

0 elsewhere

Compute the expected value of the length E(X). Calculate E(5−X). Cal-
culate also E(X(5−X)) (expectation value of their product). Explain why
E(X(5−X)) ̸= E(X) ·E(5−X). In the physical sciences, we often encounter
situations like this where the product of expectation values is not the same
as the expectation value of the product. A famous example is the spatial
dependence of the dipole-dipole interaction, which scales as 1/r3. In general,
⟨1/r3⟩ ≠ ⟨1/r⟩3.

Solution. (a)

E(X) =

∫ 1

0
x(4x3)dx =

∫ 1

0
4x4dx =

4x5

5

∣∣∣∣1
0

=
4

5
.
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(b)

E(X) = (1)
4

10
+ (2)

1

10
+ (3)

3

10
+ (4)

2

10
=

23

10
= 2.3

(c)

E(Y ) =

∫ 1

0

2x

1 + x
dx =

∫ 2

1

2u− 2

u
du = 2(1− log 2).

(d)

E(X) =

∫ ∞

−∞
xf(x)dx =

∫ 1

0
(x)2(1− x)dx =

1

3

E(X2) =

∫ ∞

−∞
x2f(x)dx =

∫ 1

0
(x2)2(1− x)dx =

1

6

E(6X + 3X2) = 6(
1

3
) + 3(

1

6
) =

5

2
.

(e)

E(6X3 +X) = 6E(X3) + E(X) = 6
3∑

x=1

x3p(x) +
3∑

x=1

xp(x) =
301

3

(f)

E(X(5− x)) =
∫ 5

0
x(5− x)(1

5
)dx =

25

6
̸= (

5

2
)2.

■





Chapter 3

Propagation of Errors

In many experiments we are required to measure basic physical quantities
and derive other quantities from these measurements. The derived quantities
are often obtained from mathematical formulas. If we know the error in the
basic measurements, what is the error in the derived quantities? This is the
topic of error propagation. We shall denote errors in a quantity x as αx,
∆x or δx. The notation δx is preferred over ∆x when we refer to small (e.g.
infinitesimal) quantities. We will avoid the notation σx because σ refers to
standard deviation. The error αx could be taken as σx but it doesn’t have
to be; hence, the reason we avoid σx here.

Let’s start with some simple examples. Suppose we measure acceleration
and want to know the error in the force, as propagated through Newton’s
law, F = ma. The average acceleration obtained from repeat measurements
is denoted a and its error bar is denoted ∆a. The maximum value of a is
amax = a + ∆a/2 and its lowest value is denoted amin = a − ∆a/2. The
mass is assumed to be positive, m > 0 and so is ∆a > 0. The change in F
is:

∆F = Fmax − Fmin = m(amax − amin) = m∆a =

(
∂F

∂a

)
a

∆a.

where the subscript a on the derivative indicates that the derivative is eval-
uated at the point a. In a similar way, suppose that we have Hooke’s law
F = kx2 and that we measure x. The error in F due to the error in x as
propagated through this formula is:

∆F = Fmax − Fmin = k(x2max − x2min)

149
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to which we add and subtract xmaxxmin:

∆F =k(x2max − x2min + xmaxxmin − xmaxxmin)

=k(xmax + xmin)∆x = 2kx∆x =

(
∂F

∂x

)
x

∆x

where ∆x = xmax−xmin and x = (xmax+xmin)/2. Similarly, one can show
that regardless of the functional dependence on x, we will always have:

∆F =

(
∂F

∂x

)
x

∆x.

We have only looked at F (x) with first and second powers of x. If F (x) is
a smooth function, it can be expanded in a power series. Let F (x) = anx

n.
Then:

∆F = Fmax − Fmin = an(x
n
max − xnmin) = an[(x+∆x/2)n − (x−∆x/2)n]

Expanding each term using the binomial theorem:

(x+ h)n = xn + nxn−1h+

(
n

2

)
xn−2h2 + . . .

and keeping only the terms that are first order in ∆x:

= an[2n(x/2)
n−1∆x+O(|∆x|2)] = ann(x)

n−1∆x = an

(
∂F

∂x

)
x

∆x.

Since this holds for a monomial anx
n it holds for any linear combination of

monomials (polynomials) and any smooth function F .

Now for the case of 2 variables, we can take F (m, a) = ma and view it as a
function of both m and a. The errors in m and a are denoted ∆m and ∆a,
respectively. Then:

∆F = Fmax − Fmin = mmaxamax −mminamin.

Adding and subtracting the quantity mmaxamin, we have:

∆F =mmaxamax −mminamin +mmaxamin −mmaxamin

=mmax∆a+ amin∆m

=(m+∆m/2)∆a+ (a−∆a/2)∆m

=

(
∂F

∂a

)
a,m

∆a+

(
∂F

∂m

)
a,m

∆m

where we neglected the second-order small quantity ∆m∆a in the last step.
Taking the limit of small ∆m and ∆a and writing δm and δa for the corre-
sponding infinitesimal quantities, the formula for error propagation has the

form: δF (x1, . . . , xn) =
∑n

i=1

(
∂F
∂xi

)
x
δxi. Since δF and δxi are required to
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be positive, the partial derivatives must be taken positive:

δF (x1, . . . , xn) =

n∑
i=1

∣∣∣∣ ∂F∂xi
∣∣∣∣
x

δxi.

This introduction is informal and does not tell the full story. The formula
derived, for example, neglects possible correlations between the random vari-
ables. We will now derive formulae for error propagation slightly more care-
fully while explaining the assumptions made along the way. The method of
error propagation based on partial derivatives predates the advent of modern
computers and is limited to the use of first and second moments of the statis-
tical distributions of the measured quantities. With modern computers we
can utilize knowledge of the full distribution functions to propagate errors
through formulae using Monte-Carlo methods (see Section 3.6). Monte-
Carlo methods paint a more complete picture since all statistical moments
are obtained.

3.1. Single Variable Case

It is best to illustrate the methods of error propagation by way of examples.

3.1.1. Entropy of a Gas. In statistical mechanics the entropy of an iso-
lated system with energy U is given by the Boltzmann formula

S(U) = kB logW (U),

where W is the number of microstates whose energy equals the system’s
energy U . W is also a measure of the volume of phase space. It can be
shown that the entropy of a monatomic ideal gas is:

S = kBN log

[
V

N

(
4πm

3h2
U

N

)3/2
]
+

5

2
kBN,

where N is the number of particles, V is the gas volume, U is its internal
energy and h is Planck’s constant. This is called the Sackur-Tetrode equa-
tion. Saturn is a planet made of gas. It has the lowest density of gas (0.69
g cm−3) of any gaseous planet (Jupiter, Neptune, Uranus, Neptune). Its
equatorial radius is 54,445 ± 10 km. Since we know its density and volume
(hence the value of N), in principle you can use the Sackur-Tetrode equation
to obtain a numerical value for the entropy S. What is the uncertainty in
its entropy? Taking V = 4

3πr
3, we find that:

δS = 3kBN log

∣∣∣∣r + δr

r

∣∣∣∣ .
3.1.2. Black Hole Entropy. Black holes have entropy. In thermodynam-
ics, ∂S

∂E = 1
T . The energy of the black hole is given by its rest mass E =Mc2.
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The entropy is obtained by integrating:

S =

∫
dE

T
=

8πG

ℏc
=

∫
MdM =

4πG

ℏc
M2 =

c3

4ℏG
A,

where A is the surface area of the black hole (size of the event horizon),

A = 4πr2s = 16π
M2G2

c4
,

with rs the Schwarzschild radius (rs = 2MG/c2) and G is the gravitational
constant. We used the Hawking formula for the temperature of a black hole:

T =
ℏc3

8πGMkB
.

A solar mass black hole has temperature T = 10−8 K. A supermassive black
hole is about 1 million solar masses and has T = 10−14 K. Suppose that
we estimate the Schwarzschild radius, rs, to be r, with an error δr. The
corresponding error in S is:

S(r + δr)− S(r + δr) =
c3

4ℏG
4π(r + δr)2 − c3

4ℏG
4π(r)2.

Expanding the square, (r + δr)2 = r2 + 2rδr + (δr)2,

δS = S(r + δr)− S(r + δr) =
c3

4ℏG
4π
(
r2 + 2rδr + (δr)2

)
− c3

4ℏG
4π(r)2

=
c3

4ℏG
4π
(
2rδr + (δr)2

)
.

Given an error δr in the value of r, this formula provides an estimate for
the error in S.

3.1.3. Bragg’s Law. Bragg’s law gives the angles for coherent and in-
coherent scattering from a crystal lattice. When X-rays are incident on
an atom, they induce the radiation of electromagnetic waves at the same
frequency, but the angular distribution depends on the lattice parameters.
Crystalline solids produce specific patterns of reflected X-rays. At certain
specific wavelengths and incident angles, we get intense peaks of reflected
radiation (Bragg peaks). This is explained by modeling the crystal as a set
of discrete parallel planes separated by a constant parameter d (Fig. 3.1).

The incident X-ray radiation produces a Bragg peak if the reflections off
the various planes interfered constructively (Fig. 3.2). The interference is
constructive when the phase shift is a multiple of 2π (Fig. 3.2).

This condition can be expressed by Bragg’s law,

nλ = 2d sin θ
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Figure 3.1. Bragg planes in a crystal.

d

(a) Constructive interfer-
ence

d

(b) Destructive interfer-
ence

Figure 3.2. Bragg’s law. Two cases are shown: constructive vs destruc-
tive interference.

The case n = 1 is the first order peak. For structure determination, the
value of λ (wavelength of incident radiation) would be known, and we would
measure θ and solve for d the lattice constant.

Another possible experiment we could do is determine λ from a known value
of d and measured θ. Suppose we measure θ and compute λ from the Bragg
formula. This is shown graphically in Fig. 3.3, where the error in θ is denoted
αθ.

3.1.4. Linear Approximation Method. From this, we see that the error
in λ is:

αλ = |f(θ + αθ)− f(θ)| ≈ αθ

∣∣∣∣ dfdθ θ=θ

∣∣∣∣ ,
where in the last equality this error was obtained from calculus, by approx-
imating the function f by its first derivative at the point θ.
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(nm) Bragg’s Law

d sin

0

Angle
30 60 90 x

Figure 3.3. Error propagation for Bragg’s law.

f (θ)

θ

f (θ)

αf

αθ
P

s

From calculus:
df
dθ

Derivative is 
evaluated at P

αθαf  =P

Figure 3.4. Method for error propagation in a single variable based on
linear approximation.

This linear approximation is illustrated graphically in Fig. 3.4. This is the
most common method that people use for propagating errors. Another way
to think about it is to view θ as a random variable that is the sum of a mean
value θ and a deviation δθ:

θ = θ + δθ.

With this decomposition, θ is deterministic and δθ is random. Taylor ex-
pansion of f to first order gives:

δf = f(θ + δθ)− f(θ) ≈ δθ ·
(
df

dθ

∣∣∣∣
θ=θ

)
.

Here δf is a random variable because it is equal to f(θ+ δθ)− f(θ), a func-
tion of a random variable δθ. Because δf is random, and its value changes
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f(θ) df/dθ error (αf )

1/θ −1/θ2 αθ/θ
2 = f2αθ or |αf/f | = |αθ/θ|

exp(θ) exp(θ) exp(θ)αθ = fαθ

log θ 1/θ αθ/θ
log10 θ

1
log 10·θ αθ/ log 10 · θ

θn nθn−1 |nθn−1|αθ or |αf/f | = |nαθ/θ|
sin θ cos θ | cos θ|αθ

cos θ − sin θ | sin θ|αθ

Table 3.1. Formulae for propagation of errors in a single variable. This
table can be found in Hughes & Hase’s book.

every time an experiment is run, we can’t immediately use this expression
and call δf the “propagated error”. We must take the additional step of
computing its variance var(δf), which can then be used to obtain the error
(as say, the square root of the variance).

The Taylor approximation term, δθ · dfdθ
∣∣∣
θ=θ

, is a random variable because δθ

is a random variable. df
dθ

∣∣∣
θ=θ

, on the other hand, is a deterministic quantity

because it is the derivative of a deterministic function (f) evaluated at a de-
terministic argument (θ is deterministic by definition, because the “mean”
is just a number, hence deterministic).

Take the variance of δf and apply the property var(aX) = a2var(X):

var(δf) =

(
df

dθ

)2

· var(δθ).

Because the square root of the variance is the standard deviation, let us take
the error bar αf to be the standard deviation

√
var(δf) and similarly for

αθ =
√
var(δθ), writing:

αf =

∣∣∣∣dfdθ
∣∣∣∣αθ.

This formula is identical to the one derived in the previous section. As an
exercise, the reader should derive all the formulas in Table 3.1.

3.1.5. EXAMPLE: Error in Cosine (Single Variable). This example
can be found in Taylor’s book. Suppose we want to know the uncertainty
in a cosine, i.e. f(θ) = cos θ, where θ is a measured quantity. The measured
angle is:

θ = 20± 3◦
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Then,
(cos θ)best = cos 20◦ = 0.94.

and

αcos θ =

∣∣∣∣d cos θdθ

∣∣∣∣αθ = | sin θ|αθ (angles in radians)

with αθ = 3◦ = 0.05 rad. Note: the formula d cos θ/dθ = − sin θ only holds
if θ is in radians. Then,

αcos θ = (sin 20◦)× 0.05 = 0.34× 0.05 = 0.02

so we report:
cos θ = 0.94± 0.02

3.2. Multi-Variable Case

To avoid references to angles, let us switch notation from θ to x. Consider a
function f(x) which depends on several variables x = (x1, x2, . . . , xn). The
variables x refer to different physical quantities measured in the laboratory.
For example, suppose we measure the length (L), width (W ) and depth (D)
of a rectangular box, each with their own error bars, and we want to know
the volume of the box and its uncertainty. Since V = L ×W ×D, we will
learn to derive the following result:(αV

V

)
=

√(αL

L

)2
+
(αW

W

)2
+
(αD

D

)2
,

where αV is the error in V , and similarly for αL, αW and αD. Another
experiment could involve Ohm’s law (V = IR; R, resistance; I, current; V ,
voltage). Suppose we measure voltage and current across a device and use
this information to obtain the impedance (R) of the device. The error in R,
αR is related to the errors in I and V , αV and αI , as follows:(αR

R

)
=

√(αI

I

)2
+
(αV

V

)2
.

If the variables are statistically independent, the formula for error prop-
agation takes a particularly simple form. The graphical method is easily
generalized as follows:

|δf | = |f(x+ δx)− f(x)|
and taking δxi to be the error bars αxi in xi (where αxi > 0), αf to be the
error bar in f :

|αf | = |f(x+ α⃗x)− f(x)|.
Example in 2D:

|αf | = |f(A+ αA, B + αB)− f(A,B)|.
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Thus, if you know f , A,B, αA, αB you can calculate the error bar in f . In
general, this method should be sufficient.

In high dimensional spaces, it is impossible to visualize the function to be
approximated. We can instead use derivatives:

|δf | = |f(x+ δx)− f(x)| ≈

∣∣∣∣∣
n∑

i=1

∂f

∂xi
δxi

∣∣∣∣∣ .
If you know the derivatives of f , you can use this formula. Consider a
function that adds several independent random variables:

f(x1, x2, . . . , xn) = x1 + x2 + · · ·+ xn.

In that case, all derivatives are equal to 1: ∂xif = 1 for all i = 1, . . . , n.
Denoting the errors in the xi as αi and the error in δf as αf , we find (since
αi > 0):

|αf | = |α1 + α2 + · · ·+ αn| = |α1|+ |α2|+ · · ·+ |αn|.
We can also use the upper bound:∣∣∣∣∣

n∑
i=1

∂f

∂xi
δxi

∣∣∣∣∣ ≤
n∑

i=1

∣∣∣∣ ∂f∂xi
∣∣∣∣ |δxi| ,

as our error bar in f . Then, denoting the error bars in xi as αxi (instead of
δxi):

|αf | =
n∑

i=1

|∂if | · |αxi |.

3.2.1. Remark: Adding Two Quantities. Consider the case f(x1, x2) =
x1 + x2. One way to get the error in f in terms of the errors in x1 and x2
is to add the two error bars:

|αf | = |αx1 |+ |αx2 |.
This formula is easily derived using the graphical method:

|αf | = |f(x1+αx1 , x2+αx2)−f(x1, x2)| ≈
∣∣∣∣ ∂f∂x1αx1 +

∂f

∂x2
αx2

∣∣∣∣ = |αx1 |+|αx2 |,

where f = x1+x2, αx1 > 0 and αx2 > 0. (Note: we are treating all variables
here as deterministic.)

Another method for obtaining the error bars in f when f(x1, x2) = x1+x2 is

to add error bars quadratically: αf =
√

(αx1)
2 + (αx2)

2. Both methods are
valid; they simply report different information. The method of adding errors
in quadrature yields a tighter error bound than adding the errors linearly,
i.e.

|αx1 |2 + |αx2 |2 ≤ |αx1 |2 + |αx2 |2 + 2|αx1 ||αx2 | = (|αx1 |+ |αx2 |)2.
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You can also see this graphically from the Pythagoras theorem: the hy-
pothenuse

√
(αx1)

2 + (αx2)
2 is always shorter than (or equal to) the sum of

the two remaining sides |αx1 |+ |αx2 |.

3.2.2. Derivative Method: Case of Statistically Independent Vari-
ables. As in the 1D case, we view the experimental measurement as a ran-
dom variable x which is the sum of a mean value x (deterministic quantity)
and a deviation δx (a random quantity):

x = x+ δx.

The Taylor expansion of f(x) about the point x to first order is:

(3.1) δf = f(x+ δx)− f(x) =
n∑

i=1

∂f

∂xi
δxi +O(|δx|2),

where the derivatives are evaluated at the point x. Since δx are random
variables, δf is also a random variable which depends on random variables
δx = (δx1, . . . , δxn). The δxi are deviations from the point of expansion x.
Again, we view the ∂f/∂xi as deterministic quantities whereas the δxi are
random. Note: δf itself is not the error bar. It’s a random variable. Its
value changes every time a new experiment is done. However, an error can
be obtained from δf by taking the square root of its variance.

If the random variables {δxi} are mutually independent, taking the variance
of Eq. (3.1) gives:

var(δf) =
n∑

i=1

var(∂if · δxi) =
n∑

i=1

(∂if)
2var(δxi).

Noting that δx = x − x̄, and that var(δxi) = var(xi) since constants such
as x̄ don’t affect the variance, we have:

var(δf)︸ ︷︷ ︸
(αf )2

=
n∑

i=1

(∂if)
2 var(xi)︸ ︷︷ ︸

(αxi )
2

,

or

(3.2) (αf )
2 =

n∑
i=1

(∂if)
2(αxi)

2.

How is this related to the result of the previous section?

n∑
i=1

|∂if |2 · |αxi |2︸ ︷︷ ︸
l2 norm squared

≤

(
n∑

i=1

|∂if | · |αxi |

)2

︸ ︷︷ ︸
l1 norm squared

.
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f(x1, x2, . . . ) error propagation

x1 ± x2 αf =
√
(αx1)

2 + (αx2)
2

x1 · x2 or x1/x2
αf

f =

√(
αx1
x1

)2
+
(
αx2
x2

)2
xn1

∣∣∣αf

f

∣∣∣ = ∣∣∣nαx1
x1

∣∣∣
k x1
x2

αf

f =

√(
αx1
x1

)2
+
(
αx2
x2

)2
k

xn
1

xm
2

αf

f =

√(
n
αx1
x1

)2
+
(
m

αx2
x2

)2
x1 + x2 − x3 + x4 αf =

√
(αx1)

2 + (αx2)
2 + (αx3)

2 + (αx4)
2

x1·x2
x3·x4

αf

f =

√(
αx1
x1

)2
+
(
αx2
x2

)2
+
(
αx3
x3

)2
+
(
αx4
x4

)2
Table 3.2. Formulae for error propagation in several variables. This
table can be found in Hughes & Hase’s book.

The l2-norm gives tighter bounds than the l1 norm. Recall: the lp-norm of
a vector x⃗ is:

(3.3) ∥x⃗∥p = (|x1|p + · · ·+ |xn|p)1/p .
The reader should derive all the formulas in Table 3.2.

Let us work out the first two lines of the table explicitly.

When f(x1, x2) = x1 ± x2, the partials ∂x1f = 1 and ∂x2f = ±1. Thus,

(αf )
2 =

(
∂f

∂x1

)2

(αx1)
2 +

(
∂f

∂x2

)2

(αx2)
2

=1 · (αx1)
2 + (±1)2 · (αx2)

2 = (αx1)
2 + (αx2)

2.

Hence,

αf =
√
(αx1)

2 + (αx2)
2.

When f = x1 · x2, we have ∂x1f = x2 and ∂x2f = x1. Then,

(αf )
2 =

(
∂f

∂x1

)2

(αx1)
2 +

(
∂f

∂x2

)2

(αx2)
2

=x22 · (αx1)
2 + x21 · (αx2)

2

Dividing both sides by f2 = x21x
2
2 gives the result that fractional errors add

up in quadrature: (
αf

f

)2

=

(
αx1

x1

)2

+

(
αx2

x2

)2

.

We also get the same result for f = x1/x2.
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Air

Glass

i

r

Figure 3.5. Snell’s law. The angle of incidence (in radians) is denoted
i; the angle of refraction is denoted r.

3.2.3. EXAMPLE: Snell’s Law (Two Variables). This example can
be found in Taylor’s book. Consider light that enters a medium. Let (i)
denote the angle of incidence and (r) the angle of refraction (Fig. 3.5). These
two angles are related by Snell’s law, through the index of refraction of the
medium n (in this case, glass),

sin i = n sin r.

We ask what is the error in n given experimentally measured errors in i and
r.

3.2.3.1. Method 1, Using Propagation of Errors Formula. From the previous
lecture, (αf )

2 =
∑n

i=1(∂if)
2(αxi)

2, and n = sin i
sin r , we have

(αn)
2 =

(
cos i

sin r

)2

(αi)
2 +

(
sin i · cos r
(sin r)2

)2

(αr)
2.

Dividing throughout by n2, or equivalently, multiplying by 1/n2 = (sin r/ sin i)2:(αn

n

)2
=

(
cos i

sin i

)2

(αi)
2 +

(cos r
sin r

)2
(αr)

2.

3.2.3.2. Method 2, Using Table of Formulas. Using the result for A/B in the

table from the last page of the previous lecture, αz/z =
√
(αA/A)2 + (αB/B)2,

and n = sin i/ sin r with A = sin i and B = sin r, we have:

αn

n
=

√(αsin i

sin i

)2
+
(αsin r

sin r

)2
,

where αsin i = | cos i|αi and αsin r = | cos r|αr. Some example numbers are
provided in Table 3.3, for the case where errors in angles are ±1◦, or 0.02
rad.
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i (deg) r (deg) sin i sin r n αsin i
| sin i|

αsin r
| sin r|

αn
n

20 13 0.342 0.225 1.52 5% 8% 9%
40 23.5 0.643 0.399 1.61 2% 4% 5%

Table 3.3. Error propagation through Snell’s law.

��

Figure 3.6. Resonant circuit.

3.2.4. EXAMPLE: LC Resonant Circuit (Two Variables). Suppose
that we have an LC circuit (Fig. 3.6). Its resonance frequency can be shown
to be1

f0 =
1

2π

1√
LC

.

It is generally difficult to measure L with good accuracy. A better method
is to measure the resonant frequency f0 (which can be done using a network
analyzer) and the capacitance C. L is then given by

L =
1

(2πf0)2C
.

What about the error in L?

(αL)
2 =

∣∣∣∣ ∂L∂f0
∣∣∣∣2 (αf0)

2 +

∣∣∣∣ ∂L∂C
∣∣∣∣2 (αC)

2

where ∣∣∣∣ ∂L∂f0
∣∣∣∣ = 1

2π2f30C
=

2L

f0
and ∣∣∣∣ ∂L∂C

∣∣∣∣ = 1

(2πf0)2C2
=
L

C
.

The result is: (αL

L

)2
= 4

(
αf0

f0

)2

+
(αC

C

)2
,

1This is seen by equating the voltages across each lumped element, i.e. jωL = 1
jωC

, where

j =
√
−1 denotes an imaginary number and ω = 2πf0.
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which could also have been derived from the above look-up table formula
with z = kAn/Bm for which

αz

z
=

√(nαA

A

)2
+
(mαB

B

)2
.

3.2.5. EXAMPLE: Generic (Two Variables). This example can be
found in Taylor’s book. Let’s determine the error in q = x2y − xy2, where
we have measured experimentally the quantities:

x = 3.0± 0.1 and y = 2.0± 0.1

The “xbest” value, as usual, is obtained from the reported values:

qbest = 32 · 2− 3 · 22 = 6.0.

For the error, we need the following two terms:∣∣∣∣∂q∂x
∣∣∣∣αx = |2xy − y2|αx = |12− 4| · 0.1 = 0.8,∣∣∣∣∂q∂y
∣∣∣∣αy = |x2 − 2xy|αy = |9− 12| · 0.1 = 0.3.

Adding the errors in quadrature gives:

αq =
√
(0.8)2 + (0.3)2 = 0.9.

Therefore, we report:
q = 6.0± 0.9.

3.3. When Variables are Correlated

Previously, we found the following formula for propagation of errors

(3.4) (αf )
2 =

n∑
i=1

(∂if)
2(αxi)

2,

where f is a function of n variables, i.e. f = f(x1, x2, . . . , xn). ∂if denotes
the partial derivative of f with respect to xi. This result relies on the as-
sumption that the different random variables are statistically independent.
However, if the random variables are not statistically independent, covari-
ance

cov(X,Y ) = XY −X · Y
enters the picture and an additional term is required to describe the in-
terdependence between the variables. Before we begin, let us remark the
following properties of the covariance, which easily follow from the defini-
tion of covariance:

cov(X,X) = var(X)

cov(X,Y ) = cov(Y,X) (symmetry)
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cov(X + Y,Z) = cov(X,Z) + cov(Y, Z) (linearity in the first argument)

cov(aX, Y ) = a · cov(X,Y ) (linearity in the first argument)

from which you can derive

cov(aX+bY, Z) = a·cov(X,Z)+b·cov(Y, Z) (linearity in the first argument)

cov(Z, aX+bY ) = a·cov(Z,X)+b·cov(Z, Y ) (linearity in the second argument).

Also useful is the relationship:

cov(a+X,Y ) = (a+X)Y −(a+X)·Y =��aY +XY −��aY −X ·Y = cov(X,Y ),

since additive constants don’t change anything. Slightly more obvious is:

cov(a, Y ) = aY − a · Y =��aY −��aY = 0.

Since cov is linear in both arguments, we say that it is bilinear. Let {X1, . . . , Xn}
be n random variables. Bilinearity gives:

var(
n∑

i=1

aiXi) =
n∑

i,j=1

aiaj cov(Xi, Xj) =
n∑

i=1

a2i var(Xi)+2
∑
i<j

aiaj cov(Xi, Xj).

So taking the covariance of

(3.5) δf = f(x+ δx)− f(x) =
n∑

i=1

∂f

∂xi
δxi +O(|δx|2)

with itself to get the variance (the square root of which can be taken as the
error bar):

var(δf)︸ ︷︷ ︸
(αf )2

= cov(δf, δf) = cov

 n∑
i=1

∂f

∂xi
δxi,

n∑
j=1

∂f

∂xj
δxj


=

n∑
i=1

(∂if)
2 var(δxi)︸ ︷︷ ︸

(αxi )
2

+2
∑
i<j

(∂if)(∂jf)cov(δxi, δxj).

Note: we neglected terms of order O(|δx|2) and higher.

Recall that δx = x − x̄ and because x̄ is simply an additive constant, we
have that:

cov(δxi, δxj) = cov(xi − xi, xj − xj)
= cov(xi, xj)− cov(xi, xj)− cov(xi, xj) + cov(xi, xj).

Observe that cov(xi, xj) = 0 since both arguments are constant. Also, both
cov(xi, xj) and cov(xi, xj) vanish since one of the arguments is a constant.
This leaves:

cov(δxi, δxj) = cov(xi, xj).
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Thus,

var(f) =
n∑

i=1

(∂if)
2var(xi) + 2

∑
i<j

(∂if)(∂jf)cov(xi, xj).

or,

(3.6) (αf )
2 =

n∑
i=1

(∂if)
2(αxi)

2

︸ ︷︷ ︸
diagonal term

+2
∑
i<j

(∂if)(∂jf)cov(xi, xj).︸ ︷︷ ︸
off-diagonal term

.

Formula (3.6) differs from (3.4) by the emergence of a cross-correlation term,

2
∑
i<j

(∂if)(∂jf)cov(xi, xj).

We note that if the random variables {xi} are statistically independent,
cov(xi, xj) = 0, the second term vanishes and the formula reduces to (3.4).

3.3.1. EXAMPLE: case of two variables. Suppose that we measure
mass and acceleration and compute the force according to F = ma. The
above formula for the error in F gives:

var(F ) = (∂mF )
2var(m) + (∂aF )

2var(a) + 2(∂mF )(∂aF )cov(a,m)

The partial derivatives of F are easily computed: ∂m(ma) = a, ∂a(ma) = m.
Then,

var(F ) = a2var(m) +m2var(a) + 2(ma)cov(a,m)

This can easily be computed from experimental data. Suppose we have
random samples {(ai,mi)}ni=1. The sample means are:

µ̂a =
1

n

n∑
i=1

ai, µ̂m =
1

n

n∑
i=1

mi.

The sample variances are:

σ̂2n−1(a) =
1

n− 1

n∑
i=1

(ai − µ̂a)2, σ̂2n−1(m) =
1

n− 1

n∑
i=1

(mi − µ̂m)2.

The sample covariance is:

covn−1(a,m) =
1

n− 1

n∑
i=1

(ai − µ̂a)(mi − µ̂m).

We conclude that the formula for propagation of error can readily be used
with experimental data. In the example F = ma there is no a priori reason
to assume a correlation between a and m. With other models, however,
variables could be correlated.
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3.4. Several Functions of Several Variables

Suppose that f is a vector-valued function, i.e.

f⃗ =


f1
f2
...
fm

 ,

then, one such relationship holds for all m components fi:

(αfi)
2 =

n∑
j=1

(∂jfi)
2(αxj )

2 + 2
∑
h<j

(∂hfi)(∂jfi)cov(xh, xj),

or

(3.7) var(fi) =
n∑

j=1

(∂jfi)
2var(xj) + 2

∑
h<j

(∂hfi)(∂jfi)cov(xh, xj).

Of course, when m = 1 this expression reduces to Eq. (3.6).

Now suppose that we have m functions f1, f2, . . . , fm, each a function of
n different random variables x1, x2, . . . , xn. In the general case, the differ-
ent fk will be correlated with one another, even if the x1, x2, . . . , xn are
uncorrelated. The variances of the fk are given by Eq. (3.7), whereas the
covariances are:

cov(fk, fl) = (fk − fk)(fl − fl) = δfkδfl =

(
n∑

i=1

∂fk
∂xi

δxi

)(
n∑

i=1

∂fl
∂xi

δxi

)

=

n∑
i,j=1

∂fk
∂xi

∂fl
∂xj

δxiδxj ,

which leads to:

(3.8) cov(fk, fl) =

n∑
i=1

n∑
j=1

(
∂fk
∂xi

)(
∂fl
∂xj

)
cov(xi, xj).

We made use of

δfk = fk(x+ δx)− fk(x) =
n∑

i=1

∂fk
∂xi

δxi +O(|δx|2),

and neglected terms of order O(|δx|2) and higher. If we denote gkl = ∂lfk
the elements of a matrix G and F and X the covariance matrices of f⃗ and
x, respectively, then:

F = GXGT ,
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which can also be written as:

(3.9) cov(f⃗ , f⃗) = G · cov(x,x) ·GT ,

where cov(f⃗ , f⃗) = F and cov(x,x) = X. Note: the first derivatives in the
G matrix are evaluated at the point x. This very simple formula, which en-
codes all there is to know about error propagation, should be the one taught
rather than the one for uncorrelated variables, Eq. (3.4) (Section 3.2.2).
Equation (3.4) is obtained from (3.9) by dropping the off-diagonal terms
(covariances). The use of the covariance matrix should not scare students
because the parameters themselves result from a least-squares analysis, and
in general their covariances, which may be non-negligible, may be obtained
as part of the analysis. We will see in Chapter 8 (specifically, in Sec-
tions 8.7 and 8.7.1) how to obtain the covariance matrix during non-linear
least squares analysis.

3.4.1. Examples Using Matrix Method. We look at a few examples of
how to apply Eq. (3.9). Suppose that m = 1 and f : R3 → R depends on
three variables, f = f(x, y, z), assumed to be uncorrelated. The errors on
x, y, z are σx, σy, σz, respectively. Then,

G =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)

F =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)σ2x 0 0
0 σ2y 0

0 0 σ2z




∂f
∂x
∂f
∂y
∂f
∂z

 .

This gives:

F ≡ var(f) =
(
∂f

∂x

)2

σ2x +

(
∂f

∂y

)2

σ2y +

(
∂f

∂z

)2

σ2z .

Suppose instead that f : R3 → R3 describes a change of coordinates from
cylindrical to Cartesian, i.e. x = r cosϕ, y = r sinϕ and z = z. Suppose
that the random variables r, ϕ, z are uncorrelated. Then,

G =

cosϕ −r sinϕ 0
sinϕ r cosϕ 0
0 0 1


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F =

cosϕ −r sinϕ 0
sinϕ r cosϕ 0
0 0 1

σ2r 0 0
0 σ2ϕ 0

0 0 σ2z

 cosϕ sinϕ 0
−r sinϕ r cosϕ 0

0 0 1


=

cosϕ −r sinϕ 0
sinϕ r cosϕ 0
0 0 1

 σ2r cosϕ σ2r sinϕ 0
σ2ϕ(−r sinϕ) σ2ϕr cosϕ 0

0 0 σ2z


Then, we conclude that:(

var(x) cov(x,y) cov(x,z)
cov(y,x) var(y) cov(y,z)
cov(z,x) cov(z,y) var(z)

)
=

(
σ2
r cos2 ϕ+σ2

ϕr
2 sin2 ϕ (σ2

r−σ2
ϕr

2) sinϕ cosϕ 0

(σ2
r−σ2

ϕr
2) sinϕ cosϕ σ2

r sin2 ϕ+σ2
ϕr

2 cos2 ϕ 0

0 0 σ2
z

)
We see that the errors and correlations involving z are not affected by the
transformation (since z is never transformed). The errors in x and y depend
on where they are (r, ϕ) and on the variances of r, ϕ.

3.5. Additive And Multiplicative Systematic Errors

3.5.1. Additive Errors. Systematic errors often appear as an overall shift
of the value we measure, i.e. instead of measuring x we measure x′ which is
the sum of x and an offset δ:

x′ = x+ δ.

Another random variable y is subject to the same systematic drift:

y′ = y + δ.

Thus, x and y have a common systematic error. Assume that x and y are
independent of each other and independent of δ. The error in x′ is:

var(x′) = var(x) + var(δ)

and similarly for y. The covariance is:

cov(x′, y′) = cov(x+ δ, y + δ) = var(δ).

Thus, the covariance matrix for x′, y′ has the random and systematic error
added in quadrature along the diagonal whereas off-diagonal elements are
the square systematic errors:(

var(x) cov(x, y)
cov(y, x) var(y)

)
=

(
var(x) + var(δ) var(δ)

var(δ) var(y) + var(δ)

)
.

If the systematic error is constant (i.e. does not fluctuate), then var(δ) = 0
and x′, y′ are uncorrelated.

3.5.2. Multiplicative Errors. Suppose instead that the systematic errors
are multiplicative:

x′ = δ · x.
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Similarly for y:
y′ = δ · y.

We assume that x and y are independent of each other. We also assume
that δ is independent of x and y. Then,

var(x′) = δ
2
var(x) + x2var(δ) + var(δ)var(x)

and
var(y′) = δ

2
var(y) + y2var(δ) + var(δ)var(y).

The covariances are:

cov(x′, y′) =(δ · x− δ · x)(δ · y − δ · y) = δ · xδ · y − δ · x · δ · y

=δ2xy − δx · δy = δ2 · x · y − δ · x · δ · y = var(δ)x · y.
The covariance matrix of x′, y′ is therefore:(

δ
2
var(x)+x2var(δ)+var(δ)var(x) var(δ)x·y

var(δ)x·y δ
2
var(y)+y2var(δ)+var(δ)var(y)

)
.

The amount of fluctuations in δ determine the magnitude of covariance
between x′ and y′. If δ does not fluctuate, var(δ) = 0, δ is just a number
and this reduces to: (

δ
2
var(x) 0

0 δ
2
var(y)

)
.

There is no longer any covariance between x′ and y′. As expected, the
errors in x′, y′ depend on the mean value of the scaling factor δ. Since
the multiplicative factor is just a constant, this result could also have been
deduced from the theorem var(aX) = a2var(X).

3.6. Monte-Carlo Method For Error Propagation

3.6.1. Toy Model. Let X,Y ∼ N (0, σ2) be iidrv’s and x, y their corre-
sponding values. Define the transformation:

r =
√
x2 + y2.

You may recall this mapping from Section 24 in the context of transfor-
mation to polar coordinates R,Θ from X,Y ∼ N (0, σ2), which yielded a
Rayleigh distribution for R and a uniform distribution for Θ. For now, let
us focus on error propagation through the function r(x, y). Propagation of
errors gives:

σ2r =

(
∂r

∂x

)2

σ2x +

(
∂r

∂y

)2

σ2y ,

where
∂r

∂x
=

1

2

2x√
x2 + y2

=
x√

x2 + y2
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Figure 3.7. Histogram obtained via random number generation (Monte-

Carlo) for the error propagation through r =
√

x2 + y2, where x, y are
standard normals. The red line is a fit to the Rayleigh distribution.

∂r

∂y
=

1

2

2y√
x2 + y2

=
y√

x2 + y2
.

Substituting:

σr =

√
x2

x2 + y2
σ2x +

y2

x2 + y2
σ2y .

But since X,Y ∼ N (0, σ2), this reduces to:

(3.10) σr = σ

√
x2

x2 + y2
+

y2

x2 + y2
= σ.

We can check in MATLAB if the formula for propagation of errors is correct.
Suppose that σ = 1, i.e. X,Y ∼ N (0, 1). Then, according to Eq. (3.10), we
should find σr = 1. However, we instead find 0.6548:

>> x=randn([1 100000]);

>> y=randn([1 100000]);

>> r=sqrt(x.^2+y.^2);

>> figure; histfit(r,50,’rayleigh’);

>> std(r)

ans =

0.6548

The histogram is shown in Figure 3.7.
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Figure 3.8. Plot of the function r =
√

x2 + y2.

How can this difference be explained? Let’s begin by examining the origins
of the error propagation formula. We started from the linear approximation
of f :

δf = f(x+ δx)− f(x) =
∑
i=1

∂f

∂xi
δxi +O(|δx|2).

To first order, the variance of δf is:

var(δf) =
∑
i=1

(
∂f

∂xi

)2

var(δxi),

whose square root gives the error in f , i.e.,
√
var(δf) ≡ σf . (In our case, f

is r =
√
x2 + y2, so σf ≡ σr.) We are hoping that this linear approximation

yields a good approximation to the true variance, var(δf) = var(f(x +
δx)− f(x)).We can check if the linear approximation is valid by estimating
the magnitude of the remainder term, O(|δx|2). A plot of the function

r(x, y) =
√
x2 + y2 is shown in Figure 3.8.

The remainder term of the Taylor expansion is proportional to the sec-
ond derivative. Consider a region centered on the origin with radius σ. If
over this region the norm of the Hessian matrix (second derivative) of r
is bounded by q ≤ ∥∇∇r(x, y)∥ ≤ Q, the remainder term satisfies the in-

equality qσ2/2 ≤ O(|δx|2) ≤ Qσ2/2. The Hessian matrix of r =
√
x2 + y2

is:

∇∇r(x, y) =

 1√
x2+y2

− x2

(x2+y2)3/2
− xy

(x2+y2)3/2

− xy
(x2+y2)3/2

1√
x2+y2

− x2

(x2+y2)3/2


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For the y = 0 and x = 0 directions the linear approximation is exact (Hessian
vanishes). However, at 45◦ (x = y), the Hessian reaches a maximum:[

1√
2x2
− x2

(2x2)3/2
− x2

(2x2)3/2

− x2

(2x2)3/2
1√
2x2
− x2

(2x2)3/2

]
=

[
1

2
√
2|x| − 1

2
√
2|x|

− 1
2
√
2|x|

1
2
√
2|x|

]
∼ 1

|x|
,

whose eigenvalues are 0 and 1/(
√
2|x|) (i.e. the Frobenius norm is 1/(

√
2|x|)).

If the “small parameter” of the Taylor expansion is ∼ var(δxi) ∼ σx = σy ≡
σ, then this Hessian has norm ∼ 1√

2σ
. Over the circle with radius σ the

second derivative is bounded by

1√
2σ
≤ ∥∇∇r(x, y)∥ ≤ ∞

Therefore, the Taylor remainder is bounded by

1√
2σ

σ2

2

(
≡ σ

2
√
2

)
≤ O(|δx|2) ≤ ∞,

with singular the upper limit corresponding to the limit of small r =
√
x2 + y2.

In the Taylor expansion the first order term is ∼ (∂if)σ (i = x, y), where

the first derivatives themselves are (x, y)/
√
x2 + y2 and therefore, of order

unity (magnitude is 1 when either x = 0 or y=0, and 1/
√
2 at 45◦, when

x = y). The remainder is bounded from below by σ
2
√
2
(when x = y). Thus,

the remainder is comparable in size to the first order term. The first-order
Taylor expansion is therefore not a good approximation since the error term
is just as large as the approximating term itself. This is an example of the
breakdown of the linear approximation used in error propagation.

We have concluded that when the linear approximation breaks down, the
correct error bar cannot be obtained by standard error propagation. We in-
stead must know the distribution function of the new variable (r) and based
on this distribution extract the error as a parameter of the distribution.
We have already established numerically that the standard deviation should
be 0.6548. Let’s check that this is consistent with the parameters of the
Rayleigh distribution

pR(r) =
r

b2
e−r2/(2b2),

whose mean is b
√
π/2 and variance is b2(4−π)/2. Fitting the r-data to the

distribution gives a value of 1.00083, for the b-parameter:

>> fitdist(r’,’rayleigh’)

ans =

RayleighDistribution
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Rayleigh distribution

B = 1.00083 [0.997739, 1.00394]

>> (1.00083^2)*sqrt((4-pi)/2)

ans =

0.6562

Using the formula for the variance of the Rayleigh distribution we find that
the standard deviation should be 0.6562, which is in excellent agreement
with our Monte-Carlo estimate of 0.6548.

3.6.2. Monte-Carlo Method. This suggests a very simple but accurate
and general numerical method for error propagation that does not rely on
the linear approximation:

• For a function of n variables, f = f(x1, x2, . . . , xn) generate N (N very
large) random numbers for each rv x1, . . . , xn according to their joint
distribution. Hopefully, these are normally distributed iidrv’s, as most
computer software can generate such random numbers.

• Propagate the error through the equation f = f(x1, x2, . . . , xn) by feeding
it the N random numbers corresponding to the N realizations of each of
the n random variables (N ×n random numbers total will have been gen-
erated for this purpose). This will result in N values of f , i.e., f1, . . . , fN
(one value per realization of the rv’s).

• Compute the histogram of the new random variable f , using the N values
f1, . . . , fN .

• Fit the histogram to an appropriate distribution. (If the distribution
of f is known or can be derived, use it; otherwise pick a distribution
that approximates the histogram well.) Obtain the parameters of the
distribution.

• Alternatively (to fitting the distribution of f), you can instead numerically
calculate the moments of f . For example, the variance may be sufficient
if all you need is an error bar for f . However, make sure you inspect the
distribution of f to make sure that the variance is a good measure of its
spread.

3.6.3. Linear vs Non-Linear Propagation. The example covered in
Section 3.6 illustrates an interesting potential weakness of the error propaga-
tion method you should be aware of. The error propagation method works
well when f can be approximated by a linear map near x. Examples of
linear maps were presented in Sections 2.24.2 and 2.24.1 where we covered
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the the normal sum theorem,

N (µ1 + µ2, σ
2
1 + σ22) = N1(µ1, σ

2
1) +N2(µ2, σ

2
2),

and the normal linear transform theorem

α+ βN (µ, σ2) = N (α+ βµ, β2σ2).

The first corresponds to a relationship of the form f(X,Y ) = X + Y (two
variables), where X,Y are independent normal rv’s. The second is a rela-
tionship of the form f(X) = α+βX (single variable), where X is normal. In
both cases, the Taylor expansion stops after the linear term (the remainder

term is zero). In the case f(X,Y ) =
√
X2 + Y 2 the relationship is nonlinear

and the Taylor expansion of f requires an infinite number of terms. In that
case, we must be careful to assess the magnitude of the remainder term rel-
ative to the linear term. The error propagation formula based on Taylor’s
theorem is justified when O(|δx|2)≪ |

∑
i(∂if)δxi|.

3.7. Problems

Problem 96. The Richter magnitude of an earthquake is determined from
the logarithm of the amplitude of waves recorded by seismographs (adjust-
ments are included to compensate for the variation in the distance between
the various seismographs and the epicenter of the earthquake). The formula
is:

ML = log10(A/A0(δ))

where A is the maximum excursion of the Wood-Anderson seismograph, the
empirical function A0 depends only on the epicentral distance of the station,
δ. Both A and δ are prone to measurement error. Find the uncertainty in
ML due to errors in A and δ.

Solution. Propagation of error formula is:

σ2ML
=

∣∣∣∣∂ML

∂A

∣∣∣∣2 σ2A +

∣∣∣∣∂ML

∂δ

∣∣∣∣2 σ2δ ,
where the derivatives are:

∂ML

∂A
=

1

log(10)

A0(δ)

A
· 1

A0(δ)
=

1

A · log(10)
∂ML

∂δ
= − 1

log(10)

A0(δ)

A
· 1

[A0(δ)]2
∂A0(δ)

∂δ
= − ∂A0(δ)/∂δ

A ·A0(δ) · log(10)
■

Problem 97. You built a setup to detect light with an avalanche photo-
diode. In an avalanche photodiode the carrier production rate η(P/hν) is
increased by a factor of M because of the ionization by the drifting elec-
trons and holes. Here, η is the detector quantum efficiency (number of
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carriers generated divided by the number of photons absorbed), P is the
power absorbed in the detector and hν is the incident photon energy. The
photocurrent is enhanced by the same value:

i =Me

[
η

(
P

hν

)
+ g

]
where g is a constant and e is the charge of the electron. Suppose that light
incident on the photodetector is in a coherent state. A coherent state is a
photon field that is a linear superposition of single-mode states. It is the
closest approximation to a classical electromagnetic field, as far as quantum
mechanics’ Heisenberg uncertainty principle allows.

In a coherent state the fluctuations of the photon number follow Poisson
statistics, i.e. for a measurement of the number of photons in the light field,
the probability of the field containing n photons is

P(n;n) =
e−nnn

n!
which is a Poisson distribution with mean n. The light power absorbed in
the detector (P ) is proportional to n, i.e. P = Cn where C is a constant.

(a) Compute the fluctuations in the photon count (n) of the coherent state
in terms of the measured photocurrent (i). From the noise, estimate the
actual photon count n in the electromagnetic field.

(b) Same as (a) but use the fluctuations in the measured electrical power
instead of current (i). Electrical power is i2R, where R is a constant (the
load resistance).

Solution. (a)

i =Me

[
η
Cn

hν
+ g

]
→ δi =

∣∣∣Meη
c

hν

∣∣∣ δn → δn =
δi∣∣Meη c

hν

∣∣
square δn to get n.
(b)

P = i2R = R(Me)2
[
η
Cn

hν
+ g

]2
expanding the square bracket:

η2
c2n2

(hν)2
+ 2η

Cng

hν
+ g2
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solving for δP

δP = R(Me)2
[
2η2c2n

(hν)2
+

2ηCg

hν

]
δn

replace n by (δn)2 and solve to get δn. Square to get n. ■

Problem 98. Use the method of error propagation to find the error in
the work function W (due to a force F (x) applied over a distance x, i.e.
W =

∫
F (x)dx and you can assume Hooke’s law for F ) performed by drag-

ging a light object of mass m across a distance x. The object is mounted at
the end of a spring whose constant is k. The error in x is denoted δx.

(a) Find the error δW in terms of δx.

(b) What if the displacement x is measured using an interferometer whose
output is designed to produce a voltage V (you may assume that V is linear
in x).

Solution. (a) Substitute F = kx and integrate to get W = 1
2kx

2. Then
δW = |∂W/∂x|δx = |kx|δx.

(b) Now we have x = AV , where A is some constant. Then, W = 1
2kA

2V 2

and δW = |kA2V |δV . ■

Problem 99. We have seen in class that when two random variables X and
Y are added to form a new random variable, Z = X + Y , the errors add in
quadrature:

σ2Z = σ2X + σ2Y .

However, in your chemistry labs, you may have been taught that the errors
add in first power:

σZ = σX + σY .

There are no restrictions on the distributions of X and Y apart from the
obvious requirement of finite variances.

(a) Derive the second formula (σZ = σX + σY , where σX , σY ≥ 0).

(b) Show the relationship between these two different methods for computing
the error in Z, i.e., derive an inequality that relates these two different forms
for σZ .

Solution. (a) The second formula follows from mapping the range of X and
Y values onto the Z axis. Z(X,Y ) = X + Y is a function of two variables.
As X and Y range over their allowed values (thanks to σX and σY ), Z
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ranges from
Zmin = (X − σX) + (Y − σY )

up to
Zmax = (X + σX) + (Y + σY )

The difference between Zmin and Zmax is:

Zmax − Zmin = 2σx + 2σY .

This is the total range. Error bar is half of this, since we write it symmet-
rically as Z ± δZ:

σZ = σX + σY .

(b) Observe that (σX , σY ≥ 0):

|σX + σY |2 = σ2X + σ2Y + 2σXσY .

Hence,
|σX + σY |2 = σ2X + σ2Y + 2σXσY ≥ σ2X + σ2Y .

The left hand side is σ2Z , where σZ = σX + σY . The right hand side is σ2Z ,
where σ2Z = σ2X + σ2Y . Thus, the error bar obtained from σZ = σX + σY is
larger than the error bars obtained by adding the errors in quadrature. ■

Problem 100. Use error propagation to show how an error in the measured
radius leads to errors in the calculation of sphere volume (as calculated from
the radius).

Solution. From V = 4
3πr

3, δV = 4πr2δr. ■

Problem 101. Same question as the previous one, except that now consider
the case where you only remember the value of π to a few digits (e.g. π =
3.14). How does this error in π (in addition to the error in r) contribute to
the uncertainty in volume?

Solution. (δV )2 = |4πr2|2|δr|2 +
∣∣4
3r

3
∣∣2 |δπ|2. ■

Problem 102. Suppose you work at a particle accelerator and your job
is to spend your life measuring two quantities in the laboratory, X and
Y . X could be for example, a voltage, whereas Y could be a position.
Both X and Y relate to some important physical quantity being measured.
The two measurements are uncorrelated and statistically independent. It
is known that the values of X range continuously from 0 to 1 and appear
to be uniformly distributed whereas Y appears to be Gaussian distributed
with mean 0 and variance 1.

(a) Calculate the value of the probability P(0.2 < X < 0.8, Y < 0).

(b) Calculate the probability P(0.2 < X < 0.8, Y ̸= 0) (i.e. the joint
probability that X lies in the range [0.2, 0.8] and Y does not equal zero).
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(c) A physical theory for the new particle predicts that its spin can be
obtained from Z = XeY , where X is related to the total orbital moment of
the subatomic particles and Y is related to the total spin of these particles.
Definite values of Z are hard to obtain due to experimental error, so the
best you can do is set an upper bound on its value. Explain how you would
set such an upper bound. Or equivalently, calculate the chance P(Z < z)
that Z will take a value less than z.

Solution. (a) P = 0.6 ∗ 0.5 = 0.30

(b) P = 0.6 ∗ 1 = 0.6

(c) Method 1: since the distributions of X and Y are known:

P(Z < z) =P(XeY < z) =

∫
{(x,y)|xey<z,0≤x≤1}

pXY (x, y)dxdy

=

∫
{(x,y)|xey<z,0≤x≤1}

1 · e
−y2/2

√
2π

dxdy =

∫ 1

0
dx

∫ log(z/x)

−∞

e−y2/2

√
2π

dy

=

∫ 1

0
Φ(log(z/x))dx.

Method 2: using error propagation, which can be done since z(x, y) is known
and the errors in X and Y are also known. ■

Problem 103. From the coast of Normandy, you measure the position of
an English flag along the coast of Great Britain, across the English channel,
using a telescope. You use the angle the telescope makes relative to its base,
and the known distance across the English channel, to convert the angle to
lateral distance along the coast (using simple trigonometry). However, the
intense winds make it difficult if not nearly impossible for you to readout
the angle (and hence the distance) properly. The intense vibrations result
in random fluctuations of this distance.

Fortunately, you know that averaging several measurements together can
reduce the noise. Let X1, . . . , Xn be n measurements of the flag’s true
position X (r.v. mean µ and variance σ2; the variance is a measure of the
area of the flag). What should the value of n be (n: no. of samples acquired
in an experiment) needed to ensure that the probability that the position
(calculated form the sample mean) does not deviate from the true position
of the flag by more than σ/10 is at least 0.95.

