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Nanopolaritonics with a continuum of molecules: Simulations
of molecular-induced selectivity in plasmonics transport through
a continuous Y-shape
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Using the recent NF (near-field) formulation for electrodynamics on the nanoscale, we simulate trans-
port in a Y-shape gold nanostructure in the presence of 2-level molecules. NF is shown to be easily
integrated with the Liouville equation, producing a simple and efficient nanopolaritons (plasmons-
excitons) solver, with a large time step. Two cases are considered: coating of the gold structure with
molecular layers thinner than the structure, and filling space with aligned molecules. In both cases
significant effects on the radiation transport are obtained even for low molecular densities. At low
densities the effects are primarily an overall reduction of the plasmonics peak, but at higher densi-
ties there is a significant selectivity control by the molecules. A redshift is predicted, especially for
the space-filling case. The combined nanopolariton shows qualitative hybridization, and the spectral
peaks separate with increasing coupling, i.e., with increasing molecular densities. The results open
the way to “control of light by light,” i.e., controlling plasmonic light transport by inducing a change
in the direction of the guiding molecular dipoles through radiation or other means. © 2011 American
Institute of Physics. [doi:10.1063/1.3663279]

I. INTRODUCTION

There is growing interest in the merging of molecules
and electromagnetism.1–12 The reason is the simultaneous
top-down scaling of electromagnetic phenomena from far-
field small size nanofeatures, as well as the experimental
abilities of bottom-up increase in the size of molecular ag-
gregates. Thus, it is natural that there is a merging region,
where molecules can influence electromagnetic features on
the nanoscale. This will extend the well-known field of light-
matter interaction to near-fields where electromagnetic radia-
tion propagates through nanoplasmons, where molecules can
offer new emergent properties of influencing plasmonic fields.

In recent articles,1–5 we investigated the effect of a sin-
gle molecule which can direct the motion of electromag-
netic radiation between two weakly coupled metal objects
(i.e., the molecules can influence plasmon transfer). As this
is an example of a small scale polariton (i.e., molecular
exciton+plasmon), we labeled it as nanopolaritonics. Here,
we extend the treatment to studying effects of a large ensem-
ble of molecules on a single Y-shaped plasmonics structure.
We are interested in how selective is the transfer to the molec-
ular density and what is the nature of the resulting spectra.
Furthermore, in future articles we will add a layer of control
by studying the changes in the transfer as a function of exci-
tation of the molecules by an external laser. This should lead
to control of light bending on the nm scale.

Theoretically, the treatment of the combined
light+matter problem is a challenging problem due to
the differing length scales. However, since the length scales
are very small (the size of the studied features is no more
than ∼30 nm) we can employ the recent NF (near-field)

simulation technique,13 where only the near-field Poisson-
like longitudinal components are considered (this formalism
is the time-dependent version of the instantaneous Poisson
algorithm in frequency space, e.g., Ref. 14). The main ad-
vantage is the time scale which is unrelated to the velocity of
light, and therefore is much larger than in the usual Maxwell
finite-difference time domain (FDTD) algorithm.15–17

Here, we first couple the treatment of metals and of
molecules by combining NF with a time-dependent evolution
of molecular density matrices (Sec. II). We then study, in Sec.
III, the selectivity of plasmonic motion along a Y-shape. The
main difference between the physical system here and in the
single-molecule studies is the larger transfer as we consider
both a single contiguous metal shape as well as a large num-
ber of molecules. At low densities there is an overall reduction
in transfer, while at higher densities there is an effective hy-
bridization of the molecular and plasmonics field that leads to
selectivity, as discussed in the conclusions, Sec. IV.

II. FORMULATION

Below we outline the treatment of the electromagnetic
and molecular parts. The overall method is evaluated, in prac-
tice, in a leap-frog algorithm where the polarizations and elec-
tric fields are evaluated at times 0, dt, 2dt,. . . while the cur-
rents, as well as the molecular density matrices represented
later, are represented at times dt/2, 3dt/2, . . .