Solution. Using the inequality on p.1 with ϵ = σ/10

P
(
|Xn − µ| ≤

σ

10

)
= 1− P

(
|Xn − µ| >

σ

10

)
≥ 1− var(Xn)

(σ/10)2
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Where Xn =
X1 + · · ·+Xn

n
, var(Xn) =

var(X)

n
=
σ2

n
.

P
(
|Xn − µ| ≤

σ

10

)
≥ 1− var(X)

n(σ/10)2
= 1− 100

n
.

If we want this probability to be at least 0.95, we must have 100/n ≤ 0.05
or n ≥ 100/0.05 = 2000. ■

Problem 104. Suppose we have Hooke’s law F = kx, where k and x have
uncertainties. Use error propagation to determine the error in F from the
errors in k and x

Solution.

(δF )2 =

(
∂F

∂k

)2

(δk)
2 +

(
∂F

∂x

)2

(δx)
2 = x2(δk)

2 + k2(δx)
2

(δF ) =
√
x2(δk)2 + k2(δx)2.

■



Chapter 4

Statistical Parameter
Estimation

Statistical distributions, such as the Gaussian distribution, contain param-
eters such as the mean and variance whose values may be unknown. For
example, suppose that we want to estimate the mean of a distribution. We
may have at our disposal a series of measurements of a random variable X
(random sample) {X1, . . . , Xn}. Corresponding to a random experiment ω
we denote their values by lowercase letters: Xi(ω) = xi. How should we
calculate the average?

For example, should we use the arithmetic mean (sample mean),

Xarith. ≡
1

n

n∑
i=1

xi,

the harmonic mean

Xharm. ≡

(
1

n

n∑
i=1

x−1
i

)−1

,

or the geometric mean

Xgeom. ≡

(
n∏

i=1

xi

)1/n

?

Methods have been developed to estimate the parameters of statistical dis-
tributions. Estimation theory is a branch of statistics that deals with es-
timating the values of parameters based on measured empirical data. An

179
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estimator is not an exact representation of the parameters, but instead at-
tempts to approximate the parameters from the measurements using some
underlying principle. There are several estimation methods that are com-
monly used, such as maximum likelihood estimation (MLE), Bayes estima-
tion, the method of moments, the maximum a posteriori (MAP) method,
etc. The simplest one is MLE; other methods require additional theory. We
shall cover the MLE method.

4.1. Maximum Likelihood Estimation (MLE)

MLE estimates the parameters of a statistical model by finding the param-
eter values that maximize the likelihood of making the observations given
the parameters.

4.1.1. Likelihood Function. Let us construct a so-called “likelihood func-
tion” L(θ), as a function of the unknown parameters θ = (θ1, . . . , θp), and
conditioned by the observation of the random samples. We will set this
likelihood function to be equal to the joint probability density of observing
the values X1(ω) = x1, . . . , Xn(ω) = xn. Since the random samples are
independent random variables, the joint density factorizes into a product of
densities for each:

L(θ|x1, x2, . . . , xn) ≡ pX1,...,Xn(x1, x2, . . . , xn|θ) =
n∏

i=1

pX(xi|θ).

Here, pX1,...,Xn(x1, x2, . . . , xn|θ) is the joint PDF of X1, . . . , Xn given θ.
pX(xi|θ) is the PDF of X given θ. An interpretation of the likelihood
function is as follows: given observed data x1, x2, . . . , xn (corresponding to
the realization ω of iidrv’s X1, . . . , Xn ∼ X), a distribution with parameters
θ, then:

probability that Xi is in [xi, xi + dxi] for all i =
n∏

i=1

pX(xi|θ)dxi,

where θ represents one or more parameters of the distribution pX(x|θ). The
likelihood function, L(θ) =

∏n
i=1 pX(xi|θ), which is just the joint PDF of the

xi, is treated here as a function of the parameter(s), θ. The xi, on the other
hand, are treated as fixed (the experiment is over). The MLE method con-
sists of solving the system of equations, ∇θL = 0, or ∂L/∂θi = 0, i = 1, . . . , p
for the unknown parameters θi, as function of the data (x1, . . . , xn).

Next, we need to know or assume a distribution for the random variables
X1, X2, . . . , Xn. We did assume they were iidrv’s, Xi ∼ X. The distribution
of X is arbitrary. By distribution we mean the CDF or PDF as well as its
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parameters θ. As an example, if they are normally distributed, the param-
eters are θ = (σ, µ). Due to statistical independence, the joint probability
distribution pX1,...,Xn(x1, . . . , xn|θ) for observing the whole set of n readouts
{Xi(ω) = xi} factorizes as a product:

pX(x1|θ) · pX(x2|θ) · · · · · pX(xn|θ) =
1

(2π)n/2σn
e−
∑n

i=1(xi−µ)2/2σ2
,

where θ = (µ, σ). The problem we want to solve is this: given the measure-
ments {x1, . . . , xn} we want to estimate the unknown quantities µ and σ.
In other words, we would like to find “best estimates” for these parameters
in terms of the observations x1, . . . , xn.

4.1.2. Principle of Maximum Likelihood. The principle of maximum
likelihood states that the best estimates for θ are those for which the observed
data x1, . . . , xn are most likely to occur, i.e. for which the likelihood function
L(θ|x1, x2, . . . , xn) is a maximum with respect to θ. Suppose that θ = (µ, σ),
maximization with respect to θ means that we should enforce the following
two conditions:1

∂L

∂µ
= 0 and

∂L

∂σ
= 0,

where the derivatives are evaluated at the point (µ, σ) = (µ̂, σ̂). The hat
notation is used to denote the particular choice of θ values obtained by MLE.

Let us start with the first condition (∂L∂µ = 0). Inspection of the above

“Gaussian” expression for pµ,σ shows that µ only appears in the argument
of exp. Finding the extremum of exp(f(µ)) with respect to µ is equivalent
to finding the extremum of f(µ) with respect to µ, since:

∂

∂µ
ef(µ) = ef(µ)

∂f

∂µ
= 0

1An extremum of L is found by setting dL = 0. Take θ = (µ, σ), for example: since dL(µ, σ) =
∂µdµ + ∂σdσ and dµ, dσ are arbitrary displacements, dL = 0 implies that the gradient of L

vanishes: ∇L(µ, σ) = 0. The vanishing gradient means that all partial derivatives vanish: ∂µ = 0
and ∂σ = 0.
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and dividing both sides by ef(µ) implies that ∂f
∂µ = 0. In general, you can

find the extremum of log(L) rather than L; this is sometimes easier.2 Thus,

∂

∂µ

n∑
i=1

(xi − µ)2/2σ2 = 0 or
n∑

i=1

(xi − µ) = 0,

which leads to the formula for sample mean we have been using all along.
We substitute Xi(ω) in place of xi, suppress the ω notation in order to view
µ̂ as a random variable:

µ̂ =
1

n

n∑
i=1

Xi.

The hat notation µ̂ denotes that this particular value of µ corresponds to
the MLE for the mean. This provides a justification for the use of µ̂ as the
value of xbest.

For ∂L/∂σ the situation is different because σ also appears in the coefficient
of exp. In this case, we look for the extremum of L instead of its log.
Differentiating with respect to σ we get

(2π)n/2
∂L

∂σ
=

(−n)
σn+1

e−
∑

i +
1

σn
e−
∑

i

(
−

n∑
i=1

(xi − µ)2

2

)(
− 2

σ3

)
= 0.

Divide by e−
∑

i , multiply by σn+1:

−n+
1

σ2

(
n∑

i=1

(xi − µ)2
)

= 0 which gives σ̂2n =
1

n

n∑
i=1

(Xi − µ̂)2

where µ̂ is the sample mean and Σi is shorthand for
∑n

i=1(xi − µ)2/2σ2. In
the last step we wrote (µ̂, σ̂) to denote the fact that this particular choice
of values for (µ, σ) corresponds to the MLE.

2We note that finding the extremum of L is equivalent to finding the extremum of logL. This is be-

cause log(x) function is a monotonic function. Indeed, a necessary condition for the maximization

of logL is:
∂

∂x
logL(x) =

1

L(x)

∂

∂x
L(x) = 0,

where L(x) ̸= 0. Multiplying both sides of the equation by L(x) leads to ∂
∂x

L(x) = 0, which is

a necessary condition for a maximum in L(x). Thus, maximizing L is the same as maximizing

logL. (Exercise: our proof is not complete since we have only considered the necessary condition
for a maximum. Can you complete the argument by analyzing the sufficient condition?)



4.2. Estimator Bias 183

In practice, we instead use the quantity with the coefficient 1/(n−1) instead
of 1/n:

σ̂2n−1 =
1

n− 1

n∑
i=1

(Xi − µ̂)2 sample variance

because the n − 1 corrects for the underestimation of σ2 when we use µ̂
(sample mean) as our estimator for µ. Recall that the choice of µ = µ̂
(sample mean), by definition, minimizes the quantity

∑
i(Xi−µ)2 for µ = µ̂.

We say that σ2 is a biased estimator of the variance whereas σ2n−1 is an
unbiased estimator. The proof for the n/(n − 1) correction factor is found
in Section 4.2.4.

4.2. Estimator Bias

An estimator is said to be unbiased if its expectation value is equal to the
true value of the parameter. For example, if our estimator for the mean
is the arithmetic average µ̂ = 1

n

∑n
i=1Xi (sample mean), the arithmetic

average is said to be an unbiased estimator of the mean if Eµ̂ is equal to the
true mean of X. The latter is defined as

∫
xpX(x)dx.

4.2.1. Random Sample. Suppose we have a random variable X. In the
laboratory, we can measure X by acquiring several measurements of X.
Denote these measurements of X by the set of values (X1, X2, . . . , Xn).
Each Xi is iidrv with the same distribution of X. Xi are samples of X
measured at different points in time. We say that the set (X1, X2, . . . , Xn)
is a random sample of X.

4.2.2. MLE of the Mean: Is the Estimator Biased? Let X be a
random variable with mean µ (µ =

∫
xpX(x)dx is the true mean). Let

(X1, X2, . . . , Xn) be a random sample of X. Here we show that

µ̂ =
1

n

n∑
i=1

Xi,

is an unbiased estimator of µ. 1
n

∑n
i=1Xi is the sample mean. This statement

follows from:

E
1

n

n∑
i=1

Xi =
1

n

n∑
i=1

EXi =
1

n

n∑
i=1

µ =
1

n
(nµ) = µ.

To get the first equality, we used the linearity property of expectation value.
In the second equality, we used the fact that {Xi} is a random sample of X,
whose mean is µ.
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4.2.3. Variance of the Sample Mean Estimator. The sample mean

µ̂ =
1

n

n∑
i=1

Xi

is a rv because it is a sum of rv’s X1, X2, . . . , Xn. It has a mean equal to
the true mean of X, namely µ, which we verified in the previous section,
meaning that this particular expression for µ̂ is an unbiased estimator. By
the LLN, it converges to the true mean as n increases. We can also check
its variance:

var(µ̂) =
1

n2

n∑
i=1

var(Xi) =
σ2

n
,

meaning that it becomes “narrowly distributed” as n increases. This says
that the estimator becomes more and more precise as n increases. This is
a desirable feature of estimators. If you have an estimator whose variance
increases with n, this is not a good estimator. The square root of var(µ̂)
represents the error in the mean; you will recognize it as the standard error
(aka the standard deviation of the mean).

4.2.4. Bias of the Variance Estimator. Let (X1, X2, . . . , Xn) be a ran-
dom sample of X (with mean µ and variance σ2). Here we show that

σ̂2n =
1

n

n∑
i=1

(Xi − µ̂)2,

is a biased estimator of σ2. By definition, the variance of Xi, which is also
the variance of X (since {Xi} is a random sample of X), is:

σ2Xi
= σ2X = E(X − µ)2 ≡

∫
(x− µ)2pX(x)dx.
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Also,3

Eσ̂2n =E
1

n

n∑
i=1

(Xi − µ̂)2 = E
1

n

n∑
i=1

[(Xi − µ)− (µ̂− µ)]2

=E
1

n

n∑
i=1

[(Xi − µ)2 − 2(Xi − µ)(µ̂− µ) + (µ̂− µ)2]

=E
1

n

[(
n∑

i=1

(Xi − µ)2
)
− n(µ̂− µ)2

]

=

(
1

n

n∑
i=1

E(Xi − µ)2
)
− E(µ̂− µ)2

=
1

n

(∑
i

σ2

)
− var(µ̂) = σ2 − var(µ̂),

and using the property,

var(
∑

aiXi) =
∑

a2i var(Xi),

valid for independent random variables, we have:

var(µ̂) = var

(
1

n

n∑
i=1

Xi

)
=
∑
i=1

1

n2
var(Xi) =

n∑
i=1

1

n2
σ2 =

1

n
σ2.

Thus,

Eσ̂2n = σ2 − 1

n
σ2 =

n− 1

n
σ2

which shows that σ̂2n is a biased estimator of σ2. Thus, to get an estimator
which, on the average, yields a result equal to the true value of σ2 we should
take instead n

n−1 σ̂
2
n as the estimator of the variance. We denote this “bias-

corrected” estimator of the variance by σ̂2n−1:

σ̂2n−1 =
1

n− 1

n∑
i=1

(Xi − µ̂)2 sample variance

The factor n
n−1 is called Bessel’s correction.

3To get from the second to the third line, we take the summation inside the square bracket and

apply it to the second and third terms. (After multiplying the second term by n/n = 1.) The

third term inherits a coefficient of n because it is summed n times. In the second term, we replace
(1/n)

∑
i Xi by µ̂. The second term, which becomes −2n(µ̂−µ)2 is of the same form as the third

term, n(µ̂−µ)2. Adding the two terms together gives −n(µ̂−µ)2. When going to the fourth line,

the factor of n cancels the 1/n in front of the square bracket, leaving −E(µ̂− µ)2, minus 1 times
the variance of µ̂.
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This result is the expression for the sample variance introduced earlier in the
course (see, e.g., Eq. 1.1). The sample variance is basically the MLE estima-
tor for the variance, but corrected for bias. Finally, we note that for large
n, 1/n and 1/(n − 1) are asymptotically equal. Thus, σ̂2n is asymptotically
unbiased, i.e.

lim
n→∞

σ̂2n = σ̂2n−1.

Finally, we would like to know how “sharp” this estimator is. Ideally, we
would want an estimator whose uncertainty is small. We do this by com-
puting its variance:

var(σ̂2n−1) = E(σ̂4n−1)− (Eσ̂2n−1)
2 = E(σ̂4n−1)− (σ2)2.

where

Eσ̂4n =E
1

n− 1

n∑
i=1

(Xi − µ̂)2
1

n− 1

n∑
j=1

(Xj − µ̂)2

=
1

(n− 1)2

 n∑
i=1

E(Xi − µ̂)4 +
n∑

i ̸=j

E(Xi − µ̂)2(Xj − µ̂)2


=
1

(n− 1)2

 n∑
i=1

E(Xi − µ̂)4 +
n∑

i ̸=j

E(Xi − µ̂)2 · E(Xj − µ̂)2


=
1

(n− 1)2
(
nµ4 + n(n− 1)σ4

)
where µ4 = E(Xi− µ̂)4 is the fourth central moment. In the limit of large n
this quantity tends to:

lim
n→∞

Eσ̂4n = lim
n→∞

1

(n− 1)2
(
nµ4 + n(n− 1)σ4

)
= σ4.

Substituting into the above expression for var(σ̂2n−1), we find:

lim
n→∞

var(σ̂2n−1) = lim
n→∞

E(σ̂4n−1)− (σ2)2 = 0.

Therefore, the uncertainty of our variance estimator σ̂2n−1 decreases as n→
∞. In fact, var(σ̂2n−1) ∝ n

(n−1)2
or 1/n for large n. The ability to reduce the

uncertainty of our estimator by acquiring more data is a useful feature.

4.2.5. MLE Can Fail. The MLE method does not always work. In fact,
it can fail even in the simplest cases. Suppose that the density is a mixture
of two normal densities:

p(x|a, σ) = 1

2σ
√
2π

exp

[
−(x− a)2

2σ2

]
+

1

2
√
2π

exp

[
−x

2

2

]
,
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where the parameters (a, σ) are unknown. Suppose that we measure iidrv
X1, . . . , Xn (whose values are denoted x1, . . . , xn). For any constant δ > 0,
there exists small enough σ = σ0 that for a = x1,

L(x1, σ0) =
n∑

i=1

log p(xi|x1, σ0)

> log

(
1

2σ0
√
2π

)
+

n∑
i=2

log

(
1

2
√
2π

exp

[
−x

2
i

2

])

=− log σ0 −

(
n∑

i=2

x2i
2

)
− n log 2

√
2π > δ

From this inequality, we can conclude that the likelihood does not exist (i.e.
it can always be made to “blow up” by taking the limit σ0 → 0). Therefore,
MLE is unable to estimate the parameters a and σ. Thus, the range of
applicability of MLE is limited.

4.2.6. Difference between probability vs likelihood. The difference
between probability and likelihood is best illustrated with an example. Sup-
pose that we have a distribution of animal weights with a mean of 32 grams
and a standard deviation of 2.5. The probability that we will weigh a ran-
domly selected animal between 32 and 34 grams is given by the area under
the curve between 32 and 34 grams (left).

In this case, the area under the curve happens to be 0.29, meaning that
there is a 29% chance a randomly selected animal will weigh between 32
and 34 grams. Mathematically we express this as follows:

P(weight between 32 and 34 grams|mean=32, standard deviation=2.5) = 0.29

or
P(32 ≤ X ≤ 34|µ = 32, σ = 2.5) = 0.29.

Another example is:

P(animal weighs > 34 grams|mean=32, standard deviation=2.5).
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or
P(X > 34|µ = 32, σ = 2.5)

The area under the curve is described by the left hand side of the proba-
bilistic expression P(X > 34|µ = 32, σ = 2.5), i.e. X > 34. The right hand
side, µ = 32, σ = 2.5, describes the same distribution for both examples.
This distribution is fixed.

Likelihood, on the other hand, deals with fixed data and variable distribu-
tions. Suppose that we have some data, i.e. we have an animal and weighed
it (or more animals, and their weights). An animal weighs 34 grams. The
likelihood of weighting a 34 gram animal is this point on the curve:

Projecting onto the vertical axis, that value is 0.12. Mathematically, we use
the following notation:

L(mean=32, standard deviation=2.5|animal weighs 34 grams) = 0.12,

or
L(µ = 32, σ = 2.5|m=34 g) = 0.12.

The likelihood of a distribution with mean 32 and standard deviation 2.5
given that we weighed a 34 gram animal is 0.12.

If we shifted the distribution such that

L(mean=34, standard deviation=2.5|animal weighs 34 grams),

the likelihood would be 0.21. So with likelihoods, the information on the
right hand side (e.g. “animal weighs 34 grams”) is fixed. We modify the
shape and location of the distribution with the left hand side.
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To summarize, probabilities are the areas under a fixed distribution. They
answer questions such as what is the probability under conditions where the
distribution is fixed:

P(data|distribution)

Likelihoods are the y-axis values for fixed data points with distributions that
can be moved:

P(distribution|data).
In this chapter, we “move” the distribution by adjusting its parameters by
way of the maximum likelihood criteria.

4.2.7. Prior vs Posterior Distribution. In this section we will need two
results from probability theory. The first is the Bayes’ theorem:4

(4.1) P(θ|X) =
P(X|θ)P(θ)

P(X)
,

where P(X) ̸= 0. X is called the “evidence” or data. θ is sometimes called
the parameters or the distribution. Often, the evidence is fixed and we write

P(θ|X) ∝ P(X|θ)P(θ).
If the random events {Xj} partition the sample space, we may write P(θ)
using the law of total probability:5

P(X) =
∑
j

P(θ|Xj)P(Xj).

Then,

P(θ|X) =
P(X|θ)P(θ)∑
j P(θ|Xj)P(Xj)

.

4The proof uses the definition of conditional probability. On one hand we have P(A|B) =
P(A∩B)
P(B)

.

On the other hand we have P(B|A) =
P(A∩B)
P(A)

. Solving for P(A∩B) in both equations and equating

gives: P(A|B)P(B) = P(B|A)P(A). Rearranging gives P(A|B) = P(B|A)P(A)/P(B).
5If the events {Bn} form a partition of the probability space, i.e. ∪nBn = Ω and Bi ∩ Bj = ∅
(i ̸= j), then

P(A) =
∑
n

P(A ∩Bn) =
∑
n

P(A|Bn)P(Bn).
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This is another way to express the same result. The events can be of the
type {X = x}, etc. For example:

P(θ = a|X = b) =
P(X = b|θ = a)P(θ = a)

P(X = b)
.

They can also be intervals {a ≤ X < b} or infinitesimals, e.g.

(4.2) P(a ≤ θ < a+ da|b ≤ X < b+ db)

=
P(b ≤ X < b+ db|a ≤ θ < a+ da)P(a ≤ θ < a+ da)

P(b ≤ X < b+ db)
,

which is the same as6

pθ|b≤X<b+db(a)da =
pX|a≤θ<a+da(b)db pθ(a)da

pX(b)db
.

Canceling the da and db’s,

pθ|b≤X<b+db(a) =
pX|a≤θ<a+da(b) pθ(a)

pX(b)
.

Taking the limit |db|, |da| → 0, we have for continuous random variables:

pθ|X=b(a) =
pX|θ=a(b) pθ(a)

pX(b)
.

The posterior probability is the probability of the parameters θ given the
data X. It is denoted as p(θ|X). Posterior, in this context, means after
taking into account the relevant evidence (data) related to the particular case
being examined. Posterior probability differs from the likelihood function,
which is the probability of observing the data given some parameters (i.e.
or a fixed distribution), L(θ|X) ≡ p(X|θ).
Let’s say our data is in the form of a dataset X = {Xi}Ni=1 (independent
rv’s) where Xi ∩ Xj = ∅ (i ̸= j). According to Eq. (4.1), the posterior
distribution is

L ≡ p(θ|X) ∝ p(θ)p(X|θ) = p(θ)
N∏
i=1

p(Xi|θ),

where the equality follows from the statistical independence of the Xi’s.

6This follows from the definition of conditional probability pX|Y =y(x) =
pX,Y (x,y)

pY (y)
. For example,

the left hand side

(4.3) P(a ≤ θ < a+ da|b ≤ X < b+ db) =
P(a ≤ θ < a+ da ∩ b ≤ X < b+ db)

P(b ≤ X < b+ db)

=
pθ,X(a, b)dadb

pX(b)db
= pθ|X=b(a)da.
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4.3. Method of Moments

Another method for deriving estimators is the method of moments. Recall
the strong law (SLLN) of large numbers (Section 2.25.1):

Theorem 4.1. Let X1, . . . , Xn be iidrv with finite first absolute moment,
i.e. E[|X1|] < +∞. Then,

1

n

n∑
i=1

Xi → E[X1] almost surely as n→∞.

Remark 4.2. “Almost Surely” means for all ω except for a set of measure
0, i.e.

P
(
lim
n→∞

{
ω
∣∣ 1
n

n∑
i=1

Xi(ω) ↛ E(X1)
})

= 0.

In other words, the set of outcomes for which the random variable 1
n

∑n
i=1Xi

does not converge to E[X1] has probability 0 as n→∞.

A second theorem of probability theory (not proved here) that we will need
is:

Theorem 4.3. Let Y1, . . . , Yn be a sequence of rv’s (not necessarily iidrv),
such that Yn → Y almost surely, and if h is a continuous function, then
h(Yn)→ h(Y ) almost surely as n→∞.

Let X1, . . . , Xn be iidrv whose PDF is the exponential probability

pX(x|θ) = θ−1e−xθ−1
1{x>0},

where 1{x>0} is the indicator function that equals 1 when x > 0 and 0
otherwise. Suppose we want to estimate θ = E[X1] from experimental data.
We propose the following estimator for the first moment:

θ̂(1)n =
1

n

n∑
i=1

Xi,

which is such that θ̂
(1)
n → θ almost surely as n→∞. The SLLN guarantees

that this estimator converges to E[X1], which equals θ, the desired parame-
ter. This gives us a possible estimator for θ.

On the other hand, E[X2
1 ] = 2θ2. According to the SLLN,

1

n

n∑
i=1

X2
i → E[X2

1 ] = 2θ2 almost surely as n→∞.
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Thus, if we divide by 2 and take the square root, we should get another
estimate for θ. Let

Yn =
1

n

n∑
i=1

X2
i ,

and take h(x) =
√
x/2. We know that the sequence of rv’s Yn converges

to the rv Y = E[X2
1 ] = 2θ2 almost surely per the SLLN. According to the

second theorem, h(Yn)→ h(Y ) = θ almost surely as n→∞. Thus,

θ̂(2) =

√√√√ 1

2n

n∑
i=1

X2
i ,

is another possible estimator for θ. So we have derived 2 estimators so far,
θ̂(1) and θ̂(2); you can also derive more. Which estimator you should use
depends on your particular application. Factors that may influence your
decision include bias, errors, rate of convergence, etc.

Based on the above theorems, a general recipe for the method of moments
consists of:

(1) Calculate the first few moments of X using the known PDF of X.
Since the PDF is a function of the parameters of the distribution,
the result will also be in terms of those parameters.

(2) Estimate the moments using experimental dataX1, . . . , Xn, accord-
ing to the LLN.

(3) From (1), solve for the parameters of the distributions in terms
of the moments, and express the moments in terms of estimated
moments found in (2).

Let us work out an example to illustrate this. Let X be normally distributed
with mean µ and variance σ2. The two parameters of the distribution are µ
and σ.

Step 1: Using the PDF of the normal distribution, one calculates the mo-
ments:

E[Xn] =

∫ ∞

−∞
xn

1√
2πσ2

e−(x−µ)2/2σ2
dx.
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The first few moments are found to be:

n =1 E[X1] =µ(4.4)

n =2 E[X2] =µ2 + σ2(4.5)

n =3 E[X3] =µ3 + 3µσ2(4.6)

...

The higher order moments are not needed because the above moments are
already expressed in terms of both parameters µ and σ.

Step 2: Given a random sample X1, . . . , Xn of X and its corresponding ex-

perimental measurement {Xi(ω) = xi}, the LLN enables us7 to write:

n =1 E[X1] ≈ 1

n

n∑
i=1

xi(4.7)

n =2 E[X2] ≈ 1

n

n∑
i=1

x2i(4.8)

n =3 E[X3] ≈ 1

n

n∑
i=1

x3i(4.9)

...

Step 3: We solve the system of equations of Step 1 in terms of µ and σ, and
express these in terms of the equations found in Step 2.

Adding a hat to µ, substituting Xi(ω) = xi and omitting ω from the nota-
tion, Eqs. (4.4) and (4.7) give:

(4.10) µ̂ =
1

n

n∑
i=1

Xi.

Next, we take Eq. (4.5), solve for σ and substitute Eq. (4.7) and (4.8):

σ2 = E[X2]− µ2 ≈ 1

n

∑
i

x2i −

(
1

n

∑
i

xi

)2

7Recall that the LLN says that 1
n

∑
i Xi(ω) ≈ E[X], where X is a random variable and {Xi}ni=1

is a random sample drawn according to the same distribution as X. Xi(ω) denotes the value

of Xi after an experiment ω. Since functions of random variables are also random variables; in

particular, the powers (moments) of X can be estimated from 1
n

∑n
i=1[Xi(ω)]

m ≈ E[Xm].
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Next, we substitute Xi(ω) = xi, µ̂(ω) = (1/n)
∑

iXi(ω) and drop ω from
the notation:

(4.11) σ̂2 =
1

n

n∑
i=1

X2
i − µ̂2 =

1

n

n∑
i=1

(X2
i − 2µ̂Xi + µ̂2) =

1

n

n∑
i=1

(Xi − µ̂)2.

Here, µ̂ is calculated using Eq. (4.10) using the data Xi(ω) = xi. Our two
“method of moments” estimators are given by Eq. (4.10) and (4.11).

As an exercise, you should work out the method of moments estimators for
other distributions (Problem 105).

4.4. Problems

Problem 105. Use the method of moments to find parameter estimators
for the mean and variance of other distributions. For example: use the
method of moments to find estimate(s) of the θ parameter for the uniform
distribution of a random variable X, with PDF pX(x|θ) = θ−11[0,θ](x),
θ > 0, where θ defines the upper bound of the support of pX(x|θ), and
E(X) = θ/2.

Problem 106. Let X be a rv and X1, . . . , Xn (Xi(ω) ≥ 0) a random sample
of X (iidrv). Denote Xi(ω) = xi their respective values. The PDF for each
of these rv’s is:

pX(x) =
βα

Γ(α)
xα−1e−βx, i = 1, . . . , n

where α > 0 and β > 0 are parameters for the distribution and Γ(·) is the
gamma function. Write down the likelihood function (joint PDF) for these
n observations (the parameters α and β are the same for all n observations,
since they are iidrv). Show that the maximum likelihood estimators for α
and β are obtained by solving these two equations:

β̂ =
α̂

1
n

∑n
i=1 xi

, and log(α̂)− Γ′(α̂)

Γ(α̂)
= log

(
1

n

n∑
i=1

xi

)
− 1

n

n∑
i=1

log xi.

Explain how you would calculate the values of α̂ and β̂ in terms of the
observations x1, x2, . . . , xn.

Solution. The likelihood function is

L ≡ pX1,...,Xn(x1, . . . , xn|α, β) =
βnα

(Γ(α))n

n∏
i=1

xα−1
i e−β

∑n
i=1 xi
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The log likelihood function is

l = logL ≡ nα log β − n log Γ(α) + (α− 1)
( n∑
i=1

log xi

)
− β

n∑
i=1

xi.

Differentiating this expression with respect to α and β we get

∂l

∂α
= n log β − n

Γ(α)
Γ′(α) +

n∑
i=1

log xi

∣∣∣
α,β=α̂,β̂

= 0

∂l

∂β
=
nα

β
−

n∑
i=1

xi

∣∣∣
α,β=α̂,β̂

= 0.

At the extremum (∂αl = 0, ∂βl = 0), we use the hat notation α̂ and β̂.

Viewing α and β as random variables (i.e. α̂ ≡ α̂(ω) and β̂ ≡ β̂(ω)),
substituting Xi(ω) = xi and dropping ω from the notation:

β̂ =
α̂

1
n

∑n
i=1Xi

, and log(α̂)− Γ′(α̂)

Γ(α̂)
= log

( 1
n

n∑
i=1

Xi

)
− 1

n

n∑
i=1

logXi.

We need α̂ to calculate β̂, but in order to calculate α̂ you have a highly
nonlinear equation in α̂. There is no way you can solve for α analytically.
So given values for the rv’s X1, . . . , Xn you could use Newton Raphson (or
similar method) to solve for α̂ numerically. ■

Problem 107. Suppose X1, . . . , Xn are iidrv (random sample of X) with
density pX(x|θ) = θe−θx, x > 0, θ > 0 and corresponding values Xi(ω) = xi.
Write down the likelihood function for n observations. Find the maximum
likelihood estimate for θ.

Solution. Likelihood function is

L = θe−θx1 · θe−θx2 . . . θe−θxn = θne−θ
∑n

i=1 xi .

and using the log likelihood

logL = n log θ − θ
n∑

i=1

xi

differentiating with respect to θ and setting derivative equal to zero we get

n

θ
−

n∑
i=1

xi = 0.

Using the hat notation θ̂ for this extremum, substituting Xi(ω) = xi and
dropping ω from the notation:

θ̂ =
n∑n

i=1Xi
.

■
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Problem 108. Let X be a random variable and X1, . . . , Xn (iidrv) be a
random sample of X. We denote the measurements as Xi(ω) = xi. Find the
maximum likelihood estimate of the parameter θ for the density pX(x|θ) =
1/θ, 0 ≤ x ≤ θ, based on the measurements x1, . . . , xn.

Solution.

L(θ) =
n∏

i=1

p(xi|θ) =
(
1

θ

)n

.

This function will be maximized by choosing θ as small as possible, subject
to the restriction 0 ≤ xi ≤ θ, i = 1, . . . , n. The smallest possible value of θ
that satisfies these inequalities is clearly the largest value of the xi. Thus,
the MLE of θ is given by

θ̂ = max{X1, X2, . . . , Xn},
where Xi(ω) = xi. ■

Problem 109. Let X be a random variable and X1, . . . , Xn be a random
sample of X. Denote their values as Xi(ω) = xi. If X follows a Lorentz
distribution:

pX(x|θ) = 1

π

ϵ

(x− θ)2 + ϵ2

with unknown median θ and known spread ϵ > 0. Derive a maximum
likelihood estimator for θ.

Solution. Differentiating the likelihood function gives

∂pX1,...,Xn(x1, . . . , xn|θ)
∂θ

=
2(x1 − θ)

(x1 − θ)2 + ϵ2
+ · · ·+ 2(xn − θ)

(xn − θ)2 + ϵ2
= 0.

This is a nasty equation to solve for θ. We could do it by computer by im-
plementing an iterative process for solving the nonlinear equations. Suppose
that θ is a solution. Then the terms in the equation corresponding to data
points xi that are far from θ are close to zero. The terms in the equation cor-
responding to data points xi that are closed to θ then each have magnitude
about (xi − θ)/ϵ2. So the θ solution is, roughly speaking, a sample mean of
part of the data, leaving out the more extreme values. While this estimator
is more efficient than the sample median, the sample median begins to look
attractive from the point of view of convenience. ■

Problem 110. Show that the following random variable

X = eµ+σZ

where Z is a standard normal rv, i.e. Z ∼ N(0, 1), has the PDF:

pX(x|µ, σ) = e−(log x−µ)2/2σ2

√
2πσx

, x > 0.
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Find the MLE for the distribution parameters µ and σ, given a random
sample X1, . . . , Xn of X and their values Xi(ω) = xi. Each random variable
Xi are iidrv with the above PDF for X.

Solution. We proceed as usual:

P(X < x) =P(eµ+σZ < x) = P(µ+ σZ < log x) = P
(
Z <

log x− µ
σ

)
=

1√
2π

∫ log x−µ
σ

−∞
e−ξ2/2dξ.

which we recognize as being

Φ

(
log x− µ

σ

)
Differentiation with respect to x gives the PDF:

p(x) =
e−(log x−µ)2/2σ2

√
2πσx

.

The likelihood function is

L(µ, σ) =
n∏

i=1

e−(log xi−µ)2/2σ2

√
2πσxi

.

The log likelihood is:

l(µ, σ) =
n∑

i=1

{
−1

2
log(2π)− log(σ)− log(xi)− (log xi − µ)2/2σ2

}
.

Differentiation with respect to σ and µ yields the following MLE:

µ̂ =

∑n
i=1 logXi

n
and σ̂2 =

∑n
i=1(logXi − µ̂)2

n
.

■

Problem 111. Suppose that you make n measurements of the random
variable X, knowing the X is Poisson distributed with Poisson parameter λ,
and m measurements of another random variable Y , which is known to be
exponentially distributed, i.e. its PDF is pY (y) = a · exp(−ay), a > 0. Find
estimators for the parameters λ and a in terms of the experimental data
X1(ω), . . . , Xn(ω) and Y1(ω), . . . , Ym(ω). (All these rv’s can be assumed
independent.)

Solution. Likelihood function:

L(λ, a) =
e−λnλx1+···+xn

x1!x2! . . . xn!
ame−a(y1+···+ym)
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Taking derivative of logL with respect to λ:

−n+ (x1 + · · ·+ xn)
1

λ
= 0

with respect to a:

m
1

a
− (y1 + · · ·+ ym) = 0.

The first equation gives:

λ̂ =
1

n
(X1 + · · ·+Xn) .

The second gives:

â =
m

(Y1 + · · ·+ Ym)
.

Here Xi(ω) = xi and Yi(ω) = yi. ■

Problem 112. The maximum likelihood estimator (MLE) is the set of pa-

rameters denoted θ̂ for which the likelihood function is maximized (provided
that one or more maxima exists):

θ̂ ∈
{
argmax

θ
L(θ|x1, . . . , xn)

}
Alternatively, we can also maximize the log-likelihood function

θ̂ ∈
{
argmax

θ
l(θ|x1, . . . , xn)

}
(a) A MLE estimate is the same regardless of whether we maximize the
likelihood or the log-likelihood function. Why?

(b) In the case of a Gaussian distribution write down the log likelihood func-
tion.

(c) Carry out the maximization of the likelihood function (L) and the log-
likelihood function (l) in the case of a Gaussian distribution. Do you get the
same result? (Recall from (a) that you should get the same result.) Which
procedure is simpler?

(d) In the case of Poisson distribution distributed random variables (the
case of discrete random variables, but whose parameter(s) are continuous
variables!), carry out the same MLE procedure and determine the maximum
likelihood estimator for the mean and variance. For simplicity, assume that
the random variables measured (let’s call them n1, n2, . . . , nN ) are iidrv.
This exercise teaches how to compute “sample mean” and “sample variance”
when performing repeated measurements of a Poisson-distributed random
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variable. Does the ML prescription require you to compute an arithmetic
mean?

Solution. (a) Because log is a monotonically increasing function. Conse-
quently, a maximum of the likelihood function is also a maximum of the
log-likelihood function.

(b) The joint Gaussian for iidrv is

L(X,σ2|x1, . . . , xn) =
1

(2π)n/2σn
e−χ2/2, where χ2 =

n∑
i=1

(xi −X)2

σ2

taking the log we get

l = −(n/2) log 2π − n log σ − χ2/2

Here maximization of L corresponds to the minimization of χ2 because of
the negative sign in front of χ2.

(c) We have done L in class already. The case of l gives:

∂l

∂σ
= −n

σ
+

1

σ
χ2 = 0

which yields the same result as for L:

σ̂2 =
1

n

n∑
i=1

(Xi −X)2

where Xi(ω) = xi.

And likewise, the partial with respect to X yields the arithmetic mean, as
can be seen by inspection. In this case, using the log likelihood is the simpler
method to use.

(d) RVs are iidrv, so the joint density is a product of individual Poisson’s.
Denoting their mean as θ (in class, we used n). ML method applied to the
log likelihood:

∂

∂θ
log

N∏
i=1

(
e−θ θ

ni

ni!

)
=

∂

∂θ

N∑
i=1

[−θ + ni log θ − log ni!] =
N∑
i=1

(
−1 + ni

θ

)
where in this expression ni is shorthand notation for the value ni(ω). We
set this derivative equal to zero. This yields the arithmetic mean:

θ̂(ω) =
1

N

N∑
i=1

ni(ω).

(And for Poisson distributions the variance equals the mean, so there is
nothing else we need to calculate.) ■

Problem 113. Let X be distributed according to the distribution: P(X =
2) = θ, P(X = 3) = 2θ and P(X = 1) = 1− 3θ. (The state space is discrete:
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X ∈ {1, 2, 3}.) This distribution has a single parameter θ.

(a) What is the range of allowed values for θ? Find the mean and variance
of X (in terms of θ).

(b) Suppose you want to estimate the parameter θ using n random sam-
ples of X. Let n1, n2 and n3 be the number of times X equals 1, 2 or 3,
respectively, within this random sample. What is the probability law for n1?

(c) Find the maximum likelihood estimator θ̂ for θ. Calculate the mean and

variance of θ̂. Is the estimator biased?

Solution. (a) θ can take values in the interval [0, 13 ], so that these proba-
bilities must remain between 0 and 1. The mean is

E[X] = 1− 3θ + 2θ + 3× 2θ = 1 + 5θ.

variance is

var(X) = 1− 3θ + 4θ + 9× 2θ − (1 + 5θ)2 = θ(9− 25θ).

(b) n1 follows a binomial law, with parameters n and p = 1− 3θ.

(c) The likelihood function is

L(X⃗|θ) =
n∏

i=1

P(X = xi) = (1− 3θ)n1 × θn2(2θ)n3

Minimizing the log of L with respect to θ,

∂

∂θ
logL = − 3n1

1− 3θ
+
n2
θ

+
2n3
2θ

=
−3n1
1− 3θ

+
n− n1
θ

= 0,

where ni stands for the value ni(ω). Thus, we conclude that

θ̂(ω) =
n− n1(ω)

3n
.

Its mean is

E[θ̂] =
1

3
− 1

3n
(1− 3θ)n = θ

and the variance is

var(θ̂) =
1

9n2
n(1− 3θ)3θ =

θ(1− 3θ)

3n
.

Thus, θ̂ is an unbiased estimator. Its variance decreases with n. ■

Problem 114. Tesla Motors has a plant in Nevada that manufactures car
batteries. If a battery has length greater than a, it will not fit into the car,
and this is a big problem because the cost of fixing such defective batteries
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is high. Tesla has been plagued recently regarding problems in its assembly
line, related to poor quality control. You were tasked to visit the plan in
your capacity as inspector, and do a statistical analysis of the assembly
line. The first question that comes to mind is what is the probability that
a battery (chosen at random in the assembly line) has length greater than
a, i.e. P(X ≥ a). (Let’s assume a 1D problem.) Show that a times this
probability can never be larger than the mean of X (i.e., EX). What is the
significance of this statement?

Solution.

E[X] =

∫ ∞

0
xp(x)dx ≥

∫ ∞

a
xp(x)dx ≥

∫ ∞

a
ap(x)dx = aP(X ≥ a)

■

Problem 115. Suppose that you make n measurements of the random
variable X, knowing the X is Poisson distributed with Poisson parameter λ,
and m measurements of another random variable Y , which is known to be
exponentially distributed, i.e. its PDF is p(y) = a · exp(−ay), a > 0. Find
estimators for the parameters λ and a in terms of the experimental data
X1, . . . , Xn and Y1, . . . , Ym. (All these rv’s can be assumed independent.)

Solution. Likelihood function:

L(λ, a) =
e−λnλx1+···+xn

x1!x2! . . . xn!
ame−a(y1+···+ym)

Taking derivative of logL with respect to λ:

−n+ (x1 + · · ·+ xn)
1

λ
= 0

with respect to a:

m
1

a
− (y1 + · · ·+ ym) = 0.

The first equation gives:

λ̂ =
1

n
(X1 + · · ·+Xn) .

The second gives:

â =
m

(Y1 + · · ·+ Ym)
.

Here, Xi(ω) = xi and Yi(ω) = yi. ■

Problem 116. What is the meaning of “bias” in the context of a statistical
estimator? How does one determine the amount of bias in an estimator?
What desirable properties should the estimator possess? Give an example
of a biased estimator and explain what makes it biased.

Solution. Biased, since the coefficient is 1/n instead of 1/(n− 1). ■
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Problem 117. The Richter magnitude of an earthquake is determined from
the logarithm of the amplitude of waves recorded by seismographs (adjust-
ments are included to compensate for the variation in the distance between
the various seismographs and the epicenter of the earthquake). The formula
is:

ML = log10(A/A0(δ))

where A is the maximum excursion of the Wood-Anderson seismograph, the
empirical function A0 depends only on the epicentral distance of the station,
δ. Both A and δ are prone to measurement error. Find the uncertainty in
ML due to errors in A and δ.

Solution. Propagation of error formula is:

σ2ML
=

∣∣∣∣∂ML

∂A

∣∣∣∣2 σ2A +

∣∣∣∣∂ML

∂δ

∣∣∣∣2 σ2δ ,
where the derivatives are:

∂ML

∂A
=

1

log(10)

A0(δ)

A
· 1

A0(δ)
=

1

A · log(10)
∂ML

∂δ
= − 1

log(10)

A0(δ)

A
· 1

[A0(δ)]2
∂A0(δ)

∂δ
= − ∂A0(δ)/∂δ

A ·A0(δ) · log(10)
■

Problem 118. The fluorescence decay of a fluorophore molecule is modeled
by:

I(t) = τ−1e−t/τ ,

where τ is the fluorescence decay lifetime, or equivalently, τ−1 is the decay
rate. (You can think of this model as giving the probability of a mole-
cule chosen randomly from an ensemble to be found in the excited state.)
To some extent, the decay lifetime is indicative of the immediate chemical
environment of the molecule. Consequently, you decide to investigate its
potential use as a chemical sensor by measuring lifetime in the presence of
different types of solvents and solutes. Your experiments returns values of
t (i.e., t1, t2, . . . , tn ) at which the fluorescence intensity drops to 1/e of its
initial value; i.e., the point where t = τ . Such measurements of t1, t2, . . . , tn
are subject to considerable errors. To reduce variability you repeat the
measurement many times and derive a suitable average.

(a) Explain how you would estimate an average lifetime in terms of the
experimentally measured lifetimes t1, t2, . . . , tn which maximizes the chances
of observing this experimentally measured data.

(b) If the scientific journal you are trying to publish your results in asks you
to report average decay rates instead of lifetimes, how would you estimate
average decay rates from the data?
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Solution. (a) For simplicity, we shall use the same notation ti for the ran-
dom variable as well as its value ti(ω). Since t1, t2, . . . , tn are iidrv, the
likelihood function is a product:

L(t1, t2, . . . , tn) = τ−1e−t1/τ . . . τ−1e−tn/τ = τ−n exp
(
−τ−1

∑
ti

)
.

The log likelihood is

logL = −n log τ − τ−1
∑

ti.

Differentiating with respect to τ and setting equal to zero:

−n
τ
+

1

τ2

∑
ti = 0.

Solving for τ we get the MLE which is the arithmetic average of the measured
lifetimes:

τ̂ =
1

n

∑
ti.

(b) Decay rate is inverse of lifetime:

τ̂−1 =
n∑
ti
.

■

Problem 119. Suppose you record the number of cars crossing some inter-
section going northbound at regular intervals of 5 minutes after midnight,
i.e. when there is very little traffic, so you can assume that the events of
cars crossing the intersection are Poisson distributed. Let ni the number
of cars recorded in the ith time interval. Your job description requires you
to produce a daily report to the city by 10:00 am which includes the data
recorded along with some basic statistical analysis. In particular, the city
wants you to state on the cover page the mean number of vehicles and the
variance in a 5 minute time interval. However, because the numbers are
Poisson distributed you are unsure if you are allowed to use the formula
for sample mean, since you may recall it was derived using the assumption
of Gaussian statistics — not Poisson. Derive the correct formula for the
sample mean and variance in the case of Poisson statistics.

Solution. See Problem 112. ■

Problem 120. You measure a signal, y, that is the sum of a function f
contaminated by additive noise ξ. In discrete form:

yi = f(xi, β) + ξi

where β is a parameter for the function f that we wish to obtain. (The form
of the function f is known, but we must determine this parameter from the
data.) The density of the noise ξi is known, p(ξ). Estimate the function
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f(x, β0) from the set of functions f(x, β) (i.e. determine the value of β),
using the data obtained by measurements y of the function f corrupted by
noise ξ.

Solution. The data is given by the pairs:

(x1, y1), . . . , (xn, yn)

We estimate β0 using the ML method by maximizing the log likelihood:

l(β) =
n∑

i=1

log p(yi − f(xi, β))

Where p(ξ) is a known function and ξ = y − f(x, β). To make further
progress we must know the form of p(ξ). If p is Gaussian,

p(ξ) =
1√
2πσ2

exp

(
− ξ2

2σ2

)
(zero mean, known variance), we then obtain the least squares method:

l(β) = − 1

2σ2

n∑
i=1

(yi − f(xi, β))2 − n log(
√
2πσ)

Maximizing l(β) over the parameters β is the same as minimizing the least
squares functional:

n∑
i=1

(yi − f(xi, β))2

The particular value of β that minimizes this functional is called β0. For
other distributions, p(ξ), a different functional may be obtained. ■



Chapter 5

Data Fitting

5.1. Linear Least Squares

An important aspect of experimental research is the measurement of physical
quantities. From these physical quantities we seek to confirm or disprove
certain hypotheses. This could be, for example, verification that a theory
holds in a certain regime. We then need to “fit” the data to an equation
and determine the unknown coefficients in the equation. This is the topic
of data fitting.

5.1.1. Least Squares Method. An old and trusted method to data fitting
is the method of least squares. If the distance between the experimental
data and the model is normally distributed with mean 0 and finite variance,
the joint pdf describing the measurement of the data points {y1, . . . , yn} is
such that the application of the principle of maximum likelihood estimation
(MLE) for the model parameters yields the method of least squares.

In contrast, if the measurements are not normally distributed about the
model, MLE does not yield least squares. (Exercise: can you demonstrate
this?) In this course, we will limit our discussion to data points which are
normally distributed about the model. Linear least squares is a special case
of least squares when the model is linear in the fitting parameters. Non-
linear least squares problems are more complicated and generally cannot be
solved analytically. Later in the course, we will solve non-linear least squares
problems using computer-based methods.

5.1.2. Straight line. Let us begin with the method of linear least squares.
And for simplicity we shall consider the problem of fitting data to a straight

205
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y

xx2 x3x1 x4

y = A + Bx
“best fit”

Figure 5.1. Straight line fit.

line model.1 Suppose we have the data shown in Fig. 5.1 and we would like
to fit these points to a straight line

y(x) = A+Bx.

The measured data is the set of pairs

(x1, y1), (x2, y2), (x3, y3), . . . , (xn, yn).

If we assume that

• The uncertainty in {xi} is negligible.
• Each yi is Gaussian-distributed with the same width σy.

• All measurements {yi} are statistically independent.

The hope is that the model (if correct) gives the true value of y:

y(xi) ≡ (true value of yi) = A+Bxi.

From the above assumptions, it follows that the probability of a single mea-
surement yi is

p(yi) =
1√
2πσy

exp

[
−(yi −A−Bxi)2

2σ2y

]
.

Because of statistical independence the joint probability density, L(A,B) ≡
p(y1, . . . , yn), of obtaining a complete set of measurements y1, . . . , yn is the
product of probabilities of individual measurements:

p(y1) · p(y2) · · · · · p(yn)︸ ︷︷ ︸
by independence

=
1

(2π)n/2σny
exp

(
−

n∑
i=1

(yi −A−Bxi)2

2σ2y

)
.︸ ︷︷ ︸

by assumption of independent Gaussians

1Linear least squares and the straight line model are two different things. Fitting a polynomial is

still a linear least squares problem because linear means linear in the model parameters. It is not
a statement about the degree of the polynomial being fitted.
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We shall rewrite this expression in slightly more convenient form:

L(A,B|y1, . . . , yn) ≡ p(y1, . . . , yn) =
1

(2π)n/2σny
e−χ2/2,

where

χ2 =

n∑
i=1

(yi −A−Bxi)2

σ2y
=

n∑
i=1

R̃2
i .

Here, R̃i ≡ (yi − y(xi))/σi ∼ N (0, 1).

According to the principle of maximum likelihood, the best estimates
for the unknown constants A and B are those for which p(y1, . . . , yn) is
maximized. Or equivalently, for which χ2 is a minimum. This strategy is
the basis for the method of least squares fitting.2

∂χ2

∂A
=− 2

σ2y

n∑
i=1

(yi −A−Bxi) = 0

∂χ2

∂B
=− 2

σ2y

n∑
i=1

xi(yi −A−Bxi) = 0

which we rewrite as

An+B
n∑

i=1

xi =
n∑

i=1

yi

A
n∑

i=1

xi +B
n∑

i=1

x2i =
n∑

i=1

xiyi

These 2 equations and 2 unknowns are easily solved (see Section 12.1) to
yield:

(5.1) A =

n∑
i=1

x2i
n∑

i=1
yi −

n∑
i=1

xi
n∑

i=1
xiyi

∆
,

(5.2) B =

n
n∑

i=1
xiyi −

n∑
i=1

xi
n∑

i=1
yi

∆
,

where

∆ = n

n∑
i=1

x2i − (

n∑
i=1

xi)
2.

The resulting line y = A+ Bx is called the least squares fit to the data, or
the line of regression of y on x.

2The method is called least squares because it involves minimizing chi square. This is a conse-

quence of our assumption that the data is normally distributed about the model. Because of the
particular form of L obtained, maximizing L is equivalent to minimizing χ2.
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However, A and B are derived from experimental data. Thus, there is
uncertainty associated with A and B. Another question of interest is how do
we obtain an estimate for σy based on experimental data. σy is the parameter
of the (assumed) Gaussian distribution that describes the fluctuations of the
experimental data about the model.

5.1.3. Estimating σy for a Straight Line Model. The deviations yi −
A−Bxi are normally distributed, all with mean 0 and width σy. We can de-
rive an expression for σy by viewing L as a function of σy and use maximum
likelihood. Thus, we set:

∂

∂σy

(
1

σny
e−χ2/2

)
= 0, where χ2 =

n∑
i=1

(yi −A−Bxi)2

σ2y
.

Carrying out the differentiation we get

−n
σn+1
y

e−χ2/2 +
1

σny
e−χ2/2(

−1
2
)

(
−2
σ3y

) n∑
i=1

(yi −A−Bxi)2 = 0

from which we conclude that σ2y = 1
n

∑n
i=1(yi − A − Bxi)

2. In practice
we take the prefactor to be 1/(n − 2) instead of 1/n because A and B are
computed from the data and this results in a bias of the estimator σ2y (verify
this!). A prefactor of 1/(n− 2) corrects this bias. This “fix” makes sense if
we imagine fitting a straight line to only n = 2 data points. The fit would
always be perfect (σy = 0). The prefactor 1/(n − 2) ensures that we get
a division by zero: σy = 0/0 (undefined), indicating that such a situation
should be avoided.

σ2y,n−2 =
1

n− 2

n∑
i=1

(yi −A−Bxi)2.

5.1.4. Estimating the Magnitude of σA and σB. For simplicity let us
assume that the errors in {yi} are all identical, i.e. σyi = σy. Here we cannot
use maximum likelihood because L(A,B, σy) does not depend on σA or σB.
However, since A and B are well-defined functions of y1, y2, . . . , yn, we can
find σA and σB by simple error propagation:3

A =

n∑
i=1

x2i
n∑

i=1
yi −

n∑
i=1

xi
n∑

i=1
xiyi

∆
, ∆ = n

n∑
i=1

x2i − (

n∑
i=1

xi)
2

3It is worth reminding ourselves of our assumption that the error in {xi} is negligible. If this error
is not negligible, we need to modify our strategy.
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σ2A =
∑
j=1

∣∣∣ ∂A
∂yj

∣∣∣2σ2yj =∑
j

∣∣∣∣∣
n∑

i=1
x2i − xj

n∑
i=1

xi

∆

∣∣∣∣∣
2

σ2y

=
∑
j

[
(

n∑
i=1

x2i )
2 − 2

n∑
i=1

x2i (xj) ·
n∑

i=1

xi + x2j (

n∑
i=1

xi)
2
]
σ2y/∆

2

=
[
n(

n∑
i=1

x2i )
2 − 2

n∑
i=1

x2i (
n∑

i=1

xi)
2 + (

n∑
i=1

x2j )(
n∑

i=1

xi)
2
]
σ2y/∆

2

=
[
n(

n∑
i=1

x2i )
2 −

n∑
i=1

x2i (

n∑
i=1

xi)
2
]
σ2y/∆

2

=

{ n∑
i=1

x2i

[
n

n∑
i=1

x2i − (
n∑

i=1

xi)
2

]
︸ ︷︷ ︸

∆

}
σ2y/∆

2

from which we get

σA = σy

√√√√√ n∑
i=1

x2i

∆
.

We proceed the same manner for σB.

Given:

B =

n
n∑

i=1
xiyi −

n∑
i=1

xi
n∑

i=1
yi

∆
, ∆ = n

n∑
i=1

x2i − (

n∑
i=1

xi)
2

we apply the method of error propagation to derive the error in B:

σ2B =

n∑
j=1

∣∣∣∣∂B∂yj
∣∣∣∣2 σ2y =

n∑
j=1

∣∣∣∣∣
nxj −

n∑
i=1

xi

∆

∣∣∣∣∣
2

σ2y

=σ2y

n∑
j=1

n2x2j − 2nxj
n∑

i=1
xi + (

n∑
i=1

xi)
2

∆2

=n
[
n

n∑
j=1

x2j − (

n∑
i=1

xi)
2
]

︸ ︷︷ ︸
∆

σ2y
∆2

=
nσ2y
∆
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Figure 5.2. Straight line model and the factors affecting the quality of
the fit. To get more precise slope and intercept, it is desirable to have
small error bars near the end points of the data set.

from which we conclude that

σB = σy

√
n

∆
.

5.1.5. Factors that Affect a Straight Line Fit. Suppose that we fit
data to the straight line:

y(xi|A,B) = A+Bxi

A number of factors will affect the results (slope and intercept).

• Intercept. To increase the precision in the intercept, we must reduce the
error bars on points that are close to the y-axis.

• Slope. To increase the precision of the slope, we must reduce the error
bars on the points located at extrema of the data set (first and last points).

This is illustrated in Figure 5.2.

5.1.5.1. Linear Least Squares: Summary of Assumptions. It is important to
remember the assumptions behind the method of linear least squares. First
of all, we assumed Gaussian-distributed errors. By error we mean deviations
of the data from the model, yi−y(xi). This is reflected in the use of Gaussian
PDFs that describe the probability of a measurement yi being found near
the model y(xi):

P(yi ≤ Yi ≤ yi + dyi) = pYi(yi)dyi =
1√
2πσ2yi

e−(yi−y(xi))
2/2σ2

yidyi.

i.e., each Yi obeys a normal law with mean y(xi) and variance σ2yi , or

Yi ∼ N (y(xi), σ
2
yi). We have also assumed that the measured data points

{y1, y2, . . . , yn} are statistically independent of each other. This assumption
of statistical independence allowed us to write the likelihood function as a
product of Gaussians:

pY1(y1) · pY2(y2) · · · · · pYn(yn) =
1

(2π)n/2
∏n

i=1 σyi
e−χ2/2, χ2 =

n∑
i=1

R̃2
i .
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Finally, the last assumption is our choice of the method of MLE as a way
to derive equations for the fitting parameter. MLE involves choosing the
fitting parameters that lead to the maximum likelihood of observing the
experimental data {(xi, yi)}.

5.1.6. Linear Least Squares: Geometric Interpretation of A,B. For
the straight line model,

y(xi|A,B) = A+Bxi,

we obtained the result for the linear least squares method as:

A =

∑n
i=1 x

2
i

∑n
i=1 yi −

∑n
i=1 xi

∑n
i=1 xiyi

∆
,

B =
n
∑n

i=1 xiyi −
∑n

i=1 xi
∑n

i=1 yi
∆

,

∆ = n
n∑

i=1

x2i − (
n∑

i=1

xi)
2.

This result is rather difficult to memorize. I will show you how you can
remember it using a simple geometric argument. We note that A and B can
be expressed in terms of sample averages. In the equation for A, we divide
the numerator and denominator by n2, and write:

A =
⟨x2⟩⟨y⟩ − ⟨x⟩⟨xy⟩
⟨x2⟩ − ⟨x⟩2

,

where the angle brackets denote sample means, i.e., ⟨x⟩ = 1
n

∑n
i=1 xi, ⟨x2⟩ =

1
n

∑n
i=1 x

2
i and ⟨xy⟩ = 1

n

∑n
i=1 xiyi. We note that ⟨xy⟩ is simply an inner

product of two vectors, x⃗ = (x1, . . . , xn) and y⃗ = (y1, . . . , yn), sometimes
written as ⟨x⃗, y⃗⟩ in a linear algebra course.

In the expression for B, if we divide the numerator and denominator by n2,
we get:

B =
⟨xy⟩ − ⟨x⟩⟨y⟩
⟨x2⟩ − ⟨x⟩2

=
cov(x, y)

var(x)
.

The factor cov(x,y)
var(x) represents an orthogonal projection of the vector y⃗ onto

x⃗. In linear algebra such orthogonal projections are accomplished with the
use of projection operators:

Px⃗(y⃗) =
⟨y⃗, x⃗⟩
⟨x⃗, x⃗⟩

x⃗ =
⟨y⃗, x⃗⟩
∥x⃗∥2

x⃗ = ⟨y⃗, êx⟩êx = ∥y⃗∥ cos θ êx, êx =
x⃗

∥x⃗∥
,

where θ is the angle between the vectors y⃗ and x⃗.



212 5. Data Fitting

Furthermore,

⟨y⟩ −B⟨x⟩ = ⟨y⟩

[
⟨x2⟩ −�

��⟨x⟩2

⟨x2⟩ − ⟨x⟩2

]
− ⟨x⟩

[
⟨xy⟩ −����⟨x⟩⟨y⟩
⟨x2⟩ − ⟨x⟩2

]
= A.

Thus, the intercept is:

A = ⟨y⟩ −B⟨x⟩ = ⟨y⟩ − ⟨x⟩cov(x, y)
var(x)

.

Now let’s look at our model again, y = A+Bx, and view x and y as random
variables and A and B as constants. Taking its average, ⟨y⟩ = A + B⟨x⟩,
yields the relationship between A and B, A = ⟨y⟩ − B⟨x⟩. The equation

B = cov(x,y)
var(x) is obtained from y = A+ Bx by simply “projecting” it onto x

using the projection operator Px⃗(·) = cov(x,·)
var(x) , i.e.

Px⃗(y⃗) ≡
cov(x, y)

var(x)
=
cov(x,A+Bx)

var(x)
= B

cov(x, x)

var(x)
= B.

5.1.7. Maximizing the Likelihood Function. The MLE method re-
quires us to maximize the likelihood function L(θ|y1, y2, . . . , yn) with respect
to the fitting parameters θ = (A,B,C, . . . )T . There are at least 3 ways to
do this:

• Maximize L by inspection. It is sometimes possible to find the maximum
by inspection. For example: maximize functions of the form (1/2 − η)2,
(1/2 + η) and (1/2 − η)(1/2 + η) with respect to η, for −1/2 ≤ η ≤ 1/2.
This can be done by inspection: in the first case, η = −1/2; in the second
case, η = 1/2 and in the third case, η = 0.

• You can maximize L using calculus. In one variable the necessary condi-
tion for an extremum is dL/dA = 0 whereas the second derivative test for
a maximum is d2L/dA2 < 0. For example, in the case of two variables
θ = (A,B)T , the necessary condition for an extremum is L ≡ L(A,B) is
dL = (∂AL)dA+(∂BL)dB = 0, which implies that ∂AL = ∂BL = 0. This
gives 2 equations and two unknowns, allowing us to solve for A and B.
Checking for a maximum requires a second (or higher-order) derivative
test.

• You can maximize the log of L, l = log(L), also known as the “log-
likelihood” function. Since log is a monotonic function, maximizing L is
the same as maximizing log(L). The advantage of working with the log
of L is because log converts products into sums, i.e. log(AB) = log(A) +
log(B).

5.1.8. Weighted Average. Consider the experiment where we measure a
random variable X using different methods. For example, X could be the



5.1. Linear Least Squares 213

weight of an object and the weight can be measured using different types
of balances, where each balance has its own uncertainty. Let X1, . . . , Xn be
a random sample of X. The measurements are denoted by lowercase vari-
ables Xi(ω) = xi. These rv’s are independent but not necessarily identically
distributed. Thus, we have the measurements x1, x2, . . . , xn, each with un-
certainty σ1, σ2, . . . , σn. What value should we report for X, in terms of the
data x1, . . . , xn given that the uncertainties are different? Naturally, you
may expect that the measurements with smaller uncertainty should carry
more weight. It does not make sense to use the sample mean where all
readouts are weighted equally, since some of those readouts may carry very
large error bars.

Let us assume thatX1, . . . , Xn are Gaussian-distributed4 iidrv with the same
mean (µ) but different variances σ2i . We will then find the ML estimator for
the mean, µ̂, and an estimator for the variance of the mean, i.e. σ2µ, where

µ = µ̂. In other words, assume that the σ2i are given to you (known values).
The problem consists of finding σ2µ in terms of the known values xi and σ

2
i .

The likelihood function is:

L(µ, σ|x1, . . . , xn) =
n∏

i=1

1√
2πσ2i

e−(xi−µ)2/2σ2
i .

The log-likelihood is:5

logL = −1

2
n log(2π)−

n∑
i=1

log σi −
n∑

i=1

(xi − µ)2

2σ2i
.

Extrema are found from:

∂(logL)

∂µ
=

n∑
i=1

(xi − µ)
σ2i

=

n∑
i=1

xi
σ2i
− µ

n∑
i=1

1

σ2i
= 0.

Substituting Xi(ω) = xi and dropping the ω notation, we get the following
estimator for the mean:

(5.3) µ̂ =

∑n
i=1

Xi

σ2
i∑n

i=1
1
σ2
i

. “weighted mean”

This estimator should be viewed as a random variable, i.e. µ̂ ≡ µ̂(ω) is a
function of the Xi(ω)’s.

Note: if σi are all identical (i.e. σi = σ for all i) then this reduces to the
simple arithmetic average, µ̂ = 1

n

∑n
i=1Xi. We can get a partial check that

4The assumption of Gaussian distribution is made in order to simplify the math.
5Notice how L is a product of functions, whereas l = logL is a summation. Thus, working with
the log-likelihood converts products into sums, which are easier to handle.
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this is a maximum of L:

∂2(logL)

∂µ2
= −

n∑
i=1

1

σ2i
< 0.

(The “proof” that this is a maximum also requires additional considera-
tions.)

We can check for bias:

E[µ̂] = E

∑n
i=1

Xi

σ2
i∑n

i=1
1
σ2
i

=

∑n
i=1

E[Xi]
σ2
i∑n

i=1
1
σ2
i

=

∑n
i=1

µ
σ2
i∑n

i=1
1
σ2
i

= µ. (unbiased)

Given a random sample, we substitute Xi(ω) = xi into Eq. (5.3), and obtain
the variance of the mean by error propagation

σ2µ̂ =

n∑
i=1

σ2i

(
∂µ

∂xi

)2

.

where µ = µ̂(ω) and

∂µ

∂xi
=

∂

∂xi

∑n
i=1(xi/σ

2
i )∑n

i=1(1/σ
2
i )

=
1/σ2i∑n

i=1(1/σ
2
i )
,

so

σ2µ̂ =
n∑

i=1

σ2i

(
1/σ2i∑n

j=1(1/σ
2
j )

)2

=
n∑

i=1

1/σ2i
[
∑n

j=1(1/σ
2
j )]

2
=

1∑n
j=1(1/σ

2
j )
.

Thus, σ2µ̂ is equal to the harmonic mean6 of the variances of each measure-

ment, σ2j , divided by n:

σ2µ̂ =
1

n

(∑n
j=1(1/σ

2
j )

n

)−1

.

Note: if σi are all identical (i.e. σi = σ for all i) then this reduces to
σ2µ̂ = σ2/n, the standard error (or standard deviation of the mean).

5.1.9. Weighted Least Squares. If the measured data {yi} have different
uncertainties {σyi} then we need to account for their relative “weights” when
fitting the curve (Fig. 5.3), i.e. points with exceedingly large error bars
should not play a dominant role in the fitting results.

We define the “weight” of the i-th measurement as wi =
1

σ2
yi

. We can apply

the principle of maximum likelihood. We first write down the formula for

6The harmonic mean H(x1, . . . , xn) of x1, . . . , xn is:

1

H(x1, . . . , xn)
=

1

n

(
n∑

i=1

1

xi

)
.



5.1. Linear Least Squares 215

x

y

Figure 5.3. Weighted least squares fit accounts for the variations in the
error bars from point to point.

chi-square:

χ2 =

n∑
i=1

(yi −A−Bxi)2

σ2yi
.

Differentiating,

∂χ2

∂A
=− 2

n∑
i=1

σ−2
yi (yi −A−Bxi) = 0

∂χ2

∂B
=− 2

n∑
i=1

σ−2
yi xi(yi −A−Bxi) = 0,(5.4)

which we can rewrite as:

A

n∑
i=1

wi +B

n∑
i=1

wixi −
n∑

i=1

wiyi =0

A
n∑

i=1

wixi +B
n∑

i=1

wix
2
i −

n∑
i=1

wixiyi =0.

These 2 equations in 2 unknowns can be solved to yield (see next section):

A =
(
∑
wix

2
i )(
∑
wiyi)− (

∑
wixi)(

∑
wixiyi)

∆
,

B =
(
∑
wi)(

∑
wixiyi)− (

∑
wixi)(

∑
wiyi)

∆
where

∆ = (
n∑

i=1

wi)(
n∑

i=1

wix
2
i )− (

n∑
i=1

wixi)
2.
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We can also easily show that:7

σA =

√∑n
i=1wix2i
∆

and σB =

√∑n
i=1wi

∆
.

5.1.10. Solving for A,B using Matrix Inverse. For the system of equa-
tions (5.4) in the previous section, we would first write it in matrix form:( ∑

wi
∑
wixi∑

wixi
∑
wix

2
i

)(
A
B

)
=

( ∑
wiyi∑
wixiyi

)
,

then solve for (AB) with the matrix inverse:

(5.5)

(
A
B

)
=

( ∑
wi

∑
wixi∑

wixi
∑
wix

2
i

)−1( ∑
wiyi∑
wixiyi

)
.

The matrix inverse is easily found:( ∑
wi

∑
wixi∑

wixi
∑
wix

2
i

)−1

=
1∑

wi
∑
wix2i − (

∑
wixi)2

( ∑
wix

2
i −

∑
wixi

−
∑
wixi

∑
wi

)
.

Denoting the determinant by ∆ and carrying out the multiplication of the

inverse with the column vector

( ∑
wiyi∑
wixiyi

)
, as required by Equation (5.5),

we obtain (AB):(
A
B

)
=

1

∆

(∑
wix

2
i

∑
wiyi −

∑
wixi

∑
wixiyi∑

wi
∑
wixiyi −

∑
wixi

∑
wiyi

)
where ∆ is defined as before. You can check by setting wi = 1 that you re-
cover the results of the unweighted least squares method previously covered.
For the weighted least squares, we conclude that the coefficients A and B
from the fitting procedures should be calculated according to the formulae:

A =

∑
wix

2
i

∑
wiyi −

∑
wixi

∑
wixiyi

∆
,

B =

∑
wi
∑
wixiyi −

∑
wixi

∑
wiyi

∆
.

5.1.11. Fitting Exponentials using a Straight Line Model. The ex-
ponential function

y(x) = AeBx

does not appear to be amenable to the technique of linear least squares be-
cause it is not linear in the parameters A and B. Such exponential functions
are ubiquitous in nature. They arise as solutions of differential equations of
the type:

dy

dt
= λy =⇒ y(t) = y(0)eλ(t−t0),

7If you had difficulty with this type of calculation when we previously dealt with the case of
identical error bars, here is a good opportunity to gain some more practice with error propagation.
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x

I(x)

IO

1/μ

Figure 5.4. Decay of beam intensity as function of depth of penetration
into a material. Attenuation is usually exponential with distance.

�

�

�

Figure 5.5. RC circuit.

as you can easily check by substitution of y(t) into the differential equation.
As an example, the intensity I of a radiation beam penetrating a distance
x through a shield obeys the equation (see Fig. 5.4)

I(x) = I0e
−µx

I0: intensity of the incident beam
µ: absorption coefficient (a property of the shield material)

Another example is an RC circuit (Fig. 5.5). The charge Q accumulated on
capacitor C drains away exponentially fast when the capacitor is connected
to a resistor. The time-dependence of the charge is described by:

Q(t) = Q0e
−λt

Q0: initial charge (at time t = 0)
λ = 1/RC: inverse time constant
R: resistance
C: capacitance

Fortunately, these models can be treated by linear least squares if we take
the log of the equation:

log y = logA+Bx
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y

x

Figure 5.6. In general, a polynomial can be fit to most smooth curves.
The challenge is to choose a fitting model that has the lowest number
of parameters possible while fitting the data well.

and fit a straight line to the equation (zi = log yi):

zi = logA+Bxi

If the errors σy in y are identical at each point, then for a function of the

form z = log y, σz depends on y according to σz =
∣∣∣dzdy ∣∣∣σy =

σy

y . We can

then use the weighted least squares method.

5.1.12. Fitting a Polynomial. We can derive least squares formulae for
higher order polynomial models (see Fig. 5.6)

y(x|A,B,C, . . . ,H) = A+Bx+ Cx2 + · · ·+Hxp−1

For example, the height of a falling body should obey the equation

y(t|y0, v0, g) = y0 + v0t−
1

2
gt2

where
y0, v0: initial height and velocity, respectively
g: acceleration due to gravity.

Consider the model:

y(x|A,B,C) = A+Bx+ Cx2,

which is still considered a “linear model” because linear refers to linearity
in the fitting parameters A, B and C, which this function fulfills. The
corresponding chi-square function is:

χ2 =
n∑

i=1

(yi −A−Bxi − Cx2i )2

σ2y
.

To obtain the coefficients A, B and B we invoke the principle of maximum
likelihood. The likelihood function

L(A,B,C|y1, . . . , yn) = p(y1, . . . , yn) ∝ e−χ2/2,

is viewed as a function of the fitting parameters A,B,C. Minimization is
performed with respect to these parameters. Setting ∂χ2/∂A = 0, ∂χ2/∂B =
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0 and ∂χ2/∂C = 0:

An+B
n∑

i=1

xi + C
n∑

i=1

x2i =
n∑

i=1

yi

A
n∑

i=1

xi +B
n∑

i=1

x2i + C
n∑

i=1

x3i =
n∑

i=1

xiyi

A

n∑
i=1

x2i +B

n∑
i=1

x3i + C

n∑
i=1

x4i =

n∑
i=1

x2i yi

These 3 equations in 3 unknowns can be solved to yield values of A, B and
C in terms of the data.

5.1.13. General Linear Function of the Parameters. The method
works for functions y = f(x) which depend linearly on the coefficients A, B,
. . . . For example,

y(x|A,B) = A sin(x) +B cos(x)

depends linearly on A and B. Likewise, any function of the form:

y(x|A,B, . . . ,H) = Af(x) +Bg(x) + · · ·+Hk(x)

where f, g, . . . , k are known functions.

5.1.14. Multiple Regression. Many problems require 2 or more vari-
ables. An example is the ideal gas law PV = NkBT for fixed N , which
expresses the relationship between pressure, volume and temperature, i.e.
P = f(V, T ).

Suppose that
z(x, y|A,B,C) = A+Bx+ Cy

and we measure the data points (set of triples)

{(xi, yi, zi)}, i = 1, . . . , n

zi: all have the same uncertainty (σz)
xi, yi: are assumed to be ”exact” (negligible uncertainty)
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Maximum likelihood yields:

An+B
n∑

i=1

xi + C
n∑

i=1

yi =
n∑

i=1

zi

A
n∑

i=1

xi +B
n∑

i=1

x2i + C
n∑

i=1

xiyi =
n∑

i=1

xizi

A

n∑
i=1

yi +B

n∑
i=1

xiyi + C

n∑
i=1

y2i =

n∑
i=1

yizi

and we solve for A, B and C to get the best fit (in the least squares sense).

5.1.15. Linear vs Nonlinear Dependence on Parameters. So far we
have discussed the case of “linear least squares”. By linear, we mean that
the model is a linear function of the model’s parameters. For example:

y(x|A,B) = A+Bx

y(x|A,B,C) = A+Bx+ Cx2

y(x|A,B,C,D,E) = A+Bx+ Cz +Dz2 + Exz

are all linear models. In general, a linear model is of the form:

y(x|θ) =
p∑

i=1

θifi(x)

where θ = (θ1, . . . , θp)
T and each term contains the first power of the θi’s.

The functions fi(x) can be nonlinear in x. In matrix form, y(x|θ) = θT f⃗(x),

where and f⃗ is the column vector (f1, . . . , fp)
T (the subscript T denotes

“transpose”). For example,

y(x|A,B) = A cos(x) +B log(x)

is still considered a “linear least squares” problem because A and B show
up in first power. On the other hand, y(x|A,B) = A cos(Bx) is not linear
in B because B shows up in even powers up to infinity. Similarly, y(x|A) =
A+A2x is nonlinear because of the A2. If the dependence on the parameters
is linear, we can use the maximum likelihood technique to obtain estimates
of the parameters in terms of the data. This is called “linear least squares”.

5.2. How to Determine if a Fit is Good

5.2.1. Inspect the residuals and look for possible trends. The resid-
uals measure the distance between the model, {y(xi)}, and the data, {yi}:

Ri = yi − y(xi|θ)
where θ denotes the set of fitting parameters, e.g. θ = (A,B)T in the case
of a straight line model. Plotting the residuals (see Fig. 5.8) yields a useful
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data

fit

need to include quadratic term

Ri Ri

need to include sinusoidal variation

Figure 5.7. Residuals can be used to assess the adequacy of fitting
model or to propose changes to the model.

tool to judge if a fitting model is adequate. In the figure below we have
illustrated two examples where the fitting model is inadequate because the
residuals show some clear (non-random) trends. In the first case, a quadratic
dependence should be added to the model. In the second case, the model
fails to capture a sinusoid dependence.

Suppose that y(x) is a model for the experimental data. The set of ordered
pairs, {(xi, yi)}, is the experimental data. For simplicity, we still assume that
the errors in xi are negligible. So far we have assumed that the following
random variable is normally distributed about the model’s trendline (with
parameters: mean, y(xi) and variance, σ2y):

yi ∼ N (y(xi), σ
2
yi).

An equivalent statement is:

Ri = yi − y(xi) ∼ N (0, σ2yi).

Invoking var(aX) = a2 · var(X), another equivalent statement is:

R̃i =
yi − y(xi)

σyi
∼ N (0, 1).

where σyi is the error in yi. The basic assumption of the least squares method
that data points are Gaussian-distributed about the model’s trendline is
a good assumption in most cases. This is a consequence of the central
limit theorem and the fact that most physical measurements of macroscopic
properties are the result (sum) of a very large quantity of smaller microscopic
processes, such as molecular collisions and other scattering events. There
are exceptions to this, where in some cases the distribution is not Gaussian.

R̃i is known as the normalized residuals. In the sketch below, the plot on the
left shows hypothetical experimental data whose error bars are larger on the
right than on the left. This leads to the residuals {Ri} shown in the middle
plot. The error grows from left to right, as seen in the residuals. However, if
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Figure 5.8. Using (normalized) residuals to assess the quality of a fit.
From left to right: (1) Experimental data with straight line fit. (2)
Residuals. (3) Normalized residuals. (4) Histogram of normalized resid-
uals follows a Gaussian distribution with mean 0 and variance 1.
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Figure 5.9. Linear regression.

we normalize the residuals, {R̃i}, the results show a uniform error bar since

R̃i ∼ N (0, 1). This is shown on the plot to the right, where I have sketched
a bell-shaped histogram to illustrate the standard Gaussian distribution of
the normalized residuals (Fig. 5.8).

An adequate model which captures all the needed trends should leave nor-
malized residuals that are normally distributed with mean 0 and width 1.
A good fit will yield:

68% of data scattered within ±1 of 0.
95% of data scattered within ±2 of 0.
99.7% of data scattered within ±3 of 0.

5.2.2. Chi-Square as a Goodness-of-Fit Parameter. For convenience,
we shall denote the parameters of the model (A,B,C, . . . ) by the vector
θ = (A,B,C, . . . )T . Consider a set of data points {(xi, yi)} and a model
y(xi|θ) for the data (Fig. 5.9).

A measure of how good the fit is should be a distance metric that measures
how far the data points lie from the curve. One possible such measure can



5.2. How to Determine if a Fit is Good 223

be obtained by summing all differences (squared) between the data points
and the model. The chi-square

χ2 =

n∑
i=1

[yi − y(xi|θ)]2

σ2yi

is a measure of the distance between the model and the data, i.e. the
“goodness-of-fit”. Some remarks:

• Fitting the data corresponds to minimizing χ2. Doing so ensures that the
model closely represents the measured data. The best fit parameters are
found when χ2 is minimized.

• χ2 can also be viewed as a random variable since it is a function of yi
which are themselves random variables. Thus, it has its own distribution.
(Exercise: can you derive its probability distribution?)

• It can lead to analytical expressions for the coefficients in some cases. For
example, we have seen that for linear models, analytical expressions can
be obtained.

• When analytical expressions are not possible, we can always use computer-
based minimization. (Computer-based optimization is the topic of subse-
quent lectures.)

5.2.2.1. Chi-Square is (l2-norm)2 of the Normalized Residuals. The formula
for chi-square

χ2 =
n∑

i=1

[
yi − y(xi|θ)

σyi

]2
=

n∑
i=1

R̃2
i

where

R̃i =
yi − y(xi|θ)

σyi
is the normalized residual, can be viewed also known as the l2-norm of a
n-dimension vector whose components are the normalized residuals:

R⃗ = (R̃1, R̃2, . . . , R̃n).

The l2 norm of a vector x⃗ is also known as the Euclidean norm:

∥x⃗∥2 =
√
x21 + · · ·+ x2n.

where x⃗ = (x1, x2, . . . , xn). The Euclidean norm is frequently used to mea-
sure distances. The Euclidean distance between two vectors x⃗ and y⃗ is,

∥x⃗− y⃗∥ =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2.
The l1 norm of a vector x⃗ is defined as:

∥x⃗∥1 = |x1|+ |x2|+ · · ·+ |xn|.
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Figure 5.10. l1 vs l2 distance metrics.

The l1 norm is also known as the Manhattan metric or the taxicab norm.
The taxicab distance is thus:

∥x⃗− y⃗∥1 = |x1 − y1|+ |x2 − y2|+ · · ·+ |xn − yn|.
In Fig. 5.10, the taxicab distance in 2D (n = 2) is shown by the red line and
the Euclidean distance is shown by the green curve.

Generally, the lp-norm of a vector x⃗ is:

∥x⃗∥p = (|x1|p + · · ·+ |xn|p)1/p .
As you can see there are many possible choices for the distance metric
in order to measure the distance between the data and the model. With
the chi-square function, as constructed, we have a n-dimensional space and
least squares fitting consists of minimizing χ2, the l2-norm between the data
points {yi} and the model {y(xi|θ)}. The l2 norm is easier to work with
from a mathematical standpoint than other distance metrics. For example,
it is generally difficult to work with absolute values.

5.2.3. Analysis of Variance.

5.2.3.1. Conditional Variance. The conditional variance of a random vari-
able Y given another random variable X is defined as:

var(Y |X) = E
((
Y − E(Y | X)

)2 | X).
The conditional variance tells us how much variance is left if we use E(Y | X)
to “predict” Y . Here, E(Y | X) stands for the conditional expectation of Y
given X, which we may recall, is a random variable itself (a function of X,
determined up to probability one). As a result, var(Y |X) itself is a random
variable (and is a function of X).

5.2.3.2. Law of Total Variance. The law of total variance states that if X
and Y are random variables on the same probability space, and the variance
of Y is finite, then

var(Y ) = E[var(Y | X)] + var(E[Y | X]).



5.2. How to Determine if a Fit is Good 225

The two terms are called the “unexplained” and the “explained” components
of the variance, respectively.

Proof. The law of total variance can be proved using the law of total ex-
pectation. First,

var[Y ] = E
[
Y 2
]
− E[Y ]2

from the definition of variance. Again, from the definition of variance, and
applying the law of total expectation, we have

E
[
Y 2
]
= E

[
E[Y 2 | X]

]
= E

[
var[Y | X] + [E[Y | X]]2

]
.

Now we rewrite the conditional second moment of Y in terms of its variance
and first moment, and apply the law of total expectation on the right hand
side:

E
[
Y 2
]
− E[Y ]2 = E

[
var[Y | X] + [E[Y | X]]2

]
− [E[E[Y | X]]]2.

Since the expectation of a sum is the sum of expectations, the terms can
now be regrouped:

= (E[var[Y | X]]) +
(
E
[
E[Y | X]2

]
− [E[E[Y | X]]]2

)
.

Finally, we recognize the terms in the second set of parentheses as the vari-
ance of the conditional expectation E[Y | X]:

= E[var[Y | X]] + var[E[Y | X]].

□

5.2.3.3. Explained and Unexplained Variation. We are interested in two mea-
sures used in correlation and regression studies: the coefficient of determina-
tion and the standard error of estimate. In doing so, we must also learn how
to construct a prediction interval for y using a regression line and a given
value of x. To study these concepts, we need to understand and calculate
the total variation, explained deviation, and the unexplained deviation for
each ordered pair in a data set.

Assume that we have a collection of paired data {(xi, yi)}ni=1. Together with
a model y(x) that predicts the value of y. The sample mean will be denoted
y. The total variation about a regression line is the sum of the squares of
the differences between the y-value of each ordered pair and the mean of y:

total variation = SStot =

n∑
i=1

(yi − y)2.

The explained variation is the sum of the squared of the differences between
each predicted y-value and the mean of y:

explained variation = SSex =
n∑

i=1

(y(xi)− y)2.



226 5. Data Fitting

The unexplained variation is the sum of the squared differences between the
y-value of each ordered pair and each corresponding predicted y-value:

unexplained variation = SSres =

n∑
i=1

(y(xi)− yi)2.

Since

(yi − y)2 = (yi − y(xi) + y(xi)− y)2 = (yi − y(xi))2 + (y(xi)− y)2

+2(yi − y(xi))(y(xi)− y)
Summation over the last term,

∑
i(yi−y(xi))(y(xi)−y), yields the covariance

of ϵi = yi − y(xi), ϵi ∼ N (0, σ2) and y(xi) (with mean y). This covariance
vanishes since both ϵi and y(xi) are independent and have mean zero:

y =
1

n

∑
i

yi,
∑
i

1

n
(y(xi)− y) =

1

n

∑
i

y(xi)− y = − 1

n

∑
i

ϵi ≈ 0.

We conclude that the sum of the explained and unexplained variations is
equal to the total variation:

total variation = explained variation + unexplained variation.

As its name implies, the explained variation can be explained by the rela-
tionship between x and y. The unexplained variation cannot be explained
by the relationship between x and y and is due to chance or other variables.

In the previous section we have seen the law for total variance:

var(Y ) = E[var(Y | X)]︸ ︷︷ ︸
unexplained

+ var(E[Y | X])︸ ︷︷ ︸
explained

.

where the two terms are “unexplained” and the “explained” components of
the variance, respectively. We can check that this formula is equivalent to
the above result

n∑
i=1

(yi − y)2︸ ︷︷ ︸
total

=

n∑
i=1

(y(xi)− yi)2︸ ︷︷ ︸
unexplained

+

n∑
i=1

(y(xi)− y)2︸ ︷︷ ︸
explained

if we replace variance by sample variance, and expectation by sample mean:

var(Y ) =E[var(Y | X)] + var(E[Y | X])

=E
[
E
((
Y − E(Y | X)

)2 | X)]+ var(E[Y | X])

=
1

n

n∑
i=1

(yi − y(xi))2 +
1

n

n∑
i=1

(y(xi)− y)2
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where we used y(X) ≡ E[Y | X] and

EX

[
E
((
Y − E[Y | X]

)2 | X)] = EX

(
Y − y(X)

)2 ≈ 1

n

n∑
i=1

(yi − y(xi))2.

var(EX [Y | X]) = EX (E[Y | X])− E[Y ])2 = EX(y(X)−y)2 ≈ 1

n

n∑
i=1

(y(xi)−y)2.

If the model is linear (see Section 5.2.3.5 below),

Y = a+ bX + ϵ, y(X) ≡ E[Y | X] = E[a+ bX + ϵ | X] = a+ bX.

5.2.3.4. Adam’s Law. For any rv’s X and Y ,

E
[
E[Y | X]

]
= E[Y ].

Proof. We consider the case where X and Y are both discrete (the proofs
for other cases are analogous). Let E[Y | X] = g(X). Then,

E[g(X)] =
∑
x

g(X)P(X = x)

=
∑
x

(∑
y

yP(Y = y | X = x)

)
P(X = x)

=
∑
x

∑
y

yP(X = x)P(Y = y | X = x)

=
∑
y

y
∑
x

P(X = x, Y = y)

=
∑
y

yP(Y = y) = E[Y ].

□

5.2.3.5. Linear Regression. In its most basic form, the linear regression
model uses a single explanatory variable X to predict a response variable
Y , and it assumes that the conditional expectation of Y is linear in X:

E[Y | X] = a+ bX.

An equivalent way to express this is to write

Y = a+ bX + ϵ,

where ϵ is a rv (called the error) with E[ϵ | X] = 0. This can be proven by
taking Y = a+ bX + ϵ, with E[ϵ | X] = 0. By linearity:

E[Y | X] = E[a | X] + E[bX | X] + E[ϵ | X] = a+ bX.

Conversely, suppose that E[Y | X] = a+ bX, define

ϵ = Y − (a+ bX).
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Then, Y = a+ bX + ϵ with

E[ϵ | X] = E[Y | X]− E[a+ bX | X] = E[Y | X]− (a+ bX) = 0.

We can also solve for the constants a and b in terms of E[X], E[Y ], cov(X,Y )
and var(X). This is done by invoking Adam’s law, E[E[Y | X]] = E[Y ], and
taking the expectation of both sides gives

E[Y ] = a+ bE[X].

Note that ϵ has mean 0 and X and ϵ are uncorrelated, since

E[ϵ] = E[E[ϵ | X]] = E[0] = 0

and
E[ϵX] = E[E[ϵX | X]] = E[XE[ϵ | X]] = E[0] = 0.

Taking the covariance with X of both sides in Y = a+ bX + ϵ, we have

cov(X,Y ) = cov(X, a) + b · cov(X,X) + cov(X, ϵ) = b · var[X].

Thus, we have the two results:

b =
cov(X,Y )

var(X)
,

a = E[Y ]− bE[X] = E[Y ]− cov(X,Y )

var(X)
· E[X].

Numerical values of a and b can then be obtained from experimental data
{(xi, yi)}ni=1 by substituting the corresponding formulae for sample means,
variance and covariance in lieu of E[Y ], E[X], var(X) and cov(X,Y ), re-
spectively.

5.2.3.6. R-Squared Value: The Coefficient of Determination. The coefficient
of determination, R2, is defined as:

R2 ≡ 1− SSres
SStot

= 1− unexplained variance

total variance

where

SSres =
n∑

i=1

(yi − y(xi))2, SStot =
n∑

i=1

(yi − y)2, y =
1

n

n∑
i=1

yi,

{yi} are the observed data, {y(xi)} are the model predictions. R2 is method
that can tell us how well observed outcomes are replicated by a model. Like
χ2, it also uses the sum of square differences (L2 distance) between the data
and the model. The better the fit, the closer the coefficient of determination
gets to R2 = 1.

Example 5.1. The correlation coefficient for Twitter’s advertising expenses
and company sales data is 0.90. Find the coefficient of determination. What
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does this tell you about the explained variation of the data about the re-
gression line? About the unexplained variation? (ρ = 0.90 suggests a strong
positive linear correlation). Thus, R2 = 0.81. This means that about 81.0%
of the variation in the company sales can be explained by the variation in
the advertising expenditures. About 19.0% of the variation is unexplained
and is due to chance or other variables.

5.2.3.7. Correlation Coefficient vs Coefficient of Determination. Let X and
Y be two random variables. X is the independent variable and Y is the
dependent variable. We would like to know the type of relationship that
exists between X and Y (if any). The coefficient of correlation (ρ) and
coefficient of determination (R2) provide useful information. As an example,
X and Y could be related linearly. We would describe the linear dependence
by a model, i.e. y(x) = â + b̂x, where â and b̂ are estimators for the true
coefficients a and b. The random variables themselves are related by Y =
a+ bX + ϵ, where ϵ is needed to describe the noise (i.e. imagine the special
case where X is noiseless; ϵ is needed to explain the variability in Y ).

Coefficient of determination (R2):

(1) The square root of R2 is equal to the correlation coefficient (ρ). See
Section 5.2.3.8 below for proof.

(2) It provides percentage variation in Y which is explained by all the
Y variables together.

(3) R2 value is (usually) between 0 and 1 and indicates strength of
Linear Regression model.

(4) The higher the R2 value, the less scattered the data points are (i.e.
it is a good model). The lesser the R2 value is the more scattered
the data points are.

Coefficient of Correlation (ρ):

(1) It measures the strength and the direction of a linear relationship
between two variables (x and y) with possible values between -1
and 1.

(2) Positive correlation (ρ > 0) indicates that two variables rise and
fall together. ρ = 1 means perfect positive correlation, i.e. Y =
a+ bX + ϵ, where b > 0.

(3) Negative correlation (ρ < 0) indicates that two variables are perfect
opposites: when one goes up the other goes down (and vice versa).
ρ = −1 means perfect negative correlation (anti-correlation), i.e. ,
i.e. Y = a+ bX + ϵ, where b < 0.

(4) No correlation when ρ is close to 0. This means the correlation
between X and Y is weak or non-existent. It could be due to X
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and Y being statistically independent, although ρ = 0 is not a
sufficient condition to prove independence.

5.2.3.8. Relationship between ρ and R2 in Linear regression.

Theorem 5.2. Assume a simple linear regression model with independent
observations

(5.6) Y = a+ bX + ε, εi ∼ N (0, σ2), i = 1, . . . , n

and consider estimation using ordinary least squares. Then, the coefficient
of determination is equal to the squared correlation coefficient between X
and Y :

(5.7) R2 = ρ(X,Y )2.

Proof. The ordinary least squares estimates for simple linear regression are

(5.8) â = ȳ − b̂x̄, b̂ =
sxy
s2x
,

where

sxy =
1

n− 1

n∑
i=1

(xi − x)(yi − y), s2x =
1

n− 1

n∑
i=1

(xi − x)2,

ȳ =
1

n

n∑
i=1

yi, x̄ =
1

n

n∑
i=1

xi.

The coefficient of determination R2 is defined as the proportion of the vari-
ance explained by the independent variables, relative to the total variance
in the data. This can be quantified as the ratio of explained sum of squares
to total sum of squares:

R2 =
SSex
SStot

=

∑n
i=1(y(xi)− y)2∑n
i=1(yi − y)2

.

Using the explained and total sum of squares for simple linear regression,
we have:

R2 =

∑n
i=1(y(xi)− ȳ)2∑n
i=1(yi − ȳ)2

=

∑n
i=1(â+ b̂xi − ȳ)2∑n

i=1(yi − ȳ)2
.
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By applying (5.8), we can further develop the coefficient of determination:

R2 =

∑n
i=1(x̄− b̂x̄+ b̂xi − ȳ)2∑n

i=1(yi − ȳ)2

=

∑n
i=1

(
b̂(xi − x̄)

)2∑n
i=1(yi − ȳ)2

= b̂2
1

n−1

∑n
i=1(xi − x̄)2

1
n−1

∑n
i=1(yi − ȳ)2

= b̂2
s2x
s2y

=

(
sx
sy
b̂

)2

= ρ(X,Y )2,

where s2y = SStot/(n− 1) and in the last step we used the relationship (5.8)
between correlation coefficient and slope estimate (slope = ρ · sy/sx). □





Chapter 6

Non-Linear Least
Squares Optimization

If the model is nonlinear in the fitting parameters we must use iterative tech-
niques. In many cases, the best we can do is “guess” the initial parameter
values and evolve them over time until we reach a satisfactory solution. Our
focus is on the function χ2(θ) because χ2 measures the difference between
data and a model, data fitting amounts to minimizing χ2:

min
w.r.t.(θ)

χ2(θ) = χ2(θ)

with respect to the parameters θ = (θ1, . . . , θp)
T . These are the fitting

parameters we previously denoted A, B, . . . . These parameters span a
multidimensional space. The parameters of χ2 are sometimes subjected to
constraints.

If the data is fitted to a function f(x|θ) that is linear in the parameters, we
can use linear least squares. In other cases (f is nonlinear in the θi’s) we
must resort to iterative techniques. The iterative approach consists of:

• Start with initial guess {θ(0)i }
p
i=1. We denote the iteration index by a

superscript. The component of the vector θ is denoted by a subscript.

• Iterate until χ2 is minimized, i.e. obtain a new set of coefficients {θ(s)i }
p
i=1

from the previous ones {θ(s−1)
i }pi=1 using some suitable rule. (Very often,

the iterations stop when χ2 no longer changes appreciably.)

• Final {θfinali }pi=1’s yield a global minimum of χ2. At least, we hope that
the minimum we reached is a global minimum.

233
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6.1. Newton-Raphson method

Newton-Raphson is a method for finding successively better approximations
to the roots (or zeros) of a real-valued function f(x). These zeros are solu-
tions to the equation f(x) = 0. When applied to the function f ′(x), it can
be used to find extrema of f .

6.1.1. Finding Zeros of a Function. We can find the zeros of a function,
{x|f(x) = 0}, even when x is defined implicitly. For example, suppose you
are asked to find the maximum likelihood estimator of α, a parameter of the
gamma distribution. The likelihood function for a set of gamma distributed
random variables is:

L(α, β) ≡ p(x1, . . . , xn;α, β) =
βnα

(Γ(α))n

n∏
i=1

xα−1
i e−β

∑n
i=1 xi .

where Xi(ω) = xi are the experimentally measured data and Γ(·) is the
gamma function. Taking the log of L and differentiating with respect to β
gives the maximum likelihood estimator:

β̂ =
α̂

1
n

∑n
i=1Xi

.

However, the derivative with respect to α gives

log(α̂)− Γ′(α̂)

Γ(α̂)
= log

(
1

n

n∑
i=1

Xi

)
− 1

n

n∑
i=1

logXi,

an expression that is highly nonlinear in α̂. We cannot solve for α by writing
this equation in the form α̂ = h({Xi}), for some function h of the data points
{Xi(ω) = xi}. Instead, we can write this equation in the form f(α̂|{xi}) = 0,
where

f(α̂) = log(α̂)− Γ′(α̂)

Γ(α̂)
− log

(
1

n

n∑
i=1

Xi

)
+

1

n

n∑
i=1

logXi,

and use the Newton-Raphson method to solve for α̂ in terms of the data
{xi}. As an exercise, you should write a MATLAB program to solve for the
zeros of this function for given data x1, . . . , xn.

The Newton-Raphson algorithm consists of:

• Choose a starting point, x(1).

• Approximate f(x(1)) near x(1).

f(x(1) + h) ≡ 0 ≈ f(x(1)) + f ′(x(1))h︸ ︷︷ ︸
Taylor expansion

.
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f(x)

x1x2x3x4

zero crossing
at f(xk+h)=0

Figure 6.1. The Newton-Raphson method is used to iteratively find the
zero-crossing of a function. For k > 0 sufficiently large, a zero of f is
eventually found (if one exists). In the text I changed the notation for

iteration to a superscript, e.g. x(4) instead of x4.

so that
f(x(1)) + f ′(x(1))h ≈ 0

and therefore

h ≈ − f(x
(1))

f ′(x(1))
.

• This gives an approximation that takes us closer to the zero crossing

x(2) = x(1) − f(x(1))

f ′(x(1))
.

• In general (i.e. after the k-th step) the update rule is:

x(k+1) = x(k) − f(x(k))

f ′(x(k))
. (to find zeros of f)

The working principle is illustrated in Fig. 6.1.

6.1.2. Finding Extrema of a Function. If we want to find extrema of
a function f(x), we can apply the Newton-Raphson method to the function
f ′(x) instead of f(x), as shown in Fig. 6.2. The update rule is:

x(k+1) = x(k) − f ′(x(k))

f ′′(x(k))
. (to find extremum of f)

In other words, Taylor expanding the gradient of f around the point x(k)

and setting equal to zero gives the update rule for extrema of a function:

(6.1) f ′(x(k) + h) = f ′(x(k)) + h · f ′′(x(k)) = 0 ⇒ h = − f
′(x(k))

f ′′(x(k))
,

which leads to

x(k+1) = x(k) − f ′(x(k))

f ′′(x(k))
.
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f(x)

x

f’(x) = 0

x

Figure 6.2. The Newton-Raphson method can also be used to find ex-
trema of a function.

6.1.3. Alternative derivation. We can obtain this update rule directly
for f : R → R because we know that f ′(x) = 0 at the minimum of f(x).

Approximating f with a Taylor expansion about some point x(k):

f(x(k) + h) ≈ f(x(k)) + h · f ′(x(k)) + h2

2
f ′′(x(k)).

We want to choose h so that f(xk+h) is a minimum. The necessary condition
for an extremum is:

d

dh

(
f(x(k)) + h · f ′(x(k)) + h2

2
f ′′(x(k))

)
= f ′(x(k)) + f ′′(x(k))h = 0,

which leads to

h = − f
′(x(k))

f ′′(x(k))
,

and the update rule

x(k+1) = x(k) − f ′(x(k))

f ′′(x(k))
= x(k) − (f ′′(x(k)))−1f ′(x(k)).

Its generalization to multiple dimensions, f : Rn → R, involves replacing
derivatives f ′(x)→ ∇f(x) (gradient vector) and f ′′(x)→ ∇∇f(x) (Hessian
matrix) to obtain the update rule x(k+1) = x(k) − (∇∇f(x(k)))−1∇f(x(k)).
This will be discussed below in Section 6.12.

6.2. Gradient (Steepest) Descent Method

∇χ2 lies along the direction where χ changes most rapidly (Fig. 6.3). Con-
sequently, we may construct an update rule as

θ(k+1) = θ(k) − λ∇θχ
2(θ(k)).
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β1

β2

Contour lines of constant x2 in parametric space { β }

Figure 6.3. For a height function of the type z = f(x, y), the gradient
descent method moves in the xy plane along steps parallel to the local
direction of steepest descent. Note: in this figure β should be replaced
by θ.

where λ > 0 is called the “learning rate” because it controls the speed at
which the model parameters θ = (θ1, . . . , θp)

T are learned from the data (χ2

is a function of the data).

The learning rate λ cannot be too large (to avoid overshoot) and must not
be too small (so it converges reasonably fast) while θ is a column vector
containing all p parameters at the k-th iteration. (The negative sign is used
because ∇χ2 points in the direction of steepest increase of χ2 and we want
the direction of steepest decrease.) ∇χ2 can be computed analytically if the
functional form of χ2 (hence, the model) is known.

If we don’t have an analytical formula available for the gradient, we can

approximate (∇χ2)j =
∂χ2

∂θj
numerically by finite differences:

χ2(θ1, . . . , θj−1, θj + δθj , θj+1, . . . , θp)− χ2(θ1, . . . , θj−1, θj , θj+1, . . . , θp)

δθj
,

where δθj is a small step along the j-th direction.

This method moves toward the minimum because the directional derivative
of f along ŷ evaluated at the point a⃗

df

dy
(⃗a) ≡ ∇f (⃗a) · ŷ = ∥∇f (⃗a)∥ cosϕ

is largest when ŷ points along (parallel to) the vector ∇f (⃗a) (i.e. when
ϕ = 0). The function f undergoes its maximum rate of change in the
direction of ∇f (⃗a) (Fig. 6.4). Thus, the gradient ∇f (⃗a) is a vector that
points along the direction of steepest increase of f (at the point a⃗).
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θ
ŷ 

∆f ( )

Figure 6.4. The gradient of f is a vector that points in the direction
of maximum rate of change in f . Note: θ has been changed to ϕ in the
main text.

6.2.1. Interpretation as Gradient Flow. Let X be a vector space (e.g.
Rn) and f : X → R a smooth mapping. The gradient flow (or steepest
descent curve) is a smooth curve x : R+ → X (R+ ≡ {t ∈ R|t ≥ 0}) such
that

x′(t) = −∇f(x(t)),
where x′(t) =dx(t)/dt. Let f be a convex function. The equilibrium points
(x′(t) = 0) of the gradient flow are the zeros of ∇f , which are also the
minimizers of f .

The solution x(t) of this differential equation is obtained as function of t
subject to some initial condition x(0). The forward Euler discretization of
the gradient flow with step size λ > 0 leads to

x(k+1) − x(k)

λ
= −∇f(x(k))

Solving for the next iterate x(k+1) gives the scheme

x(k+1) = x(k) − λ∇f(x(k))
known as the standard gradient descent iteration with step size λ. Thus, the
gradient descent method can be interpreted as the forward Euler method
for numerical integration applied to the gradient flow.

6.2.2. Proximal Point Method. Convergence of the forward Euler method
depends on the proper selection of the step size λ. In order to get rid of the
ill-conditioning of the forward step method, an alternative is the backward
Euler approximation which may be done by a slight change of the above
equation, i.e., by writing

x(k+1) − x(k)

λ
= −∇f(x(k+1)).

This method is known to have better approximation properties than forward
Euler, especially for differential equations that converge, as the gradient flow
does. Its main disadvantage is that it cannot be rewritten as an iteration
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that gives x(k+1) explicitly in terms of x(k). For this reason, it is called an
implicit method, in contrast to explicit methods like forward Euler.

To find x(k+1) we solve the equation

x(k+1) + λ∇f(x(k+1)) = x(k).

To solve it, one writes

x(k+1) = (I + λk∇f)−1x(k),

and we replace ∇f by an operator F

x(k+1) = (I + λkF )
−1x(k),

where {λk} is a sequence of positive real numbers. This is known as the
proximal point method. The difficulty associated with the proximal point
algorithm is due to the inverse operation (I + λF )−1. A common approach
is to split F into two operators A and B such that F = A+B and (I +λA)
and (I + λB) are easily inverted.

For more information about proximal methods, see:

https://web.stanford.edu/~boyd/papers/pdf/prox algs.pdf

6.3. Stochastic Gradient Descent (SGD) Method

A variant of gradient descent is the stochastic gradient method. In the
update rule for gradient descent, θ(k+1) = θ(k)−λ∇θχ

2(θ(k)), we recall that

χ2(θ(k)) is a norm that measures the difference between data and model:

χ2(θ(k)) =

n∑
i=1

∥yi − y(xi|θ(k))∥2

σ2i
=

n∑
i=1

(r̃
(k)
i )2.

Substituting into the update rule we have

θ(k+1) = θ(k) − λ
n∑

i=1

∇(r̃(k)i )2 = θ(k) − λ
(
∇θ(r̃

(k)
1 )2 + · · ·+∇θ(r̃

(k)
n )2

)
.

As you can see from the linearity of the gradient, the term ∇θχ
2(θ(k)) is

the same as repeated (sequential) additions of ∇θ(r̃
(k)
i )2. We can take the

extreme case and add them one at a time:

for i = 1 to n do:

θ(k+1) = θ(k) − λ∇θ(r̃
(k)
i )2.

end for

(where the samples are shuffled randomly prior to the for loop)

It can be shown that this method also converges to a local extremum, if it
exists. Stochastic gradient descent is a popular algorithm for training a wide
range of models in machine learning (ML). In ML λ is called the learning
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rate. When using during backpropagation, it is one of the best algorithms
for training artificial neural networks.

Normally, one uses a compromise between computing the true gradient and
the gradient in a single sample to compute the gradient against more than
one training samples (called a “mini-batch”) at each step. For example:

for i = 1 to [n/m] do:

θ(k+1) = θ(k) − λ
m∑
i=1

∇θ(r̃
(k)
i )2.

end for

(where the samples are shuffled randomly prior to the for loop)

This can perform significantly better than the stochastic gradient descent
whose steps are computed one sample at a time. It may also result in
smoother convergence, as the gradient computed at each step is averaged
over more training examples.