A. Electromagnetism: NF

The electromagnetic radiation is treated in the NF (near-
field) approximation (for details, see Ref. 13), where the field
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is assumed longitudinal; this approximation is valid in the
limit where features are much smaller than a wavelength, as
employed here, or alternately can be viewed as a c → ∞ ap-
proximation. The NF approach is also a time-dependent ver-
sion of the frequency-based Poisson approach.

The starting point in NF is the assumption that the electric
field is the sum of a longitudinal term from a potential with
an external field,

E(r, t) = −∇φ(r, t) + Eext (r, t), (1)

where the total potential is obtained from the convolution of
an overall charge density, i.e.,

φ(r, t) =
∫

ρ(r′, t)
|r − r′|dr′. (2)

The overall charge density is obtained from

ρ(r, t) ≡ −∇ • P(r, t). (3)

Here, P is the total polarization. In the article where we in-
troduced NF (Ref. 13), the polarization was purely due to
dynamical part of the index of refraction (Pp below). Here,
the polarization also includes the contribution of a molecular
layer, Pm,

P(r, t) = Pp(r, t) + Pm(r, t). (4)

The two contributions to the polarization are discussed below.
The physical limit of NF’s validity is that the features

considered should be much smaller than (up to ∼15%–25%
of) a wavelength; in practice,13 features should be smaller
than 50 nm for light in the near-IR to near-UV range. For
such small feature sizes retardation effects can be ignored so
that the Poisson equation, Eq. (2), could be used. Further, for
small feature sizes the transverse contribution to the electric
fields due to the vector potential can be ignored.

B. Plasmonic contribution

First, Pp(r, t) is evaluated from the electric field by stan-
dard FDTD type techniques; i.e., it is formally related to the
electric field through a time-dependent kernel,

Pp(r, t) =
∫ t

−∞
χ (r, t − t ′) E(r, t ′)dt ′, (5)

where the more familiar version of this expression is in
Fourier space,

Pp(r, ω) = (ε(r, ω) − ε0)Ep(r, ω). (6)

Then, as usual, the index of refraction for each material is fit-
ted to a Drude form, which makes the calculations convenient,
as explained below,

ε(r, ω) = ε0 + ε0

N∑
j=1

βj (r)

ω̄j (r)2 − ω2 − iωαj (r)
. (7)

Here, N is a finite number of terms (for gold we use
N = 8 terms, see Ref. 13 for details). Dielectrics can be han-
dled by an extension, to be discussed in a future article. Equa-

tions (6) and (7) are then recast as

Pp =
∑

j=1,...,N

Pj , (8)

where the individual Lorentzians polarizations fulfill, in fre-
quency space,

(ω̄j (r)2 − ω2 − iωαj (r))Pj (r, ω) = ε0βj E(r, ω), (9)

so that their time-evolution equation is

∂Jj (r, t)
∂t

= −αj (r)Jj (r, t) − ω̄j (r)2Pj (r, t) + ε0βj E(r, t),

(10)
where

Jj (r, t) = ∂Pj (r, t)
∂t

, j = 1, . . . , N. (11)

Note that Pj, Jj refer to the plasmonic contribution alone, i.e.,
they are due to the frequency-dependent part of the index-of-
refraction; in principle they should have been denoted as Pp, j,
Jp, j, but we omit the “p” index to avoid cluttering.

The fundamental electrodynamical variables (supple-
mented by the molecular part below) are therefore the 2N
vectors, Jj(r, t) and Pj(r, t), which are propagated by Eqs.
(10) and (11). These equations are discretized by a leap-frog
algorithm, where the currents and polarizations are given in
an alternating time grid, i.e.,

Jj

(
r, t + dt

2

)
= 1 − αj (r)dt

2

1 + αj (r)dt

2

Jj

(
r, t − dt

2

)

− dt

1 + αj (r)dt

2

(
ω̄2

j Pj (r, t) − ε0βj E(r, t)
)
,

(12)

and

Pj (r, t + dt) = Pj (r, t) + dtJj

(
r, t + dt

2

)
. (13)

C. Molecular part

The molecular part of the polarization is obtained by
evolving the time- and space-dependent density matrices. We
denote the local molecular density by n(r) (it could be time-
dependent but this is not essential). Then the local molecular
polarization is