More generally speaking, one has a loss function l(x), x ∈ Rn (denotes
model parameters), which is not required to be of the same form as χ2. The
simplest algorithm to solve the smooth problem

min
x∈Rn

l(x)

is the gradient descent method x(k+1) = x(k) − h∇l(x(k)), where h > 0
is the step size and k = 0, 1, . . . is the iteration number. The gradient
descent is an explicit Euler discretization of the gradient flow ẋ = −∇l(x),
where x = x(t). This deterministic minimization problem is replaced by the
stochastic counterpart:

min
x∈Rn

E[l(x;ω)],

where ω ∈ Ω denotes the realization of a random process. We may view the
ω’s training data, {ω1, . . . , ωN} so that li(x) ≡ l(x;ωi) is a random variable.
We may invoke the LLN to approximate the above expectation value by the
empirical (arithmetic) average:

l(x) ≡ 1

N

N∑
i=1

li(x),

which is exact when N →∞. Thus, instead of computing

∇l(x) = 1

N

N∑
i=1

∇li(x),

which may not be feasible, at each iteration of the algorithm we sample a
“minibatch” B of size S, drawn uniformly at random (without replacement)
from an index set {1, . . . , N} and compute the so-called stochastic gradient
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given by

∇̃l(x) ≡ 1

S

∑
i∈B
∇li(x).

Note that when S = N the stochastic gradient becomes the true gradient of
the empirical loss. Importantly, when the dataset is very large, i.e. S ≪ N
and N →∞, the central limit theorem states that

∇̃l(x) = ∇l(x) + ξ(x)

where ξ(x) ∼ N (0,Σ(x)). Thus, the stochastic gradient is an unbiased
estimator of the true gradient of the empirical loss.

6.3.1. Line search Method. In the update rule

θ(k+1) = θ(k) − λ∇θχ
2(θ(k)),

there is no general prescription for the value of λ, the learning rate. dk =
∇θχ

2(θ(k)) is called the descent direction. For a given descent direction,

λ is chosen such that χ2(θ(k) + λdk) is minimized over some range λ ∈
[λmin, λmax]. Using this optimal value for λ, we compute the update rule

θ(k+1) = θ(k) − λ̂∇θχ
2(θ(k)),

and keep iterating until convergence. λ̂ denotes the optimal value of λ
obtained from the line search. This line search is repeated at each iteration
(for all k).

6.4. Random Search Method

The random optimization approach, as applied to the problem

min
θ∈Rn

f(θ)

where f is a differentiable function involves sampling a point y randomly
around the current position θ (in accordance to a Gaussian distribution)
and move to y if f(y) < f(θ). This method is discussed in the following
publications:

• C. Dorea, Expected number of steps of a random optimization method,
JOTA, 39(1983), pp.165–171.

• J. Matyas, Random optimization. Automation and Remote Control, 26
(1965), pp. 246–253

• M. Sarma, On the convergence of the Baba and Dorea random optimiza-
tion methods, JOTA, 66 (1990), pp. 337–343.

An improvement of this method is discussed in the following publication:
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• B. Polyak, Introduction to Optimization. Optimization Software - Inc.,
Publications Division, New York, 1987.

In particular, it was mentioned that the scheme

θ(k+1) = θ(k) − hk
f(θ(k) + µku)− f(θ(k))

µk
u,

where u is a random vector distributed uniformly over the unit sphere and
converges under assumption µk → 0. However, no explicit rules for choosing
the parameters were given, and no particular rate of convergence was estab-
lished. It appears that the most powerful version of this scheme corresponds
to µk → 0. Then we get the following process:

θ(k+1) = θ(k) − hkf ′(θ(k), u)u,

where f ′(θ, u) is a directional derivative of the function f(θ) along u ∈ Rn.
As compared with the gradient, the directional derivative is a much simpler
object. Its value can be easily computed even for non-convex non-smooth
functions by a forward differentiation. Or it can be approximated very well
by finite differences.

6.5. Classical Momentum (CM) Method

Given an objective function f(θ) to be minimized, classical momentum (CM)
method are of the form:

vk+1 = µvk − ϵ∇θf(θ
(k))

θ(k+1) = θ(k) + vk+1

where ϵ > 0 is the learning rate, µ ∈ [0, 1] is the momentum coefficient and

∇θf(θ
(k)) is the gradient with respect to θ(k).

6.6. Nesterov Momentum Method

The Nesterov accelerated gradient (NAG) method converges faster than the
CM method. The idea of the NAG method is that in principle, we can get a
superior step direction by applying the momentum vector to the parameters
before computing the gradient.

The NAG update rule is:

vk+1 = µvk − ϵ∇θf(θ
(k) + µvk)

θ(k+1) = θ(k) + vk+1

For more details on CM and NAG see:

http://www.cs.toronto.edu/~fritz/absps/momentum.pdf
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6.7. Adaptive Gradient (AdaGrad) Method

AdaGrad is a modified stochastic gradient descent algorithm that increases
the learning rate for sparser parameters and decreases the learning rate
for ones that are less sparse. This strategy often improves convergence
performance over standard stochastic gradient descent in settings where data
is sparse and sparse parameters are more informative.

The update rule is:
gk = ∇θ(k−1)f(θ(k−1))

nk = nk−1 + g2
k

θ(k) = θ(k−1) − λ gk√
nk + ϵ

where ϵ is a fudge factor, θ(k−1) denote the parameters vector at step k− 1,
∇θ(k−1) denote the gradient with respect to the parameters vector at the
previous step and nk is a norm vector.

Since the square root of a vector is not defined, the last equation is best
understood in component form:

θ
(k)
i = θ

(k−1)
i − λ (gk)i√

(nk)i + ϵ

This algorithm divides the learning rate of every step by the L2 norm of
all previous gradients (g2

k). This slows down learning along dimensions that
have already changed significantly and speeds up learning along dimensions
that have only changed slightly, stabilizing the model’s representation of
common features and allowing it to rapidly “catch up” its representation of
rare features.

For more details, see:

http://cs229.stanford.edu/proj2015/054 report.pdf

6.8. RMSProp Method

One notable problem with AdaGrad is that the norm vector n eventually
becomes so large that training slows to a halt, preventing the model from
reaching the local minimum; [16] go on to motivate RMSProp, an alternative
to AdaGrad that replaces the sum in nk with a decaying mean parameterized
here by ν. This allows the model to continue to learn indefinitely.

gk = ∇θf(θ
(k−1))

nk = νnk−1 + (1− ν)g2
k

θ(k) = θ(k−1) − λ gk√
nk + ϵ
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6.9. Adaptive Moment Estimation (Adam) Method

Adam combines the momentum-based and norm-based (AdaGrad, RM-
SProp) methods to provide the advantages of both. More specifically, Adam
combines CM (using a decaying mean instead of decaying sum) with RM-
SProp.

The steps of an Adam iteration are:

(1) gk = ∇θf(θ
(k−1))

(2) mk = µmk−1 + (1− µ)gk
(3) m̂k = mk

1−µk

(4) nk = νnk−1 + (1− ν)g2
k

(5) n̂k = nk

1−νk

(6) θ(k) = θ(k−1) − λ m̂k√
n̂k+ϵ

6.10. AdaMax

The L2 norm can be replaced by the L∞ norm, eliminating the need for n̂k.
The updates are:

(1) gk = ∇θf(θ
(k−1))

(2) mk = µmk−1 + (1− µ)gk
(3) m̂k = mk

1−µk

(4) nk = max(νnk−1, |gk|)
(5) θ(k) = θ(k−1) − λ m̂k

nk+ϵ

6.11. Non-Linear Conjugate Gradient (NCG) Method

Let A be a symmetric n × n matrix (i.e. AT = A). We define an inner
product of two vectors d0,d1 ∈ Rn with respect to A as follows:

⟨d0,d1⟩A ≡ dT
0 Ad1 = dT

1 Ad0,

where the last equality follows by symmetry. Let f(θ) be a function of
n variables to minimize. Its gradient ∇f(θ) is the direction of maximum

increase. Let θ(0) be the starting position. We take the first step in the
opposite (steepest descent) direction:

d0 = −∇θf(θ
(0)),

with a step size (learning rate) λ that is chosen by performing a line search
in this direction until it reaches a minimum of f :

λ0 = argmin
α

f(θ(0) + λd0).
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This gives the new position:

θ(1) = θ(0) + λ0d0.

After this first iteration in the direction d0, we perform the following steps
along a conjugate direction dk,

(1) Calculate the steepest descent direction

hi = −∇θf(θ
(k))

(2) Compute νk, the step size using one of the following formulas:

νk =
hT
k hk

hT
k−1hk−1

, or
hT
k (hk − hk−1)

hT
k−1hk−1

, or
hT
k (hk − hk−1)

−dT
k−1(hk − hk−1)

,

or
hT
k hk

−dT
k−1(hk − hk−1)

.

(These formulas were proposed by different authors.)

(3) Obtain the conjugate direction

dk = hk + νkdk−1

(4) Perform a line search

λk = argmin
λ

f(θ(k) + λdk)

(5) Update the position

θ(k+1) = θ(k) + λidk.

This sequence of steps is repeated (iterated) until convergence. Search direc-
tions lose conjugacy over time, requiring the search direction to be reset to
the steepest descent direction after some time. However, resetting too often
would turn the method into steepest descent. The algorithm stops when
it finds the minimum, determined when no progress is made after a direc-
tion reset (i.e. in the steepest descent direction), or when some tolerance
criterion is reached.

6.12. Newton Method

Near a minimum θ(k), χ2 looks parabolic whereas at the minimum we have
∇θχ

2 = 0. Let us proceed as we did for the Newton-Raphson method (see
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equation 6.1) by Taylor expanding1 the gradient of χ2 near the minimum:

∇θχ
2(θ(k) + hk) = ∇θχ

2(θ(k)) + hk · ∇θ∇θχ
2(θ(k)) = 0,

where ∇θ∇θχ
2(θ(k)) is the p× p Hessian matrix. We abbreviate it here as

Hk. Its matrix elements are:

Hk ≡ ∇θ∇θχ
2(θ(k)) =


∂2χ2

∂θ21
. . . ∂2χ2

∂θ1∂θp
...

...
∂2χ2

∂θp∂θ1
. . . ∂2χ2

∂θ2p

 ,
where χ2 = χ2(θ(k)). We must therefore solve the system of equations

Hkhk = −∇θχ
2(θ(k)),

for hk, for example, using the method of LU factorization. Here, both hk

and −∇θχ
2(θ(k)) are column vectors with p rows. If the Hessian matrix is

invertible,
hk = −H−1

k ∇θχ
2(θ(k)).

The update rule θ(k+1) = θk + hk is:

θ(k+1) = θ(k) −H−1
k ∇θχ

2(θ(k)). (Newton)

This requires calculating and inverting a Hessian matrix. If Hk = 1/λ (1 is
a p × p unit matrix) this method is equivalent to the steepest descent. Hk

is also called the curvature matrix because second partial derivatives, ∂2i χ
2,

are indicative of the curvature of the function (χ2 here) along each direction
i.

6.13. Gauss-Newton Method

In the Newton method the update rule is:

θ(k+1) = θ(k) −H−1
k ∇χ

2(θ(k)) (Newton)

It is a second-order method because it involves computing the Hessian (ma-
trix of second partial derivatives). We must also invert the Hessian matrix.
The Gauss-Newton method is also a “second order” method, but a simpler

1We made use of f(x+ h) = f(x) + h · ∇f(x) +O(|h|2), where f(x) = ∇χ2(x) and x, h ∈ Rp. We
also note that

f(x+ h) = f(x) + h · ∇f(x) +
1

2
h · ∇∇f(x) · h+O(|h|3),

The necessary condition for a minimum is ∇hf(x+ h) = 0. This gives:

∇h(f(x) + h · ∇f(x) +
1

2
h · ∇∇f(x) · h) = ∇f(x) +∇∇f(x) · h = 0.

Solving for h gives h = −(∇∇f(x))−1∇f(x).
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form of the Hessian matrix is used. Let

χ2 =
n∑

i=1

R̃2
i , R̃i =

yi − y(xi|θ)
αi

∼ N (0, 1)

where n is the total number of data points. Define the n×p Jacobian matrix:

Jk ≡ J(θ(k)) =


∂R̃1
∂θ1

. . . ∂R̃1
∂θp

...
...

∂R̃n
∂θ1

. . . ∂R̃n
∂θp

 .
Now, the gradient of χ2 is

(∇θχ
2)j ≡

∂χ2

∂θj
=

∂

∂θj

n∑
i=1

R̃2
i = 2

∑ ∂R̃i

∂θj
R̃i,

which can be written compactly as ∇θχ
2 = ∇θ

∑n
i=1 R̃

2
i = 2JT ⃗̃R, where

⃗̃R is the vector of normalized residuals (one entry for each of the n data
points):

⃗̃R ≡


R̃1

R̃2
...

R̃n

 .
The Hessian matrix is therefore:

(Hk)jm ≡
∂2χ2

∂θj∂θm
=

∂2

∂θj∂θm

∑
i

R̃2
i = 2

∑
i

∂R̃i

∂θj

∂R̃i

∂θm
+ 2

∑
i

R̃i
∂2R̃i

∂θj∂θm︸ ︷︷ ︸
neglect

.

where the last term is neglected since R̃i is small (O(1)) and normally dis-
tributed with mean 0 and variance 1. This yields Hk ≈ 2JT

k Jk, which is
easier to evaluate than the full Hessian. This has the advantage of requiring
fewer steps to compute. The final update rule is:

θ(k+1) = θ(k) − (2JT
k Jk)

−1∇θχ
2(θ(k)) (Gauss-Newton)

The disadvantage of second-order methods is they don’t work well outside
parabolic surfaces. This led to the development of the Levenberg method
and Marquardt-Levenberg methods.

6.14. Hessian-Free (HF) Method

The Hessian-Free (HF) method is a 2nd order optimization method that
does not require calculation of the Hessian matrix. Instead one computes
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so-called “Hessian-vector” products. The latter can be computed accurately
by the finite differences method, or other algorithms. HF differs from New-
ton’s method only because it is performing an incomplete optimization (via
un-converged conjugate-gradient, CG) in lieu of doing a full matrix inver-
sion. The linear CG method (as opposed to NCG) is powerful because it
approximates the optimization problem by a quadratic form. The quadratic
nature of the optimization problem it solves is used to iteratively generate
a set of “conjugate directions” and optimize along these directions indepen-
dently and exactly.

The updates of the gradient descent are not optimal for two reasons: 1)
the learning rate is unspecified; 2) the directions chosen do not lead to
the shortest path to the nearest extremum, as the directions may undo the
work of previous iterations. The conjugate gradient method requires that
our directions be conjugate to one another.

Consider the quadratic form

f(θ) =
1

2
θTAθ − θTb+ c, θ,b ∈ Rn, c ∈ R

where A ∈ Rn×n is symmetric (A = AT ) and positive definite (yTAy > 0
for any y ∈ Rn), θT denotes the transpose of the column vector θ. Here, θTb
is the dot product

∑n
i=1 θibi. θTAθ is the quadratic form

∑n
i,j=1 θiAijθj .

The second derivative of f , also known as the Hessian matrix, is

∇∇f(θ) = A.

This can be seen in component form:

[∇∇f(θ)]ij =
∂

∂θi

∂

∂θj

n∑
α,β=1

1

2
θαAαβθβ

=
∂

∂θi

n∑
α,β=1

1

2
(δαjAαβθβ + θαAαβδβj)

=
n∑

β=1

1

2
(Ajβδβi + δαiAαj) =

1

2
(Aji +Aij) = Aij .

The last equality follows because A is symmetric. (The second term θTb
was not included since its second derivative with respect to θ is zero.) The
necessary condition for an extremum is ∇f(θ) = 0:

∇f(θ) = Aθ − b = 0.



6.14. Hessian-Free (HF) Method 249

This can be verified using components:

∂

∂θi

1

2

n∑
α,β=1

θαAαβθβ −
n∑

j=1

θjbj

 =
1

2

n∑
α,β=1

(δiαAαβθβ + θαAαβδiβ)−
n∑

j=1

δijbj

=
1

2
(Aiβθβ + θαAαi)− bi,

which leads to ∇θf(θ) = Aθ − b because A is symmetric. Thus, the con-
dition for an extremum of the quadratic form f(θ) is equivalent to solving
the linear system of equations Aθ = b.

Conjugate gradient is an iterative method whereby iterations are chosen
conjugate to the previous direction. Suppose we want to find an extremum
of a function f . We approximate f the quadratic form shown above. Let
θ0 be the initial position and d0 initial direction. The issue of the learning
rate λ can be resolved if we choose λ such that

f(θ(0) + λd0) =
1

2
(θ(0) + λd0)

TA(θ(0) + λd0)− (θ(0) + λd0)
Tb+ c

=
1

2
λ2dT

0 Ad0 + dT
0 (Aθ(0) − b)λ+ (

1

2
θ(0)TAθ(0) − θ(0)Tb+ c)

is an extremum. (Since f here is assumed to be a quadratic form, it has
either a minimum or a maximum, and that extremum is unique.) Taking
the derivative with respect to λ, setting equal to zero and solving for λ gives

λ = −dT
0 (Aθ(0) − b)

dT
0 Ad0

.

From this result, we start at θ(0) and iterate to get our first point θ(1) =
θ(0)−λ∇θf(θ

(0)). So far, this is identical to gradient descent except that λ
has been explicitly derived for the case of a quadratic form.

We have already moved in the d0 = −∇θf(θ
(0)) direction. In the conjugate

gradient method we choose the next direction to be conjugate to the previous
direction. This is done by starting with the gradient of θ1 and subtracting
off anything that is related to the previous direction:

d1 = −∇θf(θ
(1)) + ν0d0,

where the amount ν0 is derived by requiring that d0 and d1 be conju-
gate, i.e. dT

1 Ad0 = 0. The definition of conjugacy can be viewed as
an orthogonality condition between d0 and d1, where the inner product
is ⟨d0,d1⟩A ≡ dT

0 Ad1 = dT
1 Ad0 (symmetry). Expanding d1 gives

⟨d0,d1⟩A = dT
1 Ad0 = −∇θf(θ1)

TAd0 + ν0d
T
0 Ad0 = 0,

which leads to

ν0 =
∇θf(θ

(1))TAd0

dT
0 Ad0

.



250 6. Non-Linear Least Squares Optimization

This procedure is done iteratively. Each next move is conjugate to the
previous ones. At each iteration we choose the learning rate. The algorithm
for quadratic functions f(θ) = 1

2θ
TAθ − bTθ + c is

(1) Let θ(0) be the initial guess. Compute the initial direction as d0 =

−∇θf(θ
(0)).

(2) Find the learning rate (step size) using the equation

λ = −dT
i (Aθ(i) − b)

di
TAdi

.

This is the direction that minimizes the function f(θ(i) + λdi).

(3) Update the position:

θ(i+1) = θ(i) + λdi.

(4) Update the direction:

di+1 = −∇θf(θ
(i+1)) + νidi

where νi is given by:

νi =
∇θf(θ

(i+1))TAdi

dT
i Adi

.

(5) Repeat steps 2-4 until n directions have been found.

The conjugate gradient method can be used to find extrema of general func-
tions if we consider a Taylor expansion2 of f around θ:

f(θ + h) ≈ f(θ) +∇θf(θ)
Th+ hTHh,

whereH is the Hessian of f evaluated at the point θ. This is a quadratic form
and we can apply the algorithm as many times as needed until convergence.
We note that the Hessian matrix is not needed. The quantities that are
needed are Hessian-vector products, Hv where v is a vector. Notice that
Hv = ∇θ∇θf · v:

[Hv]i =
∂

∂θi

n∑
j=1

∂f

∂θj
(θ)vj = [∇θDvf(θ)]i

where Dvf(θ) is the directional derivative of f along v. Thus

Hv = ∇θ lim
ϵ→0

f(θ + ϵv)− f(θ)
ϵ

= lim
ϵ→0

∇θf(θ + ϵv)−∇θf(θ)

ϵ
.

2Comparing

f(θ + h) ≈ f(θ) +∇θf(θ)
Th+ hTHh,

with

g(h) =
1

2
hTAh− hTb+ c, h,b ∈ Rn, c ∈ R

We have the correspondence H = 1
2
A, b = −∇θf(θ) and f(θ) = c.
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This latest result is important because evaluation of the Hessian matrix is
avoided and reduced to the calculation of Hessian-vector product, which
involves two gradient calculations, ∇θf(θ+ ϵv) and ∇θf(θ). This method,
called Hessian-Free (HF), and was proposed by James Martens for use in
deep learning.

https://www.cs.toronto.edu/~jmartens/docs/Deep HessianFree.pdf

6.15. Quasi-Newton Methods, incl. BFGS

Quasi-Newton methods can be used if the Jacobian or Hessian is unavailable
or is too expensive to compute at every iteration. Suppose we want to find
a minimum of a function f(θ). Taylor expansion around a point θ(k):

f(θ(k) + h) ≈ f(θ(k)) +∇θf(θ
(k))Th+

1

2
hTBh,

where BT = B (symmetric) is an approximation to the Hessian matrix.
Taking the derivative with respect to h,

∂

∂h
f(θ(k) + h) ≈ ∇θf(θ

(k)) +Bh,

which, when setting this equal to zero gives h = −B−1∇θf(θ
(k)). The

Hessian approximation is chosen to satisfy ∂
∂hf(θ

(k)+h) = ∇θf(θ
(k))+Bh.

It is customary to start with B0 = const × I (I: unit matrix). Updates
Bk+1 are chosen close to Bk in some norm, Bk+1 = argminB ∥B − Bk∥A,
where A is a positive definite matrix that defines the norm.

Starting from a point θ(0) the following steps are taken:

(1) Compute the step update

hk = −λkB−1
k ∇θf(θ

(k)),

where λk is a step size. There is no rule for choosing λk. You can
fix the step size or do a line search.

(2) Compute the next position

θ(k+1) = θ(k) + hk

(3) Compute the gradient at the new position ∇f(θ(k+1)) and

yk = ∇θf(θ
(k+1))−∇θf(θ

(k))

(4) Update the the approximate Hessian Bk+1 or directly its inverse
B−1

k+1 using the Sherman-Morrison formula (see table below).

The most popular update formulas are:
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Method Bk+1 Ak+1 = B−1
k+1

BFGS Bk +
ykyT

k
yT
k

hk
− Bkhk(Bkhk)T

hT
k

Bkhk

(
I − hkyT

k
yT
k

hk

)
Ak

(
I − ykhT

k
yT
k

hk

)
+

hkhT
k

yT
k

hk

Broyden Bk +
yk−Bkhk

hT
k

hk
hT

k Ak +
(hk−Akyk)hT

k Ak

hT
k

Akyk

BFGS/DFP (1 − φk)B
BFGS
k+1 + φkB

DFP
k+1 , φ ∈ [0, 1]

DFP

(
I − ykhT

k
yT
k

hk

)
Bk

(
I − hkyT

k
yT
k

hk

)
+

ykyT
k

yT
k

hk
Ak +

hkhT
k

hT
k

yk
− AkykyT

k Ak

yT
k

Akyk

SR1 Bk +
(yk−Bkhk)(yk−Bkhk)T

(yk−Bkhk)T hk
Ak +

(hk−Akyk)(hk−Akyk)T

(hk−Akyk)T yk

6.15.1. Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. The
most popular quasi-Newton method is BFGS. As mentioned earlier, Newton
methods obtain the search direction at stage k by solving the equation

Hkdk = −∇θf(θ
(k)).

Quasi-Newton methods avoid working with the Hessian matrix Hk directly.
Instead one uses Bk, an approximation to the Hessian matrix:

Bkdk = −∇θf(θ
(k)).

A line search is used to obtain the next point θ(k+1) by minimizing f(θ(k)+
λdk) over the scalar λ > 0. The quasi-Newton condition is:

Bk(θ
(k+1) − θ(k)) = ∇θf(θ

(k+1))−∇θf(θ
(k)).

If we set yk = ∇θf(θ
(k+1)) − ∇θf(θ

(k)) and hk = θ(k+1) − θ(k), then
Bk+1hk = yk. For Bk+1 to be positive definite we need hT

kBk+1hk =
hkyk > 0. This condition on Bk+1 is called the convexity condition, since
the Hessian matrix deals with curvature.

The approximate Hessian is updated by adding two matrices: Bk+1 = Bk+
Uk + Vk. To maintain symmetry and positive definitiveness of Bk+1 we
choose Bk+1 = Bk + αuuT + βvvT . Imposing the condition Bk+1hk = yk

(ensuring thatBk+1 is positive definite) and choosing u = yk and v = Bkhk,
i.e.,

Bk+1hk = Bkhk + αyky
T
k hk + βBkhkh

T
kB

T
k hk = yk,

we find α = 1
yT
k hk

and β = − 1
hT
k Bhk

. Substituting these into the equation

for Bk+1 we get the BFGS update rule:

(6.2) Bk+1 = Bk +
yky

T
k

yT
k hk

−
Bkskh

T
kB

T
k

hT
kBkhk

.

Starting from an initial position θ(0) and approximate Hessian B0 that is
positive definite (can be the unit matrix) the algorithm is:

(1) Choose the k-th direction by solving

Bkdk = −∇θf(θ
(k))
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(2) Do a line search to get the step size

λk = argmin
λ

f(θ(k) + λdk)

(3) Set hk = λkdk and obtain the next position:

θ(k+1) = θ(k) + hk

(4) Compute the update to the approximate Hessian using the BFGS

rule (Equation 6.2), with yk = ∇θf(θk+1)−∇θf(θ
(k)).

In the first step we solve the system of equations Bkdk = −∇θf(θ
(k))

for dk. Alternatively we can use the inverse, B−1
k , and compute dk =

−B−1
k ∇θf(θ

(k)) direct. In that case, we update the inverse of the approxi-
mate Hessian. The rule for this can be derived using the Sherman-Morrison
formula. The end result is:

B−1
k+1 =

(
I −

sky
T
k

yT
k sk

)
B−1

k

(
I −

yks
T
k

yT
k sk

)
+

sks
T
k

yT
k sk

.

6.16. Levenberg Method

The steepest descent method works best on flat terrain (away from the min-
imum) whereas the Newton method works best near the minimum, which is
well approximated by a parabola. Levenberg proposed an improved update
rule which interpolates between the two methods:

θ(k+1) = θ(k) − (Hk + µI)−1∇θχ
2(θ(k)), (Levenberg)

which is a modified Newton method. I is a p× p unit matrix. The term µI
is a regularization term and µ is called “trust-region parameter”. When µ
is large (denoting µ−1 = µ̃), ∥Hk∥ ≪ ∥µI∥,3

(6.3) θ(k+1) = θ(k) − (Hk + µI)−1∇θχ
2(θ(k)) ≈ θ(k) − (µI)−1∇θχ

2(θ(k))

= θ(k) − µ̃∇θχ
2(θ(k)),

we recover the steepest descent method. On the other hand, when µ is small,
∥Hk∥ ≫ ∥µI∥, and

(6.4) θ(k+1) = θ(k) − (Hk + µI)−1∇θχ
2(θ(k)) ≈ θ(k) − (Hk)

−1∇θχ
2(θ(k))

= θk −H−1
k ∇θχ

2(θ(k)),

we recover the Newton method. Far from the minimum, we want to use
large values of µ whereas close to the minimum we want to use small values
of µ. The parameter µ is adjusted at each iteration. We stop iterating when
χ2 does not change appreciably.

3Here ∥A∥ denotes the norm of the matrix A. Any suitable norm can be used. For example, it
can be the largest of all matrix entires: ∥A∥ = maxij |Aij |.
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6.17. Marquardt-Levenberg Method

We recall the Levenberg update rule:

θ(k+1) = θ(k) − (Hk + µI)−1∇θχ
2(θ(k)), (Levenberg)

which interpolates between steepest descent and the Newton method by way
of the regularization term, µI. Indeed, for large λ we have the steepest de-
scent method and for small µ we recover the Newton method. Far from the
minimum, we want to use large values of µ whereas close to the minimum
we want to use small values of µ.

An improvement over the Levenberg method was proposed by Marquardt
in the form of a modified update rule:

θ(k+1) = θ(k) − (Hk + µ diag[Hk])
−1∇θχ

2(θ(k)). (Marquardt-Levenberg)

where diag[Hk] is the matrix Hk where all entries have been zeroed out
except those along the diagonal:

diag[Hk] = diag


H11 H12 . . . H1p

H21 H22 . . . H2p
... . . .

. . .
...

Hp1 . . . . . . Hpp

 =


H11 0 . . . 0
0 H22 . . . 0
... . . .

. . .
...

0 . . . . . . Hpp


where Hij is the ij-th element of the matrix Hk. The Marquardt-Levenberg
method is equivalent to modifying the Hessian to Hjj → Hjj(1 + µ) and
Hij → Hij (i ̸= j). For large µ, the matrix Hk + µdiag[Hk] is said to be
“diagonally dominant”, i.e. it has the form

Hk + µdiag[Hk] =

H11(1+µ) H12 ... H1p

H21 H22(1+µ) ... H2p

... ...
. . .

...
Hp1 ... ... Hpp(1+µ)



≈(1 + µ)


H11 0 ... 0
0 H22 ... 0

0 0
. . . 0

...
0 0 ... Hpp

 (large µ)

where Hii =
∂2χ2

∂θ2ii
is the curvature of χ2 surface along i-th direction. The

inverse of a diagonal matrix involves taking the inverse of every diagonal



6.17. Marquardt-Levenberg Method 255

element:

(Hk + µdiag[Hk])
−1 ≈ 1

1 + µ



1
H11

0 . . . 0

0 1
H22

. . . 0

0 0
. . . 0

...
0 0 . . . 1

Hpp

 .

This matrix then multiplies the column vector ∇θχ
2(θ(k)) to yield the up-

date rule:

θ(k+1) = θ(k) − (Hk + µdiag[Hk])
−1∇θχ

2(θ(k)),

where for large µ, this approximates to:

≈ θ(k) − (1 + µ)−1


(g⃗k)1
H11
(g⃗k)2
H22
...

(g⃗k)p
Hpp

 = θ(k) − (1 + µ)−1



∂1χ
2

∂211χ
2

∂2χ
2

∂222χ
2

...
∂pχ

2

∂2ppχ
2


where we used the shorthand notations g⃗k = ∇θχ

2(θ(k)), ∂iχ
2 ≡ ∂χ2

∂θi
and

∂2iiχ
2 ≡ ∂2χ2

∂θ2ii
. This update rule looks like the gradient (steepest) descent

method, except that each entry has been scaled in such a way that large
steps are made in the direction of low curvature (flat terrain) and small steps
in the direction with high curvature (steep incline). Levenberg-Marquardt is
considered one of the best “local optimization” algorithms and is widely used
in applications. In MATLAB, it is implemented in the function lsqnonlin.

6.17.1. Adjusting Trust-Region Parameter for Levenberg and Marquardt-
Levenberg Methods. The parameter µ (learning rate) is adjusted at each
iteration. We stop iterating when χ2 does not change appreciably. Hk

is called the curvature matrix. Here is a possible implementation of the
Levenberg-Marquardt method (or Levenberg method):

• Pick initial guess for set of fitted parameters θ(0).

• Compute χ2(θ(0)).

• Pick a value for µ, say µ = 0.1.

• (*) Denote the current step by k = 0, 1, . . . . Solve for δθ(k) = −(Hk + µ ·
diag[Hk])

−1∇θχ
2(θ(k)) (Marquardt-Levenberg update rule; for the Lev-

enberg method, use the Levenberg update rule instead) and evaluate

χ2(θ(k) + δθ(k)).
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• If χ2(θ(k) + δθ(k)) ≥ χ2(θ(k)), reject the move. Increase µ by a factor of
10 and go back to (*).

• If χ2(θ(k) + δθ(k)) < χ2(θ(k)), accept the move. Update the trial solution

θ(k+1) ← θ(k) + δθ(k). Increment k ← k + 1. Decrease µ by a factor
of 10. Go back to (*). [In other words, if the total distance error of the
updated parameters is less than the previous one, the updated parameters
are taken to be the current parameters and µ is decreased.]

• Stopping criterion: changes in parameters that yield changes in χ2 by an
amount ≪ 1 are not statistically meaningful.

• When finished, use the Hessian to compute the errors in the fitted param-
eters (see section 6.18).

The parameter µ can be initialized to be large so that first updates are small
steps in the steepest-descent direction. If an iteration happens to result in
a worse approximation, µ is increased. As the solution improves, µ is de-
creased, the Levenberg-Marquardt method approaches the Gauss-Newton
method, and the solution typically accelerates to the local minimum.

For more information about this algorithm see:

• M.I.A. Lourakis. A brief description of the Levenberg-Marquardt algo-
rithm implemented by levmar, Technical Report, Institute of Computer
Science, Foundation for Research and Technology - Hellas, 2005.

• K. Madsen, N.B. Nielsen, and O. Tingleff. Methods for nonlinear least
squares problems. Technical Report. Informatics and Mathematical Mod-
eling, Technical University of Denmark, 2004.

• D.W. Marquardt. “An algorithm for least-squares estimation of nonlinear
parameters,” Journal of the Society for Industrial and Applied Mathemat-
ics, 11(2):431-441, 1963.

6.17.2. Confidence regions. If we plot contour lines of equal χ2 (see
Fig. 6.5), the interior region of these contours can be associated with the
likelihood of a set of fitted parameters (random vector) lies within that
contour.

6.17.3. Local optimization techniques: summary of update rules.
The algorithms covered so far for nonlinear optimization are called “local
optimization” techniques, because they are designed to search for the nearest
minimum of χ2. This minimum may not necessarily be the global minimum
of the χ2 surface. In subsequent lectures we will look at global optimization
techniques. We summarize in Table 6.1 some of the most important update
rules derived so far, for these local optimization techniques.
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Δχ2 = 2.3

Δχ2 = 1.0
“one standard deviation”
(68.3%)

Δχ2 = 6.6 (99% of normally distributed data)

Δχ2 = 2.7 (90%)

minimum χ2

Δχ2 = 1       “one σ”
Δχ2 = 4       “two σ”
Δχ2 = 9     “three σ”

ß2 

ß1 ß1 + α ß1ß1 - α ß1

ß2 - α ß2

ß2 + α ß2

ß1

ß2

Figure 6.5. Confidence regions. Note: in this figure β should be re-
placed by θ.

Method Update rule (displacement at k-th iteration)

gradient descent hk = −λ∇θχ
2(θ(k))

Newton method hk = −(Hk)
−1∇θχ

2(θ(k))

Gauss-Newton hk = −1
2(J

T
k Jk)

−1∇θχ
2(θ(k))

Levenberg hk = −(Hk + µI)−1∇θχ
2(θ(k))

Levenberg-Marquardt hk = −(Hk + µ diag[Hk])
−1∇θχ

2(θ(k))

Table 6.1. Various update rules for non-linear local optimization.

Note: the Newton, Gauss-Newton, Levenberg and Levenberg-Marquardt
methods do not have a learning rate as stated in the table. In practice, we
often use a learning rate, i.e., hk = −λ(Hk+µI)

−1∇θχ
2(θ(k)) for Levenberg

and similarly for others.

6.18. Fitting Parameter Errors from Covariance Matrix

The errors in the fitted parameters θ can be extracted from the main diago-
nal of the covariance matrix (omitting the superscript k in θ(k) momentarily
to avoid cluttering the notation):

cov(θ, θ) ≡


var(θ1) cov(θ1, θ2) . . . cov(θ1, θp)

cov(θ2, θ1) var(θ2) . . . cov(θ1, θp)
...

...
. . .

...

cov(θp, θ1) cov(θp, θ2) . . . var(θp)


whereas the off-diagonal elements describe possible relationships (e.g. such
as redundancy) among the fitting parameters. But how do we obtain the



258 6. Non-Linear Least Squares Optimization

matrix cov(θ,θ)? It can be shown (see Chapter 8 for proof) that the covari-
ance matrix can be obtained from the Hessian:

cov(θ(k),θ(k)) = 2H−1
k

For this to work, of course, the matrix Hk needs to be invertible (non-
singular). This may not always be the case. (The subscript s here indicates
that covariances can be monitored in real-time, at every time step of the
iterative optimization process.)

6.19. Constrained Optimization

6.19.1. Method of Lagrange Multipliers.

df(x, y) = 0

df(x, y) ≡ ∂f

∂x
dx+

∂f

∂y
dy

∇f(x, y) = (
∂f

∂x
,
∂f

∂y
)

dr⃗ = (dx, dy)

df = ∇f · dr⃗ = 0

∇f = 0

For the Lagrangian
dL(x, λ) = 0

∇L = 0

∇(f − λg) = ∇f − λ∇g = 0

∇f = λ∇g

6.19.2. Inequality Constraints: The Karush-Kuhn-Tucker Condi-
tions. In mathematical optimization, the Karush-Kuhn-Tucker (KKT) con-
ditions, also known as the Kuhn–Tucker conditions, are first derivative tests
(sometimes called first-order necessary conditions) for a solution in nonlinear
programming to be optimal, provided that some regularity conditions are
satisfied. Allowing inequality constraints, the KKT approach to nonlinear
programming generalizes the method of Lagrange multipliers, which allows
only equality constraints. Similar to the Lagrange approach, the constrained
maximization (minimization) problem is rewritten as a Lagrange function
whose optimal point is a saddle point, i.e. a global maximum (minimum)
over the domain of the choice variables and a global minimum (maximum)
over the multipliers, which is why the Karush-Kuhn-Tucker theorem is some-
times referred to as the saddle-point theorem. The KKT conditions were
originally named after Harold W. Kuhn and Albert W. Tucker, who first
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published the conditions in 1951. Later scholars discovered that the neces-
sary conditions for this problem had been stated by William Karush in his
master’s thesis in 1939.

== Nonlinear optimization problem ==

Consider the following nonlinear [[optimization problem—minimization or
maximization problem]]:

Optimize f(x)

subject to
gi(x) ≤ 0,

hj(x) = 0.

where x ∈ X is the optimization variable chosen from a convex subset of
Rn, f is the objective or utility function, gi (i = 1, . . . ,m) are the inequality
constraint functions and hj (j = 1, . . . , ℓ) are the equality constraint func-
tions. The numbers of inequalities and equalities are denoted by m and ℓ
respectively. Corresponding to the constraint optimization problem one can
form the Lagrangian function

L(x, µ, λ) = f(x) + µTg(x) + λTh(x)

where g(x) = (g1(x), . . . , gm(x))T , h(x) = (h1(x), . . . , hℓ(x))
T . The “Karush-

Kuhn-Tucker theorem” then states the following.

Theorem. If (x∗, µ∗) is a saddle point of L(x, µ) in x ∈ X, µ ≥ 0, then x∗

is an optimal vector for the above optimization problem. Suppose that f(x)
and gi(x), i = 1, . . . ,m, are convex in x and that there exists x0 ∈ X such
that g(x0) < 0. Then with an optimal vector x∗ for the above optimization
problem there is associated a non-negative vector µ∗ such that L(x∗, µ∗) is
a saddle point of L(x, µ).

Since the idea of this approach is to find a supporting hyperplane on the
feasible set Γ = {x ∈ X : gi(x) ≤ 0, i = 1, . . . ,m}, the proof of the Karush-
Kuhn-Tucker theorem makes use of the hyperplane separation theorem.

The system of equations and inequalities corresponding to the KKT condi-
tions is usually not solved directly, except in the few special cases where a
closed-form solution can be derived analytically. In general, many optimiza-
tion algorithms can be interpreted as methods for numerically solving the
KKT system of equations and inequalities.

== Necessary conditions ==

Suppose that the objective function f : Rn → R and the constraint functions
gi : Rn → R and hj : Rn → R are continuously differentiable at a point x∗ ∈
Rn. If x∗ is a local optimum and the optimization problem satisfies some
regularity conditions (see below), then there exist constants µi (i = 1, . . . ,m)
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and λj (j = 1, . . . , ℓ), called KKT multipliers, such that the following four
groups of conditions hold:

Stationarity

For maximizing f(x):

∇f(x∗)−
m∑
i=1

µi∇gi(x∗)−
ℓ∑

j=1

λj∇hj(x∗) = 0

For minimizing f(x):

∇f(x∗) +
m∑
i=1

µi∇gi(x∗) +
ℓ∑

j=1

λj∇hj(x∗) = 0

Primal feasibility

gi(x
∗) ≤ 0, for i = 1, . . . ,m

hj(x
∗) = 0, for j = 1, . . . , ℓ

Dual feasibility

µi ≥ 0, for i = 1, . . . ,m

Complementary slackness

m∑
i=1

µigi(x
∗) = 0.

The last condition is sometimes written in the equivalent form:

µigi(x
∗) = 0, for i = 1, . . . ,m.

In the particular case m = 0, i.e., when there are no inequality constraints,
the KKT conditions turn into the Lagrange conditions, and the KKT mul-
tipliers are called Lagrange multipliers.

If some of the functions are non-differentiable, subdifferential versions of
KKT conditions are available.

=== Matrix representation ===

The necessary conditions can be written with Jacobian matrices of the con-
straint functions. Let g(x) : Rn → Rm be defined as g(x) = (g1(x), . . . , gm(x))T

and let h(x) : Rn → Rℓ be defined as h(x) = (h1(x), . . . , hℓ(x))
T . Let

µ = (µ1, . . . , µm)T and λ = (λ1, . . . , λℓ)
T . Then the necessary conditions

can be written as:

Stationarity
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For maximizing f(x):

∇f(x∗)−Dg(x∗)Tµ−Dh(x∗)Tλ = 0

For minimizing f(x):

∇f(x∗) +Dg(x∗)Tµ+Dh(x∗)Tλ = 0

Primal feasibility

g(x∗) ≤ 0

h(x∗) = 0

Dual feasibility

µ ≥ 0

Complementary slackness

µTg(x∗) = 0.

== Sufficient conditions ==

In some cases, the necessary conditions are also sufficient for optimality.
In general, the necessary conditions are not sufficient for optimality and
additional information is required, such as the Second Order Sufficient Con-
ditions (SOSC). For smooth functions, SOSC involve the second derivatives,
which explains its name.

The necessary conditions are sufficient for optimality if the objective func-
tion f of a maximization problem is a concave function, the inequality con-
straints gj are continuously differentiable convex functions and the equality
constraints hi are affine functions. Similarly, if the objective function f of
a minimization problem is a convex function, the necessary conditions are
also sufficient for optimality.

It was shown by Martin in 1985 that the broader class of functions in which
KKT conditions guarantees global optimality are the so-called Type 1 invex
functions.

=== Second-order sufficient conditions ===

For smooth, non-linear optimization problems, a second order sufficient con-
dition is given as follows.

The solution x∗, λ∗, µ∗ found in the above section is a constrained local
minimum if for the Lagrangian,
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L(x, λ, µ) = f(x) +
m∑
i=1

µigi(x) +
ℓ∑

j=1

λjhj(x)

then,

sT∇2
xxL(x

∗, λ∗, µ∗)s ≥ 0

where s ̸= 0 is a vector satisfying the following,

[∇xgi(x
∗),∇xhj(x

∗)]T s = 0

where only those active inequality constraints gi(x) corresponding to strict
complementarity (i.e. where µi > 0) are applied. The solution is a strict
constrained local minimum in the case the inequality is also strict.

If sT∇2
xxL(x

∗, λ∗, µ∗)s = 0, the third order Taylor expansion of the La-
grangian should be used to verify if x∗ is a local minimum. The minimiza-
tion of f(x1, x2) = (x2 − x21)(x2 − 3x21) is a good counter-example, see also
Peano surface.

Generalizations

With an extra multiplier µ0 ≥ 0, which may be zero (as long as (µ0, µ, λ) ̸=
0), in front of ∇f(x∗) the KKT stationarity conditions turn into

µ0∇f(x∗) +
m∑
i=1

µi∇gi(x∗) +
ℓ∑

j=1

λj ∇hj(x∗) = 0,(6.5)

µjgi(x
∗) = 0, i = 1, . . . ,m,(6.6)

which are called the Fritz John conditions. This optimality conditions holds
without constraint qualifications and it is equivalent to the optimality con-
dition KKT or (not-MFCQ).

The KKT conditions belong to a wider class of the first-order necessary con-
ditions (FONC), which allow for non-smooth functions using subderivatives.

Example 6.1. Find the maximum of f(x, y) = xy subject to the constraint
g(x, y) = x2 + y2 = 2. Lagrange’s method instructs us to solve the system
∇f = λ∇g and g(x, y) = 2. The solutions are found to be (x, y, λ) =
(1, 1, 12), (−1,−1,

1
2), (1,−1,−

1
2), and (−1, 1,−1

2). The critical points are
(±1,±1) and the maximum value of f(x, y) is f(1, 1) = 1.

This problem is simpler if we use polar coordinates x = r cos θ, y = r sin θ.
The expression for f and g are f(r, θ) = (r cos θ)(r sin θ) = 1

2r
2 sin 2θ and

g(r, θ) = (r cos θ)2+(r sin θ)2 = r2. Thus the problem reduces to finding the
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maximum of f(r, θ) = 1
2r

2 sin 2θ, subject to the constraint r2 = 2. We can

do that by solving the equation ∂f
∂θ (
√
2, θ) = 0; that is, 2 cos 2θ = 0. The

critical points are (r, θ) = (
√
2, π/4 + (nπ)/2), where n is any integer – the

same four points previously obtained.

Note that in the second solution the Lagrange multiplier λ did not appear.
In polar coordinates the variable r was eliminated because it was constant on
the constrained curve, reducing the problem to the unconstrained maximum
problem in the remaining variable θ. This example demonstrates the advan-
tage of thinking of the coordinate system not as an immutable quantity but
as something that can be adapted to the problem.

6.19.3. Method of Differential Forms. The algebraic machinery of dif-
ferential forms4 also allows us to solve constrained optimization problems.
For the special case of optimizing a function f of three variables and a sin-
gle constraint, the Lagrange condition ∇f = λ∇g can be reformulated as
∇f ×∇g = 0. The multiplier λ is avoided because two vectors in space are
parallel if and only if their cross product is zero. In this special case, the
components of∇f×∇g, together with the constraint, provide four equations
in three unknowns instead of Lagrange’s four equations in four unknowns.
In fact, the condition ∇f × ∇g = 0 is slightly better than ∇f = λ∇g,
because points where ∇g = 0 are critical points that must be included as
candidates for the extremum.

The traditional statement of the Lagrange multiplier theorem considers only
points where the gradients of the constraints are linearly independent, so it
skirts an important consideration. The condition ∇f × ∇g = 0 is better
because it handles all possibilities simultaneously. Unfortunately, the cross
product is defined only for 3D vectors, so this approach is limited in scope.
However, there is a vector multiplication operation, similar to the vector
cross product, called the wedge product, that removes the dimensional re-
striction at little cost.

If u and v are vectors, their wedge product u∧ v is a new object (sometimes
called a bivector). The set of all linear combinations of bivectors is a vector
space, and the wedge product operation has the following two properties:

(1) The wedge product is linear in each variable separately. That is, if
α and β are scalars then

(αu+ βv) ∧ w = α(u ∧ w) + β(v ∧ w)
u ∧ (αv + βw) = α(u ∧ v) + β(u ∧ w).

(2) The wedge product is anti-commutative: u ∧ v = −v ∧ u.

4This section is based on the paper: Zizza, F., 1998. Differential forms for constrained max-min
problems: eliminating Lagrange multipliers. The College Mathematics Journal, 29(5), pp.387-396.
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It follows that u ∧ u = 0 for any vector u. A crucial fact for our purpose
is that u ∧ v = 0 if and only if the pair {u, v} is linearly independent.
These properties are satisfied by the cross product, but the bivectors are new
objects, distinct from their vector factors and subject only to the conditions
above. The advantage gained is that the wedge product makes sense for
vectors of any dimension, not just vectors in 3D space.

Example 6.2. Let v = αx̂ + βŷ and w = γx̂ + δŷ. Show that u ∧ w =∣∣∣ α β
γ δ

∣∣∣ x̂ ∧ ŷ and interpret this result geometrically in terms of (signed) area.

The other ingredient in our plan of eliminating the multipliers from La-
grange’s method is to replace gradients by differentials. Differentials of func-
tions are better behaved than gradients. If f is a function and (x1, x2, . . . , xn)
is a coordinate system valid in the domain of f , then the differential of f
expressed in this coordinate system is

df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 + · · ·+

∂f

∂xx
dxn.

A geometric interpretation of the differential df can be obtained from a
contour diagram of the function f .

In the Figure (left), the contour at height c (the set of points f−1(c)) is
labeled as f = c. Consider the point P on the contour of height c as fixed
and the points Q as a variable. The change in f from P to Q is defined
as ∆f = f(Q) − f(P ), which we think of as a function of Q. Using this
definition, the contour of f at height c is exactly the same as the contour of
∆f at height 0. Therefore, we can re-label the contours f = c, f = c+1 and
f = c+ 2 as ∆f = 0, ∆f = 1 and ∆f = 2, respectively. When evaluated at

P , the differential df |P = ∂f
∂x

∣∣∣
P
dx + ∂f

∂y

∣∣∣
P
dy becomes a linear function of

the variables dx and dy, which represent arbitrary changes in x and y from
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their values at P . An equation of the tangent line to the contour of f = c

at P is ∂f
∂x

∣∣∣
P
(x− xP ) + ∂f

∂y

∣∣∣
P
(y − yP ) = 0, or ∂f

∂x

∣∣∣
P
dy + ∂f

∂y

∣∣∣
P
dy = 0.

Thus, in the (dx, dy) coordinate system, whose origin corresponds to the
point P the linear equation df |P = 0 gives the tangent at P to the contour
labeled ∆f = 0. Furthermore, the solutions of df |P = 1 and df |P = 2 form
linear approximations to the contours ∆f = 1 and ∆f = 2 as in the Figure
(right). This interpretation of df extends to functions whose domain is of
arbitrary dimension.

The gradient of the function f evaluated at a point P is a vector perpen-
dicular to the contour curve of f through P . The formula for the gradient
expresses this vector as a linear combination of the unit vectors perpendicu-
lar to the coordinate contours through P , so it changes with the coordinate
system. For example, in rectangular coordinates ∇f = ∂f

∂x x̂ + ∂f
∂y ŷ, but in

polar coordinates ∇f = ∂f
∂r r̂ + (1/r)∂f∂θ θ̂. The expression for the differential

is the same no matter what coordinate system is used. In polar coordinates,
for instance, df = ∂f

∂r dr +
∂f
∂θ dθ.

The traditional explanation of Lagrange’s condition for maximizing or min-
imizing f , subject to one constraint of the form g = c, hinges on the ob-
servation that at a critical point the contours of f and g are tangent. For
example, the problem of finding the point on the ellipse x2 + 4(y − 3)2 = 1
that is closest to the point (1, 1). We can view this as the problem of mini-
mizing the squared distance function f(x, y) = (x− 1)2 + (y − 1)2, subject
to the constraint g(x, y) = x2 + 4(y − 3)2 = 1.

This Figure (left) shows several contours of f(x, y) – points at a fixed dis-
tance from (1, 1). The minimum distance occurs at the point P where the
contours of f first make contact with the constraint ellipse, and the maxi-
mum distance occurs at P ′, where the last contour of f touches the ellipse.
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At these critical points the two curves are tangent; for example, the tangent
lines df |P = 0 and dg|P = 0 are the same, as shown in the Figure (right).

But the lines df |P = 0 and dg|P = 0 are the same when df |P is a multiple
of df |P . For example, the lines 2dx − 3dy = 0 and −4dx + 6dy = 0 are
identical because −4dx+ 6dy is a multiple (λ = −2) of 2dx− 3dy. In other
words, the equation df |P = λ dg|P between differentials is equivalent to
the traditional Lagrange condition ∇f |P = λ ∇g|P ; but geometrically the
differential condition says the tangent lines to the contour and the constraint
curves are identical, while the gradient condition says the normal vectors to
these lines are parallel.

Normal vectors are parallel at critical points.

This Figure shows the (normalized) gradient vectors at several points along
the constraint ellipse and the contours of f . The gradient vectors are clearly
parallel at the critical points P and P ′.

Example 6.3. Geometric interpretation of df ∧ dg. As c varies, the equa-
tions df |P = c are the equations of all lines parallel to the tangent line
df |P = 0. If the lines tangent to the contours of f and g through P are not
parallel, then the points between the four lines whose equations are df |P = 0,
df |P = 1, dg|P = 0 and dg|P = 1 form a parallelogram. Let A denote the
area of this parallelogram and show that df ∧ dg|P = ±1(1/A)dx ∧ dy (in
the xy-coordinate system).

How can we eliminate the multiplier λ from Lagrange’s optimization crite-
rion ∇|P = λ ∇g|P ? Let’s return to a previous example and set up the
Lagrange multiplier equations using differentials, so we have df = ydx+xdy
and dg = 2xdx + 2ydy. The equations of the tangent lines are df = 0
and dg = 0; that is, ydx + xdy = 0 and 2xdx + 2ydy = 0. The equation
df = λdg together with the constraint equation give the same system of
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three equations in x, y and λ that we found earlier in solving Example 1 by
the traditional gradient version of Lagrange’s method. But now recall that
{df, dg} is linearly dependent precisely when df ∧ dg = 0. (In the expres-
sions for df and dg, dx and dy are variables that we will consider as vector
quantities; x and y are the coordinates of the points we are seeking and will
be considered as unknown scalars.) Calculating this wedge product, we get

0 = df ∧ dg =(ydx+ xdy) ∧ (2xdx+ 2ydy)

=2xydx ∧ dx+ 2y2dx ∧ dy + 2x2dy ∧ dx+ 2xydy ∧ dy
=0 + 2y2dx ∧ dy − 2x2dx ∧ dy + 0 = (2y2 − 2x2)dx ∧ dy.

Thus the critical points (x, y) satisfy the two equations 2y2 − 2x2 = 0,
x2 + y2 = 2. Solving this system yields the same four critical points as
before. In fact, since ∂f

∂θ = ∂f
∂x

∂x
∂θ + ∂f

∂y
∂y
∂θ = (y)(−y) + (x)(x) = x2 − y2,

we see that ∂f
∂θ = 0 and df ∧ dg = 0 are equivalent, though not identical,

conditions. By expressing the Lagrange’s optimality condition in the form
df ∧ dg = 0, we have succeeded in finding a system of equations equivalent
to that obtained by changing to polar coordinates.

To generalize the above differential method to handle more than one con-
straint, we need to extend the wedge product to an arbitrary number of
factors. That can be done in a unique way, such that the wedge product is
multilinear (linear in each variable) and is an alternating function (the sign
changes whenever two terms are transposed). Consider the case of three
vectors:

u∧ v ∧w = −u∧ v ∧w = v ∧w ∧ u = −w ∧ v ∧ u = w ∧ u∧ v = −u∧w ∧ v.
In particular, if u = v then u ∧ v ∧ w = 0, since the only vector that
equals its opposite is the zero vector. The properties of the wedge product
lead to a simple way to recover the coefficients from a linear combination
z = αu + βv + δw, we simply take the wedge product of z with v ∧ w, the
product of all the vectors other than u, whose coefficient we wish to find:

z ∧ v ∧ w = (αu+ βv + δw) ∧ (v ∧ w) = αu ∧ v ∧ w + 0 + 0 = αu ∧ v ∧ w.
Similarly,

z ∧ u ∧ w = βv ∧ u ∧ w = −βu ∧ v ∧ w
and

z ∧ u ∧ v = δw ∧ u ∧ v = δu ∧ v ∧ w.
So all three coefficients can be found as multipliers of u∧v∧w. (This device
is reminiscent of the way we recover the Fourier coefficients of a vector
with respect to an orthonormal basis, by taking dot products with the basis
vectors.)
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Finally, the wedge product provides a simple test for linear independence:
The vectors {w1, w2, . . . , wk} are linearly dependent if and only if w1 ∧w2 ∧
· · · ∧ wk = 0.

Example 6.4. Find the extrema of the function f(x, y, z) = xyz subject to
the constraints x2 + y2 + z2 = 4 and x2 + y2 − z2 = 0.

Lagrange’s method uses the constraint functions g(x, y, z) = x2 + y2 + z2

and h(x, y, z) = x2 + y2− z2 and directs us to solve the system of equations
df = λdg + µh, g(x, y, z) = 4, and h(x, y, z) = 0. This approach produces
the following system of equations:

yz =λ(2x) + µ(2x), x2 + y2 + z2 = 4

xz =λ(2y) + µ(2y), x2 + y2 − z2 = 0

xy =λ(2z) + µ(−2z).
The wedge product reformulation replaces Lagrange’s (linear combination)
condition df = λdg+ µdh; instead, it finds where df is a linear combination
of dg and dh by considering the condition df ∧ dg ∧ dh = 0. Calculating, we
find

df∧dg∧dh = (yzdx+xzdy+xydz)∧(2xdx+2ydy+2zdz)∧(2xdx+2ydy−2zdz).
After some manipulations (distributing, interchanging of factors and sim-
plifying), this reduces to 8(x2 − y2)z2dx ∧ dy ∧ dz. So the new system of
equations for the critical points is

8(x2 − y2)z2 = 0,

x2 + y2 + z2 = 4,

x2 + y2 − z2 = 0.

We now have three equations and three unknowns instead of the Lagrange
method’s five equations and five unknowns. The solutions of both sides of
equations correspond to the critical points (±1,±1,±

√
2). Not surprisingly,

computer algebra systems solve the second set of equations about 60% faster
than they solve the Lagrange set.

6.20. KFAC paper

Suppose we have data drawn from a distribution

x1, . . . , xN ∼ q(x|θ)
The likelihood function is

N∏
i=1

q(xi|θ)
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Then take -log

F (θ) ≡ − log
N∏
i=1

q(xi|θ) = −
N∑
i=1

log q(xi|θ)

Then minimize this with respect to θ. We may do gradient descent:

θk+1 = θk − αk∇θF (θk)

In a sense, F depends on the distribution q, i.e., F (θ) = F (q) (by abuse of
notation), and we need to minimize F with respect to the distribution q,
which is a parametric family:

min
q∈{q(x|θ),θ∈Θ}

F (q)

Thus, maximum likelihood problem is actually an optimization problem with
respect to distribution q that we choose to model our data.

However, distance in parametric space may not be a problem for optimiza-
tion. For example, in both cases below the Euclidean distance in parametric
space is 1. However, on the left the two distributions are completely differ-
ent. On the right, they are the same:

Consider level sets of function we optimize:
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A standard gradient descent will go in a zig-zag trajectory because it ignores
the curvature of the surface. We instead should choose the natural gradient.

Let’s take the directional derivative of our function F of θ in some direction
d:

F ′(θ; d) = ∇θF (θ)
Td

and minimize with respect to d, within some small ball ∥d∥2 ≤ ϵ.
Minimizing

L(d, λ) = ∇θF (θ)
Td+ λ(dTd− ϵ)

with respect to direction (d)

∇dL(d, λ) = ∇θF (θ) + 2λf = 0

gives

d = − 1

2λ
∇θF (θ)

The optimal λ should be taken to satisfy the condition ∥d∥2 ≤ ϵ:

∥d∥2 = 1

4λ2
∥∇θF (θ)∥2 ≤ ϵ

which implies λ ≥ ∥∇θF (θ)∥(1/2
√
ϵ). For λ we can take the equality:

dopt = −
∇θF (θ)

√
ϵ

∥∇θF (θ)∥
.

Let us replace the optimization problem with the following more general
formulation:

min
d
∇θF (θ)

Td

subject to the condition
dTG(θ)d ≤ ϵ

involving a quadratic form. G(θ) is some positive-definite matrix, i.e. G(θ) ≻
0. Repeating the optimization under these new conditions we get:

dopt ∝ −(G(θ))−1∇θF (θ)

This is called a natural gradient. Compare with Newton method, where
G(θ) = ∇θ∇θF (θ) (Hessian).
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Let us introduce the natural distance in the space of distributions. Distances
in the space of distributions are usually measured using the KL divergence.
KL divergence is not symmetric, but can be symmetrized:

ρ(θ,θ + δθ) ≡ DKL(q(x|θ) : q(x|θ + δθ)) +DKL(q(x|θ + δθ) : q(x|θ))
Using the definition of KL divergence:

=

∫
q(x|θ) log q(x|θ)

q(x|θ + δθ)
dx+

∫
q(x|θ + δθ) log

q(x|θ + δθ)

q(x|θ)
dx

=

∫
(q(x|θ + δθ)− q(x|θ))(log q(x|θ + δθ)− log q(x|θ))dx

Taylor expand,

=

∫
(∇θq(x|θ)T δθ +O(∥δθ∥2))(∇θ log q(x|θ)T δθ +O(∥δθ∥2))dx

Then apply {·} to get:{
∇θ log q(x|θ) =

∇θq(x|θ)
q(x|θ)

}
= δθTEq(x|θ)∇θ log q(x|θ)∇θ log q(x|θ)T δθ+O(∥δθ∥3)

= ρ(θ,θ + δθ).

This is valid for small δ. The first term gives G(θ), the Fisher matrix:

G(θ) = Eq(x|θ)∇θ log q(x|θ)∇θ log q(x|θ)T

The natural gradient distance approach:

θk+1 = θk − αk(G(θk))
−1∇θF (θk)

Then, it is possible to show that G is related to the Hessian:5

G(θ) = −Eq(x|θ)∇2
θ log q(x|θ)

In our optimization problem we have (let’s add a factor of 1/N , which doesn’t
change the result of optimization)

F (θ) = − 1

N

N∑
i=1

log q(xi|θ)

which should be minimized with respect to θ. From this, let’s estimate the
Hessian of F :

∇2
θF (θ) = −Eq̂(x)∇2

θ log q(x|θ)

5The matrix

∇∇ log q = ∇(∇ log q) = ∇(
∇q

q
) =

∇∇q

q
−

∇q∇q

q2
=

∇∇q

q
−∇ log q∇ log q

does not equal to −∇ log q∇ log q unless the first term, ∇∇q
q

, vanishes. That term is nonzero but

its expectation value is zero (see text).
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where q̂(x) is our empirical distribution (based on our data),

q̂(x) =
1

N

N∑
i=1

δ(x− xi).

This is almost the same as the Fisher matrix G(θ), which depends on our
chosen model q(x|θ).
Derivation:

∇θ log q(x|θ) =
∇θq(x|θ)
q(x|θ)

∇2
θ log q(x|θ) =

∇2
θq(x|θ)q(x|θ)−∇θq(x|θ)∇θq(x|θ)T

(q(x|θ))2

=
∇2

θq(x|θ)
q(x|θ)

−∇θ log q(x|θ)∇θ log q(x|θ)T

Then we need to take expectation of ∇2
θ log q(x|θ) with respect to q(x|θ),

i.e. Eq(x|θ)(. . . ). The first term is:

Eq(x|θ)
∇2

θq(x|θ)
q(x|θ)

=

∫
∇2

θq(x|θ)dx = ∇2
θ

∫
q(x|θ)dx = ∇2

θ1 = 0.

Let’s consider the simplest possible ML estimation problem, where data is
approximated by 1-D normal distribution

x1, . . . , xN
i.i.d∼ N (x|µ, σ2)

The values xi ∈ R. Taking the log of the density:

logN (x|µ, σ2) = −1

2
log 2π − log σ − 1

2σ2
(x− µ)2

∂

∂µ
logN =

1

σ2
(x− µ)

∂

∂σ
logN = − 1

σ
+

(x− µ)2

σ3

Eq(x|θ)∇θ log q(x|θ)∇θ log q(x|θ)T ≈
1

N

N∑
i=1

∇θ log q(xi|θ)∇θ log q(xi|θ)T

where xi ∼ q(x|θ).
Levenberg-Marquardt

d = −(G(θ(k)) + τkI)
−1∇θF (θ

(k)), τk > 0

If we choose d from this expression, it is the same thing as saying that our
function F is modeled by a quadratic function like this:

F (θ(k) + d) ≈ mk(d) = F (θ(k)) +∇θF (θ
(k))Td+

1

2
dT (G(θ(k)) + τkI)d



6.20. KFAC paper 273

Minimizing this expression for F with respect to d gives the above result for
d.

Since G(θ) is positive semi-definite matrix we have the constrained mini-
mization problem:

F (θ(k)) +∇θF (θ
(k))Td+

1

2
dTG(θ(k))d

∥d∥2 ≤ ∆k

This is a convex minimization problem because this expression for F is
convex quadratic and the constraint set is also convex. Since the set is
convex, we can formulate the first order necessary condition using Lagrange
function. There is a 1-to-1 correspondence between τk and ∆k. The smaller
∆k is, the larger τk is. The expression F (θ(k))+∇θF (θ

(k))Td+ 1
2d

TG(θ(k))d

without the constraint ∥d∥2 ≤ ∆k is a plain natural gradient method.

By adjusting τk, we have a simple trust-region approach for our natural
gradient, e.g.

τ0 = 1

for k = 0, 1, 2, . . .

Estimate G(θ(k))

d = −(G(θ(k)) + τkI)
−1∇θF (θ

(k)) (∗)
if F (θ(k) + d) > F (θ(k))

this means our model is “untrustworthy” and we need to narrow the region
(lower ∆k, which means increase τk). Go back to (∗).
Then we compare the change in our function (numerator) to the forecast of
this difference taken from our model:

ρ =
F (θ(k) + d)− F (θ(k))

mk(d)−mk(0)

This quantity is positive. If it is close to 1, then our model forecast is very
good. If it is close to 0, our model is not good.

If ρ < 1
4 (our quadratic model is less trustworthy), then τk ← 2τk (switch

towards gradient descent).

If ρ > 3
4 (our model is good, we should trust it more), then τk ← τk

2 (we
decrease τk, moving towards plain natural gradient).

In all cases, this is followed by

τk+1 = τk + d,

i.e., we do not reject the steps. Only the size of the trust-region is varied.
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For neural networks, our G is estimated using our current mini-batch:

Ĝ(θ(k)) =
1

|Ik|
∑
i∈Ik

∇θ log q(xi|θ)∇θ log q(xi|θ)T

G(θ(k)) = (1− ϵk)Ĝ(θ(k)) + ϵkG(θ
(k−1))

A simple heuristic rule is

ϵk = min(1− 1/k, 0.95),

which says that initially, we use our mini-batches, but as time goes by we
use G from the past.

KFAC. Neural networks has layers:

a0 = x

si =Wiai−1, ai−1 =

[
ai−1

1

]
ai = φ(si), i = 1, . . . , l

z(x,θ) = al

Our optimization problem is:

F (θ) ≡ 1

N

N∑
i=1

L(yi, z(xi,θ))

which is minimized with respect to θ. The parameters are stored in the
following column vector:

θ = [vec(W1)
T , . . . , vec(Wl)

T ]T

Here we don’t have any statistical model, so we cannot apply natural gradi-
ent method. However, we can require that this loss function is not arbitrary,
but is taken as the log of some real distribution:

− 1

N

N∑
=1

log q(yi|z(xi,θ))

which is minimized with respect to θ. So we have an optimization with
respect to distribution q:

min
q(y,x,θ)q̂(x)

F (q)

i.e. conditional distribution of target variables given the inputs, q(y|x,θ),
times empirical distribution of Fisher matrix q̂(x). Note: there are two
distributions shown here, q(y, x,θ)q̂(x), because our data is in the form
(y1, x1), . . . , (yN , xN ).

Define:

Dv = − ∂

∂v
log q(y|z(x,θ))
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In this notation our Fisher matrix is denoted:

G(θ) = Eq(y|z(x,θ))q̂(x)DθDθT

where G is a l × l block matrix:

Gij(θ) = EdidTj , di = vec(DWi)

The derivative of our output function, according to the chain rule, is:

DWi = Dsi · ai−1
T

where ai−1
T is the derivative of si with respect to Wi.

Then, using the relationship vec(uvT ) = v ⊗ u,
vec(DWi) = vec(DsiaTi−1) = ai−1 ⊗Dsi

Therefore, our Fisher matrix is

Gij(θ) = EdidTj = Evec(DWi)vec(DWj)
T = E[ai−1 ⊗Dsi][aj−1 ⊗Dsj ]

= E[ai−1a
T
j−1 ⊗DsiDsTj ] ≈ E[ai−1a

T
j−1]⊗ E[DsiDsTj ]

The last step is called the KFAC approximation. It is a product of two
terms, the first is obtained by forward propagation. The second is obtained
by backpropagation. It is of the form of a Khatri-Rao product.

Block diagonal approximation:

G̃ij = 0 ∀i ̸= j

G̃ii = Eai−1a
T
i−1 ⊗ EDsiDsTi

We need to invert the matrix:

G̃−1
ii = (Eai−1a

T
i−1)

−1 ⊗ (EDsiDsTi )−1

If we have:
ni inputs

mi outputs

then G̃ii is a nimi×nimi matrix, whereas Eai−1a
T
i−1 is ni×ni and EDsiDsTi

ismi×mi. Thus, KFAC provides a clear computational advantage. In KFAC
each block corresponds to one layer.

Then to compute u = G̃−1v, we can make use of the identity (A⊗B)vec(X) =
vec(BXAT ) to get

Ui = (EDsiDsTi )−1Vi(Eai−1a
T
i−1)

−1

where v maps to (V1, V2, . . . , Vl) and u maps to (U1, U2, . . . , Ul) in an anal-
ogous way6 to how θ maps to (W1,W2, . . . ,Wl).

6Recall that θ = [vec(W1)T vec(W2)T . . . vec(Wl)
T ]T .
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For Levenberg-Marquardt what we need to invert is (G̃ii+ τkI)
−1. Consider

the following approximation based on the Kronecker product trick:

(G̃ii + τkI) ≈ (Eai−1a
T
i−1 + πi

√
τkI)⊗ (EDsiDsTi +

1

πi

√
τkI)

= Eai−1a
T
i−1⊗EDsiDsTi +πi

√
τkI ⊗ EDsiDsTi +

1

πi

√
τkEai−1a

T
i−1 ⊗ I︸ ︷︷ ︸+τkI⊗I

which differs from the matrix (G̃ii + τkI) by the two terms denoted by the
underbrace. These two terms can be minimized with respect to πi

πi
√
τk∥I ⊗ EDsiDsTi ∥+

1

πi

√
τk∥Eai−1a

T
i−1 ⊗ I∥.

Then,

π2i,opt =
∥Eai−1a

T
i−1 ⊗ I∥2

∥I ⊗ EDsi · DsTi ∥2
=
∥Eai−1a

T
i−1∥

∥EDsiDsTi ∥

6.20.1. Line search vs Trust region. These are two different philoso-
phies. We can choose to do line search and pick the best learning rate that
lowers F the most. Or we can vary the size of the trust region. If our trust
region is good, d (direction) will vary accordingly.

6.21. Problems

Problem 121. Regarding the problem of data fitting, where we need gra-

dients, Jacobians, etc. (review lecture notes for the definitions of ∇χ2(β⃗k),

Jk, etc.). (a) Take y(x) = Ax+B as the fitting model. Calculate ∇χ2(β⃗k),
Jk, Hk and the covariance matrix.

(b) Let the fitting model be given by y(x) = A+Bx+C cos(Dx). Calculate

∇χ2(β⃗k) and Jk.

(c) The model is y(x) = A exp(−Bx) + C. Calculate ∇χ2(β⃗k), Jk and Hk.

Solution. Let’s do the Jacobian here for (i), the linear model. From the
definition of the Jacobian, this is a n × p matrix of first partial derivatives
of the normalized residuals. The rows are the data points and the columns
are the fitting parameters (here, A and B):

Jk =


∂R̃1
∂A

∂R̃1
∂B

...
...

∂R̃n
∂A

∂R̃n
∂B


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where R̃i =
yi−y(xi;A,B)

αi
and y(xi;A,B) = Axi +B. Thus,

Jk =


x1
α1

1
α1

...
...

xn
αn

1
αn


■

Problem 122. The following model is to be used for data fitting

y(x) = 40B log x2 + 4A cosx+ 2A

where A and B are parameters to be determined from the experimental data.
In terms of this model, find the Jacobian, Hessian and covariance matrices
and explain their role/purpose. Indicate which entries of the covariance
matrix measure the redundancy between the fitting parameters.

Problem 123. Write MATLAB code to implement the Levenberg algorithm
(not Levenberg-Marquardt) to minimize the following functions:

(a) f(x, y) = sin(5y) sin−1(x)− sin(5x) sin−1(y) on the domain [−1, 1]2.

(b) f(x, y) = −
∣∣∣sin(x) cos(y)e(1/2)|1−√|x|+|y||

∣∣∣ on the domain [−10, 10]2.

Instead of using a for loop for the iterations, use a while loop instead. (No
credits will be awarded if you use a for loop.) Monitor the running average
of f(x, y) (say, using the last 5 iterations) and if changes in f(x, y) from
iteration to iteration differ by less than 10−6, stop the loop. For f(x, y),
make sure to use the normalized f(x, y), i.e. divide f(x, y) by the number
of points in the summation.





Chapter 7

Global Optimization

The algorithms discussed so far can only take us to the nearest minimum.
Once a minimum has been reached, there is no built-in mechanism to es-
cape the minimum. If this minimum is not a global minimum, the solution
obtained is not optimal. A general χ2(θ), θ ∈ Rp surface:

χ2(θ) =
n∑

i=1

(yi − y(xi|θ))2

σ2i
. (textbook writes αi instead of σi)

could potentially have several minima, as shown in Fig. 7.1 for the 2D case
θ = (θ1, θ2).
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Figure 7.1. Global optimization aims to find the global minimum of the
χ2 surface. Note: in this figure β should be replaced by θ.
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The reason that gradient (or Hessian) based methods failed to see the global
minimum is because they only possess knowledge of the first and second
derivative of χ2 near the point θ. This local neighborhood of θ does not
extend very far into the parameter space.

Global optimization algorithms tend to rely on the use of multiple random
initial guesses, or on the use of evolution steps that may include some el-
ement of randomness, or a combination of both. These random elements
are essential in order to “push” the search toward regions of the parame-
ter space (θ) that gradient-based techniques would otherwise not be able to
reach. While global optimization schemes may or may not also use gradient-
based searches as part of the optimization strategy, the “global” nature of
the algorithm generally owes to the addition of some element of randomness.

Here we will cover two such global methods: the simulated annealing (Me-
tropolis) method and the genetic algorithm. You should, however, be aware
that there are many additional methods in use: quantum annealing, stochas-
tic tunneling, tabu search, reactive search optimization, stochastic gradi-
ent descent, graduated optimization, ant colony optimization, cross-entropy
method, harmony search, particle swarm optimization, intelligent water
drops and parallel tempering. Each method has its advantages and dis-
advantages. Another ideal setting for these global optimization methods is
in cases where derivative information is not available.

7.1. The Metropolis Algorithm (Simulated Annealing)

The Metropolis algorithm (Kirkpatrick, 1983) - also known as Metropolis
Monte-Carlo - is a version of simulated annealing (SA) that utilizes the so-
called Metropolis criteria [due to Metropolis (1953) and Hastings (1970)].
It is inspired by the annealing process in metallurgy. Annealing involves
heating and controlled cooling of a metal or alloy to produce a high quality
crystalline lattice. Heat increases thermal motion of the atoms and eases
diffusional motion. The subsequent cooling causes the atoms to migrate to
sites of local minimum energy, which usually translates into a lower amount
of defects and a global energy minimum.

The algorithm can be summarized as follows:

(1) Choose an initial configuration θ ∈ Rp for the fitting parameters.
The starting parameters can be selected randomly.

(2) Choose a starting temperature T > 0. Temperature should be high
enough, as the goal of this algorithm is to cool (by annealing) over
a long period of time.

(3) Calculate χ2(θ) for this configuration.
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(4) Let δθ by a random change to this configuration. The new config-
uration is θ + δθ.

(5) Calculate the new energy χ2(θ + δθ)

(6) Accept the move with probability

min
(
1, exp(−(χ2(θ + δθ)− χ2(θ))/T )

)
.

This step is called the Metropolis criterion. If the move is accepted,
the new configuration θ + δθ is taken to be the current configura-
tion, θ. If the move is rejected, the old configuration θ is kept
unchanged.

(7) Repeat steps 3-6 until convergence while lowering the temperature
T .

A few words are in order. First, the temperature T is dimensionless and is
not a real temperature but a parameter that simulates the effects of tem-
perature. The higher the temperature, the closer to 1 is the probability of
acceptance, meaning that almost every state is accessible. At low tempera-
tures, the exp(·) (Boltzmann) factor is smaller and acceptance of the moves
is less likely unless the energy of the system (as measured by χ2) decreases
as a result of the new move.

Finite temperatures correspond to “thermal energy” supplied by a reservoir
to the thermodynamic system. If the temperature is not lowered, the system
will remain with the same average energy per unit volume and moves will
continue to be accepted at the same rate. In order to find the “ground state”
of the system the goal is to reach a point where the majority of moves are
rejected. This can only happen at or near T = 0.

If the Boltzmann factor

exp
(
−
[
χ2(θ′)− χ2(θ)

]
/T
)
= e−∆E/T

has ∆E = χ2(θ′) − χ2(θ) > 0, the new move results in a higher energy
configuration. In this case, rather than rejecting it, the move is accepted
with probability e−∆E/T < 1. This allows for the possibility of random
jumps that could lift the system out of a local minimum. On the other hand,
∆E < 0 corresponds to a move that lowers the energy of the system. In this
case, e−∆E/T > 1 and the move is accepted with probability 1 (always).

7.2. Accepting a Move With Probability P

What does it mean when we are asked to accept a move with probability
P? For example,

P = e−∆E/T .
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Given a probability P ∈ [0, 1], regardless of the probability distribution
it originates from, we may decide whether or not a random experiment
occurs with probability P as follows:

• Generate a uniformly distributed random number R in the interval

R ∈ [0, 1]

• If P > R, accept the move (the event has occurred).
• If P ≤ R, reject the move (the event did not occur).

The rationale for this reasoning is explained in the section below.

7.3. Sampling From a Distribution

In the Metropolis scheme and many other algorithms, we are asked to sample
from a distribution, such as the exponential distribution. However, your
random number generator may not be able to generate samples from the
distribution of your choice. It is likely able to generate uniformly distributed
samples U([0, 1]) in the interval [0, 1]. For example, the command rand in
MATLAB will generate uniformly distributed random numbers:

>> help rand

rand Uniformly distributed pseudorandom numbers.

R = rand(N) returns an N-by-N matrix containing pseudorandom

values drawn from the standard uniform distribution on the open

interval(0,1). rand(M,N) or rand([M,N]) returns an M-by-N matrix.

rand(M,N,P,...) or rand([M,N,P,...]) returns an M-by-N-by-P-by-...

array. rand returns a scalar. rand(SIZE(A)) returns an array

the same size as A.

...

Fortunately, MATLAB has another command, randn which can generate
random numbers sampled from a Gaussian distribution:

>> help randn

randn Normally distributed pseudorandom numbers.

R = randn(N) returns an N-by-N matrix containing

pseudorandom values drawn from the standard

normal distribution. randn(M,N) or randn([M,N]) returns

an M-by-N matrix. randn(M,N,P,...) or randn([M,N,P,...])

returns an M-by-N-by-P-by-... array. randn returns a

scalar. randn(SIZE(A)) returns an array the same size as A.

...
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Figure 7.2. Sampling from an arbitrary distribution with the help of
its CDF and the uniform distribution.

But to my knowledge in the basic version of MATLAB there are no random
number generators for other distribution functions. The problem also exists
with many programming languages such as C or FORTRAN, where random
number generators exist but only for uniform distributions.

Luckily, a random number sampled from the uniform distribution, U([0, 1]),
can be used to generate random samples from any distribution function.
Suppose that we want to generate Gaussian random numbers X ∼ N (0, 1)

for a given random variableX. The probability density is pX(x) = 1√
2π
e−x2/2.

In the figure below, we plot the CDF as the graph (x, y(x)):

y(x) = P(X < x) =
1√
2π

∫ x

−∞
e−x2/2dx =

∫ x

−∞
pX(x)dx

in the case of a Gaussian density. The left-most plot shows a PDF pX(x)
corresponding to some random variable X. On the right, we have its cu-
mulative distribution function y(x) =

∫ x
−∞ pX(x)dx. We generate uniformly

distributed samples y in the interval [0, 1] and invert y = y(x) to produce a
sample x according to the desired distribution pX(x). This is illustrated in
Figure 7.2.

If we consider the y axis as a random variable Y ∼ U([0, 1]) which is sampled
uniformly on the interval [0, 1], let us check that a uniform distribution for
Y gives rise to the desired distribution for X.

P(Y < y(x)) =P
(
Y <

∫ x

−∞
pX(x)dx

)
=

∫ ∫ x
−∞ pX(x)dx

0
1 · dy

=

∫ x

−∞
pX(x)dx = P(X < x).

Therefore, a uniform distribution for Y implies picking X according to the
density pX(x).
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7.4. Genetic Algorithms

Genetic algorithms (Holland, 1975) enable us to to find global minima. In
the early days, GAs have been applied to least squares curve fitting (Karr,
1991; Rogers 1991). Nowadays, GAs are applied to many different optimiza-
tion problems in the physical and social sciences. Software packages such as
MATLAB, IDL, Mathematica or Octave feature implementations of genetic
algorithms (GA) that are relatively easy to use. One advantage of GA codes
is they are inherently parallel and easily implemented on parallel hardware.
Another advantage is they can handle large data sets. Their main disad-
vantage is they are slow. The general idea consists of generating candidate
solutions and sending them to an evaluator for testing. If a candidate solu-
tion is not optimal, then the procedure is repeated. In genetic algorithms,
the procedure is repeated iteratively over a large set of candidate solutions.
Because this set can be large, a significant number of possible solutions can
be tested simultaneously.

They are a type of parallel heuristic search method inspired by the laws of
nature (genetics) that govern evolution of biological organisms. Each can-
didate solution is called an organism. A chromosome is a list of elements
called genes. In the simplest case, an organism consists of a single chro-
mosome (haploid), although there are cases when the organism consists of
dual-strand chromosomes (diploid). Chromosomes usually consist of linear
lists of genes. A gene can assume any of a number of values called alleles,
which are taken from the base set. Generally, problem solutions are encoded
as strings of alleles (most commonly, strings of 0’s and 1’s).

7.4.1. General idea. Let us look at an example strategy for a possible ge-
netic algorithm. The algorithm below is purposely left vague so you can see
the main steps involved and the parallel with evolution. In real implemen-
tations, the specifics of the algorithm strongly depend on the application.
We will look at a specific example later.

(1) Generate a large population of random chromosomes {θ(i)}, where
θ(i) ∈ Rp and i = 1, . . . ,M .

(2) Each chromosome is assigned a fitness score F proportional to some

goodness-of-fit parameter, e.g. χ2(θ(i)). This fitness score F should
increase as χ2 decreases.

(3) Select the top fitness scores. These “parent” chromosomes, {θbest},
will be used to breed the next generation (“offspring”).

(4) Generate “offspring” from the parent chromosomes: {θ(i)}, where
θ(i) ∈ Rp and i = 1, . . . ,M .
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Parent 1 Parent 2

Choose crossover
point randomly

Copy part of chromosome 
from parent 2 onto parent 1

Figure 7.3. Crossover of chromosomes.

(5) Introduce random changes in the genetic code in the form of crossover
and mutations. Mutations are “tweaks” to the chromosome con-
tents (e.g. flip a 0 to a 1). Crossover involves picking a gene at
random and generating a new chromosome that consists of chro-
mosome 1 up until that gene followed by the rest of chromosome 2,
as indicated in Fig. 7.3.

(6) Repeat steps 2-5 until solution is found.

The inherently parallel nature of the algorithm is embodied in steps 2 and 4,
where the GAs search large numbers of candidate solutions simultaneously.
A decision is made only after all the candidate solutions have been gener-
ated. The objective function used by genetic algorithms is based on actual,
problem-specific information, rather than auxiliary information, such as a
gradient or a Hessian.

Step 3 is analogous to natural selection. Like its natural selection counter-
part in biology, the selection operation selects pairs of highly fit organisms
for mating. This focus toward the highly fit individuals is what drives ge-
netic algorithms.

The genetic algorithm analogy to mating is called crossover. The crossover
operation provides a mixing of the genes from the parents, and globally it
mixes the genetic material of the whole population. It is the mixing of the
genes, the stirring of the pot of genetic material, that gives robustness to
the genetic algorithm.

The two organisms chosen by selection are combined to form a new individ-
ual with similarities to both parents. If the mixing is done carefully, then a
large amount of genetic material can be tested. Although selection focuses
on the genetic algorithm, it is crossover that adds variety.

The method based on the random selection of a single crossover point de-
scribed above is the simplest implementation of crossover. More complicated
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implementations are possible. There is no specific guidelines as to what rule
should be used. One could, for example, take the average of two chromo-
somes, their product, their difference or their sum. Which implementation
is best suited depends on application.

Problem 124. (a) Is the genetic algorithm a “local” or “global” optimiza-
tion algorithm? Explain.

(b) What element of this algorithm gives it its “local” or “global” nature?

(c) Discuss what is meant by local / global optimization, and give examples
of algorithms (genetic or not) which achieve local vs. global optimization.

Problem 125. Solve analytically the following minimization problem for
the unknown vector g:

argmin
g
∥Ug − k∥2

where g is a column vector with P entries whose values are unknown quan-
tities that you are to solve for, k is a column vector with N rows. U is a
N × P matrix (N rows, P columns). The minimization is to be carried out
by searching over all possible vector g with finite entries.

(a) Find the exact solution to the minimization problem.

(b) Explain how this minimization problem can be used to fit experimental
data to a model (linear or non-linear model). Explain what would be the
roles of U , g and k in this context.

Problem 126. Solve the following equation giving the unknown x number
of moles of a substance needed in a reaction:

4 sin(2x) + 5 log(2x2)− 1000 + x2 exp(5x) = 0.

(a) Derive an algorithm and write a working computer program or use a
spreadsheet or calculator to obtain a correct value for x. Explain how to do
it.

(b) Find the value x such that the left hand side of the equation is a mini-
mum. You found a local minimum. Explain how you found a local minimum.
Is it possible to find a global minimum?

(c) Find a minimum of the function f(x, y) = x2 cos(2x) cos(2y) near the
point (x, y) = (100, 100). Explain all the details of how you proceeded to
find the minimum.

(d) Fit data points (95, 85), (85, 95), (80, 70), (70, 65), (60, 70) (data given
in the form (xi, yi)) to a model y(x) = A+Bx and find the values for A and
B. Show all your work.

Solution. (a) Set f(x) = 4 sin(2x)+5 log(2x2)− 1000+x2 exp(5x) and use
Newton Raphson (xn+1 = xn − f(xn)/f ′(xn)) using some initial guess x0.
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(b) f(x) = 4 sin(2x)+5 log(2x2)−1000+x2 exp(5x) and use Newton Raphson
applied to the first derivative, xn+1 = xn − f ′(xn)/f ′′(xn), and a suitable
initial guess for x0. You can find infinitely many local minima because of
the sin(2x) term. The function does not have a global minimum due to the
singularity at the origin, limx→0 log(2x

2) = −∞.

(c) Use any of the gradient-based search algorithms (steepest descent, New-
ton, Gauss-Newton or Levenberg-Marquardt. Set initial conditions to (100, 100).

(d) Use the formulae, A =
∑

x2
i

∑
yi−

∑
xi
∑

xiyi
∆ , B = n

∑
xiyi−

∑
xi
∑

yi
∆ , ∆ =

n
∑
x2i − (

∑
xi)

2, and plug in the data provided to compute A and B.
I get the results: A = 26.768 and B = 0.644, i.e. the model is y(x) =
26.768 + 0.644x. ■

Problem 127. Write MATLAB code to find the global minimum of:

f(x, y) = 100(x2 − y)2 + (1− x)2 on the domain [−3, 3]2.
You may use MATLAB’s ga command. Another option is to write your
own code instead of using the built-in ga command. If you write you own
code, and if your code is short and easy to understand, your homework will
be weighed twice (100% bonus points). It’s possible to write fairly short ga
code (under 30 lines) to solve this problem. For the code to work efficiently,
the objective function will need to be vectorized, i.e. take vectors/matrices
as input, and output a vector. Element-wise operations will be required.

Problem 128. For the two functions of problem 123, compare the local
(Levenberg) search to the global (ga) search. Modify your Levenberg code
to explore the domain and find global extrema; compare results with ga.
Comment on whether this method (using a local search algorithm to perform
a global search, instead of using a true global search algorithm) is practical
in the general case of arbitrary function and domain.

Problem 129. In problem 137(b), I have provided code for simulated an-
nealing. Compare the speed of convergence for our simulated annealing code
to the ga command, i.e. plot χ2 vs iteration. (Usually, one uses a semi-log
graph to study convergence.) In a third calculation, use the built-in MAT-
LAB command simulannealbnd for this optimization:
https://www.mathworks.com/help/gads/simulated-annealing-examples.html

https://www.mathworks.com/help/gads/simulannealbnd.html

Compare performance for all 3 algorithms. Which of the 3 algorithms is
fastest?

Problem 130. Use the ga command to fit an exponential decay function
to the fake dataset of problem 139.





Chapter 8

Errors in the Fitted
Parameters during
Nonlinear Fitting

Given that nonlinear fitting methods are based on computer algorithms,
how can we obtain estimates of the error in the fitting parameters? We no
longer have the option of deriving analytical formulas. It turns out that the
covariance matrix provides estimates of the errors in the fitting parameters.
In this lecture we show that cov(θk,θk) = 2(Hk)

−1, where Hk is the Hessian
matrix at the k-th iteration.

8.1. Linear least squares

In linear least squares, we assume a model of the form

y⃗ = Aθ︸︷︷︸
model

+ϵ⃗

where y⃗ = (y1, . . . , yn)
T is the column vector of measured data points. There

are n data points collected. A is called the design matrix and has dimensions
n× p. The model parameters are stored in the vector θ = (θ1, . . . , θp)

T . Fi-
nally, the errors in each measurement are stored in a vector ϵ⃗ = (ϵ1, . . . , ϵn)

T .

The errors ϵi are random variables assumed to be independent and identi-
cally distributed (iid rv) according to a normal law

ϵi ∼ N (0, σ2), i = 1, . . . , n

289
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In general n ≫ p, since we want a model with much fewer parameters
than there are data points collected to construct it. In a sense, data fitting
amounts to doing data compression. Some effort must be devoted to finding
an adequate model that accurately describes the key features of the problem
with as few parameters as possible. In components form, the above equation
can be written as

yi =

p∑
j=1

aijθj + ϵi

where aij are the elements of the design matrix A.

Let us look at some examples of design matrix A. This matrix is found in
the expression y⃗ = Aθ + ϵ⃗. Consider the model

yi = A+Bxi + Cx2i + ϵi, i = 1, . . . , n

We find, by inspection

A =


1 x1 x21
1 x2 x22
...
1 xn x2n

 , θ =

AB
C

 , y⃗ =

y1...
yn

 , ϵ⃗ =

ϵ1...
ϵn

 .
Another example is

yi = A+B log xi + C cos2(xi) + ϵi

We find, by inspection that

A =


1 log x1 cos2(x1)
1 log x2 cos2(x2)
...

...
1 log xn cos2(xn)



8.2. MLE

Recall that with least squares, the fitting parameters are obtained by ap-
plying the principle of maximum likelihood, which consists of solving for
the model parameters θ for which the probability density of the observed
deviations (data minus model) is a maximum. Maximizing L is equivalent
to maximizing its logarithm, l:

l = −χ
2

2
= −1

2

n∑
i=1

(yi − y(xi|θ))2

σ2i
= −1

2

n∑
i=1

ϵ2i
σ2i

Here, our assumption will be that ϵi are Gaussian iid rv. Therefore, the
joint probability distribution of all (ϵ1, . . . , ϵn) is a product of individual
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distributions for each of the ϵi, each of which is Gaussian with mean 0 and
standard deviation σ.

In this special case, the “likelihood function” is

L(θ, σ2|y⃗) ≡ p(y⃗|θ, σ2) =

∏n
i=1 exp

{
−1

2

(
yi −

∑p
j=1 aijθj

)2
/σ2
}

σn(2π)n/2

=
e−

1
2

∑n
i=1(yi−

∑p
j=1 aijθj)

2
/σ2

σn(2π)n/2

L is the probability density for observing the set of deviations {ϵi} or, equiv-
alently, the set of measurements y⃗ given a model and its parameters y(xi|θ).
Taking the natural log of this expression yields the “log likelihood”

l ≡ logL = const− n log σ − 1

2

 n∑
i=1

yi − p∑
j=1

aijθj

2 /σ2.
where const = −(n/2) log(2π). This term will be ignored since it will not
be needed.

The principle of “maximum likelihood” tells us we should compute the ex-
tremum of this function with respect to its parameters. The parameters are
θ and σ.

8.2.1. MLE of the Model Parameters β⃗. Differentiating with respect
to θ, i.e. ∂l/∂θr = 0, gives the following equation:

n∑
i=1

air

yi − p∑
j=1

aijθj

 = 0, (r = 1, . . . , p)

or,
p∑

j=1

(
n∑

i=1

airaij

)
θj =

n∑
i=1

airyi.

This can be expressed in a more compact notation if we write C = (cij) for
the ij-th element of the p× p matrix C ≡ ATA. We note that this matrix
is symmetric (CT = C) since CT = (ATA)T = ATA = C. This allows us
to write the bracketed term on left hand side as

cij =

n∑
k=1

(AT )ikAkj =

n∑
k=1

akiakj

so the left hand side becomes
p∑

j=1

crjθj =

n∑
i=1

airyi =

n∑
i=1

(AT )riyi
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or
(Cθ)r = (AT y⃗)r, r = 1, . . . , p

Thus, we have obtained the so-called “normal equations”

Cθ = AT y⃗ C = ATA

The solution to these normal equations is obtained by multiplying both
sides of the equation on the left by the inverse of C, which is simply CT

(since C is a symmetric matrix). Since the vector θ has been obtaining
from the extremum condition ∂l/∂θ = 0 we denote this particular

vector as θ̂:

θ̂ = C−1AT y⃗ = (ATA)−1AT y⃗ ”normal equations”

provided that the symmetric matrix C = ATA is invertible. We note
that the normal equations are linear in y⃗. They are also linear in θ,
meaning that we can easily solve for θ. In the case of nonlinear models,
we will see that the normal equations are generally not linear functions
of the parameters.
Finally, to summarize what we have done, we note that maximizing the
likelihood function L is entirely equivalent to minimizing the sum of
square errors with respect to the choice of θ

n∑
i=1

yi − p∑
j=1

aijθj

2

= (y⃗ −Aθ)T (y⃗ −Aθ) = ϵ⃗T ϵ⃗.

The solution to this problem is given by the solution to the normal
equations. The term ϵ⃗T ϵ⃗ is an inner product of ϵ⃗ with itself. This is
often expressed in terms of the norm (length) of the vector ϵ⃗ as follows:
ϵ⃗T ϵ⃗ = ∥ϵ⃗∥2, where ∥ϵ⃗∥ is the length of ϵ⃗.

To illustrate the use of the normal equations in solving linear least squares
problems, let us look at the example of a linear model (yi = A+Bxi). This
equation must be written in the form y⃗(x⃗|θ) = Aθ where A is the design
matrix. By inspection we see that

y⃗(x⃗|θ) = Aθ =


x1 1
x2 1
...
xn 1


[
B
A

]
=


y1
y2
...
yn


The experimentally measured data points y⃗ are expressed as the sum of the
model y⃗(x⃗|θ) = Aθ plus the random errors ϵ⃗:

y⃗ = Aθ + ϵ⃗
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where

y⃗ =


y1
y2
...
yn

 , θ =

[
B
A

]
, ϵ⃗ =


ϵ1
ϵ2
...
ϵn


This is nothing more than a restatement of the fact that ϵ⃗ is simply the
deviation y⃗ − Aθ of experimentally measured data y⃗ from the model Aθ.
That is, ϵ⃗ = y⃗ − Aθ. We recall that χ2 involves a summation over such
deviations.

We now compute the product C−1AT y⃗, where C = ATA. First, the prod-
ucts C = ATA and AT y⃗ are, respectively

C = ATA =

[
x1 x2 . . . xn
1 1 . . . 1

]
x1 1
x2 1
...
xn 1

 =

[∑
i x

2
i

∑
i xi∑

i xi n

]
,

and

AT y⃗ =

[∑
i xiyi∑
i yi

]
.

Next, the inverseC−1 of this 2×2 matrix is computed from the usual formula(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
.

You can easily check by direct multiplication that this matrix meets the
conditions required to be the inverse: C−1C = CC−1 = ( 1 0

0 1 ).

In our case, the inverse of C =
[∑

i x
2
i

∑
i xi∑

i xi n

]
is

C−1 =
1

n
∑

i x
2
i −

∑
i xi
∑

j xj

[
n −

∑
i xi

−
∑

i xi
∑

i x
2
i

]
.

Therefore, θ̂ =

[
B̂

Â

]
is equal to

C−1AT y⃗ =
1

n
∑

i x
2
i −

∑
i xi
∑

j xj

[
n
∑

i xiyi −
∑

i xi
∑

j yj
−
∑

i xi
∑

j xjyj +
∑

i x
2
i

∑
j yj

]
.

This result is nothing new: this is exactly the same result we have derived in
Lecture 4 by applying the maximum likelihood principle to the minimization
of χ2. Here, we simply verified that our normal equation is in agreement
with the result already derived previously.
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8.3. MLE of the Parameter σ

There is yet another parameter that can be estimated via maximum likeli-
hood, σ. While σ does not appear at first glance to be a ”model” parameter
in the sense of the model expressed as y⃗(x⃗|θ) = A(x⃗)θ, we initially stated
the assumption that our deviations ϵ⃗ = y⃗− y⃗(x⃗|θ) were distributed as Gaus-
sians with mean 0 and standard deviation σ. In this sense, σ is an unknown
parameter that can be solved for in terms of the data and the model.

Differentiation of the log likelihood

l ≡ logL = const− n log σ − 1

2

 n∑
i=1

yi − p∑
j=1

aijθj

2 /σ2.
with respect to the parameter σ gives

∂l

∂σ
= 0 ⇒ −n

σ
+

1

σ3

n∑
i=1

yi − p∑
j=1

aijθj

2

= 0

At the extremum, we will denote the value of θ by θ̂. Similarly, let us de-
note the value of σ as σ̂ at the extremum. The quantities θ̂ and σ̂ are called
maximum likelihood estimators. Solving for σ2 we get, for the maximum
likelihood estimator:

σ̂2 =
1

n

n∑
i=1

yi − p∑
j=1

aij θ̂j

2

.

8.4. The Covariance Matrix

An important concept that will be used later in this course is the covariance
matrix. We recall near the end of Lecture 2 we had defined the covariance
of two random variables X and Y :

cov(X,Y ) ≡ (X −X)(Y − Y ) = XY −X · Y .
Covariance is important because in the case Y = X it reports the variance
whereas for X ̸= Y it tell us to what extent the random variable X is corre-
lated to Y . The covariance matrix is used when X is a vector in which we
have collected all random variables of interest, i.e. X⃗ = (X,Y, . . . , Z)T . It is
defined as the matrix whose elements are cov(Xi, Xj). It can be computed
most easily using the matrix form

cov(X⃗, X⃗) = (X⃗ −X)(X⃗ −X)T .
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Here, we are interested in the covariance matrix of the fitted model param-
eters cov(θ,θ). The diagonal elements are the variances (errors squared) of
each model parameters. The off-diagonal elements are the covariances. The
matrix elements are important because we are interested in knowing from
the fitting procedure what are the uncertainties in each fitted parameter and
the extent to which model parameters are redundant (correlated). Using the

definition θ̂ = C−1AT y⃗ we find:

cov(θ̂, θ̂) =C−1AT (y⃗ − y)(C−1AT (y⃗ − y))T

=C−1AT (y⃗ − y)(y⃗ − y)TA(C−1)T .

We recognize the term (y⃗ − y)(y⃗ − y)T as a variance. Since1 the elements
of y⃗ are statistically independent with variance σ2 (by assumption), the
off-diagonal elements are zero and this variance evaluates to

(y⃗ − y)(y⃗ − y)T =


σ2 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σ2

 = σ21

where 1 is the unit matrix. In the second line we have used the property
(AB)T = BTAT to write the term (C−1AT (y⃗ − y))T as

(C−1AT )T (y⃗ − y) = (y⃗ − y)TA(C−1)T .

Next, we use the fact that inverse of a matrix and transpose operations are
interchangeable, i.e. (CT )−1 = (C−1)T . But since C = CT (symmetric
matrix) we have:

cov(θ̂, θ̂) =C−1ATσ21AC−1 = σ2C−1ATA︸ ︷︷ ︸
C

C−1 = σ2C−1.

We will see later that the covariance matrix is related to the inverse of the
Hessian matrix. This is useful because we have seen in previous lectures that
the Hessian matrix could be estimated from the Jacobian matrix during the
course of a data fitting procedure (c.f. Gauss-Newton method).

1Recall that y⃗ = Aθ + ϵ⃗ is a sum of a deterministic (non-random) quantity Aθ plus a random

quantity ϵ⃗ which we have assumed the elements of which to be iid rvs with N(0, σ2). Thus,
var(y⃗) = var(⃗ϵ) = σ2.



296 8. Errors in the Fitted Parameters during Nonlinear Fitting

This formula cov(θ̂, θ̂) = σ2C−1 we have derived is simply a tool that

enables us to compute the covariance matrix cov(θ̂, θ̂) from the condi-
tions of the experiment. The covariance matrix is important because
its diagonal elements are the variances in the fitted parameters. Let us
look at a simple example: that of the linear model yi = A+Bxi. Then,
θ = (B,A)T and therefore

cov(θ̂, θ̂) =

[
(B −B)(B −B) (B −B)(A−A)
(A−A)(B −B) (A−A)(A−A)

]

=

[
var(B) cov(A,B)
cov(B,A) var(A)

]
.

We have also seen that

C−1 =
1

n
∑

i x
2
i −

∑
i xi
∑

j xj

[
n −

∑
i xi

−
∑

i xi
∑

i x
2
i

]
.

Thus, we have an explicit expression for the formula cov(θ̂, θ̂) = σ2C−1

and can use it to compute the errors in the fitted parameters A and
B from the experimental conditions (design matrix). We note that the
{yi}-dependence of the errors and covariances originates from the factor
σ2.

8.5. Nonlinear Least Squares

Suppose that we have n observations (x⃗i, yi), i = 1, . . . , n and a nonlinear
model

yi = f(x⃗i|θ) + ϵi, i = 1, . . . , n

or
y⃗ = f⃗(x⃗|θ) + ϵ⃗,

where f⃗(x⃗|θ) is a nonlinear function of θ. We assume that the elements of
ϵ⃗ are independent identically distributed random variables with mean 0 and
variance σ2. Furthermore, we assume they are normally distributed. Thus,
the estimates θ̂ will also be known as maximum likelihood estimators.

Given this nonlinear model, let us obtain the least squares estimates of θ
and σ, which we denote θ̂ and σ̂ respectively, starting from the likelihood
function

L(θ, σ2) ≡ p(y⃗|θ, σ2) = 1

(2πσ2)n/2
exp

(
−1

2

n∑
i=1

[yi − f(x⃗i|θ)]2

σ2

)
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The log likelihood is (ignoring constants)

l(θ, σ2) = −n
2
log σ2 − 1

2σ2

n∑
i=1

[yi − f(x⃗i|θ)]2

8.5.1. MLE σ̂. The condition ∂l/∂σ2 = 0 gives the maximum likelihood
estimator:

σ̂2 =
1

n

n∑
i=1

[yi − f(x⃗i|θ)]2

which is indeed a ”maximum” likelihood (for a given θ) as the second de-
rivative is negative2:

∂2l

∂(σ2)2
=

∂

∂σ2

[
−n
2σ2

+

∑n
i=1[yi − f(x⃗i|θ)]2

2(σ2)2

]
=

n

2(σ2)2
− 1

(σ2)3

n∑
i=1

[yi−f(x⃗i|θ)]2

in which we substitute the value of σ2, namely ϵ⃗T ϵ⃗
n where ϵ⃗T ϵ⃗ =

∑n
i=1[yi −

f(x⃗i|θ)]2 to get

∂2l

∂(σ2)2
=

n3

2(⃗ϵT ϵ⃗)2
− n3

(⃗ϵT ϵ⃗)3
· (⃗ϵT ϵ⃗) = n3

(⃗ϵT ϵ⃗)2
(
1

2
− 1) < 0

hence θ̂ and σ̂2 maximize l(θ|σ2). The maximum value of p(y⃗|θ, σ2) is

p(y⃗|θ̂, σ̂2) = 1

(2πσ̂2)n/2
e−n/2.

8.5.2. MLE θ̂. The estimator θ̂ satisfies the condition ∂ϵ⃗T ϵ⃗/∂θr|θ̂ = 0,
r = 1, 2, . . . , p. We now write fi(θ) = f(x⃗i|θ) as shorthand notation. Then,

f⃗(θ) = (f1(θ), . . . , fn(θ))
T .

Since f is a vector, its gradient is a matrix:

F(θ) ≡ ∇f⃗(θ) = ∂f⃗(θ)

∂θ
=

[
∂fi(θ)

∂θj

]
=


∂f1
∂θ1

. . . ∂f1
∂θp

∂f2
∂θ1

. . . ∂f2
∂θp

...
...

∂fn
∂θ1

. . . ∂fn
∂θp

 .
We now use the shorthand notation F = F(θ) and F̂ = F(θ̂). The sum of
squares that must be minimized is

ϵ⃗T ϵ⃗(θ) = [y⃗ − f⃗(θ)]T [y⃗ − f⃗(θ)] = ∥y⃗ − f⃗(θ)∥2.

2Another way to see this, since ϵ⃗T ϵ⃗(θ) ≥ ϵ⃗T ϵ⃗(θ̂), we have l(θ̂) − l(θ) = −(n/2) log σ̂2 − (n/2) −
l(θ) ≥ −(n/2) log σ̂2/σ2 − (n/2)+ (1/2)⃗ϵT ϵ⃗(θ̂)/σ2 = −(n/2)(log σ̂2/σ2 +1− σ̂2/σ ≥ 0 as log x ≤
x− 1 for x ≥ 0. We have denoted ϵ⃗T ϵ⃗(θ̂) for ϵ⃗T ϵ⃗ evaluated at the point θ̂.
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where ϵ⃗T ϵ⃗(θ) denotes ϵ⃗T ϵ⃗ evaluated at the point θ. Setting ∂ϵ⃗T ϵ⃗(θ)/∂θr|θ̂ =
0 leads to the result∑

i

{yi − fi(θ)}
∂fi(θ)

∂θr

∣∣∣∣
θ̂

= 0 ⇒ 0 = F̂T {y⃗ − f⃗(θ)}︸ ︷︷ ︸
ϵ̂

We get the normal equations for this nonlinear model

0 = F̂T · ϵ̂.
This is the equation that must be solved for nonlinear models. We
note that the model parameters are contained implicitly in the matrix

F as partial derivatives. Thus, if the model f⃗ is nonlinear, the matrix
elements of F could also be nonlinear functions of the parameters θ.