Pm(r, t) = n(r)Tr(μ(r)D(r, t)), (14)

where we defined the local dipole moment operator and
density matrices, respectively. Note the difference between
the molecular density n(r) – which is the local number of
molecules per volume – and the molecular charge density, de-
fined as

ρm(r, t) = −∇ · Pm(r, t). (15)

Of course, the two densities are related since the polarization
is proportional to the molecular density.
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At each point r, the density matrix is propagated using a
Liouville equation,

i
dDij (r, t)

dt
= [FE(r, t),D]ij − i
ij (D − D0)ij , (16)

where we introduced the total Fock operator, made from a
field-independent part and an electromagnetic component,

FE,ij (r, t) ≡ F 0
ij (r, t) − μij (r) • E(r, t), (17)

and μ is the transition dipole moment (often diagonal in a lo-
cal basis). Here, we use a field which varies in space but is
assumed to be constant over the molecule, corresponding to
the dipole approximation; note however that in this formula-
tion the electric field does not need to be locally constant, as
the potential within a molecule rj could have been interpolated
from the values on a grid of φ(r, t), as will be shown in future
articles.

For the damping, we take the simplest possible (T1, T2)
form


ij =
{ 1

T2
i �= j

1
T1

i = j,
(18)

where now the i,j terms refer to an adiabatic basis.
There are several approaches for propagating the Liou-

ville equation simultaneously with the NF approach – either
iterations of Eq. (16) or with exponentials. Two typical ap-
proaches used are outlined in the Appendix, and either way
propagates D(r, t − dt

2 ) → D(r, t + dt
2 ).

Finally, the output of the density matrix propagation is
the molecular current,

Jm

(
r, t + dt

2

)
= −in(r)Tr([F,D]μ). (19)

The molecular polarization is calculated, for consistency, as

Pm (r, t + dt) = Pm (r, t) + dtJm

(
r, t + dt

2

)
. (20)

D. Propagation summary

The resulting formalism is very simple, and the coupling
is through the electric field. It can be summarized as

� After each integer number of time step, t = ndt, calcu-
late the total charge density from the combined polar-
ization, Eqs. (3) and (4).

� From the charge density, calculate the potential and
then the instantaneous electric field at time t = ndt,
using Eqs. (1) and (2).

� Then use Eq. (12) to propagate the electrodynamical
currents by a single time step to yield, Jj (r, t + dt

2 )
� In addition, propagate the molecular current, Jm(r, t)

using the Liouville equation, to get Jm(r, t + dt
2 ).

� Use Eqs. (13) and (20) to yield from the resulting elec-
trodynamical and molecular currents to get the polar-
izations at the next time step, Pj(r, t + dt) (where
t + dt = (n + 1)dt), and repeat the cycle.

E. Two-level systems

Here we apply the combined NF-Schrödinger formalism
to two-level systems. The zero-field Fock operator is

F 0 =
(

− λ0
2 0

0 λ0
2

)
, (21)

and the dipole is off-diagonal in the adiabatic basis,

μ =
(

0 γ

γ 0

)
ĝ,

where ĝ is the direction of the molecule, so the dipole moment
is

Jm(r, t) = −2n̄(r)γ λ0ĝImD12(r, t). (22)

The propagation of the Liouville equation is discussed in the
Appendix.

Note that the two-level systems are fully coupled to each
other (i.e., there is full exciton-exciton coupling) because they
interact with the total electric field, and therefore with the to-
tal potential, which in turn has a component due to the un-
derlying molecular density variation in space. To see this ex-
plicitly, note that the full potential, Eq. (1), can be divided to
plasmonic and molecular contributions

φ(r, t) = φp + φm =
∫

ρp(r′, t)
|r − r′| dr′ +

∫
ρm(r′, t)
|r − r′| dr′

= −
∫ ∇ • Pp(r′, t)

|r − r′| dr′ −
∫ ∇ • Pm(r′, t)

|r − r′| dr′,

(23)

where the respective potentials and densities are defined by
the equation. Equation (23) shows clearly that the molecules
are coupled to each other’s polarization, so that even if there
is no metal the formalism could still be used to describe the
local exciton-exciton coupling.