In general, these normal equations cannot be solved analytically and
iterative methods of the type covered previously will be necessary.

In order to better understand how to use the normal equations we illustrate
this concept by looking at examples.

Consider the linear model

yi︸︷︷︸
data

= A+Bxi︸ ︷︷ ︸
model

+ϵi

The normal equations are 0 = F̂T · ϵ̂. The vector ϵ̂ is simply the vector of
deviations between experimental data y⃗ and the model y⃗(x|θ̂):

ϵ̂ = y⃗ − y⃗(x⃗; θ̂) = y⃗ −A−Bx⃗ =


y1 −A−Bx1
y2 −A−Bx2

...
yn −A−Bxn


or, in component form, ϵj = yi − A − Bxi. Next, we need the matrix F̂T ,

which is computed from F(θ)T =


∂f1
∂θ1

... ∂fn
∂θ1

∂f1
∂θ2

... ∂fn
∂θ2

...
...

∂f1
∂θp

... ∂fn
∂θp

, where fi = A + Bxi and

θ = (A,B)T , but with two parameters (p = 2)

F(θ)T =

[
∂f1
∂θ1

. . . ∂fn
∂θ1

∂f1
∂θ2

. . . ∂fn
∂θ2

]
=

[
1 . . . 1
x1 . . . xn

]
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The condition F̂T · ϵ̂ = 0 then reads∑
i

(yi −A−Bxi) =0∑
i

(yi −A−Bxi)xi =0

The two linear equations and two unknowns can be solved for A,B (taking
care of noting that the second term in the first equation is

∑
iA = nA):

B =
n
∑

i yixi −
∑

i xi
∑

j yj

n
∑

i x
2
i −

∑
i xi
∑

j xj
A =

∑
i x

2
i

∑
j yj −

∑
i yixi

∑
j xj

n
∑

i x
2
i −

∑
i xi
∑

j xj

This is identical to the solution derived earlier using the normal equations
for the linear case.

Consider the nonlinear model

yi = αxβi + ϵi (i = 1, . . . , n)

This model can describe, for example, the dependence of mass of an object
(y) on a side length (x) in β dimensions. The normal equations are:∑

i

(yi − αxβi )x
β
i =0∑

i

(yi − αxβi )αx
β
i log xi =0

These equations do not admit analytical solutions for α and β.

8.6. Linearizing a nonlinear model

In the nonlinear case, the minimization of ∥y⃗ − f⃗(θ)∥2 with respect to θ

yielded the normal equation 0 = F̂T · ϵ̂, where F = ∂f⃗/∂θ is generally non-

linear in θ and ϵ̂ = y⃗−f⃗(θ̂) is also nonlinear in θ. These “normal equations”,
although formally correct, generally cannot be solved algebraically. In many
cases, we resort to linearizing the nonlinear model, as we have done with
the Newton-Raphson method. This approach does not yield the solution
in a single step, but instead allows us to get progressively closer after each
iteration of an update rule.

In order to do this, we first recall the following tool that we will use later.
We have previously found that the minimization of ∥ϵ⃗∥2 = ∥y⃗ −Aθ∥2 has
the following solution

θ̂ = (ATA)−1AT y⃗.

This was obtained by minimizing ∥ϵ⃗∥2 with respect to θ, i.e. ∂∥ϵ⃗∥2/∂θ = 0.
This solution is not specific to data fitting, but is a general result from
calculus.
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Taylor expanding f⃗(θ) near θ = θ̂ to first order gives f⃗(θ) ≈ f⃗(θ̂) + F∆θ

where ∆θ = θ − θ̂. Thus,

∥y⃗ − f⃗(θ)∥2 ≈ ∥y⃗ − f⃗(θ̂)− F∆θ∥2.

Substitution of ϵ̂ = y⃗ − f⃗(θ̂) for f⃗(θ̂) yields
∥ϵ̂− F∆θ∥2.

Invoking the above theorem from calculus, we find that the solution of this
linearized problem is given by

∆θ = (FTF)−1FT ϵ̂.

Incidentally, this condition

∆θ = θ − θ̂ = (FTF)−1FT ϵ̂ (∗)
is exactly equivalent to the update rule we derived previously for the Gauss-
Newton method

θ(k+1) = θ(k) −H−1
k ∇χ

2(θ(k))

where the Hessian matrix Hk is approximated by 2JT
k Jk with

Jk = J(θ(k)) =


− 1

σ1

∂y(x1|θ(k))
∂θ1

. . . − 1
σ1

∂y(x1|θ(k))
∂θp

...
...

− 1
σn

∂y(xn|θ(k))
∂θ1

. . . − 1
σn

∂y(xn|θ(k))
∂θp


and ∇χ2 = 2JT

k
⃗̃R with ⃗̃R is the column vector of residuals R̃i = (yi −

y(xi|θ(k)))/σi. For the two rules to be equivalent we must take the errors
to be identical σi ≡ σ. In that case,

H−1
k 2JT

k

 (y1 − y(x1|θ(k)))/σ
...

(yn − y(xn|)θ(k)))/σ

 = (2JT
k Jk)

−12JT
k

(y1 − y(x1|θ
(k)))/σ

...

(yn − y(xn|θ(k)))/σ


and we can now write Jk = −(1/σ)F to get

= −σ2(2FTF)−12(1/σ)FT

(y1 − y(x1|θ
(k)))/σ

...

(yn − y(xn|θ(k)))/σ

 = −(FTF)−1FT ϵ̂

which gives an update rule identical to (∗)

θ(k+1) = θ(k) + (FTF)−1FT ϵ̂

8.7. Relationship between Hessian and Covariance Matrices

The covariance matrix, cov(θ,θ), is important because it contains informa-
tion about the statistics of the fitted parameters. Let us see how it can be
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computed in the case of an iterative algorithm for nonlinear data fitting. In
the linear case, we found an explicit formula:

cov(θ,θ) = σ2C−1 = σ2(ATA)−1. (linear case)

In the nonlinear case, we can linearize such that the matrix A becomes

F = ∂f⃗/∂θ, the gradient of f⃗ :

cov(θ,θ) = σ2(FTF)−1. (nonlinear case)

Let us recall the definition of χ2

χ2 =

∑
i(yi − fi(θ))2

σ2
=
∥y⃗ − f⃗(θ)∥2

σ2
=
ϵ̂T ϵ̂

σ2

and compute the Hessian matrix,

(H)ij =
∂2χ2

∂θi∂θj
=

∂2

∂θi∂θj

∥y⃗ − f⃗(θ)∥2

σ2
≈ ∂2

∂θi∂θj

∥y⃗ − f⃗(θ̂)− F∆θ∥2

σ2

=
∂2

∂θi∂θj

[y⃗ − f⃗(θ̂)− F∆θ]T [y⃗ − f⃗(θ̂)− F∆θ]

σ2

=
∂2

∂θi∂θj

(y⃗ − f⃗(θ̂))T (y⃗ − f⃗(θ̂)) + 2(−F∆θ)T (y⃗ − f⃗(θ̂)) + (F∆θ)T (F∆θ)

σ2

The first term, (y⃗ − f⃗(θ̂))T (y⃗ − f⃗(θ̂), depends on θ̂ but is independent of
θ and its derivative with respect to θ is therefore zero. The second term,

2(−F∆θ)T (y⃗− f⃗(θ̂)) depends linearly on beta, and so its second derivative
with respect to θ vanishes. This leaves only the third term as non-zero.

Using the facts that ∆θ = θ − θ̂ and F = ∂f⃗(θ)/∂θ|θ=θ̂ is independent of
θ, we compute the derivative:

(H)ij =
∂2

∂θi∂θj

(F∆θ)T (F∆θ)

σ2
=

1

σ2
∂2

∂θi∂θj
θTFTFθ

=
1

σ2
∂2

∂θiθj

∑
m,n

θm(FTF)mnθn

=
1

σ2
∂

∂βi
(
∑
n

(FTF)jnθn +
∑
m

θm(FTF)mj)

=
1

σ2
((FTF)ji + (FTF)ij) =

2

σ2
(FTF)ij ,

where in the second equality we have replaced ∆θ by θ because the derivative
operation with respect to θ. This leads to:

H = (2/σ2)(FTF).
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8.7.1. Summary: relationship between Hessian and covariance ma-
trix. Thus, we have shown that the covariance matrix is proportional to the
inverse of the Hessian

cov(θ(k),θ(k)) = 2(Hk)
−1

(The factor of 2 would go away had we defined the Hessian as the derivative
of the log likelihood function; can you show this?) Recall that the covariance
matrix contains variances of the fitted parameters θ along the diagonal and
covariances of these parameters as off-diagonal elements:

cov(θ,θ) =


var(θ1) cov(θ1, θ2) . . . cov(θ1, θp)
cov(θ2, θ1) var(θ2) . . . cov(θ1, θp)

...
...

. . .
...

cov(θp, θ1) cov(θp, θ2) . . . var(θp)


For example, if we require the error bars on the fitted parameters, we may
extract the diagonal elements of the matrix 2(Hk)

−1

diag(cov(θ,θ)) =


var(θ1) 0 . . . 0

0 var(θ2) . . . 0
...

...
. . .

...
0 0 . . . var(θp)


For this to work, of course, we need the matrix Hk to be invertible (non-
singular). This may not always be the case. We have seen in the previous
demo how to compute matrix inverses and how to compute Hessians in
Matlab if analytical expressions are used. In the case where the Hessian is
computed numerically by finite differences we may use the approximation
2JT

k Jk.

Problem 131. The following model is to be used for data fitting

y(x) = Ax2 +Bx+ 2Bx−1

where A and B are parameters to be determined. In terms of the above
model: (a) Derive the Jacobian matrix.

(b) Derive the design matrix.

(c) Derive the Hessian matrix.

(d) Derive the covariance matrix.

(e) Derive the normal equations for this model.



Chapter 9

Pearson’s Chi-Square
Test

In this section we will describe the chi-square test. It can be used in at least
two ways:

• In Regression Analysis: to determine the distance between the data and
the fit. Here, the sum is over all data points.

• Test of Expected Distribution: here the test works on categorical data
and we use it to determine the distance between two “histograms”. Here,
the sum is over all bins of the histogram.

9.1. χ2 test

Suppose that we have ν independent random variables Xi (i = 1, . . . , ν) each
normally distributed with mean µi and variance σ2i . Chi-square is defined
as:
(9.1)

χ2 ≡ (X1 − µ1)2

σ21
+
(X2 − µ2)2

σ22
+· · ·+(Xν − µν)2

σ2ν
=

ν∑
i=1

(Xi − µi)2

σ2i
=

ν∑
i=1

R̃2
i .

Since X1, . . . , Xν are random variables so is χ2. Therefore, we will denote
it as χ2 (boldface type). Because the data is normally distributed, the

normalized residuals are close to 1 (66% of all R̃i values are within ±1 of
0). Hence, given a set of measurements {Xi} (i = 1, . . . , ν), if we have
chosen the µi and σ

2
i correctly, we may expect that a calculation of χ2 will

be approximately equal to ν. If it is, then we may conclude that the data
are well described by the values we have chosen for µi. If a calculated value

303
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of χ2 turns out to be much larger than ν, and we have correctly estimated
the values for the σ2i , we may conclude that our data are not well described
by our set of values µi.

9.2. χ2 distribution

We note that χ2 is a function of several independent random variables:

χ2 =
n∑

i=1

(
yi − y(xi)

σi

)2

=
n∑

i=1

R̃2
i ,

where R̃i are each normally distributed with mean 0 and variance 1. It
therefore a random variable itself. Let’s derive the distribution of χ2. In the
general case of n rv’s: let Y = X2

1 +X2
2 + · · ·+X2

n. Then,

P(Y < y) = P(X2
1 + · · ·+X2

n < y) =

∫
· · ·
∫

{x2
1+···+x2

n<y}

e−(x2
1+···+x2

n)/2

(2π)n/2
dx1 . . . dxn.

The PDF is obtained by taking the limit dy → 0:1

P(y < Y < y + dy) =P(y < X2
1 + · · ·+X2

n < y + dy)

=

∫
· · ·
∫

{y<x2
1+···+x2

n<y+dy}

1

(2π)n/2
e−(x2

1+···+x2
n)/2dx1 . . . dxn

=
e−y/2

(2π)n/2

∫
· · ·
∫

{y<x2
1+···+x2

n<y+dy}

dx1 . . . dxn =
e−y/2

(2π)n/2
AdR

=
yn/2−1e−y/2dy

2n/2Γ(n/2)
.

where R =
√
y, dR = dy

2
√
y and A = 2Rn−1πn/2

Γ(n/2) is the area of the (n − 1)-

sphere. We recall that Γ(z) =
∫∞
0 xz−1e−xdx and Γ(n/2) = (n/2−1)! when

n ≥ 1 is even. Here, 0 ≤ χ2 <∞. Γ(p+ 1) = pΓ(p), Γ(1/2) =
√
π.

Let us boldface χ2 and index it with ν, the number of degrees of freedom,
i.e. χ2

ν . The mean of χ2
ν is ν and its variance is 2ν. This can be seen as

follows. For the mean:

E(χ2) = E
ν∑

i=1

(Xi − µi)2

σ2i
=

ν∑
i=1

1

σ2i
E(Xi − µi)

2 =

ν∑
i=1

1

σ2i
σ2i = ν

1Recall that P(y < Y < y + dy) = dP(Y < y) = P(Y < y + dy)− P(Y < y) ≈ d
dy

P(Y < y) · dy.



9.2. χ2 distribution 305

v = 2

v = 4

v = 10

0.25

0.20

0.15

0.10

0.05

0.0
0 4 8 12 16 20 24 28

χ2

P(
χ 2
)

Figure 9.1. PDF of the χ2 distribution for different values of the pa-
rameter ν.

where we have used the definition of the variance E(Xi−µi)2 = σ2i . For the
variance, var(χ2), we have

var

(
ν∑

i=1

(Xi − µi)2

σ2i

)
=

ν∑
i=1

1

σ4i
var(Xi − µi)2

=

ν∑
i=1

1

σ4i

[
E(Xi − µi)4 − σ4i

]
= 2ν

where we have used the 4th central moment of a Gaussian distribution,
E(Xi − µi)4 = 3σ4i .

The χ2 distribution pν(χ
2) is plotted in Fig. 9.1, for different values of ν.

9.2.1. How to use the test. Suppose that we have k experimentally mea-
sured quantities Xi and we want to test whether they are well-described by
some set of hypothesized values µi. We form a sum using Eq. 9.1. It will
contain k terms, constituting a sample value for χ2.

The expected value of χ2 will not be n because the {Xi} may have been
used to make estimates for the parameters of the model (e.g., µi and σ2i ).
Such relations (e.g., sample mean, sample variance) are said to reduce the
number of degrees of freedom. If there are r such constraints then we number
of degrees of freedom becomes:

ν = k − r
and the resulting χ2 will be one having ν (rather than k) degrees of freedom.
Thus, the sum (Eq. 9.1) should be close to ν. In practice r will always be
at least 1, because the data is normally used to estimate at least some
parameter, such as the mean, variance, etc.
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Generally speaking, χ2/ν ≈ 1 means the model represented by the µi and
σ2i is probably fine. If χ2/ν ≪ 1, we may conclude that either (i) the
model is valid, but by chance, χ2 ended up being too small. (ii) we have
overestimated the values of σ2i . (iii) the data is fraudulent (too good to be
true). If χ2/ν ≫ 1, we can conclude either that (i) the model is valid but by
chance, χ2 ended up being too high. (ii) the model is so poorly chosen that
an unacceptably large value of χ2 has resulted. (iii) data is not normally
distributed. (Remember our assumption for least squares fitting that the
data must be normally distributed about the model.)

9.2.2. Example 1: measuring mass of object using different types
of balances. Suppose that we measure the mass of an object using four
different balances (Cole-Parmer, Fischer, VWR and Nimbus). The results
of the mass measurements are as follows:

Detector (scale) mass (g)

Cole-Parmer 91.161 ± 0.013
Fischer 91.174 ± 0.011
VWR 91.186 ± 0.013
Nimbus 91.188 ± 0.013

The listed uncertainties are estimates of the σi, the standard deviations for
each of the measurements. As can be seen, the error bars overlap. The
question we would like to answer is: Can these data be well described by
a single number, namely an estimate of the mass made by determining the
weighted mean of the four measurements?

The weighted mean and its error are:

m =

∑
mi/σ

2
i∑

1/σ2i
and var(m) =

1

(
∑

1/σ2i )
2

∑ 1

(σ2i )
2
var(mi) =

1∑
1/σ2i

.

The value (for the ’true mean’) we would report is:

m±
√
var(m) = 91.177± 0.006.

We then form χ2:

χ2 =

4∑
i=1

(mi −m)2

σ2i
≈ 2.78.

Here we have ν = 4− 1 = 3 degrees of freedom (not 4), since we have used
the weighted mean of the four measurements to estimate the value of the
true mass, and this uses up one degree of freedom. We note that the errors
{σi} were not computed from the data, but instead obtained experimentally
and constitute data. The value χ2/ν = 2.78/3 ≈ 0.93 is close to 1, and
so we conclude that the model is probably fine. The weighted mean (and
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assumption of Gaussian distribution of the measurements) is therefore valid.
Note: our claim that 0.93 is close to 1 should be decided based on a statistical
significance criterion (level of confidence). We will see later how to do this.

9.3. Test of Expected Distribution

The test of expected distribution (also called the χ2 test) is used to test
the nature of a statistical distribution from which some random sample is
drawn. Suppose that we have k classes (e.g. designated categories or bins
in a histogram), with probabilities p1, p2, . . . , pk assigned to each class. If
the chosen classes account for all the data, then

∑
pi = 1. If we take the

data and plot a histogram, we classify the data: this is done by counting the
number of observation falling into each of the k classes (or bins). We have
n1 counts in the first class, n2 counts in the second class, and so on, up to
nk counts in the kth class. Suppose there is a total of N observations, so∑
ni = N .

Then it can be shown that the sum

(9.2)
(n1 −Np1)2

Np1
+

(n2 −Np2)2

Np2
+ · · ·+ (nk −Npk)2

Npk
=

k∑
i=1

(ni −Npi)2

Npi

has approximately the χ2 distribution with

ν = k − r
degrees of freedom, where r is the number of constraints, or relations used
to estimate the pi from the data. r will always be at least 1, since it must
be that

∑
ni =

∑
Npi = N

∑
pi = N . In other words, ν is given by:

• ν = k − 1 if the expected frequencies can be computed without having to
estimate the population parameters from sample statistics. We subtract
1 from k because of the constraint condition

∑
j Ej = N (where Ej =

Npj), which states that if we know k− 1 of the expected frequencies, the
remaining frequency can be determined.

• ν = k−1−m (i.e. r = m+1) if the expected frequencies can be computed
only by estimating m population parameters from sample statistics.

Since Npi is the mean, or expected value of ni, the form of χ2 corresponds
to summing, over all classes, the squares of the deviations of the observed
ni from their mean values divided by their mean values. The above formula
can be rewritten, using Ei = Npi and Oi = ni:

(9.3) χ2 =

k∑
i=1

(Oi − Ei)
2

Ei

where Oi stands for “observed value” and Ei stands for “expected value”.
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9.3.1. The case of Poisson counts. We note that Eq. (9.2) looks differ-
ent from (9.1). However, in the case of Poisson distributed values, the mean
is equal to the variance. So this link with the Poisson distribution provides
the motivation for the definition (9.2). In fact, Eq. (9.3) is obtained from
Eq. (9.1) by taking σ2i = Ei (the variance of the Poisson distribution is also
the mean). This is justified because the vertical axis in a histogram is the
number of counts whereas the number of counts is approximately Poisson
distributed.

Equation (9.2) is sometimes written as the sum of observed minus expected
values squared (divided by expected value). Your textbook uses Oi to denote
the number of counts observed (during the ith interval or as a frequency of
occurrence for some category/bin). If Ei denotes the expected number of
counts (i.e. the mean value of Oi), we write:2

χ2 =

k∑
i=1

(Oi − Ei)
2

Ei
(Poisson statistics)

Oi: observed count/frequency,

Ei: expected count (model), as derived from the Poisson distribution for-
mula. Note: Ei is not necessarily equal to P (n;n) = e−nnn/n!; it depends
on how the data is binned. However, it will be derived using P (n;n).

k: number of bins/categories3

For good fits, the error obeys
√
Ei ≈

√
Oi. If

χ2 ≫ ν = k − r
(r: number of parameters in the distribution or the number of constraints
used to compute the expected values) there is significant disagreement be-
tween observed and expected distribution. Please note that because χ2 itself
must be dimensionless, this test only makes sense if O and E are dimension-
less quantities, such as counts.

Because Ei and Oi are counts (frequencies of occurrence) rather than phys-
ical quantities (with units), you must bin your data into a histogram and
then compare the histogram to the distribution to which it is fitted to. In
practice, the distribution needs to use experimental data to compute its pa-
rameters (e.g. obtained via maximum likelihood estimation). When such

2We have seen, in the case of Poisson statistics, that the error is given by
√
Oi. This approach

is problematic for low counts, as low counts lead to large random fluctuations of the error in the

denominator of the chi-square. One solution is to re-bin the data such that the counts are not too
low.
3Or number of data points, n, if the test is applied as in the case of regression analysis, as discussed
in the previous section).
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parameters are computed from the data, we say that the degrees of free-
dom have been reduced. This is why the number of degrees of freedom is
equal to the number of categories minus the number of parameters (or more
precisely, the number of conditions used to estimate the parameters of the
distribution from the data), ν = k − r.

9.3.2. Example 2: counting trees on acres of land. Suppose that you
own a large parcel of land in the desert that is divided into 48 acres (a
rectangular region of 6 acres by 8 acres), and you hire someone to count the
trees in each acre. The data ranges from 0 trees up to 6 trees per acre. But
because there are very few acres that contain 4 or more trees, you decide
to lump them all together into the same category (“4 or more trees”). You
find the following data:

Observed counts

Category 1 2 3 4 5
Number of trees in an acre 0 1 2 3 ≥4
Frequency (number of acres in this category) 9 9 10 14 6

Suppose that for bin 5, the six counts were actually 4, 4, 5, 5, 6, 6. You
want to check whether or not the counting statistics can be described by a
Poisson distribution. The Poisson distribution requires the estimation of 1
parameter. The maximum likelihood estimator of the Poisson parameter is
the arithmetic average (mean) of the sample data:

n =
(0)(9) + (1)(9) + (2)(10) + (3)(14) + (4)(2) + (5)(2) + (6)(2)

9 + 9 + 10 + 14 + 2 + 2 + 2
= 2.10.

We have 48 counts and the expected number of counts in the jth category
(bin) is given by 48×pj , where pj is the probability of observing the stated
counts in this category. The probabilities pj are obtained using the Poisson
distribution. Let X be the random variable that counts the number of trees
in an acre. The probabilities are:

p1 =P(X = 0) =
e−2.10(2.10)0

0!
= e−2.10,

p2 =P(X = 1) =
e−2.10(2.10)1

1!
= e−2.10 · 2.10,

p3 =P(X = 2) =
e−2.10(2.10)2

2!
= e−2.10 · 2.205,

p4 =P(X = 3) =
e−2.10(2.10)3

3!
= e−2.10 · 1.5435,

p5 =P(X ≥ 4) = 1− P(X ≤ 3) = 1− e−2.10(1 + 2.10 + 2.205 + 1.5435) = 7.74.
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Then, the expected frequencies/counts in each category/bin are:

E1 =48 · p1 = 5.8779,

E2 =48 · p2 = 12.3436,

E3 =48 · p3 = 12.9608,

E4 =48 · p4 = 9.0726,

E5 =48 · p5 = 7.74.

The test of expected distribution (χ2) can then be calculated:

(9− 5.8779)2

5.8779
+
(9− 12.3436)2

12.3436
+
(10− 12.9608)2

12.9608
+
(14− 9.0726)2

9.0726
+
(6− 7.74)2

7.74
,

which equals to 6.3097. This number should be compared to the degrees of
freedom, ν = k − r = 5 − 1 = 4. Is this a good fit? If the answer is yes,
then we say that the data is well described by a Poisson distribution with
parameter n = 2.10. To determine this, we need to check whether χ2/ν ≈ 1
according to some level of confidence (see Section 9.3.4).

9.3.3. Example 3: height of people. Let us use the chi-square test to
test whether a data sample consisting of the heights of N=66 people can be
assumed to be drawn from a Gaussian distribution or not. We first arrange
the data in the form of a frequency distribution, listing for each height h,
the value of n(h), the number of people in the sample whose height is h (h
is in inches):

h 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

n(h) 1 0 1 4 6 7 13 8 11 2 7 4 1 0 0 1

We make the hypothesis that the heights are distributed according to the
Gaussian distribution, namely that the probability p(h)dh that a height falls
between h and h+ dh is given by:

p(h)dh =
1√
2πσ2

e−(h−µ)2/2σ2
dh.

This expression, if multiplied by N , will give, for a sample of N people, the
theoretically expected number of people ne(h)dh whose height should be
between h and h+ dh:

ne(h)dh =
N√
2πσ2

e−(h−µ)2/2σ2
dh.

In our example, N = 66. In our table we have grouped the data into bins,
each of size 1 inch. A useful approximation is to take dh = 1 inch, which
gives the expected number of people having a height hj :

(9.4) ne(j) =
N√
2πσ2

e−(h−µ)2/2σ2
.
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The sample mean h and the sample standard deviation s are our best esti-
mates of µ and σ. We find, calculating from the data:

h = 64.9 inches and s = 2.7 inches.

Using these values we may calculate from Equation (9.4), the number ex-
pected in each bin, which the following results:

h 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

ne(j) 0.3 0.9 1.8 3.4 5.5 7.6 9.3 9.9 9.1 7.3 5.0 3.1 1.6 0.7 0.3 0.1

In applying the chi-square test to a situation of this type, it is advisable to
re-group the data into new bins (classes), such that the expected number
occurring in each bin is greater than 4 or 5; otherwise the theoretical dis-
tributions within each bin become too highly skewed for meaningful results.
Thus, in this situation we shall put all the heights of 61 inches or less into
a single bin, and all the heights of 69 inches or more into a single bin. This
groups the data into a total of 9 bins (or classes), with actual numbers and
expected numbers in each bin given as follows (note the bin sizes need not
be equal):

h ≤61 62 63 64 65 66 67 68 ≥69
n(h) 6 6 7 13 8 11 2 7 6

ne(j) 6.5 5.5 7.6 9.3 9.9 9.1 7.3 5.0 5.8

Now we calculate the value of χ2 using these data:

χ2 =
(6− 6.5)2

6.5
+

(6− 5.5)2

5.5
+ · · ·+ (6− 5.8)2

5.8
= 6.96

Since we grouped our data into 9 classes, and since we have used up three
degrees of freedom by demanding that: (i) the sum of the nj be equal to
N , (ii) the mean of the distribution be equal to the sample mean and (iii)
the variance is equal to the sample variance, the are 6 degrees of freedom
left. Hence χ2/ν = 6.96/6 ≈ 1.16, which is close to 1. Therefore, we have
no good reason to reject our hypothesis that our data are drawn from a
Gaussian distribution function.

9.3.4. χ2 distribution and significance tests. The χ2 distribution is
used to perform “significance tests”, as explained below by way of examples.
The main idea is that, as we repeat our experiment and collect values of χ2,
if our model is a valid one, these data will be clustered about the median
value of χ2

ν , with about half of them greater than the median and half less
than the median. This median value, which we denote χ2

ν,0.5 is determined
by: ∫ ∞

χ2
ν,0.5

pν(χ
2)dχ2 = 0.5.
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Figure 9.2. χ2 test: plot of the upper tail probability of the chi-square
distribution vs normalized chi-square (χ2

ν/ν). The different curves cor-
respond to values of ν = 1, . . . , 50.

In other words, we expect that a single measured value of χ2 will have a
probability of 0.5 of being greater than χ2

ν,0.5. Generalizing this idea, to say

that we expect a single measured value of χ2 will have a probability α of
being greater than χ2

ν,α, where χ
2
ν,α is defined by∫ ∞

χ2
ν,α

pν(χ
2)dχ2 = α, α ∈ [0, 1], χ2

ν,α ∈ [0,∞)

i.e., α ≡ P(χ2 > χ2
ν,α). This definition is illustrated by the inset of Fig. 9.2,

Fig. 9.2 plots α versus the normalized chi-square, χ2
ν/ν. α is the probability

that a sample chi-square will be larger than χ2
ν , as shown in the inset. Each

curve is labeled by ν, the number of degrees of freedom.

In MATLAB this type of graph can be generated using the command chi2cdf:

t=0:0.1:3;

figure;

hold on;

for j=1:50

plot(t,chi2cdf(t*j,j,’upper’));

end;

To use this test, we calculate χ2 and ν. This gives the value χ2/ν. Choose α,
the significance level. Use the above figure to determine the corresponding
value of χ2

ν,α/ν. Compare this value with our sample value χ2/ν. If we find

that χ2/ν > χ2
ν,α/ν, then either: (i) a statistically improbable excursion

of χ2 has occurred; (ii) our model is poorly chosen or (iii) the data is not
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normally distributed. If χ2/ν < χ2
ν,α/ν, we have either: (i) a valid model,

but statistically improbable excursion of χ2; (ii) the data is fraudulent (“too
good to be true”). Note: a poor model can only increase the value of χ2.

• Example 1: measuring mass of object. We expect this value of χ2 to
be drawn from a chi-square distribution with 3 degrees of freedom. From
the above graph of α vs χ2

ν for ν = 3, the value χ2/ν = 2.78/3 ≈ 0.93
corresponds to α of about 0.42. Alternatively MATLAB can be used to
obtain this value:

>> chi2cdf(2.78,3,’upper’)

ans =

0.4268

This means that if we were to repeat the experiments we would have
about a 42 percent chance of finding a χ2 for the new measurement set
larger than 2.78, assuming that the hypothesis (of a uniform distribution)
is correct. We have therefore no good reasons to reject the hypothesis and
conclude that the four measurements of the mass are consistent with each
other. We would have had to have found χ2 in the vicinity of 8 (leading
to an α of about 0.05) to have been justified in suspecting the consistency
of the measurement.4 The fact that our value of χ2/3 is close to 1 is
reassuring.

• Example 2: counting trees on acres of land. Let us return to the
example of counting trees. There were 5 bins less 2 degrees of freedom
(ν = 5−2 = 3): (1) one degree of freedom was used to constrain the total
number of acres; (2) the second degree of freedom was used to estimate the
parameter of the Poisson distribution. Suppose that the confidence level
is 5%, i.e. we set α = 0.05. From the graph (at α = 0.05 and ν = 3), we
find χ2

ν/ν ∼ 2.6, which corresponds to the following critical value for the
test: χ2

3,0.05 = 7.8. Alternatively, this value can be obtained in MATLAB
as follows:

>> chi2inv(1-0.05,3)

ans =

4From the graph, at α = 0.05 and ν = 3 the value of χ2
ν,α/ν = χ2

3,0.05/3 is 2.6 (i.e., χ2 ∼ 7.8).

The fact that 0.9 is less than 2.6 does not mean that we have a poor model. (For that we would

need a value greater than 2.6.) It could be, for example, that the data describe a statistically
improbable excursion of χ2.
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7.8147

Comparing the value of χ2 = 6.3 we calculated in the example, this value is
less than the critical value of the test. Thus, at the 0.05 level of significance
we fail to reject the hypothesis that the data is well represented by the
Poisson distribution with the estimated parameter, n = 2.10.

• Example 3: height of people. Here χ2/ν = 6.96/6 ≈ 1.16, leading
to an α of about 0.33. Therefore, we have no good reason to reject our
hypothesis that our data are drawn from a Gaussian distribution function.
(From the graph, χ2

ν,0.05/ν for ν = 6 is approximately equal to 2.2; and

since 1.16 is less than 2.2, we cannot reject the model.)

9.4. Problem

Problem 132. The middle A note on a piano is normally tuned to the
nominal value of 440 Hz. Suppose that your piano is tuned to 440 Hz on a
given day. Over time, the tuning may change due to general detuning and
differences in humidity and temperature. You monitor over time the exact
pitch of the middle A note (normally tuned to 440 Hz). Suppose that the A
note’s pitch is measured on different days (day 1, 40, 80, 120) and different
instruments with different error bars are used each time (i.e. instrument 1
on day 1, instrument 2 on day 40, instrument 3 on day 80, instrument 4 on
day 120). Instruments 1-4 are properly calibrated (no bias), meaning that
the pitch value is accurate and only its precision varies. The measurement
of pitch frequency is a random variable X.

You measure the pitch at day 1 (1 day after tuning), day 40, day 80 and
day 120. The results are:

Measurement Day Instrument Used Pitch (Hz)

Day 1 1 440.61 ± 15.11
Day 40 2 433.74 ± 0.15
Day 80 3 432.86 ± 0.10
Day 120 4 432.88 ± 0.13

(a) What is the mean of X, as calculated by the data and its error bars?

(b) Calculate the uncertainty of the mean calculated in (a).

(c) Report the pitch A as best value ± uncertainty, with the correct number
of significant figures.
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(d) Let’s assume that the measurements are Gaussian distributed about
their mean value. Is this a good assumption? (i.e. “prove” or disprove it,
using the appropriate statistical test)

(e) Why would anyone assume that a measurement should be Gaussian-
distributed?

Solution. (a) Use weighted average:

X =

∑
xi/σ

2
i∑

1/σ2i
= 433.0581 Hz

(b)

varX =
1∑
1/σ2i

= 0.049

The uncertainty is the square root of this (0.0701 Hz).

(c) Keeping 1 digit for the error: 433.06 ± 0.07 Hz

(d) We use the chi square test:

χ2 =
4∑

i=1

(xi −X)2

σ2i
= 26.72

the number of degrees of freedom is 4-1=3. (Note: there is only 1 constraint,
used to obtain X; the σi’s are experimentally measured.) Dividing by 3
gives 8.9, which is much larger than 1. So Gaussian may not be a good
assumption.

(e) Per central limit theorem (CLT). However, CLT does not always apply.
■

Problem 133. You arrive (by car) at the Dodgers stadium for a ball game
and want to park near the entrance. However, the parking attendant redi-
rects traffic into two threads. The first thread leads cars away from the
stadium. The second thread leads to parking spots near the stadium’s en-
trance. You were redirected far away from the stadium. You suspect that
the parking attendant is being biased against economy cars and set out to
test the hypothesis that the attendant’s policy is to redirect more luxury
cars toward the stadium and keep the economy cars away from the stadium.

(a) In order to test the hypothesis that the parking attendant was fair5, you
ask your friend to stand nearby and record the number of times that luxury
cars get redirected toward the stadium. Suppose that out of 500 observa-
tions, he observed 265 luxury cars and 235 economy cars were redirected
toward the stadium. Is the attendant fair or biased?

5By “fair” we mean no bias in car selection.
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(b) After parking your car far out and walking nearly 1/2 mile back to the
stadium, on your way back, you walk by the attendant and decide whether
he is biased or not. Before making this decision, you want to double check
the results from part (a). So you ask your friend to go and repeat this ex-
periment. Out of 500 observations, your friend obtains an even higher count
of luxury cars (270 luxury cars and 230 economy cars). Is the attendant
biased?

Solution. (a)
(265− 250)2

250
+

(235− 250)2

250
= 1.8

because this number is close to 1, we cannot conclude there is bias. (Degrees
of freedom: 2-1, since there are two categories, and 1 constraint for the total
number of cars.)

(b)
(270− 250)2

250
+

(230− 250)2

250
= 3.2

again, this number is not orders of magnitude different than 1, so we cannot
conclude there is bias. ■



Chapter 10

Machine Learning

10.1. Principal Component Analysis

Principal component analysis (PCA) is one of the oldest methods for unsu-
pervised machine learning. Suppose we have n vectors v⃗j ∈ Rd, j = 1, . . . , n
containing experimental data. d can be very large. The n measurements
could represent, for example, the same vector measured on different days.
We form the matrix:

C =
1

n

n∑
j=1

v⃗j v⃗
T
j

If the vectors have zero mean (easy to do by subtracting the mean), C plays
the role of a covariance matrix. If we then diagonalize C and obtain the
eigenvalues ωk and corresponding eigenvectors ω⃗k, we can write C in terms
of this eigen-decomposition:

C =
∑
k

ωkω⃗kω⃗
T
k

Suppose that only a small number of eigenvectors are nonzero. The matrix
C is then of low rank.

10.2. Support Vector Machines

The process of fitting data to a model is often called “learning”. The output
is a set of parameters that are “learned” from the data. A classification task
is one where the output is a set of classes (e.g. “cat”, “dog”, “airplane”,
“boat”, “positive”, “negative”, “yes”, “no”, “turn left”, “turn right”, etc.).
Classification tasks are often used to classify images. The objects presented
to the classifier are called vectors. To turn an image A, which is a 2D

317
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matrix, into a vector, we may concatenate the columns into a long vector.
This vectorization operation is often denoted vec(A). The dimension of the
vectors corresponds to the number of entries in the vector. A 2048 × 2048
image, for example, corresponds to a 4,194,304-dimensional vector.

In this section we will discuss the method of support vector machines, orig-
inally developed by Vladimir Vapnik in the 1960s while he was a student in
the USSR. A classifier’s main purpose is to help make decisions. To make
decisions we need to establish decision boundaries. Vapnik’s method relies
on the use of the “widest street approach” and kernel functions.

Suppose that we have a multidimensional space (illustrated below as a 2D
space). Suppose also that our goal is to classify input vectors into two
distinct classes: positive (+) and negative (-). Thus, we have “training
data” consisting of positive and negative examples. We need a method to
divide the positive examples from the negative ones. The simples approach
is to draw a straight line. However, where do we draw the straight line?
Vapnik suggested that the line be drawn with a view towards putting in the
widest street that separates the positive samples from the negative ones:

This is called the “widest street approach”. This suggests, for the decision
boundary, to put in a straight line in such a way as the separation between
the positive and negative examples results in the widest street between these
two sets of vectors.

Consider a vector ω⃗ that is perpendicular to the median line of the street,
or equivalently, perpendicular to the gutters. We don’t yet know its length.
We also have some unknown vector u⃗. Our task is to decide whether this
unknown is on the right or left side of the street. To do this, we want to
project that vector u⃗ down on to one that’s perpendicular to the street (e.g.
ω⃗), because then we’ll have a distance in the direction ω⃗. The latter is a
number that’s proportional to the distance in this direction (ω⃗). The further
we go, the closer we’ll get to being on the right side of the street.
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Let’s take ω⃗ and dot it with u⃗ and measure whether or not that number is
equal to or greater than some constant c:

ω⃗ · u⃗ ≥ c
This is the criterion for deciding whether a sample is positive or not. Or
equivalently, set c = −b and

ω⃗ · u⃗+ b ≥ 0 then + (decision rule)

However, we don’t know what constant b to use, or which vector ω⃗ to use.
We know that ω⃗ must be perpendicular to the median line of the street.
However, there are many such possibilities of perpendicular vectors. We
need some constraints to fix a particular b or w⃗.

Let us know take ω⃗ and dot it with a positive sample x+. We set the
following constraint:

(10.1) ω⃗ · x⃗+ + b ≥ 1.

Likewise, a negative sample must obey:

(10.2) ω⃗ · x⃗− + b ≤ 1.

Let us introduce a convenient variable yi defined such that

yi =

{
+1 for + samples

−1 for − samples

Let use multiply Eqs. (10.1) and (eq:vap2) by yi:

yi(ω⃗ · x⃗+ + b) ≥ 1,

yi(ω⃗ · x⃗− + b) ≥ 1.

Both equations are the same, thanks to this mathematical convenience.
Therefore, for any sample xi:

yi(ω⃗ · x⃗i + b)− 1 ≥ 0.
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For samples in the gutter we set:

(10.3) yi(ω⃗ · x⃗i + b)− 1 = 0. (gutter)

Our goal is to arrange for the line such that the street separating the two
classes (+, -) is as wide as possible. For that, we need to express the distance
between the two gutters. Take two samples one in each gutter:

Then take the difference between these two vectors:

If we had a unit normal that is normal to the median line of the street, then
we can take the dot product of that unit normal and this difference vector,
and that would be the width of the street.
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(10.4) width = (x⃗+ − x⃗−) ·
ω⃗

∥ω⃗∥
Equation (10.3) with x⃗+ reads x⃗+ · ω⃗ = 1 − b. Likewise for x⃗−, we have
x⃗− · ω⃗ = −1 + b. Therefore, Eq. (10.4) becomes:

width = (x⃗+ − x⃗−) ·
ω⃗

∥ω⃗∥
= (1− b− (−1 + b))

1

∥ω⃗∥
=

2

∥ω⃗∥
Our goal is to maximize this width. Maximizing 2/∥ω⃗∥ is the same as
maximizing 1/∥ω⃗∥, which is the same as minimizing ∥ω⃗∥. For convenience,
we will instead minimize 1

2∥ω⃗∥
2.

Minimization of 1
2∥ω⃗∥

2 subject to constraints yi(ω⃗ · x⃗i+b)−1 = 0 (Eq. 10.3)
can be done using the method of Lagrange multipliers:

L =
1

2
∥ω⃗∥2 −

∑
αi [yi(ω⃗ · x⃗i + b)− 1] .

Extremum is obtained by differentiating with respect to the unknowns:

∂L

∂ω⃗
= ω⃗ −

∑
αiyix⃗i = 0,

which implies that

(10.5) ω⃗ =
∑
i

αiyix⃗i.

This important result tells us that ω⃗ is a linear combination of the samples.
(For some of the vectors αi may be zero.). Next,

∂L

∂b
= −

∑
i

αiyi = 0

which implies that ∑
i

αiyi = 0.



322 10. Machine Learning

Because these expression are so simple, let’s see what happens if we substi-
tute this expression for ω⃗ into Eq. (10.5):

L =
1

2

(∑
i

αiyix⃗i

)
·

∑
j

αjyj x⃗j

−∑
i

αiyix⃗i·

∑
j

αjyj x⃗j

−∑
i

αiyib+
∑
i

αi.

The term
∑

i αiyib is zero because
∑

i αiyi = 0. The first two terms are of
the same form and therefore can be combined:

(10.6) L∗ =
∑
i

αi −
1

2

∑
i

∑
j

αiαjyiyj x⃗i · x⃗j .

This tells us that the optimal L only depends on the dot products x⃗i · x⃗j
of the data vectors. Let’s go back to our decision rule and substitute our
newly obtained results:∑

αiyix⃗i · u⃗+ b ≥ 0 then +

So far this method assumes that a line can separate + and - data. In
general, however, there can be many situations where such a separation is
not possible. The solution is to transform our vector space into another
one: ϕ(x⃗)). We said earlier that maximization depends on the dot products
x⃗i · x⃗j . All we need is dot products in the new space ϕ(x⃗) · ϕ(y⃗). This only
requires a function

K(x⃗i, x⃗j) = ϕ(x⃗i) · ϕ(x⃗j)
We don’t actually need the function ϕ(x⃗). All we need is the kernel function
K, which provides us with the dot product of these two vectors in another
space. We don’t need to know the transformation. Some popular kernels
are:

K(x⃗i, x⃗j) = (x⃗i · x⃗j + 1)n (polynomial kernel)

K(x⃗i, x⃗j) = exp

(
−∥x⃗i − x⃗j∥

2

2σ

)
(radial basis function kernel)

Neural tangent kernel
Neural network Gaussian process
String kernel
Kernel smoother
Graph kernel
Fisher kernel

10.3. Additional Concepts in Statistical Learning

10.3.1. KL Divergence. The Kullback-Leibler (KL) divergence can be
used instead of the least squares formula for data fitting. It is used to
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measure distances between probability measures. Our experimental data is
drawn from a distribution.

Two distributions describing random variables with two normal distribu-
tions:

p(x) ∼ N (µ1, σ
2
1)

and
q(x) ∼ N (µ2, σ

2
2)

The KL divergence is defined as

DKL[p : q] =

∫
p(x) log

p(x)

q(x)
dx

For Gaussian distributions

DKL[p : q] =

∫
p(x) log

1√
2πσ2

1

exp
(
− (x−µ1)2

2σ2
1

)
1√
2πσ2

2

exp
(
− (x−µ2)2

2σ2
2

)dx
=

∫
p(x) log

(
σ22
σ21

)1/2

dx+

∫
p(x)

[
−(x− µ1)2

2σ21
+

(x− µ2)2

2σ22

]
dx

=
1

2
log

σ22
σ21

+
1

2σ21

[
−
∫
(x− µ1)2p(x)dx+

1

2σ22

∫
(x− µ2)2p(x)dx

]
=
1

2
log

σ22
σ21
− σ21

2σ22
+

1

2σ22

∫
(x− µ1 + µ1 − µ1 − µ2)2p(x)dx

=
1

2
log

σ22
σ21
− 1

2
+

1

2σ22

[∫
(x− µ1)2p(x)dx+ (µ1 − µ2)2

∫
p(x)dx

+ 2(µ1 − µ2)
∫
(x− µ1)p(x)dx

]

which simplifies to

=
1

2
log

σ22
σ21
− 1

2
+

1

2σ22

[
σ21 + (µ1 − µ2)2

]
.

Therefore,

DKL[p : q] =
1

2

[
log

σ22
σ21
− 1 +

σ21 + (µ1 − µ2)2

σ22

]

10.3.2. Mutual Information. Given two random variablesX and Y , mu-
tual information is defined as the difference between the total entropy (of X
and Y ) and the joint entropy of X and Y :

I(X;Y ) = H(X) +H(Y )−H(X,Y ).



324 10. Machine Learning

Another way to assess mutual information is to ask how “far away” the
joint distribution of two random variables is from a product distribution.
Independent random variables should share no mutual information.

Let P and Q be two probability distributions on a finite set X . Recall that
the KL-divergence of P and Q is (discrete case)

DKL[P : Q] ≡
∑
x∈X

P (x) log
P (x)

Q(x)
= Ep log

P

Q
.

(We put 0 log(0/0) = 0 and p log(p/0) = ∞ for p > 0.). We note that this
is not a metric (not symmetric, does not obey triangle inequality). Also,
DKL[P : Q] ≥ 0

How do we measure mutual information using KL-divergence? Let X,Y be
two X -valued random variables with distributions P (x), P (y), respectively,
and joint distribution P (x, y):

I(X;Y ) = DKL[P (x, y) : P (x)P (y)] =
∑

x,y∈X
P (x, y) log

P (x, y)

P (x)P (y)

= EP (x,y) log
P (X,Y )

P (X)P (Y )
.

Case 1: Suppose that X,Y are independent: P (x, y) = P (x) · P (y). Then,
DKL[P (x) · P (y) : P (x) · P (y)] = 0

Next, if X = Y then

I(X;X) =
∑
x∈X

P (x) · log P (x)

P (x)2
=
∑
x

P (x) log(1/P (x)) = H(X).

Case 2: Let Y be a fair die. Outcomes are: {1, 2, 3, 4, 5, 6}. Let X = 1 if
even, 2 if odd.

I(X;Y ) =
∑

x=1,2 y=1,...,6

P (x, y) log
P (x, y)

P (x)P (y)
= 6

(
1

6
log

1/6

1/12

)
= log 2 = H(X).

There is a relationship between entropy and mutual information:

I(X;Y ) =
∑
x,y

P (x, y) log
P (x, y)

P (x)P (y)
=
∑
x,y

P (x, y) log
P (x|y)
P (x)

=−
∑
x,y

P (x, y) logP (x) +
∑
x,y

P (x, y) logP (x|y)

=−
∑
x,y

P (x, y) logP (x)−

(
−
∑
x,y

P (x, y) logP (x|y)

)
=H(X)−H(X|Y ).
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This implies symmetry of information:

I(X;Y ) = H(X)+H(X|Y ) = H(Y )−H(Y |X) = H(X)+H(Y )−H(X,Y )

where we used the fact that:

H(X,Y ) = H(X) +H(Y |X).

In particular, I(X;X) = H(X). Therefore, entropy equals self-information.

Let’s check that I ≥ 0. We will need Jensen’s inequality. F : R → R is a
convex function for every 0 ≤ λ ≤ 1 if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).
This can be rewritten as f(λ1x+λ2y) ≤ λ1f(x)+λ2f(y) (λ1 +λ2 = 1) and
generalized (by induction) as f(

∑
i λixi) ≤

∑
i λif(xi) with

∑
i λi = 1. A

concave function is one for this −f is convex.

Jensen’s inequality states that if f is a convex function and X is a random
variable then

Ef(X) ≥ f(EX).

i.e.,
∑

i pif(xi) ≥ f(
∑

i pixi) (discrete case) and
∫
p(x)f(x)dx ≥ f(

∫
p(x)xdx)

(continuous case).

We can use the fact that log is (strictly) convex to infer that D(P ||Q) ≥ 0,
with equality iff P (a) = Q(a) for all a ∈ A. This is proved from Jensen’s
inequality. Let SA = {a ∈ A : P (a) > 0} be the support of P . Then

−DKL[P : Q] = −
∑
a∈SA

P (a) log
P (a)

Q(a)
=
∑
a∈SA

P (a) log
Q(a)

P (a)

≤ log
∑
a∈SA

P (a)
Q(a)

P (a)
= log

∑
a∈SA

Q(a) ≤ log
∑
a∈A

Q(a) = 0

since
∑

a∈AQ(a) = 1 and log is concave (therefore, Ef(X) ≤ f(EX). As a
corollary, I(X;Y ) ≥ 0 with equality iff X and Y are independent.

We also note that conditioning reduces entropy. Since I(X;Y ) = H(X) −
H(X|Y ) ≥ 0, we have H(X|Y ) ≤ H(X). On average, knowing another
random variable Y reduces uncertainty in X.

10.3.3. Information Measures. Suppose X is finite, non-empty set. We
choose an element in X and want to communicate the information “which
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x ∈ X we chose” to someone else. A binary channel is one where we can
transmit only strings of 0 and 1. How many bits are needed to transmit
information about x, if nothing else is known about X but its cardinality?

We can assign to every element in X a fixed-length binary code:

c : X → {0, 1}n (one-one)

and transmit c(x).

We need n = ⌈log2 |X|⌉ bits. In this section we will write log2 = log.
The information content here are the bits needed to transmit, which equals
to the log of the number of possibilities (log |X|). From the probabilistic
standpoint, let us assume we have probability measure on X (still finite).
We draw xx ∈ X at random according to P .

10.3.4. Algorithmic Entropy: Kolmogorov Complexity.

10.4. Natural Gradient

10.4.1. Fisher Information Matrix. Suppose we have a model parametrized
by a parameter vector θ that models a distribution p(x|θ). We normally
learn θ by maximizing the likelihood p(x|θ) with respect to the parameters
θ. To assess the goodness of our estimate of θ we define a score function:

s(θ) = ∇θ log p(x|θ),
that is, score function is the gradient of log likelihood function. It is easy to
check that the expected value of score with respect to our model is zero:

Ep(x|θ)[s(θ)] =Ep(x|θ)[∇ log p(x|θ)] =
∫
∇θ log p(x|θ)p(x|θ)dx

=

∫
∇θp(x|θ)
p(x|θ)

p(x|θ)dx =

∫
∇θp(x|θ)dx = ∇

∫
p(x|θ)dx = ∇1 = 0.

But how certain are we to our estimate? We can define an uncertainty
measure around the expected estimate. That is, we look at the covariance
of score of our model. Taking the result from above:

Ep(x|θ)[(s(θ)− 0)(s(θ)− 0)T ].

We can then see it as an information. The covariance of score function above
is the definition of Fisher Information. As we assume θ is a vector, the Fisher
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Information is in a matrix form, called Fisher Information Matrix:

F = Ep(x|θ)[∇θ log p(x|θ)∇ log p(x|θ)T ].
However, usually our likelihood function is complicated and computing the
expectation is intractable. We can approximate the expectation F us-
ing empirical distribution q̂(x), which is given by our training data X =
{x1, x2, . . . , xN}. In this form, F is called empirical Fisher:

F =
1

N

N∑
i=1

∇θ log p(xi|θ)∇θ log p(xi|θ)T .

10.4.2. Fisher and Hessian. One property of F that is not obvious is
that it has the interpretation of being the negative expected Hessian of our
model’s log likelihood. We can check that the negative expected Hessian of
log likelihood is equal to the Fisher Information Matrix F as follows:

Hlog p(x|θ) =J

(
∇p(x|θ)
p(x|θ)

)
=
Hp(x|θ)p(x|θ)−∇p(x|θ)∇p(x|θ)T

p(x|θ)p(x|θ)

=
Hp(x|θ)p(x|θ)
p(x|θ)p(x|θ)

− ∇θp(x|θ)∇p(x|θ)T

p(x|θ)p(x|θ)

=
Hp(x|θ)

p(x|θ)
−
(
∇θp(x|θ)
p(x|θ)

)(
∇θp(x|θ)T

p(x|θ)

)T

,

where the second line is a result of applying quotient rule of derivative.
Taking expectation wrt our model, we have:

Ep(x|θ)[Hlog p(x|θ)] =Ep(x|θ)

[
Hp(x|θ)

p(x|θ)
−
(
∇θp(x|θ)
p(x|θ)

)(
∇θp(x|θ)T

p(x|θ)

)T
]

=Ep(x|θ)

[
Hp(x|θ)

p(x|θ)

]
− Ep(x|θ)

[(
∇θp(x|θ)
p(x|θ)

)(
∇θp(x|θ)T

p(x|θ)

)T
]

=

∫
Hp(x|θ)

p(x|θ)
p(x|θ)dx− Ep(x|θ)[∇θ log p(x|θ)∇θ log p(x|θ)T ]

=H∫ p(x|θ)dx − F = H1 − F = −F.