F. Initial conditions

The initial conditions are straightforward; the currents
and polarizations vanish, and the density matrix is at its equi-
librium value

Pj (r, t = 0) = Pm(r, t = 0) = 0, Jj

(
t = −dt

2

)
= 0,

D(r, t = 0) =
(

1 0
0 0

)
.

The only nonvanishing part is the external field. It is simplest
to use a delta function in time,

Eext (r, t) = E0,ext (r)δ(t), (24)

i.e.,

Eext (r, n dt) =
{

E0,ext (r)
dt

n = 0

0 n > 0.
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FIG. 1. Schematic drawing of the metal gold Y-shape. An external electric
field pulse is applied on the left (red circle), and the surrounding molecular
medium influences the direction the current takes (up or down). The boxed
regions indicate where the currents are measured (back, up, and down, re-
spectively).

Since we are interested in propagation, we apply a Gaussian
pulse in the x-direction,

E0,ext (x, y, z) = E0 exp

(
− (x − x0)2

�2

)
x̂.

As long as the initial field is sufficiently small, the results are
independent of it (i.e., in the linear response regime), so we
used E0 = 0.0001 a.u.

III. APPLICATIONS

We apply the formalism to a Y-shape system (see Fig. 1
for schematics). Within the Y-shape, we use the Drude param-
eters for gold from Ref. 13 Other parameters are delineated in
Table I and below.

The initial electric field pulse is applied along the x-
direction, and the resulting summed current is measured along
the two outlying directions (up and down), i.e., the upper
and lower quarters of the grid, as well as the back part (see

TABLE I. Parameters. All distances are in nm, but the results scale if all
distances are scaled up or down as long as the overall dimension is signifi-
cantly smaller than a wavelength. Other parameters are described in the re-
sults section.

Y-shape left arm: length × width × depth 16 × 3.1 × 5
Right arm: length × width × depth 10 ×2 × 5
Angle between Y-shape arms 1010

Time step 2.5 a.u.∼ 0.07 fs
Grid spacing, dx 0.5
Pulse width, � 2
xmax,ymax,zmax dx/2 * (64-1,64-1,32-1)
Dt 3 a.u.
dtm 0.5 a.u.

Fig. 1),

Eu ≡
∫

|J(r, ω)|2θ
(
y − ymax

2

)
dr,

Ed ≡
∫

|J(r, ω)|2θ
(ymin

2
− y

)
dr,

Eback ≡
∫

|J(r, ω)|2θ
(xmin

2
− x

)
dr,

where we presumed the origin is at the center of the grid.
The results were scaled overall, as they depend linearly on
the initial current. The integrated intensity of the current is
not exactly the total energy, which depends on the dielectric
constant, but is indicative of the transmission.

Most calculations were done with a grid spacing of
0.5 nm; we checked that a (64 × 64 × 32) grid was sufficient.
The Y-shape parameters are delineated in the table.

Further, in most calculations the molecules were pre-
sumed to be oriented along the ĝ = (1, 1, 0)/

√
2 direction.

The maximum molecular absorption is for an energy of λ0

= 1.36 eV, and the molecule has a mildly narrow absorption
feature, with T2 = 14.5 fs, associated with a width of 1/T2

= 0.045 eV. We used T1 = 4 T2, but it generally made little
difference since it is quite large.

Two cases are considered: molecules which fill all space
outside the fork shape (so n̄(r) is constant in space outside the
fork) and a separate case where the molecules coat the fork. In
the coated-fork case the molecules extend beyond the perpen-
dicular directions (y,z) of the fork by 1.25 nm; i.e., for each
point in space which is outside the fork but within a distance
of 1.25 nm in y and z from the fork surface, n̄(r) is constant;
outside that coating (and also within the metal fork itself) n̄(r)
vanishes.