Thus, we have F = −Ep(x|θ)[Hlog p(x|θ)]. Knowing this result, we can see the
role of F as a measure of curvature of the log likelihood function.

Fisher Information Matrix is defined as the covariance of score function. It is
a curvature matrix and has interpretation as the negative expected Hessian
of log likelihood function. Thus the immediate application of F is as drop-in
replacement of H in second order optimization methods. One of the most
exciting results of F is that it has connection to KL-divergence. This gives
rise to natural gradient method, which we shall discuss now.
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10.4.3. Natural Gradient Descent. Previously, we looked at the Fisher
Information Matrix. We saw that it is equal to the negative expected Hes-
sian of log likelihood. Thus, the immediate application of Fisher Information
Matrix is as drop-in replacement of Hessian in second order optimization al-
gorithm. In this article, we will look deeper at the intuition on what exactly
is the Fisher Information Matrix represents and what is the interpretation
of it.

10.4.4. Distribution Space. As per previous article, we have a proba-
bilistic model represented by its likelihood p(x|θ). We want to maximize
this likelihood function to find the most likely parameter θ. Equivalent for-
mulation would be to minimize the loss function L(θ), which is the negative
log likelihood.

Usual way to solve this optimization is to use gradient descent. In this case,
we are taking step which direction is given by −L(θ). This is the steepest
descent direction around the local neighborhood of the current value of θ in
the parameter space. Formally, we have

−L(θ)
∥L(θ)∥

= lim
ϵ→0

1

ϵ
argmin

d s.t. ∥d∥≤ϵ
L(θ + d).

The above expression is saying that the steepest descent direction in param-
eter space is to pick a vector d, such that the new parameter θ+ d is within
the ϵ-neighborhood of the current parameter θ, and we pick d that minimize
the loss. Notice the way we express this neighborhood is by the means of
Euclidean norm. Thus, the optimization in gradient descent is dependent
to the Euclidean geometry of the parameter space.

Meanwhile, if our objective is to minimize the loss function (maximizing the
likelihood), then it is natural that we taking step in the space of all possible
likelihood, realizable by parameter θ. As the likelihood function itself is a
probability distribution, we call this space distribution space. Thus it makes
sense to take the steepest descent direction in this distribution space instead
of parameter space.

Which metric/distance then do we need to use in this space? A popular
choice would be KL-divergence. KL-divergence measure the “closeness” of
two distributions. Although as KL-divergence is non-symmetric and thus
not a true metric, we can use it anyway. This is because as d goes to zero,
KL-divergence is asymptotically symmetric. So, within a local neighbor-
hood, KL-divergence is approximately symmetric.

We can see the problem when using only Euclidean metric in parameter
space from the illustrations below. Consider a Gaussian parameterized by
only its mean and keep the variance fixed to 2 and 0.5 for the first and
second image respectively:
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In both images, the distance of those Gaussians are the same, i.e. 4, accord-
ing to Euclidean metric (red line). However, clearly in distribution space, i.e.
when we are taking into account the shape of the Gaussians, the distance is
different in the first and second image. In the first image, the KL-divergence
should be lower as there is more overlap between those Gaussians. There-
fore, if we only work in parameter space, we cannot take into account this
information about the distribution realized by the parameter.

10.4.5. Fisher Information and KL-divergence. One question still
needs to be answered is what exactly is the connection between Fisher Infor-
mation Matrix and KL-divergence? It turns out, Fisher Information Matrix
defines the local curvature in distribution space for which KL-divergence is
the metric.

It is easy to show that Fisher Information Matrix F is the Hessian of KL-
divergence between two distributions p(x|θ) and p(x|θ′) with respect to θ′,
evaluated at θ′ = θ. The KL-divergence can be decomposed into entropy
and cross-entropy terms, i.e.

DKL[p(x|θ) : p(x|θ′)] = Ep(x|θ)[log p(x|θ)]− Ep(x|θ)[log p(x|θ′)].
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The first derivative wrt θ′ is:

∇θ′DKL[p(x|θ) : p(x|θ′)] =∇θ′Ep(x|θ)[log p(x|θ)]−∇θ′Ep(x|θ)[log p(x|θ′)]

=−∇θ′Ep(x|θ)[log p(x|θ′)] = −
∫
p(x|θ)∇θ′ log p(x|θ′)dx.

The second derivative is:

∇2
θ′DKL[p(x|θ) : p(x|θ′)] = −

∫
p(x|θ)∇2

θ′ log p(x|θ′)dx.

Thus, the Hessian wrt θ′ evaluated at θ′ = θ is:

HDKL[p(x|θ):p(x|θ′)] =−
∫
p(x|θ)∇2

θ′ log p(x|θ′)|θ′=θdx = −
∫
p(x|θ)Hlog p(x|θ)dx

=− Ep(x|θ)[Hlog p(x|θ)] = F.

The last line follows from the previous result about Fisher Information Ma-
trix, in which we showed that the negative expected Hessian of log likelihood
is the Fisher Information Matrix.

10.4.6. Steepest Descent in Distribution Space. Now we are ready
to use the Fisher Information Matrix to enhance the gradient descent. But
first, we need to derive the Taylor series expansion for KL-divergence around
θ.

Letting d → 0, the second order Taylor expansion of KL-divergence can be
shown to be DKL[p(x|θ) : p(x|θ + d)] ≈ 1

2d
TFd. Using pθ as a shortcut for

p(x|θ) and expanding

DKL[p(x|θ) : p(x|θ + d)] ≈DKL[pθ : pθ] + (∇θ′DKL[pθ : pθ′ |θ′=θ)
Td+

1

2
dTFd

=DKL[pθ : pθ]− Ep(x|θ)[∇θ log p(x|θ)]Td+
1

2
dTFd.

Notice that the first term is zero as it is the same distribution. Furthermore,
from the previous article, we saw that the expected value of the gradient of
log likelihood, which is exactly the gradient of KL-divergence as shown in
the previous proof, is also zero. Thus the only thing left is:

DKL[p(x|θ) : p(x|θ + d)] ≈ 1

2
dTFd.

Now, we would like to know what is update vector d that minimizes the
loss function L(θ) in distribution space, so that we know in which direction
decreases the KL-divergence the most. This is analogous to the method of
steepest descent, but in distribution space with KL-divergence as metric,
instead of the usual parameter space with Euclidean metric. For that, we
do this minimization:

d∗ = argmin
d s.t. DKL[pθ∥pθ+d]=c

L(θ + d),
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where c is some constant. The purpose of fixing the KL-divergence to some
constant is to make sure that we move along the space with constant speed,
regardless the curvature. Further benefit is that this makes the algorithm
more robust to the re-parametrization of the model, i.e. the algorithm does
not care how the model is parametrized, it only cares about the distribution
induced by the parameter.

If we write the above minimization in Lagrangian form, with constraint KL-
divergence approximated by its second order Taylor series expansion and
approximate L(θ + d) with its first order Taylor series expansion, we get:

d∗ =argmin
d
L(θ + d) + λ(DKL[pθ : pθ+d]− c)

≈ argmin
d
L(θ) +∇θL(θ)Td+

1

2
λdTFd− λc.

To solve this minimization, we set its derivative wrt d to zero:

0 =
∂

∂d
L(θ) +∇θL(θ)Td+

1

2
λdTFd− λc = ∇θL(θ) + λFd

so that λFd = −∇θL(θ) and d = − 1
λF

−1∇θL(θ). Up to constant factor

of 1
λ , we get the optimal descent direction, i.e. the opposite direction of

gradient while taking into account the local curvature in distribution space
defined by F−1. We can absorb this constant factor into the learning rate.

Definition: Natural gradient is defined as

∇θL(θ) = F−1∇θL(θ).
As corollary, we have the following algorithm:

Algorithm: Natural Gradient Descent

(1) Repeat:
(a) Do forward pass on our model and compute loss L(θ)
(b) Compute the gradient ∇θL(θ)
(c) Compute the Fisher Information Matrix F , or its empirical

version (wrt training data).
(d) Compute the natural gradient ∇θL(θ) = F−1∇θL(θ)
(e) Update the parameter: θ = θ−α∇L(θ) where α is the learning

rate.

(2) Until convergence.

In the above very simple model with low amount of data, we saw that we
can implement natural gradient descent easily. But how easy is it to do this
in the real world? As we know, the number of parameters in deep learning
models is very large, within millions of parameters. The Fisher Information
Matrix for these kind of models is then infeasible to compute, store, or
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invert. This is the same problem as why second order optimization methods
are not popular in deep learning.

One way to get around this problem is to approximate the Fisher/Hessian
instead. Method like ADAM computes the running average of first and
second moment of the gradient. First moment can be seen as momentum
which is not our interest in this article. The second moment is approximating
the Fisher Information Matrix, but constraining it to be diagonal matrix.
Thus in ADAM, we only need O(n) space to store (the approximation of)
F instead of O(n2) and the inversion can be done in O(n) instead of O(n3).
In practice ADAM works really well and is currently the de facto standard
for optimizing deep neural networks.



Chapter 11

Writing Custom Code
for Data Fitting and
Optimization in
MATLAB

11.1. Basics of the MATLAB command environment

MATLAB is a scientific computing software platform that boasts millions of
users worldwide. Its broad user base includes chemists, physicists, computer
scientists, engineers (including finance), life scientists and mathematicians.
It allows you to run tasks by executing scripts (lists of commands) or to
do computations one at a time by typing commands in its console. In the
MATLAB environment you can store variables (scalars, vectors, matrices,
strings, structures, etc.) whereas MATLAB itself features thousands of dif-
ferent commands that you can use. Variables can be created by setting their
value. For example:

a=1

a =

1

>>

333
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This command creates a new variable a (if it does not exist already), and
sets its value equal to 1. To check that you have created this variable, type:

whos

Arrays of numbers can be stored as matrices or vectors. The following
command creates a row vector:

a=[ 4 7 10 12 18 8 7 6 4.5 2.7 13.8 ]

a =

Columns 1 through 9

4.0000 7.0000 10.0000 12.0000 18.0000 8.0000

7.0000 6.0000 4.5000

Columns 10 through 11

2.7000 13.8000

This could be, for example, a set of experimental values. MATLAB has
many internal commands that are available to us for purposes of doing com-
putations. For example, the standard deviation of the entries stored in a

can be computed using the std command:

std(a)

ans =

4.6228

Internal MATLAB commands are scripts (lists of commands) that can be
viewed. For example, entering:

type std

we get:

function y = std(varargin)
%STD Standard deviation.
% For vectors, Y = STD(X) returns the standard deviation. For ...

matrices,
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% Y is a row vector containing the standard deviation of each ...
column. For

% N-D arrays, STD operates along the first non-singleton ...
dimension of X.

%
% STD normalizes Y by (N-1), where N is the sample size. This is the
% sqrt of an unbiased estimator of the variance of the population ...

from
% which X is drawn, as long as X consists of independent, identically
% distributed samples.
%
% Y = STD(X,1) normalizes by N and produces the square root of ...

the second
% moment of the sample about its mean. STD(X,0) is the same as ...

STD(X).
%
% Y = STD(X,FLAG,DIM) takes the standard deviation along the ...

dimension
% DIM of X. Pass in FLAG==0 to use the default normalization by ...

N-1, or
% 1 to use N.
%
% std(..., MISSING) specifies how NaN (Not-A-Number) values are ...

treated.
% The default is 'includenan':
%
% 'includenan' - the standard deviation of a vector containing NaN
% values is also NaN.
% 'omitnan' - elements of X or W containing NaN values are ...

ignored.
% If all elements are NaN, the result is NaN.
%
% Example: If X = [4 -2 1; 9 5 7]
% then std(X,0,1) is [3.5355 4.9497 4.2426] and std(X,0,2) is ...

[3.0; 2.0]
%
% Class support for input X:
% float: double, single
%
% See also COV, MEAN, VAR, MEDIAN, CORRCOEF.

% Copyright 1984-2014 The MathWorks, Inc.

% Call var(x,flag,dim) with as many of those args as are present.
y = sqrt(var(varargin{:}));

As you can see, there is only 1 command that does anything: y = ...

sqrt(var(varargin:));. It calls another command, var, to calculate the
sample variance. Then it takes the square root of this variance and returns
it as the standard deviation. You can view the code for var by typing

type var



33611. Writing Custom Code for Data Fitting and Optimization in MATLAB

The mean is calculate as follows:

mean(a)

ans =

8.4545

Likewise, there are commands for calculating the median:

median(a)

ans =

7

There is also a command to calculate percentiles. Type help prctile for
more information. For example:

prctile(a,50)

ans =

7

which is the median. Also,

prctile(a,10)

ans =

3.4800

Vector addition:

a=[1 2 3]

a =

1 2 3

b=[4 5 6]
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b =

4 5 6

a+b

ans =

5 7 9

Multiplication of vector (a) by a scalar (2):

a

a =

1 2 3

2*a

ans =

2 4 6

Matrices can be created by separating the different rows using semicolons:

>> a=[1 2 ; 3 4 ]

a =

1 2

3 4

b=[5 6 ; 7 8]

b =

5 6

7 8

whos
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Name Size Bytes Class Attributes

a 2x2 32 double

b 2x2 32 double

Matrix addition (element by element addition):

a+b

ans =

6 8

10 12

Matrix multiplication:

a*b

ans =

19 22

43 50

For pointwise (element by element) multiplication, we use .* instead of *:

a.*b

ans =

5 12

21 32

We can even take the elements of a and elevate them to the powers of the
elements of b:

a.ˆb

ans =

1 64

2187 65536

Let’s now multiply a 2× 2 matrix by a 2× 1 (column) vector:
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c=[6 ; 8]

c =

6

8

The multiplication of a and c is:

a*c

ans =

22

50

We can take the natural log of the elements of a:

log(a)

ans =

0 0.6931

1.0986 1.3863

log means natural log. To get log base 10, there is a command log10. Or
use the property loga b = log(b)/ log(a).

Suppose you created a row vector,

c=[6 8]

c =

6 8

when it reality you needed a column vector. You can use the transpose

command to do that:

transpose(c)

ans =

6
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8

A shorthand is to add a prime after c:

c'

ans =

6

8

If you try to multiply a and c you get an error message

a*c

Error using *

Inner matrix dimensions must agree.

because c must be a column vector, not a row vector. Instead, what works
is:

a*transpose(c)

ans =

22

50

or

a*c'

ans =

22

50

Ranges can be created by using the colon:

1:10

ans =

1 2 3 4 5 6 7 8 9 10
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If a different step size than 1 is desired, sandwich the step size between two
colons:

1:0.5:10

ans =

Columns 1 through 9

1.0000 1.5000 2.0000 2.5000 3.0000 3.5000

4.0000 4.5000 5.0000

Columns 10 through 18

5.5000 6.0000 6.5000 7.0000 7.5000 8.0000

8.5000 9.0000 9.5000

Column 19

10.0000

If you don’t know the step size but know how many points are needed, use
linspace:

linspace(1,10,5)

ans =

1.0000 3.2500 5.5000 7.7500 10.0000

11.1.1. Taylor series approximation to the matrix exponential.
The exponential of a matrix M is defined by its Taylor series expansion:

exp(M) =

∞∑
j=0

M j

j!
.

We can use MATLAB to see how this Taylor series converges to exp(M).
Let’s compute partial sums (truncated Taylor series) and compare the results
as the number of terms is increased. We will compare the results to the EXPM
command in MATLAB, which uses the scaling and squaring algorithm (with
Padé approximant) to compute the matrix exponential:

>> help expm
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expm Matrix exponential.

expm(A) is the matrix exponential of A and is computed using

a scaling and squaring algorithm with a Pade approximation.

Although it is not computed this way, if A has a full set

of eigenvectors V with corresponding eigenvalues D then

[V,D] = EIG(A) and expm(A) = V*diag(exp(diag(D)))/V.

EXP(A) computes the exponential of A element-by-element.

See also logm, sqrtm, funm.

The following code below will compute the partial sum up to j=NT (a value
which you can set manually), for a 2× 2 matrix m:

m=[ 1 2 ; 3 4 ]; % matrix to be exponentiated
NT=100;
w=eye(2);
for j=1:NT,

w = w + (mˆj)/factorial(j);
end;
disp('Result:');
w
disp('True value:');
expm(m)
disp('Distance:');
d=w-expm(m);
dis=sum(abs(d(:)))/4

In order to assess the convergence of the series, we repeat the calculation
for several different values of NT (from 1 to 100) and measure the distance
of the results (w) from the true value (expm(m)), using the distance metric:

d =
∑
ij

|wij − expm(m)ij |.

where the sum runs over all matrix elements. Other metrics are possible. A
plot of d versus NT is shown below:
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We conclude that only about 10 terms are needed for convergence and cal-
culation of the infinite series is not required. The exact number of terms
needed depends on the desired precision.

11.1.2. Detection of Outliers: Mean vs Median, STD vs MAD.
Experimental data may contain outliers. There are many different methods
for detecting outliers. In order to be able to remove outliers, we need to
know how statistical estimators depend on outliers. In this section we will
look at the simplest examples based on using the median.

11.1.2.1. Mean vs Median. Given a random sample x1, x2, . . . , xN of a ran-
dom variable X, the sample mean is defined as:

µX =
1

N

N∑
i=1

xi.

For example, if the random sample is 1, 2, 3, the mean is 1
3(1 + 2 + 3) =

6/3 = 2. The median, on the other hand, the median is defined as the value
xm such that: ∫ ∞

xm

p(x)dx = 0.5

Substituting the empirical distribution,

p(x) =
1

N

N∑
i=1

δ(x− xi),

the median is the value xm for which∫ ∞

xm

1

N

N∑
i=1

δ(x− xi)dx = 0.5,

or
# samples above xm

N
= 0.5.

The median is the value of xm such that the fraction of measurements (sam-
ples) is half. For example, if the random sample is 5, 1, 7, 3, 106, 4, 2, the
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median is obtained by ordering the numbers (1, 2, 3, 4, 5, 7, 106) and picking
the middle value (xm = 4). If the number of measurements is even, we take
the average of the two numbers in the middle of the sorted list. Clearly, the
selection of the middle number completely disregards all other values in the
list. Most importantly, it disregards outliers such as 106.

11.1.2.2. STD vs MAD. The sample standard deviation is defined in terms
of sums of square differences:

σX =

√√√√ 1

N − 1

N∑
i=1

(xi − µX)2.

We may use the p-norm to generalize the deviation as follows:

σX(p) =

(
1

N − 1

N∑
i=1

|xi − µX |p
)1/p

, p = 1, 2, . . .

The special case p = 1 is called mean absolute deviation, 1
N−1

∑N
i=1 |xi−µX |.

It is easy to see that outliers will dominate the sum when p is large, making
the deviation more sensitive to outliers. On the other hand, p = 1 is the
least sensitive to outliers.

To further reduce the dependence on outliers, we can replace the mean by
the median. The median absolute deviation (MAD) is defined as:

MAD = MEDIAN(ABS(X-MEDIAN(X)))

where X is the vector whose entries are the random sample.

11.1.2.3. MATLAB example. The following MATLAB example below sim-
ulates the measurement of a nominal 20 V voltage. The random sample is
stored in the vector nois. In the vector noiso we have corrupted nois by
adding an outlier. As can be seen below, the mean is sensitive to outliers but
the median is not. Likewise, the standard deviation is sensitive to outliers
but the MAD is not. To detect the outlier, we could take the median plus
and minus some multiple of the MAD (e.g. median(X) ± 5*mad(X,1)) and
consider any points outside this range to be an outlier.

>> nois=randn([1 100])+20;

>> figure;plot(nois,’o-’);

>> axis([0 100],[0 25]);

>> noiso=nois; noiso(50)=1e6;

>> figure;plot(noiso);

>> std(noiso)

ans =
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9.9998e+04

>> median(noiso)

ans =

20.1582

>> mean(noiso)

ans =

1.0020e+04

>> mad(noiso,1)

ans =

0.6377

>> mad(noiso)

ans =

1.9800e+04

In the above code, we created a “constant” 20 V signal and added Gaussian
noise with zero mean and standard deviation of 1. The only estimators that
come close to these value are the median and MAD(X,1).

11.1.3. Trendline Removal. Suppose you want to estimate the noise in
your experiment. However, the noise is additive and sits on top of a mea-
sured signal which drifts over time (non-stationary). For example, you may
be measuring the fluorescence decay of a fluorophore, or a free-induction
decay (FID) in a nuclear magnetic resonance experiment. Such signals typ-
ically decay exponentially. One way is to use a long acquisition window and
use the tail of the signal (when it is flat), compute the standard deviation of
the tail and use this as our estimate of the noise. This is problematic if the
acquisition window is too short to capture the tail of the signal. It is also
problematic if the noise of interest only exists while the signal is present. In
these cases, we want to extract the noise during the part of the signal that
decays exponentially. But taking the standard deviation of an exponentially
decaying signal will reflect the signal decay envelope, not just the noise.
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11.1.3.1. Subtracting the trendline obtained from a model. One approach
would be to fit an exponential decay to the noisy signal, then subtract the
signal from the model to get the residuals and analyze the noise from the
residuals. This requires us to have a model properly describing the signal
behavior. It also would only work if the noise is much weaker than the signal,
otherwise the fit will be poor. If we are unable to fit the model accurately,
our noise estimate will be worthless.

11.1.3.2. High-pass filtering. A second approach would be to filter the signal
and remove its “low frequency components” (slowly varying part). This is
also known by engineers as applying a “high-pass filter”. In MATLAB there
are many built-in filters that can be applied to a signal. For example, see
the page:

https://www.mathworks.com/help/signal/ug/

filtering-data-with-signal-processing-toolbox.html

For our purposes the simplest high-pass filter is obtained by taking the
derivative of the signal. Taking the derivative removes any constant baseline
(since the derivative of a constant is 0). It also removes a number of low-
frequency components (slowly varying parts). This is most easily understood
when the signal is represented in terms of its frequency components.

The Fourier transform of a square-integrable signal1 f(x) is defined as:

f̂(ξ) =

∫ ∞

−∞
f(x)e−2πixξdx

In MATLAB the fft command can be used to obtain discrete Fourier trans-
formation of a digital signal. The Fourier transform extracts the frequency
components of a signal. In the above expression, f̂(ξ) is the amplitude of the
component at frequency ξ. This component is obtained by integrating f(x)
times e−2πixξ in order to measure the overlap between those two functions.
e−2πixξ is a complex trigonometric function that oscillates at frequency ξ.
For more information about the Fourier transform, see:

https://en.wikipedia.org/wiki/Fourier transform

Compare this to the derivative of f(x), which we denote f ′(x). The Fourier
transform of f ′(x) is:

f̂ ′(ξ) =

∫ ∞

−∞

df(x)

dx
e−2πixξdx = 2πiξ

∫ ∞

−∞
f(x)e−2πixξdx = (2πi)ξf̂(ξ),

where the second equality follows by integration by parts. This result tells us
that taking the derivative of f(x) amounts to multiplication of f̂(ξ) by ξ in
the frequency domain. Therefore, low frequencies are scaled down, whereas

1Square integrable:
∫∞
−∞ |f(x)|2dx < ∞. This implies that |f(x)| decays to 0 at infinity.
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high frequency components are scaled up, hence the terminology “high-pass
filter”.

The following MATLAB example creates an exponentially decaying signal
with additive Gaussian noise, takes its derivative (diff command) and plots
the result:

>> t=0:0.01:10;
>> u=10*exp(-t/2)+50+randn(size(t));
>> figure;plot(t,u);
>> v=diff(u);
>> td=t(1:end-1);
>> figure;plot(td,v);

We can then plot the power spectral density (pwelch command), which is
the square of the Fourier transform plotted on a log scale (in dB), to visualize
the signal in the frequency domain:

>> figure;plot(pwelch(u));
>> figure;plot(pwelch(v));

As can be seen, the low frequencies are scaled down. For a signal in units of
Volts (V) the one-sided power spectral density (PSD) in V2/Hz is defined
as:

PSD(f) =
2|X(f)|2

(t2 − t1)
where X(f) is the Fourier transform of the signal x(t) defined2 over the time
range (t1, t2):

X(f) ≡
∫ t2

t1

x(t)e−2πiftdt,

for any frequency f in the two-sided frequency domain (−F, F ). If x(t) is
expressed in units of V, X(t) is expressed in units of V/Hz. The PSD divides
up the total power of the signal. To see this, we integrate the PSD over its
entire one-sided frequency domain (0, F ):∫ F

0
PSD(f)df =

∫ F

0

2|X(f)|2

t2 − t1
df =

1

t2 − t1

∫ F

−F
|X(f)|2df

=
1

t2 − t1

∫ t2

t1

|x(t)|2dt,

where the last step follows from the Parseval’s theorem. The result is pre-
cisely the average power of the signal in the time range (t2 − t1).

2The factor 2 is due to adding the contributions from positive and negative frequencies.
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We often express the PSD in dB relative to some (given) reference signal
value xref (units: V):

PSDdB(f) = 10 log10

[
PSD(f)

x2ref

]
.

Note: since the argument of the logarithm is in units of Hz-1, this spectral
measure can loosely be said to be in units of “dB/Hz”.

Those who are not familiar with the Fourier transform may gain some ap-
preciation by applying the short-term Fourier transform (STFT)

https://en.wikipedia.org/wiki/Short-time Fourier transform

X(τ, ω) =

∫ ∞

−∞
x(t)w(t− τ)e−iωtdt w(t) : window function (continuous case)

X(m,ω) =
∞∑

n=−∞
x[n]w[n−m]e−iωn (discrete case)

to an audio signal:

1 handel = load('handel');
2 figure;
3 [sp,fp,tp] = pspectrum(handel.y,handel.Fs,'spectrogram');
4 mesh(tp,fp,sp)
5 view(-15,60)
6 xlabel('Time (s)')
7 ylabel('Frequency (Hz)')
8 soundsc(handel.y, handel.Fs) % hear the audio clip

The output is a plot of power spectral density as function of time and fre-
quency. This is obtained by computing the Fourier transform on short time
windows, as a function of time. At each point in time, a spectrum displays
which frequencies (pitches) are present in the sound heard. This is simi-
lar to a musical score, where time flows along the horizontal direction and
frequency is shown by the notes along the vertical direction (lines of a staff).

https://www.mathworks.com/help/signal/ref/bandpass.html

https://www.mathworks.com/help/signal/ref/bandstop.html

https://www.mathworks.com/help/signal/ref/highpass.html

https://www.mathworks.com/help/signal/ref/lowpass.html

1 fs = 1e3;
2 t = 0:1/fs:1;
3 x = [2 1 2]*sin(2*pi*[50 150 250]'.*t) + randn(size(t))/10;
4 bandpass(x,[100 200],fs)
5 fs = 2e3;
6 t = 0:1/fs:0.3-1/fs;
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7 l = [0 130.81 146.83 164.81 174.61 196.00 220 246.94];
8 m = [0 261.63 293.66 329.63 349.23 392.00 440 493.88];
9 h = [0 523.25 587.33 659.25 698.46 783.99 880 987.77];

10 note = @(f,g) [1 1 1]*sin(2*pi*[l(g) m(g) h(f)]'.*t);
11 mel = [3 2 1 2 3 3 3 0 2 2 2 0 3 5 5 0 3 2 1 2 3 3 3 3 2 2 3 2 1]+1;
12 acc = [3 0 5 0 3 0 3 3 2 0 2 2 3 0 5 5 3 0 5 0 3 3 3 0 2 2 3 0 1]+1;
13 song = [];
14 for kj = 1:length(mel)
15 song = [song note(mel(kj),acc(kj)) zeros(1,0.01*fs)];
16 end
17 song = song/(max(abs(song))+0.1);
18 % To hear, type sound(song,fs)
19 pspectrum(song,fs,'spectrogram','TimeResolution',0.31, ...
20 'OverlapPercent',0,'MinThreshold',-60)
21 pong = bandpass(song,[230 450],fs);
22 % To hear, type sound(pong,fs)
23 bandpass(song,[230 450],fs)
24 figure
25 pspectrum(pong,fs,'spectrogram','TimeResolution',0.31, ...
26 'OverlapPercent',0,'MinThreshold',-60)

11.1.4. Noise Removal.

11.1.4.1. 1D signal: Low-pass filtering. Noisy data leads to errors in the
fit. Suppose that you want to keep the trendline and remove the noise.
This “denoising” operation is often carried out using a low-pass filter. An
example of low-pass filter that removes noise is the moving average:

xi =
1

2M + 1

M∑
j=−M

x[i+ j],

where 2M + 1 is the number of time points used to compute the moving
average. Let’s write MATLAB code to implement the moving average. I will
take a one-sided moving average, i.e. xi =

1
M+1

∑0
j=−M x[i+j], which would

have applications when the data is acquired (and analyzed) in real-time and
data points in the future are not yet available.

1 % moving average
2

3 data = thingSpeakRead(276806,'DateRange',[datetime('January 3, 2019 ...
0:0:0') datetime('January 4, 2019 ...
0:0:0')],'Fields',1,'outputFormat','timetable');

4 %load stock market data (MATLAB dataset)
5

6 lag = 6; % 6-pt moving average
7 simple = movavg(data.Last,'simple',lag); % let MATLAB compute mov avg
8 plot(data.Timestamps,data.Last, data.Timestamps,simple);
9 legend('Last Price','6 Pt. Average');

10 ylabel('Last Stock Price');
11 title('Last Price & Moving Average');
12



35011. Writing Custom Code for Data Fitting and Optimization in MATLAB

13 % calculate moving average ourselves, compare w/MATLAB
14

15 M=6; % 6-pt moving average
16 clear mav
17 for j=M:length(data.Last),
18 prev=data.Last(j-M+1:j);
19 mp=mean(prev);
20 mav(j-M+1)=mp;
21 end;
22

23 figure;plot(data.Timestamps,data.Last,'b');
24 hold on; plot(data.Timestamps(M:length(data.Last)),mav,'r');

A moving average is a form of a convolution often used in time series analysis
to smooth out noise in data by replacing a data point with the average of
neighboring values in a moving window. A moving average is essentially
a low-pass filter because it removes short-term fluctuations to highlight a
deeper underlying trend.

For those not familiar with convolution: the convolution of two functions f
and g is denoted f ∗ g and calculated as

(f ∗ g)(x) ≡
∫ ∞

−∞
f(y)g(x− y)dy.

In discrete form we have:

(f ∗ g)[n] =
∞∑

m=−∞
f [m]g[n−m].

For more information about convolutions, including visual explanations, see

https://en.wikipedia.org/wiki/Convolution

In MATLAB, a number of variants exist: movmean, movmad, movmedian. The
moving median is less susceptible to outliers (e.g. rare events such as spikes).
The moving average is also implemented in the command smoothdata:

https://www.mathworks.com/help/matlab/ref/smoothdata.html

The MATLAB link provides useful examples of signal filtering. The first
example provided is the moving average:

1 x = 1:100;
2 A = cos(2*pi*0.05*x+2*pi*rand) + 0.5*randn(1,100);
3 B = smoothdata(A);
4 plot(x,A,'-o',x,B,'-x')
5 legend('Original Data','Smoothed Data')

Gaussian filtering is also a popular method for removing noise. The example
provided illustrates filtering using two different window lengths (4 and 20):



11.1. Basics of the MATLAB command environment 351

1 x = 1:100;
2 A = cos(2*pi*0.05*x+2*pi*rand) + 0.5*randn(1,100);
3 [B, window] = smoothdata(A,'gaussian');
4 window
5 C = smoothdata(A,'gaussian',20);
6 plot(x,B,'-o',x,C,'-x')
7 legend('Small Window','Large Window')

Try these examples. It is generally useful to visualize the effects of the filter
in Fourier space, i.e. use the pwelch command.

11.1.4.2. 1D signal: Wavelet denoising. Another powerful tool for signal
processing is the wavelet transform. A wavelet is a function of the form

ψa,b(t) =
1√
a
ψ

(
t− b
a

)
, a, b ∈ R

where ψ is the “mother wavelet”, a is called the dilation (scale) parameter
and b is the translation (position) parameter. An example mother wavelet
is the Morlet wavelet:

ψ(t) = eiω0te−t2/2,

whose real part is shown below:
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Wavelets functions are localized in time. They are translated along the signal
(parameter b). They are also scaled (parameter a). The scaling parameter
stretches or compresses the wavelet (in time) and is akin to varying the
frequency.

The continuous wavelet transform (CWT) of a signal x(t) is given by

x̂(a, b) = ⟨x, ψa,b⟩ =
1√
a

∫ ∞

−∞
x(t) · ψ∗

(
t− b
a

)
dt.
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Here, ⟨x, ψa,b⟩ is called the L2 inner product. Here, a and b vary continuously
and hence the CWT generates a lot of data. When a and b are chosen to
be discrete, the analysis is easier. The discrete wavelet transform (DWT) is
obtained by choosing a to be integer powers of a fixed dilation parameter
a0 > 1, i.e., a = am0 (varying m alters the width of the wavelets), and
translating the narrow wavelets by small steps and wider wavelets by larger
steps, b = nb0a

m
0 , b0 > 0 fixed and n ∈ Z. The wavelets are discretely

labeled:

ψm,n(k) = a
−m/2
0 ψ(a−m

0 (k − nb0am0 )), m, n ∈ Z.
The DWT of x(k) is defined as

x̂[m,n] = ⟨f, ψm,n⟩ = a
−m/2
0

∞∑
k=−∞

x(k)ψ∗(a−m
0 k − nb0).

If the scales and positions are chosen based on powers of two (Dyadic), the
analysis becomes more efficient. In 1988 Stéphane Mallat remarked that
for special choice of ψ(k) and a0, b0 the ψm,n(k) constitute an orthonormal
basis for L2(R). In particular, if a0 = 2, b0 = 1 there exist ψ(k) with good
time-frequency localization properties such that the

ψm,n(k) = 2−m/2ψ(2−mk − n), m, n ∈ Z,
constitutes an orthonormal basis for L2(R). The DWT is then

x̂[m,n] = ⟨f, ψm,n⟩ = 2−m/2
∞∑

k=−∞
x(k)ψ∗(2−mk − n).

The parameters a, b result in a time-frequency analysis similar to the STFT
except that the size of the time window being analyzed by the wavelet varies
depending on the scale parameter a. A downside of STFT is that it has a
fixed resolution. The width of the windowing function relates to how the
signal is represented. It determines whether there is good frequency or
time resolution. A wide window3 gives better frequency resolution but poor
time resolution. A narrower window gives good time resolution but poor
frequency resolution. Time and frequency are related by an uncertainty
principle.4 This is one of the reasons for the creation of the wavelet transform

3Frequency resolution ∆f is related to the length of the time window T according to an inverse

relationship ∆f = 1/T .
4Let x(t) be a signal and X(f) its Fourier transform. Define the following PDF: px(t) =

|x(t)|2
∥x(t)∥2 ,

where ∥x(t)∥2 =
∫∞
−∞ |x(t)|2dt. Then, px(t) > 0 and

∫∞
−∞ px(t)dt = 1. The spread of the signal

x(t) over time (i.e. locality of the dispersion of x(t)) can be measured as the variance

σ2
t =

∫ ∞

−∞
(t− µt)

2px(t)dt =
1

∥x(t)∥2

∫ ∞

−∞
(t− µt)

2|x(t)|2dt,
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(multiresolution analysis). The latter offers good time resolution for high-
frequency events and good frequency resolution for low-frequency events, a
combination suited for many signals.

For more information see:

https://en.wikipedia.org/wiki/Short-time Fourier transform

https://en.wikipedia.org/wiki/Discrete wavelet transform

https://en.wikipedia.org/wiki/Complex wavelet transform

https://en.wikipedia.org/wiki/Continuous wavelet transform

https://en.wikipedia.org/wiki/Wavelet

The following MATLAB code takes a noisy Doppler signal (noisdopp) and
cleans it up using the wdenoise command

1 load noisdopp
2 xden=wdenoise(noisdopp);
3 h1=plot([noisdopp' xden']);title('Signal vs time');
4 h1(2).LineWidth=2;xlabel('Time (t)');ylabel('S(t)');
5 legend('Original Signal','Denoised Signal');

as shown in the graph below:
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where µt is the mean µt =
∫∞
−∞ tpx(t)dt = 1

∥x(t)∥2
∫∞
−∞ t|x(t)|2dt. Similarly we define σ2

f =
1

∥X(f)∥2
∫∞
−∞(f − µf )

2|X(f)|2df = 1
∥x(t)∥2

∫∞
−∞(f − µf )

2|X(f)|2df , where we used Parseval’s

identity ∥X(f)∥2 = ∥x(t)∥2 and µf = 1
∥X(f)∥2

∫∞
−∞ f |X(f)|2df . The uncertainty principle is

σ2
t σ

2
f ≥ (16π2)−1.
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If we subtract the noisy signal from the cleaned-up signal we are left with
the noise. The noise statistics are visualized by plotting the histogram of
the residuals:

1 res=noisdopp-xden; % residuals
2 figure;subplot(2,1,1);plot(res);title('Residuals vs time');
3 xlabel('Time (t)');ylabel('res(t)');
4 subplot(2,1,2);hist(res);title('Histogram of Residuals');

as shown below:
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This method can be used to isolate and analyze the signal and noise sepa-
rately.

In some versions of MATLAB the above dataset (noisdopp) does not appear
to be available. If that is the case, try this code below, which creates a fake
Doppler signal and adds noise to it:

1 % chirp signal denoising
2

3 t = 0:0.001:2; % 2 s at 1 kHz sample rate
4 y = chirp(t,0,1,150); % create chirp
5 spectrogram(y,256,250,256,1E3); % plot spectrogram
6

7 ts=t(1:200); % apply to first 200 points only
8 ys=y(1:200); % so we can visualize a few oscillations
9 figure;plot(ts,ys);

10

11 ysn=ys+0.3*randn(size(ys)); % add noise
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12

13 figure;plot(ts,ysn); % plot noisy signal
14

15 xden=wdenoise(ysn); % denoise
16

17 hold on;
18 plot(ts,xden,'g'); % plot denoised signal

11.1.4.3. 2D signal: Image denoising. There is a wide range of methods that
are available for image denoising. The reader is referred to the MATLAB
documentation for examples:

• 2D Gaussian filtering of images:
https://www.mathworks.com/help/images/ref/imgaussfilt.html

• 2D adaptive noise-removal filtering:
https://www.mathworks.com/help/images/ref/wiener2.html

• 2D median filtering:
https://www.mathworks.com/help/images/ref/medfilt2.html

• Additional algorithms implemented in MATLAB:
https://www.mathworks.com/help/images/linear-filtering.html

In this section we present some basic examples of filtering in the Fourier
domain. We start by zero-padding the outer region of k-space, i.e. nulling
out the high-frequency components. Then we perform Gaussian filtering,
i.e. multiplication of the k-space representation of the image by a Gauss-
ian filter. In both cases, the idea is to reduce the amplitude of the high-
frequency components, as the latter mostly contain noise. Unfortunately,
the high-frequency components contain information about sharp edges and
by reducing their amplitude, such filters smooth out the edges. The denoised
image ends up blurry.

1 % image of vegs
2 originalRGB = imread('peppers.png');
3 imr=squeeze(originalRGB(:,:,1));
4 figure;imagesc(imr);
5 colormap(gray);colorbar;
6

7 % add noise
8 imrn=double(imr)+10*randn(size(imr));
9 figure;imagesc(imrn);

10 colormap(gray);colorbar;
11

12 % go to Fourier space & filter
13 fi=fftshift(fft2(imrn));
14 figure;imagesc(abs(fi));
15 colormap(gray);colorbar;
16 caxis([0 3e4]);
17
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18 % box filter
19 bf=zeros(size(fi));
20 %bf(100:300,150:400)=fi(100:300,150:400);
21 bf(150:250,200:325)=fi(150:250,200:325);
22 figure;imagesc(abs(bf));
23 colormap(gray);colorbar;
24 caxis([0 3e4]);
25

26 % 2D gaussian filter
27 [XX,YY]=meshgrid(1:512,1:384);
28 XX=XX-512/2;
29 YY=YY-384/2;
30 bf=fi.*exp(-( (XX.ˆ2)/10000 + (YY.ˆ2)/10000 ));
31 figure;imagesc(abs(bf));
32 colormap(gray);colorbar;
33 caxis([0 3e4]);
34

35 % go back to real-space, show image
36 imf=ifft2(fftshift(bf));
37 figure;imagesc(abs(imf));
38 colormap(gray);colorbar;
39 %caxis([0 3e4]);

There are many algorithms capable of noise removal without blurring edges.
One such example is the method of non-local means:

https://www.mathworks.com/help/images/ref/imnlmfilt.html

The method is described here:

• Buades, A., B. Coll, and J.-M. Morel. “A Non-Local Algorithm for Im-
age Denoising.” 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition. Vol. 2, June 2005, pp. 60–65.

• https://en.wikipedia.org/wiki/Non-local means

1 % non-local means filtering (greyscale)
2 I = imread('cameraman.tif');
3 noisyImage = imnoise(I,'gaussian',0,0.0015);
4 [filteredImage,estDoS] = imnlmfilt(noisyImage);
5 montage({noisyImage,filteredImage});
6 title(['Estimated Degree of Smoothing, ',...
7 'estDoS = ',num2str(estDoS)]);

The method of Wavelets described in the previous section can be used to
denoise not only 1D signals but also (2D) images. Because wavelets localize
features in your data to different scales, we can preserve important signal
or image features while removing noise. The basic idea behind wavelet
denoising, or wavelet thresholding, is that the wavelet transform leads to
a sparse representation for many real-world signals and images. What this
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means is that the wavelet transform concentrates signal and image features
in a few large-magnitude wavelet coefficients. Wavelet coefficients which
are small in value are typically noise and we can “shrink” those coefficients
or remove them without affecting the signal or image quality. After you
threshold the coefficients, we reconstruct the data using the inverse wavelet
transform. This method of wavelet denoising has many advantages over
Fourier-based filtering methods.

To denoise images you would use the command wdenoise2. For example:

1 load('jump.mat')
2 wdenoise2(jump)

More signal processing examples can be found in the MATLAB documen-
tation for the Wavelet Toolbox

https://www.mathworks.com/help/wavelet/

11.1.5. Empirical Distribution and Histograms. Let X be a random
variable. We measure X by collecting a random sample x1, x2, . . . , xN . Re-
call that the empirical distribution of this random sample is the PDF:

p(x) =
1

N

N∑
i=1

δ(xi − x),

where x ∈ X . X here is the set where the random variable X takes its values
from (i.e. the “range” of X). The histogram is obtained by partitioning
the set X into nb intervals I1, I2, . . . , Inb

⊂ X such that ∪nb
j=1Ij = X and

Ii ∩ Ij = ∅ (i ̸= j) and counting the number of samples falling into each
interval (bin). Mathematically, this is equivalent to integrating the empirical
distribution over each interval (bin) to get the bin count (frequency):

bin(j) ≡
∫
Ij

p(x)dx =
1

N

∫
Ij

N∑
i=1

δ(xi − x)dx =
# samples in bin j

N

The histogram itself is a bar graph plotting the bin count bin(j) vs the bin
index j.

11.1.6. Plotting histograms: Illustration of the Central Limit The-
orem. The command in MATLAB to plot histograms is hist on earlier
versions of MATLAB and histogram in the later versions. Another useful
function is histfit, which will not only plot a histogram, but also will fit
a Gaussian PDF to it. Let’s look at the central limit theorem (CLT).

We know the CLT predicts that the sum of random variables (regardless of
their distribution, as long as they have finite mean and variance) eventually
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Figure 11.1. Illustration of the central limit theorem. Uniformly dis-
tributed random variables Xi (on [0, 1]) are added together to form the
average (X1 + · · ·+Xn)/n. The cases n = 1, 2 (top row) and n = 3, 100
(bottom row) are shown. These histograms are plotted by generating
10,000 realizations of each random variable Xi.

converges to a normal distribution in the limit of large n:

X1 + · · ·+Xn

n
→ N (µ, σ2/n) as n→∞.

In the code below, NA uniformly distributed random variables are added
together. The results for NA=1,2,3,100 are shown in Fig 11.1. As can be
seen, the n = 1 case is uniform, the n = 2 case yields a tent function,
whereas n = 3 looks increasingly more like a Gaussian. The n = 100 case
looks Gaussian. Notice also the width of the distribution narrows. This is
due to the variance of the arithmetic average, σ2/n, which decreases as 1/n.

v=zeros([1 10000]);
NA=100; % of rv's to be added in sum
for j=1:NA,

v=v+rand([1 10000]); % randomly generate 10,000 pts
end; % and add them together (sum NA such rv's)
v=v/NA; % normalize to the # of rv's added
figure; histfit(v,20); % plot histogram, fit a gaussian to it
set(gca,'xlim',[0 1]);
set(gca,'fontsize',16);
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Figure 11.2. Illustration of the law of large numbers. Plot of
1
n

∑n
i=1 sin(Xi) vs n, from n = 1, . . . , 10000 (horizontal axis). As n

increases, the value of the sum approaches 0, the value of the integral.

11.1.7. Cumulative Sums: Illustrating the Law of Large Numbers.
When dealing with summations of n terms, it is often useful to look at the
partial results of the sum as a way to study convergence of the sum. To
this end, the command cumsum can be used. The code below illustrates the
example of computing the following integral numerically, using a random
number generator. Let’s compute the average of sin(x) from 0 to 2π:

I =
1

2π

∫ 2π

0
sin(x)dx.

This integral is of the form
∫
f(x)p(x)dx, where p(x) = (2π)−11[0,2π](x) is

the PDF for the uniform distribution over the interval [0, 2π]. Thus, it is
the expectation value Ep(sin(X)), which can be approximated by the law of
large numbers (LLN) as a sum:

I = Ep(sin(X)) ≈ 1

n

n∑
i=1

sin(Xi), Xi ∼ p(x).

Thus, I can be approximated by generating uniformly distributed random
numbers {Xi} and taking the arithmetic average of the {sin(Xi)}. The code
below generates the summation for different n.

NP=10000; % max # of points in LLN sum (n=1,...,NP)
x=(2*pi)*rand([1 NP]); % sample integrand uniformly from 0 to 2*pi
sx=(1/2/pi)*sin(x); % function to be integrated
NL=linspace(1,NP,NP); % normalize to # of pts. in sum
ysx=cumsum(sx)./NL;
figure; plot(ysx); % convergence of sum vs n
set(gca,'fontsize',16);
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11.1.8. Fitting a trendline to data plotted in a figure window. Data
can be analyzed using the basic curve fitting tools available from the pull-
down menus of a figure window. To show how this works, let us start by
creating a fake data set. The horizontal axis is:

t=1:100;

Create a slope:

slope=10;

This command will create a straight line graph, with gaussian noise added:

f=t*slope + 60*randn([1 100]);

To get more information about random numbers type help randn. Plot the
results as follows:

figure; plot(t,f,'o');

In the next section we shall analyze this data, as well as data from the
following function (straight line plus quadratic component):

g=f+ 0.1*t.ˆ2;
figure; plot(t,g,'o');

and this one (straight line plus sinusoidal component):

h=f + 50*sin(0.2*t);
figure; plot(t,h,'o');

The straight line data looks like this:
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Basic curve fitting can be done by choosing Tools in the Figure menu, fol-
lowed by Basic Fitting. If we expect the data to be described by a straight
line, select linear from the menu. MATLAB will plot the trendline and list
the results from the fit in a box.
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If you check the box Plot residuals, MATLAB will divide the window
into two sections and add a plot of the differences between the trendline and
the fitted curve. Residuals are a good way to see if the model chosen (in this
case, a straight line) is suitable for describing the experimental data. The
residuals are shown in the above example. If the data is a good fit to the
model, the residuals should be normally distributed (Gaussian) with mean
0.

More formally, the i-th residual ri is defined as:

ri = y(xi)− yi
where y(xi) is the model and yi is the experimentally-measured data point.

MATLAB also returns a quantity called Norm of residuals. MATLAB
defines this quantity as

Norm of residuals =

√√√√ N∑
i=1

r2i ,

where N is the number of data points. This provides a measure of the
goodness-of-fit. A perfect fit has zero residuals and the Norm of residuals

will also be zero. A model for the fit should be chosen as to minimize the
Norm of residuals. Choosing any model for the sake of minimizing Norm

of residuals is generally not a good strategy.

The following link contains useful information on interactive data fitting

http://www.mathworks.com/help/techdoc/data_analysis/f1-15377.html

An example of poor data fitting is shown below. The best judge for this is vi-
sual inspection: the quadratic model clearly isn’t a good match to the data.
The poor fit is also evidenced by the large value of Norm of residuals.
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A bad choice of fitting function is shown below

where a 7th order polynomial was used to fit the above linear data set.
The fit to the 7th order polynomial gives a better value for the Norm of

residuals. But it is also completely unphysical and yields no useful infor-
mation about the experiment.

In general, you want to pick a model based on the physics of the system
you are studying. You also should pick the simplest model possible, i.e. one
with fewest parameters. As you increase the number of fitting parameters
(i.e. by choosing more complicated functions), the fit look better (visually
or according to Norm of residuals), but the model is meaningless from a
physical standpoint.
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To re-iterate this point: when fitting data, we want to minimize
the residuals, but this should not be done at the expense of choos-
ing an inadequate model. Start from the simplest model and build up
gradually in complexity as needed. Examples are shown below.

In the following example, a noisy data set is fit well by a straight line. In-
spection of the residuals show that the fit does not appear to be missing
any underlying trends, i.e. the residuals are just noise and don’t exhibit any
particular structure.

The second example below shows a similar data set, but one in which the
linear fit leaves out residuals. Inspection of the structure of these residuals
suggests that we are missing a quadratic component. You would then be
better off to fit the data using a second order polynomial.

In such cases, you are left with the task of explaining the physical origin of
this quadratic dependence. In the case of Hooke’s law, one possible expla-
nation would be the over-streching of the spring which is known to lead to
non-linear behavior. Each experimental situation is different and must be
examined in its own light.
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The following interactive fit shows that a quadratic model leaves residuals
that are just noise (no specific underlying structure). As an exercise, we
could plot the histogram of these residuals and check that they are dis-
tributed normally with mean 0.

The final example is an experimental data set which is mostly a straight
line, but where the residuals reveal an underlying sinusoidal behavior.
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11.1.9. Can residuals plots help identify systematic errors? We re-
mark that plotting the residuals can be a useful method for identifying
systematic errors in your experiment. When the laws of physics state that
the behavior should be modeled by a particular set of equations, but that
the residuals of the fit to this model point to additional trends in the data,
this is a sign that there may be systematic errors.

For example, a sinusoidal trend in the residuals that does not follow from
the expected model may be suggestive of the presence of vibrations in your
experimental apparatus. In this case, systematic errors could be mitigated
by fitting the data to the original model, plus a sinusoidal term. The param-
eters of the model are extracted and those of the sinusoidal fit are discarded.
A brute-force, but perhaps costly, way to reduce systematic errors is to im-
prove the physical apparatus.

A careful analysis of the origins of systematic errors may enable you to iden-
tify and subtract these errors without having to re-design the experiment.

11.2. cftool – a GUI-based curve fitting tool

The cftool command in MATLAB is part of the Curve Fitting toolbox and
provides a graphical user interface (GUI) for data fitting. In this section,
we will demonstrate its use.

Let us first load a data set from the file noise.mat. The variable signoise
contains a complex-valued vector which is the free induction decay (FID)
from a nuclear magnetic resonance (NMR) experiment done on a test tube
of water (a single resonance). The last two commands below will plot the
signal in the time domain (the FID) and its Fourier transform (the NMR
spectrum).
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load noise
whos

Name Size Bytes Class Attributes

addnoise 207x1 3312 double complex

multnoise 1x951 15216 double complex

signoise 1x207 3312 double complex

figure;plot(abs(signoise));
figure;plot(abs(fftshift(ifft(signoise))));

The result is:
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Free induction decay (FID) − time domain NMR signal
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NMR spectrum (Fourier transform of FID)

This follows from the Fourier transform of an exponential decay

s(t) = e−2π|t|/τ ,

which is Lorentzian5

ŝ(f) =
1

π

τ−1

f2 + τ−2
.

5For a proof of this statement, see:
http://mathworld.wolfram.com/FourierTransformExponentialFunction.html
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τ is inversely related to the width of the Lorentzian.

Let us fit only the real part. We shall determine the decay constant.

figure;plot(real(signoise));
fid=real(signoise);

Let us also create a time axis. For example, suppose this FID was sampled
over a 100ms time window. We create a vector containing 207 time values
from 0 to 100 ms (207 is the number of points in the FID):

taxis=linspace(0,100,207);

To launch the curve fitting GUI type cftool. In the drop-down box “X
data” select the dataset “taxis” and in the box “Y data” select “fid”. cftool
immediately attempts to fit a first degree polynomial (straight line):

Obviously, the fit is not a very good one, as evidenced by the low R2 value
of 0.4698. The other sign of the bad fit is the very large error bars on the
fitted parameters p1 and p2.

Now let’s plot the residuals by hitting the “Residuals plot” button of the
cftool window (second icon in the top left corner of the window). As you
can see the residuals indicate that our model inadequately describes this
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data.

Let’s now select an appropriate model to fit this data. You can select from
the drop-down menu “Exponential”, which will fit the data to a function of
the form a*exp(b*x). The result is much better (R2 value is 0.9876):

The residuals look fine, i.e. do not show any obvious structure. Let us now
check whether or not adding a “baseline” to the fitting function leads to
improvement. From the drop-down box, choose “Custom Equation” and in
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the box below enter the function a*exp(-b*x)+c. On my computer, I get
the following error message:6

Inf computed by model function, fitting cannot continue.

Try using or tightening upper and lower bounds on coefficients.

MATLAB is telling us that it cannot fit the data properly - some param-
eters go to infinity. We need to provide upper and lower bounds on the
parameters. Click on the box “Fit Options”. You will see a new dialog box
which provides several options for the fit. Since we know that the param-
eters “b” and “a” should be positive numbers, we enter 0 as the lower bound.

You can also check that in the drop-down box for “Algorithm” there are two
options: Trust-Region and Levenberg-Marquardt.

These lower bounds are enough to cause the fit to converge:

6It’s possible that you don’t get this error. It depends on the particular version of MATLAB you
are using; the default parameters may differ.
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We note that the R2 value (0.9877) only shows marginal improvement. Thus,
the “baseline” parameter was superfluous in this case.

Finally, you can check that the residuals follow a Gaussian distribution. To
do this, we will follow several steps. First, choose “Save to Workspace” from
the “Fit” menu and click OK:

You can check that MATLAB has created new variables in the workspace.
Clicking OK results in:

Variables have been created in the current workspace.

Then check by typing:

whos

and see:

Name Size Bytes Class Attributes

addnoise 207x1 3312 double complex

fid 1x207 1656 double

fittedmodel 1x1 961 cfit
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goodness 1x1 920 struct

multnoise 1x951 15216 double complex

output 1x1 8834 struct

signoise 1x207 3312 double complex

taxis 1x207 1656 double

One of these variables is the summary of results from the fit:

fittedmodel

fittedmodel =

General model:

fittedmodel(x) = a*exp(-b*x)+c

Coefficients (with 95% confidence bounds):

a = 4.752 (4.661, 4.843)

b = 0.1022 (0.09895, 0.1054)

c = -0.001237 (-0.02027, 0.01779)

The second variable contains values related to the goodness of fit such as
R2:

goodness

goodness =

sse: 2.4020

rsquare: 0.9877

dfe: 204

adjrsquare: 0.9876

rmse: 0.1085

The third variable is a structure which contains the full output from the fit:

output

output =

numobs: 207

numparam: 3

residuals: [207x1 double]

Jacobian: [207x3 double]

exitflag: 3
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firstorderopt: 2.0225e-004

iterations: 6

funcCount: 28

cgiterations: 0

algorithm: ’trust-region-reflective’

message: [1x86 char]

To get the residuals, we use the notation output.residuals

figure;plot(taxis,output.residuals,'o-');xaxis('time');title('residuals');

We can also plot a histogram of the residuals by typing:

figure;hist(output.residuals,15);

The result is:
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11.3. Steepest Descent Algorithm: implementation from
scratch

We will now implement the steepest descent algorithm without the help
of any built-in MATLAB fitting routines. This implementation could be
ported to a low-level programming language such as FORTRAN or C with
minimal effort. The update rule for this iterative algorithm is:

θ(k+1) = θ(k) − λ∇θχ
2(θ(k))



37411. Writing Custom Code for Data Fitting and Optimization in MATLAB

where λ is the learning rate and θ(k) is the vector of parameters at the k-th
iteration. If λ is too large, the solutions will oscillate, and if it is too small,
the algorithm will take too long to converge. χ2 is defined as the sum of
square errors normalized to the square of errors in each of the n data points
{yi}:

χ2({(xi, yi)}|θ) =
n∑

i=1

(yi − y(xi|θ))2

σ2i

where y(xi|θ) is our fitting model.

11.3.1. Fit to a straight line. For a straight line model,

y(x|A,B) = Ax+B.

there are two parameters θ = (A,B)T . The gradient of χ2 has only two
components:

(∇χ2)A =
∂χ2

∂A
=

n∑
i=1

−2
σ2i

(yi −Axi −B)xi

(∇χ2)B =
∂χ2

∂B
=

n∑
i=1

−2
σ2i

(yi −Axi −B)

Let’s create a MATLAB script by typing the command edit fit3 (fit3 is
an arbitrary filename). Paste the following commands into the script:

1 tdata=linspace(0,10,100);
2 a=20; b=2;
3 ydata=a*tdata+b; % generate a fake data set
4 sigma=10; % with noise added
5 ydata=ydata+sigma*randn(size(ydata));
6 figure;plot(tdata,ydata,'o-'); % visualize
7 theta k=[30 3]; % starting point
8 sigmai=sigma*ones(size(ydata)); % assume error is constant for all ...

measurements
9 lambda=0.0001; % scaling parameter beta (if too large, solutions ...

oscillate)
10 for j=1:777,
11 A=theta k(1); % extract current value of A from the vector as
12 B=theta k(2); % extract value of B
13 f=A*tdata+B; % fitting model function
14 figure(1); hold off; plot(tdata,ydata,'bo-'); hold on;
15 plot(tdata,f,'r'); drawnow;
16 dx2da=sum(-(2./(sigmai.ˆ2)).*(ydata-A*tdata-B).*tdata);
17 dx2db=sum(-(2./(sigmai.ˆ2)).*(ydata-A*tdata-B));
18 grad chi=[ dx2da dx2db ]; % construct gradient vector
19 theta k = theta k - lambda*grad chi; % bs+1=bs+h
20 nchi2=sum((1./(sigmai.ˆ2)).*(ydata-A*tdata-B).ˆ2)/length(sigmai);
21 fprintf(' iter=%d A=%f B=%f chi2=%f \r', j, theta k(1), ...

theta k(2), nchi2);
22 end
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We obtain the following output
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and fitting results:

fit3

iter=1 A=29.930332 B=2.989497 chi2=37.344001

iter=2 A=29.861141 B=2.979067 chi2=36.849307

...

iter=665 A=19.937750 B=1.469166 chi2=1.118404

iter=666 A=19.937034 B=1.469032 chi2=1.118350

In this case, the steepest descent method performs reasonably well.

11.3.2. Nonlinear fit to an exponential decay. Let’s consider the fol-
lowing model:

y(x|A,B,C) = A exp(−x/B) + C.

The χ2 function is

χ2({(xi, yi)}|θ) =
n∑

i=1

(yi −A exp(−xi/B)− C)2

σ2i

where θ = (A,B,C)T .

We can easily compute the gradient of χ2. It has three components, which
are the partial derivatives of χ2 with respect to each fitting parameter: A,
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B and C:

(∇χ2)A =
∂χ2

∂A
=

n∑
i=1

−2
σ2i

(yi −A exp(−xi/B)− C) exp(−xi/B)

(∇χ2)B =
∂χ2

∂B
=

n∑
i=1

−2
σ2i

(yi −A exp(−xi/B)− C) A
B2

exp(−xi/B)xi

(∇χ2)C =
∂χ2

∂C
=

n∑
i=1

−2
σ2i

(yi −A exp(−xi/B)− C)

Let’s implement this algorithm. First we create a fake data set:

1 tdata=linspace(0,10,100);
2 a=500; b=2; c=40;
3 ydata=a*exp(-tdata/b)+c;
4 sigma=30; % standard dev. of noise
5 ydata=ydata+sigma*randn(size(ydata));
6 figure;plot(tdata,ydata,'o-');

Create a new MATLAB script file by typing edit fit2 and copying the
above code for generating our ’fake’ data set. Then continue with the fol-
lowing commands:

7 theta k=[600 10 10]; % starting point
8 sigmai=sigma*ones(size(ydata)); % assume error is constant for all ...

measurements
9 lambda=0.0001; % scaling parameter beta (if too large, solutions ...

oscillate)
10 for j=1:777,
11 A=theta k(1); % extract current value of A from the vector as
12 B=theta k(2); % extract value of B
13 C=theta k(3); % extract C
14 f=A*exp(-tdata/B)+C; % fitting model function
15 figure(1); hold off; plot(tdata,ydata,'bo-'); hold on;
16 plot(tdata,f,'r');
17 dx2da=sum(-(2./(sigmai.ˆ2)).*(ydata-A*exp(-tdata/B)-C) ...
18 .*exp(-tdata/B));
19 dx2db=sum(-(2./(sigmai.ˆ2)).*(ydata-A*exp(-tdata/B)-C)*(A/Bˆ2) ...
20 .*exp(-tdata/B).*tdata);
21 dx2dc=sum(-(2./(sigmai.ˆ2)).*(ydata-A*exp(-tdata/B)-C));
22 grad chi=[ dx2da dx2db dx2dc ]; % construct gradient vector
23 theta k = theta k - lambda*grad chi; % bs+1=bs+h
24 nchi2=sum((1./(sigmai.ˆ2)).*(ydata-A*exp(-tdata/B)-C).ˆ2) ...
25 /length(sigmai);
26 fprintf(' iter=%d A=%f B=%f C=%f chi2=%f \r', j, theta k(1), ...

theta k(2), theta k(3), nchi2);
27 end
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After almost 600 iterations we get the following output
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and fitting results are:

fit2

iter=1 A=599.996539 B=9.910959 C=9.994502 chi2=72.083371

iter=2 A=599.993108 B=9.821373 C=9.989035 chi2=71.283909

...

iter=554 A=599.794302 B=2.063676 C=9.800685 chi2=1.750119

iter=555 A=599.794191 B=2.063674 C=9.800858 chi2=1.750114

The curve is fit, however, the fit results are not as good as with the FIT

command. This is because steepest descent is not a very good algorithm
compared to the one used by FIT. To find out which algorithm is used by
FIT type:

help fitoptions

FITOPTIONS Create/modify a fit options object.

F = FITOPTIONS(LIBNAME) creates the fitoptions object F

with the option parameters set to the default values for the

library model LIBNAME. See CFLIBHELP for more

information on LIBNAME.

and scroll down to the ’Algorithm’ section:

Algorithm - Algorithm to be used in FIT

[{’Levenberg-Marquardt’} | ’Gauss-Newton’ | ’Trust-Region’]
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Thus, the default algorithm is Levenberg-Marquardt which is inherently
better than the steepest descent method. Other options are the Gauss-
Newton and Trust-Region algorithms. If you’d like to try and compare any
of these algorithms, you can read the manual pages for FIT and FITOPTIONS

to find out how to change the default method.

Something you may want to experiment with is trying different initial guesses.
You will see that if the initial guess is too far from the actual values, this
algorithm will fail miserably: in some cases it will get stuck in a local min-
imum and in other cases the solution may diverge. The second parameter
you may want to experiment with is the value of η. Try a value 100 times
larger or 100 times smaller.

11.4. Marquardt-Levenberg Algorithm

Marquardt-Levenberg update rule:

θ(k+1) = θ(k) − (Hk + λdiag[Hk])
−1∇χ2(θ(k))

Hk is proportional to the curvature of χ2, i.e. large steps are made in the
direction of low curvature (flat terrain) and small steps in the direction with
high curvature (steep incline). Hk is called the curvature matrix.

The parameter λ is adjusted at each iteration. We stop iterating when
χ2 does not change appreciably. Here is a possible implementation of the
Levenberg-Marquardt method:

• Pick initial (k = 1) guess for set of fitted parameters θ(k).

• Compute χ2(θ(k)).

• Pick a modest value for λ, say λ = 0.001.

• (*) Solve for δθ(k) = (Hk+λdiag[Hk])
−1∇θχ

2(θ(k)) and evaluate χ2(θ(k)+

δθ(k)).

• If χ2(θ(k)+δθ(k)) ≥ χ2(θ(k)), we increase λ by a factor of 10, set k = k+1
and go back to (*).

• If χ2(θ(k) + δθ(k)) < χ2(θ(k)), we decrease λ by a factor of 10, update the

trial solution θ(k) → θ(k) + δθ(k), set k = k + 1 and go back to (*).

• Stopping criterion: changes in parameters that yield changes in χ2 by an
amount ≪ 1 are not statistically meaningful.

• When finished, use the Hessian to compute the estimated covariance ma-
trix (cov(θ(k),θ(k)) = 2H−1

k ). The latter allows you to obtain errors in
the fitted parameters or correlations among them.
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11.4.1. Computer Implementation: Straight Line Fit. The update
rule is:

θ(k+1) = θ(k) − (Hk + λdiag[Hk])
−1∇θχ

2(θ(k))

where

Hk ≡ H(θ(k)) =


∂2χ2

∂θ21
. . . ∂2χ2

∂θ1∂θp
...

...
∂2χ2

∂θp∂θ1
. . . ∂2χ2

∂θ2p


We have already seen how to compute the gradient vector ∇θχ

2(θ(k)) =

(∂χ
2

∂θ1
, . . . , ∂χ

2

∂θp
)T .

In the case of the linear model,

y(x|θ) = Ax+B.

The gradient of χ2

χ2({(xi, yi)}|θ) =
n∑

i=1

(yi −Axi −B)2

σ2i

has the two components we previously found:

(∇χ2)A =
∂χ2

∂A
=

n∑
i=1

−2
σ2i

(yi −Axi −B)xi

(∇χ2)B =
∂χ2

∂B
=

n∑
i=1

−2
σ2i

(yi −Axi −B)

whereas the Hessian matrix has 4 components:

∂2χ2

∂A2
=

n∑
i=1

2x2i
σ2i

∂2χ2

∂A∂B
=

n∑
i=1

2xi
σ2i

∂2χ2

∂B∂A
=
2xi
σ2i

∂2χ2

∂B2
=

n∑
i=1

2

σ2i

The matrix Hk and its diagonal are:

Hk =

∑n
i=1

2x2
i

σ2
i

∑n
i=1

2xi

σ2
i

2xi

σ2
i

∑n
i=1

2
σ2
i

 , diag[Hk] =

∑n
i=1

2x2
i

σ2
i

0

0
∑n

i=1
2
σ2
i

 .
The inverse of a 2× 2 matrix is easily obtained from the formula(

a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
.

For larger matrices, there are formulas to compute them. In the imple-
mentation of the algorithm on a computer, however, you will often resort
to numerical techniques to obtain matrix inverses. In MATLAB you can



38011. Writing Custom Code for Data Fitting and Optimization in MATLAB

use the INV command. There is also the pseudo-inverse PINV which works
better when matrices are nearly singular.

For example, try

>> A=[1 2 ; 3 4]

A =

1 2

3 4

inv(A)

ans =

-2.0000 1.0000

1.5000 -0.5000

and compare with the above formula. You should also check that this matrix
inverse satisfies the definition of the inverse of a matrix: A−1A = 1 = AA−1:

inv(A)*A

ans =

1.0000 0

0.0000 1.0000

A*inv(A)

ans =

1.0000 0

0.0000 1.0000

See Problem 137 for a complete implementation.

11.5. Curve Fitting by Simulated Annealing

Here is a possible MATLAB implementation of the Metropolis Monte-Carlo
algorithm for curve fitting in the case of our previous example of an expo-
nential decay function with noise.
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1 % FIT EXP MC - Metropolis Monte-Carlo implementation of the curve
2 % fitting method
3

4 % create a 'fake' data set
5 tdata=linspace(0,10,100);
6 a=500; b=2; c=40;
7 % let's do an exponential decay
8 ydata=a*exp(-tdata/b)+c;
9 % and then add some gaussian random noise

10 sigma=30; % standard dev. of noise
11 ydata=ydata+sigma*randn(size(ydata));
12 figure;plot(tdata,ydata,'o-'); % visualize
13

14 theta k=[1 1 1]; % starting point, can pick randomly or not
15 % theta k=50*rand([1 3]); % randomly pick starting point
16 sigmai=sigma*ones(size(ydata)); % assume error is constant for all
17 % measurements
18 T=1; % start with high temperature
19 for j=1:9999,
20 A=theta k(1); % extract current value of A from the vector as
21 B=theta k(2); % extract value of B
22 C=theta k(3); % extract C
23 f=A*exp(-tdata/B)+C; % fitting model function
24 figure(1); hold off; plot(tdata,ydata,'bo-'); hold on;
25 plot(tdata,f,'r'); drawnow;
26 chi2=sum((1./(sigmai.ˆ2)).*(ydata-A*exp(-tdata/B)-C).ˆ2) ...
27 /length(sigmai);
28 ∆theta=0.05*randn([1 3]); % random displacement vector
29 theta kp1 = theta k + theta k.*∆theta; % make random change in ...

parameters
30 An=theta kp1(1); Bn=theta kp1(2); Cn=theta kp1(3);
31 chi2n=sum((1./(sigmai.ˆ2)).*(ydata-An*exp(-tdata/Bn)-Cn).ˆ2)/ ...
32 length(sigmai);
33 ∆E=chi2n-chi2;
34 if (∆E < 0), % accept the move
35 theta k=theta kp1;
36 else, % else reject the move with probability P
37 R=rand; P=exp(-∆E/T);
38 if (P > R),
39 theta k=theta kp1;
40 end;
41 end;
42 T=T-0.01*T; % cooling schedule
43 fprintf(' iter=%d A=%f B=%f C=%f chi2=%f ∆E=%f T=%f \r', ...
44 j, theta k(1), theta k(2), theta k(3), chi2, ∆E, T);
45 end

A sample run proceeds as follows:

fit exp mc

iter=1 A=332.450122 B=9.823360 C=9.608963 chi2=11.692912

deltaE=1.817395 T=0.990000
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iter=2 A=332.450122 B=9.823360 C=9.608963 chi2=13.510307

deltaE=2.439683 T=0.980100

iter=3 A=317.456609 B=9.534128 C=9.311598 chi2=13.510307

deltaE=-1.658223 T=0.970299

iter=4 A=303.398269 B=9.540513 C=9.180057 chi2=11.852084

deltaE=-0.779770 T=0.960596

.

.

.

iter=665 A=521.159989 B=2.552933 C=4.891518 chi2=1.126674

deltaE=0.202851 T=0.001251

iter=666 A=521.159989 B=2.552933 C=4.891518 chi2=1.126674

deltaE=0.158424 T=0.001239

We have limited the number of iterations. However, in real implementations,
a better criterion can be used, monitoring the value of χ2 to see if it changes
significantly or not. I get something like this:

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

You should also try different initial guesses and check that the method is
less sensitive to the choice of initial conditions as compared to the determin-
istic algorithms. It is easy to check, for example, that the steepest descent
method does not work for the following choice of initial parameters, [1 ...

1 1], because these parameters are too far from their true values.

11.6. Curve Fitting by Genetic Algorithm

The code below uses the ga command in MATLAB to fit experimental data
to a model. Notice how the particular example below uses the l1 norm
instead of the l2 norm (χ2). Recall the definition (Eq. 3.3) of lp norm of a
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vector x⃗:
∥x⃗∥p = (|x1|p + · · ·+ |xn|p)1/p .

In data fitting problems the length of the vector x⃗ equals the number of
data points. When we have a norm, we can define a distance function as:

d(x⃗, y⃗) = ∥x⃗− y⃗∥p.
With ga or simulated annealing there is no need to limit our discussion to
χ2, because we do not need to compute derivatives of the cost function,
as was the case for least squares methods. Global optimization algorithms
only need to compute the value of the cost function, not its derivatives.
This means that any suitable distance function (distance between model
and data) may be used.

1 xx=linspace(0,10,100);
2 yy=50*(1-2*exp(-0.5*xx));
3 yy=yy+10*randn(size(yy));
4 figure;
5 axes;
6 plot(xx, yy, 'b+');
7

8 fun = @(p) p(1)*(1-p(2)*exp(-p(3)*xx));
9 objFun = @(p) norm(fun(p)-yy,1);

10

11 options = optimoptions('ga','ConstraintTolerance', ...
12 1e-6,'PlotFcn', @gaplotbestf,'MaxStallGenerations', ...
13 500,'MaxGenerations',1000);
14

15 sol = ga(objFun, 3,[],[],[],[],[],[],[],options);
16

17 figure;
18 axes;
19 plot(xx, yy, 'b+');
20 hold on
21 plot(xx, fun(sol), 'r-');
22 legend({'Data points', 'Fitted Curve'});

11.7. Extrema Search by Newton Raphson Method

See Problem 137.

11.8. Extrema Search by Simulated Annealing

Can you explain what the code below does and how it works? What search
(what type of extrema) is it performing? See also Problem 137.

1 clear
2 syms x
3 f=@(x) sin(x*0.01*pi)+0.25*sin(x*0.01*pi*5)+0.15*sin(x*0.01*pi*12);



38411. Writing Custom Code for Data Fitting and Optimization in MATLAB

4

5 figure(1); ezplot(f,[60 160]);
6

7 x=70; % start point
8 stepsize=5; % std dev
9 % measurements

10 T=1; % start with high temperature
11 for j=1:600,
12 xn=x+stepsize*randn(size(x));
13

14 % keep x within bounds!
15 if (xn > 160), xn=160; end;
16 if (xn < 60), xn=60; end;
17

18 figure(2); clf; ezplot(f,[60 160]); hold on;
19 plot(x,f(x),'ro'); drawnow; pause(0.1); % slow down!
20

21 DeltaE=f(xn)-f(x); % DeltaE = final - initial
22 if (DeltaE < 0), x=xn; % accept move
23 else, % else reject the move with probability P
24 R=rand; P=exp(-DeltaE/T);
25 if (P > R), x=xn; end;
26 end;
27 T=T-0.01*T; % cooling schedule
28 fprintf([' iter=%d f=%f DeltaE=%f T=%f \r'],j,f(x),DeltaE,T);
29 end;

11.9. Problems

Problem 134. Create a fake data set to simulate a linear relationship
y(x) = A + Bx between two random variables X and Y (plus noise). Use
the analytical formulae (Eqs. 5.1 and 5.2) we obtained in Chapter 5 for the
coefficients A and B to compute their values.

Solution. Here is MATLAB code that will do the job:

1 A=10; B=5; n=10000;
2 x=linspace(0,1,n);
3 y=A+B*x + 1.0*randn(size(x));
4 figure; plot(x,y,'o');
5 % compute slope and intercept (least squares, linear regression)
6 D=n*sum(x.ˆ2)-(sum(x))ˆ2;
7 A=(1/D)*(sum(x.ˆ2)*sum(y)-sum(x)*sum(x.*y))
8 B=(1/D)*(n*sum(x.*y)-sum(x)*sum(y))

The output is as follows:

A =
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9.9941

B =

5.0030

The intercept (9.9941) is fairly close to the true value (10). The slope
(5.0030) is close to the actual one (5). ■

Problem 135. Create a fake data set for an exponential decay plus baseline,
plus additive Gaussian noise:

1 tdata=linspace(0,10,100);
2 a=500; b=2; c=40;
3 ydata=a*exp(-tdata/b)+c;
4 sigma=30; % standard dev. of noise
5 ydata=ydata+sigma*randn(size(ydata));
6 figure;plot(tdata,ydata,'o-');

(Addition of the noise with the randn command will introduce errors in the
fitted parameters which you must determine.) Choose the model to be:

y(x) = A exp(−x/B) + C

Write a MATLAB program to implement the Gauss-Newton method (where
the Hessian matrix is approximated by 2JT

k Jk, where Jk is the Jacobian ma-
trix at the k-th iteration). Compare its performance to the Newton method.
Does it converge faster or slower, how accurate are the results, and what
do the errors in the fitting parameters compare? Errors in the fitting pa-
rameters are obtained as the square root of the diagonal elements of the
covariance matrix, cov(θ(k),θ(k)) = 2H−1

k , where Hk is the Hessian matrix

of χ2(θ(k)) and H−1
k is its inverse (see Sections 8.7.1 and 6.18).

Repeat the same exercise, except write MATLAB code to implement the
Levenberg method. Compare method performance to Newton and Gauss-
Newton methods.

Repeat the same exercise, except write MATLAB code to implement the
Marquardt-Levenberg method. Compare method performance to Newton,
Gauss-Newton and Levenberg methods.

Solution. These problems do not have unique solutions (everyone’s code
can be different). However, the calculations for Jacobian matrix and other
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quantities are straightforward and follow procedures similar to what we did
in class at the science learning center. ■

Problem 136. Write your own MATLAB code (as simple as possible) to
implement the Newton-Raphson method as a way:

(a) to find the zeros of the function

f(x) = x3 − 9x2 + 2x+ 8 on the interval [−2, 9].
Does the ability to find zeros depend on choice of initial condition? What
algorithm do you think the MATLAB command fzero uses by default?
Compare the performance of your code against the output of the fzero

command.

(b) use Newton Raphson (and comparing with fzero) to find the point x
where exp(− exp(−x)) = x.

Solution. (a) Here is my code for the fzero command:

1 t=linspace(-2,9,100);
2 for j=1:length(t),
3 y(j) = fzero( @(x) (xˆ3-9*xˆ2+2*x+8), t(j) );
4 end;

The idea here is that fzero does a local search (see documentation: help

fzero) and requires a starting point for x. It will then find a nearby zero. If
there are more than 1 zeros, we must loop this starting point over the domain
of x. In the above code the vector y contains a list of zeros that were found.
In the case of the above function, there are 3 zeros over the domain [−2, 9]:
-0.8070, 1.1444 and 8.6625. (The algorithm finds the zeros within some
finite precision; hence the obtained numerical values in y corresponding to
the same zero may differ beyond some significant figure.). The algorithm
used is discussed in the MATLAB documentation

https://www.mathworks.com/help/matlab/ref/fzero.html

Algorithms

The fzero command is a function file. The algorithm,

created by T. Dekker, uses a combination of bisection,

secant, and inverse quadratic interpolation methods.

An Algol 60 version, with some improvements,

is given in [1]. A Fortran version, upon which fzero

is based, is in [2].

Here is my code for the Newton-Raphson method:
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1 clear
2 syms x
3

4 f=@(x) x.ˆ3-9*x.ˆ2+2*x+8;
5

6 fp=matlabFunction(diff(f,x)); % f'(x)
7 fpp=matlabFunction(diff(fp,x)); % f''(x) only needed for newton method
8

9 figure(1);
10 subplot(3,1,1),ezplot(f,[-2 9]);
11 subplot(3,1,2),ezplot(fp,[-2 9]);
12 subplot(3,1,3),ezplot(fpp,[-2 9]);
13

14 xn=108; % start point
15 for j=1:50,
16 figure(2); clf; e=ezplot(f,[-2 9]); hold on; plot(xn,f(xn),'ro');
17 drawnow; pause(0.1);
18 % xn=xn-0.1*(fp(xn)/fpp(xn)); % newton method (find extrema)
19 xn=xn-0.1*(f(xn)/fp(xn)); % newton-raphson method (find zeros)
20 if (xn>9), xn=9; end;
21 if (xn<-2), xn=-2; end;
22 end;
23 xn

(b) Left as an exercise. (The above code can be modified accordingly.) ■

Problem 137. The following function of two independent variables (x1, x2),

f(x1, x2) = 20 + x21 + x22 − 10(cos 2πx1 + cos 2πx2),

is plotted below:

As the plot shows, this function has many local minima. However, the
function has just one global minimum, which occurs at the point [0 0] in the
x1-x2 plane, as indicated by the vertical line in the plot, where the value of
the function is 0. At any local minimum other than [0 0], the value of the
function is greater than 0. The farther the local minimum is from the origin,
the larger the value of the function is at that point. As you can imagine,
because this function has many local minima, it is difficult for standard,
gradient-based methods to find the global minimum.
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(a) Write MATLAB code to execute a gradient-based search (steepest de-
scent) and show that the algorithm can at best find a local minimum near
the starting point. Choose a starting point far from the global minimum,
i.e. |x1| > 3 and |x2| > 3. On the other hand, show that if you pick a
starting point near the origin (but not at the origin), the gradient search
can find the global minimum. How far away from the origin can you pick the
starting point, such that the search will still find the global minimum (i.e.
such that beyond this radius, only a local minimum can be found)? In your
algorithm, plot the function as a surface or contour plot, and indicate the
position of the gradient-based search as function of time, so we can visualize
the progress of the gradient search.

(b) Write simulated annealing code to search for the global minimum and
show that the global minimum can always be located, regardless of the
starting point.

Solution. (a) Here you are free to implement steepest descent, Newton,
Gauss-Newton or Levenberg-Marquardt. We provide 2 examples; as you
can see the code is fairly simple. For the Newton method:

1 % Newton method in 2D
2 syms x1 x2
3 f = @(x1,x2) 20+x1.ˆ2+x2.ˆ2-10*(cos(2*pi*x1)+cos(2*pi*x2)); % f
4 G=matlabFunction(gradient(f,[x1,x2])); % gradient of f
5 H=matlabFunction(hessian(f,[x1,x2])); % hessian of f
6

7 x=1*randn([2 1]); % initial position (x1,x2)
8 for j=1:50,
9 x=x-pinv(H(x(1),x(2)))*G(x(1),x(2)); % Newton update rule

10 figure(1); clf; ezcontour(f,[-4,4]); hold on;
11 plot(x(1),x(2),'ro'); drawnow; pause(0.5);
12 fprintf(' iter=%d f=%f x1=%f x2=%f \n',...
13 j,f(x(1),x(2)),x(1),x(2));
14 end;

Note: in line 7, initial conditions are chosen randomly (randn). This can
cause problems if the initial conditions are close to the edge of the figure (the
domain of display is [-4 4] in line 10). It’s possible that the ‘red dot’ may
disappear from the screen. Feel free to experiment with manual settings for
the initial conditions, i.e. replace line 7 with deterministic conditions such
as x=[0.2 0.3];

For the Levenberg-Marquardt method:

1 % Marquardt-Levenberg method in 2D
2 syms x1 x2
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3 f = @(x1,x2) 20+x1.ˆ2+x2.ˆ2-10*(cos(2*pi*x1)+cos(2*pi*x2)); % f
4 G=matlabFunction(gradient(f,[x1,x2])); % gradient of f
5 H=matlabFunction(hessian(f,[x1,x2])); % hessian of f
6

7 x=1*randn([2 1]); % initial position (x1,x2)
8 lambda=0.001;
9 for j=1:50,

10 hess=H(x(1),x(2));
11 f before=f(x(1),x(2));
12 xn=x-pinv(hess+lambda*diag(diag(hess)))*G(x(1),x(2)); % update rule
13 f after=f(xn(1),xn(2));
14 figure(1); clf; ezcontour(f,[-4,4]); hold on;
15 plot(x(1),x(2),'ro'); drawnow; pause(0.5);
16 fprintf(' iter=%d f=%f x1=%f x2=%f lambda=%f \n',...
17 j,f(x(1),x(2)),x(1),x(2),lambda);
18 if (f after ≥ f before), lambda=lambda*10;
19 else lambda=lambda/10; x=xn;
20 end;
21 end;

Note: the MATLAB command diag is invoked twice in a row (see line 12),
i.e. diag(diag(hess)). The first use of diag extracts the diagonal elements
of the matrix hess and returns a vector. The second instance of diag takes
this vector and creates a matrix with all zeros everywhere except along the
diagonal. The net result is the creation of a matrix whose diagonal is equal
to the diagonal of hess and zero values off-diagonal.

(b) The following code converges in less than 4,000 steps. Initial temperature
was T=12. Step size was 0.4. Cooling schedule was set to -0.1% per step.

1 syms x1 x2
2 f = @(x1,x2) 20+x1.ˆ2+x2.ˆ2-10*(cos(2*pi*x1)+cos(2*pi*x2)); % f
3 x=1*randn([2 1]); % initial position (x1,x2)
4 T=12; % starting temperature
5 for j=1:20000,
6 figure(1); clf; ezcontour(f,[-4,4]); hold on;
7 plot(x(1),x(2),'ro'); drawnow; %pause(0.1);
8 dx=0.4*randn(size(x)); % make random move
9 f before=f(x(1),x(2));

10 f after=f(x(1)+dx(1),x(2)+dx(2));
11 dE=f after-f before; % change in energy
12 if (dE < 0), x=x+dx; % accept the move
13 else, % else reject move with probability P
14 R=rand; P=exp(-dE/T);
15 if (P > R), x=x+dx; end;
16 end;
17 T=T-0.001*T; % cooling schedule
18 fprintf(' iter=%d x1=%f x2=%f E=%f dE=%f T=%f \n', ...
19 j,x(1),x(2),f(x(1),x(2)),dE,T);
20 end
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■

Problem 138. Let X and Y be independent, identically distributed normal
(Gaussian) random variables with mean 0 and variance 1. Write a computer
program to generate random values for X and Y . (Generate a very large
number of pairs X,Y .) For each pair (X,Y ), compute the radius R =√
X2 + Y 2. Plot the probability density (i.e., histogram) for R. Obtain the

resulting distribution.

Solution. R follows a Rayleigh distribution. Also known as “Rice” or “Ri-
cian” distribution. Only 4 lines of code are needed to plot this distribution:

1 X=randn([1 10000]);
2 Y=randn([1 10000]);
3 R=sqrt(X.ˆ2+Y.ˆ2);
4 figure;hist(R,50);
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For those interested in a formal proof: consider the two-dimensional vector
(x, y) which has components that are Gaussian distributed, that is, p(x) =
e−x2/2σ2

√
2πσ2

, and the same for p(y). Denote with r the length r =
√
x2 + y2. It

is distributed as

p(r|σ) = 1

2πσ2

∫ ∞

−∞
dx

∫ ∞

−∞
dy e−x2/2σ2

e−y2/2σ2
δ(r −

√
x2 + y2).

(The Dirac delta function is used to enforce the constraint that r must equal
the length of the vector (x, y).) By transforming to polar coordinates one
has

p(r|σ) = 1

2πσ2

∫ 2π

0
dϕ

∫ ∞

0
dρ δ(r − ρ)ρe−ρ2/2σ2

=
r

σ2
e−r2/2σ2

which is the Rayleigh distribution. ■
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Problem 139. Write a MATLAB program to fit an exponentially decaying
signal. The signal (ydata) can be simulated using the following sequence of
commands (the code below generates the signal and adds noise):

1 tdata=linspace(0,10,100);
2 a=500; b=2; c=40;
3 ydata=a*exp(-tdata/b)+c;
4 sigma=30; % standard dev. of noise
5 ydata=ydata+sigma*randn(size(ydata));
6 figure;plot(tdata,ydata,'o-');

You are allowed to use the following built-in MATLAB commands to fit the
data: fit, fminsearch, fminbnd, fminunc, fmincon, lsqnonlin, ...

lsqcurvefit. You are not allowed to use graphical user interfaces such as
cftool - although it might be a useful exercise to experiment with it, as a
way to double-check the performance of your method.

Problem 140. A number x is called a zero of a function f if and only if
f(x) = 0. One way to find zeros is to sketch the graph of the function. For
example, consider the function f(x) = x3 − 4x2 − 11x + 30. The following
code could be used for this purpose:

1 f=@(x) x.ˆ3-4*x.ˆ2-11*x+30;
2 x=linspace(-10,10,200);
3 y=f(x);
4 plot(x,y);
5 axis([-10,10,-100,100]);
6 grid on;

As you can see, the zeros are evident from the plot. You can also double-
check that the zeros are indeed zeros. Suppose that the zeros are −3, 2, 5.
Then type:

1 x=[-3,2,5];
2 f(x)

(a) In MATLAB check that x = −1 and x = 3 are zeros of the function
f(x) = x2−2x−3 by plotting the function and identifying the zero crossings.
(Plotting can be done as explained above, or an even easier way is to use
the command ezplot.)

(b) Find the zeros of f(x) = x4 − 29x2 − 132.

(c) Use the MATLAB command fzero to find the zeros for the functions in
(a) and (b). Does fzero give you a more accurate result than the graphical
method?
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(d) Use the command fzero to solve the following equation 5−2x = e−0.25x

for x.

(e) Use the fzero command to find the zeros of the functions below on the
given domain:

f(x) = 9− 4x− x2 on [−7, 3]
f(x) = 2x2 − x− 8 on [−3, 4]

f(x) = x3 − 9x2 + 2x+ 8 on [−2, 9]
(You will need to read the instructions on how to use the fzero command
on an interval.)

Problem 141. We previously found that for an unrestricted random walk,
the statistics of the random walker after n steps (histogram of Sn) follow
a Gaussian distribution whose variance scales with n. Write two MATLAB
codes to simulate 1) a random walk with and 2) without boundary. For
boundary: Place the boundary at some distance from the origin, but close
enough, so that the particle hits the boundary. The boundary is reflective:
when the particle hits the boundary, instead of crossing it, it is reflected
back to the direction of origin. Plot the statistics of this random walk. The
resulting distribution is clearly non-Gaussian. What distribution do you
find?

Problem 142. Explain what this MATLAB code does. (pinv is nearly the
same as inv.) What type of problem is it solving?

1 syms x1 x2
2 f = @(x1,x2) 20+x1.ˆ2+x2.ˆ2-10*(cos(2*pi*x1)+cos(2*pi*x2)); % f
3 G=matlabFunction(gradient(f,[x1,x2])); % gradient of f
4 H=matlabFunction(hessian(f,[x1,x2])); % hessian of f
5 x=1*randn([2 1]); % initial position (x1,x2)
6 for j=1:50, % # of iterations
7 x=x-pinv(H(x(1),x(2)))*G(x(1),x(2));
8 figure(1); clf; ezcontour(f,[-4,4]); hold on; %plot
9 plot(x(1),x(2),'ro'); drawnow;

10 fprintf(' iter=%d f=%f x1=%f x2=%f \n',...
11 j,f(x(1),x(2)),x(1),x(2));
12 end;

Solution. This code implements the Newton method to iteratively find a
local extremum of the function f . ■

In the three problems below you will need a data set to work with. Choose
a data set to analyze, either: 1) by finding data on the internet (a search
for ’free public data sets’ will turn up many results), 2) pick a data set from
a lab experiment if you have such data sets or 3) create a fake data set
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{(xi, yi)} as we did previously, but make sure there is enough noise contam-
ination so that the fitting task is somewhat challenging. It may be easier
to use the same data set and models for both local and global optimization
problems.

Problem 143. Write MATLAB code to implement the Gauss-Newton method.
Pick a suitable model {y(xi|θ)} with at least 3 parameters (e.g. no straight
lines fit please). The model must be nonlinear in the fitting parameters to
justify the use of this nonlinear least squares method. Derive the necessary
equations for the Jacobian matrix entries. Program the resulting expressions
into your MATLAB code. Every line of code must be justified (insert com-
ments with % as needed). Do not use a for loop to loop over iterations as we
have done in class. Instead, use a while loop (see MATLAB documentation
for the while statement). Loop over iterations until the fractional change
in χ2 relative to its weighted average for the last 10 iterations changes by
an amount less than 10−3, i.e.

while abs((chi2-chi2last5)/chi2last5) > 1e-3,

...

end

where chi2 is the last value of chi2 and chi2last5 is the average value of
chi2 for the previous 5 iterations. If the value 10−3 is too restrictive and
convergence is too slow, relax this requirement and explain why you had to
do so.

Problem 144. Fit a data set to an appropriate model using a global search
algorithm. The model should have at least 3 fitting parameters. You may
impose reasonable constraints on the search, such as positivity of certain
coefficients (if applicable). However, if you choose to enforce constraints,
make sure they are grounded in sound physical arguments (as opposed to
designing constraints that force the algorithm to find a pre-determined so-
lution). You may use the MATLAB global optimization toolbox and any of
the algorithms provided in it. One such algorithm is the Genetic Algorithm
(command ga); there are others too.

Problem 145. Local optimization algorithms stop at the nearest extremum,
whereas global optimization algorithms can find the global optimum. Illus-
trate this in the context of Problems 143 and 144 (or in a separate demon-
stration) by showing that global optimization finds the global extremum
regardless of initial conditions whereas the solutions found by local searches
strongly depend on the choice of initial conditions. Try at least 5 wildly
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different choice of initial conditions for the fitting parameters and record
how many iterations are needed to reach a solution. Compare the case of
local vs global optimization. If you use MATLAB’s ga command the initial
parameters are called Initial Population. See:

https://mathworks.com/help/gads/genetic-algorithm-options.html

In earlier versions of MATLAB one sets the InitialPopulationMatrix

https://mathworks.com/help/gads/gaoptimset.html

https://mathworks.com/help/optim/ug/

optim.problemdef.optimizationproblem.optimoptions.html



Chapter 12

Review of Math
Concepts

12.1. Solving Systems of 2 Equations and 2 Unknowns

To solve for N unknowns in N equations we can use the matrix inverse. The
formula for the inverse of a 2× 2 matrix is:(

a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
.

The cross product ad − bc is the determinant of the 2 × 2 matrix. Stu-
dents unfamiliar with matrix inverses should check that the inverse of this

2 × 2 matrix A =

(
a b
c d

)
, denoted A−1, satisfies the following conditions:

AA−1 = I and A−1A = I. Here, I is the 2× 2 identity matrix, I =

(
1 0
0 1

)
.

In the Section 5.1.2 we needed to solve:

An+B
∑

xi =
∑

yi

A
∑

xi +B
∑

x2i =
∑

xiyi.

This is done by rewriting it in matrix form:(
n

∑
xi∑

xi
∑
x2i

)(
A
B

)
=

( ∑
yi∑
xiyi

)
.

395
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Multiplying both sides on the left by the inverse of

(
n

∑
xi∑

xi
∑
x2i

)
, we solve

for A,B:

(12.1)

(
A
B

)
=

(
n

∑
xi∑

xi
∑
x2i

)−1( ∑
yi∑
xiyi

)
.

Here, the inverse of that matrix is:

(12.2)

(
n

∑
xi∑

xi
∑
x2i

)−1

=
1

∆

( ∑
x2i −

∑
xi

−
∑
xi n

)
.

Substitution of (12.2) into (12.1) gives the final result:(
A
B

)
=

1

∆

(∑
x2i
∑
yi −

∑
xi
∑
xiyi

n
∑
xiyi −

∑
xi
∑
yi

)
, ∆ = n

∑
x2i − (

∑
xi)

2.

12.2. Changing Variables Under the Integral Sign

We often need to change variables under the integral sign to express the
probabilistic integral in terms of known probability densities. At the same
time, we should use a convenient coordinate system where the integrals can
be computed.

Suppose that we want to integrate f(u, v) over a region R. Under the inverse
of the transformation u = u(x, y), v = v(x, y) the region R becomes S and
the double integral becomes∫∫

R
f(u, v) dudv =

∫∫
S
f(u(x, y), v(x, y))

∣∣∣∣∂(u, v)∂(x, y)

∣∣∣∣ dx dy,
where ∂(u,v)

∂(x,y) is the Jacobian determinant:

∂(u, v)

∂(x, y)
≡

∥∥∥∥∥∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

∥∥∥∥∥ =
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x
.

If we look at the area elements, we see that the Jacobian plays the role of a
scaling factor indicating by how much the area element is scaled in the new
coordinates:

dudv =

∣∣∣∣∂(u, v)∂(x, y)

∣∣∣∣ dx dy.
This idea extends to multi-dimensional integrals, where the Jacobian repre-
sents the scaling of the volume element, etc. To avoid cluttering, I will often
use the shorthand notation ∂xu = ∂u

∂x , etc. for partial derivatives.

For those who don’t remember the change-of-variables formula, there is an-
other method which does not require you to remember anything except for
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the alternating algebra of differential forms. du and dv are differential 1-
forms (covector fields). The product dudv should instead be viewed as a
“wedge product” du∧dv, which is a 2-form. A 2-form du∧dv is an oriented
area element spanned by the covectors du and dv. In the left hand side we
replace dudv by the wedge product du∧dv∫∫

R
f(u, v) dudv =

∫∫
R
f(u, v) du ∧ dv

Then, viewing u and v as functions of x and y, we expand du and dv as
total differentials:

du(x, y) = (∂xu)dx+ (∂yu)dy

and
dv(x, y) = (∂xv)dx+ (∂yv)dy.

Then we form the wedge product of du and dv:

du ∧ dv = [(∂xu)dx+ (∂yu)dy] ∧ [(∂xv)dx+ (∂yv)dy] ,

When distributing the product, we apply the rules of the alternating algebra:
since dx ∧ dy is an oriented area element spanned by the covectors dx and
dy, we have that dx ∧ dy = −dy ∧ dx (sign flipped because we have an
“oriented area element” and this amounts to changing from the left hand
rule to the right hand rule in a cross product), dx∧ dx = 0 and dy ∧ dy = 0
(zero because the area spanned by two collinear vectors is zero). We are left
with:

du∧dv = (∂xu)(∂yv)dx∧dy+(∂yu)(∂xv)dy∧dx = (∂xu ∂yv−∂yu ∂xv)dx∧dy.
You will recognize the coefficient of dx ∧ dy on the right hand side as the

Jacobian determinant ∂(u,v)
∂(x,y) . Thus, the alternating algebra of differential

forms took care of calculating the determinant for us. This works in any
number of dimensions.

Let us work out an example. Suppose that we have an integral∫∫
R
f(x, y) dx dy

and want to change from Cartesian to polar coordinates, i.e.

x = r cos θ, y = r sin θ.

The total differentials are:

dx(r, θ) = ∂rx dr + ∂θx dθ = cos θ dr − r sin θ dθ
dy(r, θ) = ∂ry dr + ∂θy dθ = sin θ dr + r cos θ dθ.

Forming the wedge product dx ∧ dy:

dx ∧ dy = [cos θ dr − r sin θ dθ] ∧ [sin θ dr + r cos θ dθ] .
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Applying the rules dθ ∧ dθ = 0, dr ∧ dr = 0 and dr ∧ dθ = −dθ ∧ dr, we are
left with:

dx ∧ dy = r cos2 θ dr ∧ dθ − r sin2 θ dθ ∧ dr = r dr ∧ dθ,

which is the familiar area element in polar coordinates.

Now let us return to the example of the previous section where we had
the integral

∫∫
pU (u)pV (v)dudv, where v = z and u = zy. Writing dudv

as a wedge product du ∧ dv, expanding the total differentials: du(y, z) =
zdy+ydz and dv(y, z) = dz yields du∧dv = zdy∧dz, where z is the Jacobian
determinant that was sought and dy ∧ dz are the new integration variables.
The alternating algebra of differential forms automatically computes the
determinant for us.

12.3. Leibniz Formula

The Leibniz formula for differentiation of integrals (the Leibniz integral rule)
is:

d

dy

(∫ b(y)

a(y)
f(x, y) dx

)
=

∫ b(y)

a(y)

∂

∂y
f(x, y) dx︸ ︷︷ ︸
1

+ f
(
b(y), y

)
· b′(y)︸ ︷︷ ︸

2

− f
(
a(y), y

)
· a′(y)︸ ︷︷ ︸

3

which consists of the sum of three terms: in the first one the differentia-
tion is carried out inside the integral; the remaining two terms are surface
(boundary) terms. This formula will help you compute PDFs from CDFs.

Let’s look at an example of obtaining the PDF from the CDF P(Y < y)
when X ∼ N (µ, σ2) and Y = eX , by differentiating with respect to y. Since
the y dependence occurs only in the upper limit of the integral, only the
second term in the Leibniz formula is non-zero:

pY (y) ≡
dP(Y < y)

dy
=

d

dy

∫ log y

−∞

1√
2πσ2

e−(x−µ)2/2σ2
dx

=
1√
2πσ2

e−(log y−µ)2/2σ2 · 1
y
.

This particular PDF is also known as the log-normal distribution.

12.4. Infinitesimals

It is important to know how to work with infinitesimals. Let us take the
link between CDF and PDF as an example. Denoting the CDF as P(X <
x) = F (x), let us Taylor expand F (x + ϵ) about the point x (here ϵ > 0 is
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a small quantity):

(12.3) F (x+ ϵ) = F (x) + ϵ · F ′(x) + o(|ϵ|)
where F ′(x) = dF (x)/dx and o(|ϵ|) denotes higher order terms (in this case
ϵ2 and higher powers of ϵ) which decay to 0 faster than ϵ in the limit ϵ→ 0:

lim
ϵ→0

o(|ϵ|)
|ϵ|

= 0,

so that taking the limit ϵ → 0 in Eq. (12.3) leads to F (x + ϵ) = F (x) +
ϵdF (x)/dx. Taking ϵ = dx (infinitesimal) this can be rewritten as:

F (x+ dx)− F (x) =���F (x) + dx · F ′(x) + o(|dx|)−���F (x) = dF (x) + o(|dx|),
since F ′(x) = dF (x)/dx. Thus, as dx → 0 (without being equal to 0) the
term o(|dx|) vanishes and we have that

(12.4) F (x+ dx)− F (x) = dF (x).

(This is only true if dx is an infinitesimal. In that case, dF is the total
differential of F .)

Denote the CDF as F (x) ≡ P(X < x) and recall the interpretation of
the PDF. Given a random variable X its PDF pX(x) times dx gives the
probability that X will lie in the interval (x, x+ dx):

pX(x)dx = P(x ≤ X ≤ x+ dx) = P(X ≤ x+ dx)− P(X ≤ x) = dP(X ≤ x),

where dF (x) = F (x + dx) − F (x) was used in the last step. In the second
equality we have made use of the definition of the “probability function”
P(·) as an integral of the PDF, i.e.

P(a ≤ X ≤ b) =
∫ b

a
pX(x)dx =

∫ b

−∞
pX(x)dx−

∫ a

−∞
pX(x)dx

= P(X ≤ b)− P(X ≤ a)
hence P(x ≤ X ≤ x + dx) = P(X ≤ x + dx) − P(X ≤ x). Another way to
look at the quantity P(x ≤ X ≤ x + dx) is the integral of the PDF from x
to x+ dx

P(x ≤ X ≤ x+ dx) =

∫ x+dx

x
pX(x′)dx′ = pX(x)dx.

The last equality follows because the integral is a Riemann sum containing
only 1 term. It contains only 1 term because the interval [x, x+ dx] where
the integral is carried out is infinitesimally small.
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So integrating from a to b we get the probability thatX takes values between
a and b:∫ b

a
pX(x′)dx′ =

∫ b

a
P(x ≤ X ≤ x+ dx) =

∫ b

a
[P(X ≤ x+ dx)− P(X ≤ x)]

=

∫ b

a
dP(X ≤ x) = P(X ≤ b)− P(X ≤ a)

=P(a ≤ X ≤ b).

If the interval (a, b) is chosen to be (−∞, x) we get the CDF:1∫ x

−∞
pX(x′)dx′ = P(−∞ ≤ X ≤ x) = P(X ≤ x).

Differentiating with respect to x yields a method for obtaining the PDF
from the CDF:

(12.5)
dP(X ≤ x)

dx
= pX(x).

So now you know how to go from PDF to CDF or from CDF to PDF. The
two concepts are related to each other by an integral or a derivative. If you
are asked to obtain the probability distribution of a rv you can derive either
the PDF or the CDF. In general, obtaining the CDF is easier because fewer
steps are needed and the interpretation of the CDF in terms of probability
is also simpler.

12.5. Taylor’s Theorem in Several Variables

Because nonlinear optimization methods make extensive use of partial deriva-
tives, here we review partial derivatives and the Taylor’s theorem in multiple
variables. We will show how to compute the partial derivatives of 1/r, where
r = |r| and r has components r = (x, y, z). r is its Euclidean length:

|r| ≡ r ≡
√
x2 + y2 + z2.

12.5.1. Einstein summation convention. To keep the notation neat
(uncluttered), we will use the Einstein summation convention. Whenever
two indices are repeated in the same term, a summation is implied. For
example, in the dot product of u = (ux, uy, uz) and v = (vx, vy, vz) we have:

u · v = uαvα ≡
3∑

i=1

uivi = uxvx + uyvy + uzvz.

It is simpler to write uαvα than the entire summation.

1Notice that we wrote P(X ≤ x) instead of P(−∞ ≤ X ≤ x) because the statement that X ≥ −∞
is always true and therefore, unnecessary or redundant.
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12.5.2. Multivariate Taylor expansion. In 1D the Taylor expansion of
f(x+ h) at x is:

f(x+ h) = f(x) + f ′(x)h+
1

2
f ′′(x)h2 +

1

3!
f (3)(x)h3 + . . .

In n-D, a scalar-valued function f(x), where x ∈ Rn, is expanded as:

f(x+ h) = f(x) +
n∑

i=1

∂f(x)

∂xi
hi +

1

2

n∑
i=1

n∑
j=1

∂2f(x)

∂xi∂xj
hihj

+
1

3!

n∑
i=1

n∑
j=1

n∑
k=1

∂3f(x)

∂xi∂xj∂xk
hihjhk + . . .

12.5.3. Abbreviation for Partial Derivatives. We will often use the
shorthand notation to abbreviate the notation for partial differentiation:

∂α ≡
∂

∂xα
In this notation, and using the summation convention, the multivariate Tay-
lor expansion looks particularly neat:

f(x+ h) = f(x) + hi∂if(x) +
1

2
hihj∂i∂jf(x) +

1

3!
hihjhk∂i∂j∂kf(x) . . .

(summation convention). The vectors h have been moved to the left-hand-
side of all derivative operators to avoid any possible confusion about which
quantity is differentiated.

12.5.4. Example: Derivative of 1/r. The first order partial derivative
of

1

r
≡ 1

|r|
=

1√
x2 + y2 + z2

with respect to x is:

∂

∂x

(
1

r

)
≡ ∂x

(
1

r

)
= −1

2

(2x)

(x2 + y2 + z2)3/2
= − x

r3
.

Similar expressions are found for differentiation with respect to y or z. Thus,
for any component α = x, y, z we have:

∂

∂rα

(
1

r

)
≡ ∂α

(
1

r

)
= −rα

r3
.
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