The crucial parameters are the molecular density and
transition dipole moments. Figure 2 shows the resulting trans-
mission as a function of frequency for several molecular den-
sities and a transition dipole moment fixed at 2 a.u. In this
figure, the molecular density is coated on the Y-shape; the
coating width, 1.25 nm, is below the width of the Y-shape
(5 nm in the out-of-plane axis z, and 3.1 nm, and 2 nm for the
incoming and outgoing arms, respectively, in the y-direction).
However, the results scale with geometry due to the Poisson
NF method used, so that identical-looking figures will emerge
if the Y-shape size and coating would have been multiplied by
any constant factor, as long as the overall features are much
smaller than a wavelength.

As a comparison, Figure 3 shows the transmission for
a related case where now the molecules fill the whole space
(i.e., the whole grid). The two figures show several interesting
trends.

First, higher density is required in the coated case, as ex-
pected as it involves fewer molecules, although in both cases
the densities are low (0.7–13 vs. 3–27 molecules per nm3 for
the space-filling and coated cases, respectively).

Second, the behavior with density is reminiscent of an
hybridization18 between the molecular degree of freedom and
the plasmon resonance,1, 10 and the hybridization is propor-
tional to the molecular density which is the linear parameter
coupling the two regions.
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FIG. 2. Coated Y-shape; energies (scaled overall) in the two Y-shape arms
(up and down) and in the back arm as a function of frequency for a Y-shape
coated with molecules, for several molecular densities.

Third, for the coated case, at low molecular densities the
dominant effect is not the selectivity, but is instead a reduction
of the overall absorption. This is understandable since most of
the molecules are not in the transition region near the Y-shape
center, so that they affect the transmission similarly but just
cause a change in the effective dielectric constant, leading to
a change in the absorption feature.

Figure 4 shows an expanded part of Fig. 3 at frequencies
between 1–1.5 eV, for a high molecular density (27 molecules
per nm3). Interestingly, in this case very high selectivity re-

FIG. 3. Space-filling molecules: Analogous to Fig. 2, but for a space-filled
with molecules. Here, a discernible gating effect (up vs. down) is evident at
lower densities, and there is stronger redshifting. Note the smaller peak at the
highest density, expanded in Fig. 4.

sults in this particular frequency range. We speculate that
this is due to the overlap of this region with the molecular
resonance. Specifically, note that in this case the plasmon-
ics current is damped in the direction of the molecular dipole
(positive-x-positive-y), pointing to a possible interference ef-
fect at these frequencies.

Finally, we compare in Fig. 5 the overall molecular-
current squared to the squared plasmonics current,∫

|Jm(r, ω)|2dr,
∫

|Jp(r, ω)|2dr
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FIG. 4. An expanded view of Fig. 3 for a high molecular density case. Very
strong selectivity emerges due to the interaction with the molecular resonance
at 1.36 eV.

(where the molecular parts includes the density, squared in the
formula), for the coated case, at two densities. As noted, the
molecular current can be quite appreciable, but is generally at
higher frequencies.

IV. DISCUSSION

The simulations presented here show several properties.
First, molecular coating and dielectric effects can markedly
influence the selectivity of transport of plasmons in the
nanoregime, This effect has been advocated for smaller
molecules (even single molecule) for the weaker transport be-
tween two metal structures; here, a continuous structure is
taken, so a larger number of molecules is used.

Second, the most important lesson is how little molecular
density is needed to affect the direction to which light is scat-
tered. The overall densities needed are quite small; in fact, at
higher densities the molecular currents will dominate over the

FIG. 5. Molecular vs. plasmonics currents for the coated case, for two den-
sities; for the higher molecular density, the molecular current is scaled down
(by a factor of 16) for easier comparison to the plasmonics current.

plasmonics currents, due to the larger number of electrons per
molecule.

In the small-feature limit, which is way below a wave-
length, the results scale completely with the size of the fea-
tures (i.e., the overall currents are unchanged when the den-
sities are fixed and the geometries are scaled up or down).
Thus, our results have general validity through a large range
of nanofeatures, from ∼2 nm (above which the Maxwell lo-
cal susceptibility approximation is expected to make sense)
all the way to overall feature sizes as larger as ∼50 nm.

Third, an interesting feature is the shift of the plas-
mon resonances with increasing density, especially when the
molecules fill the space (rather than coated) – the overall shift
starts at lower densities, while at higher densities selectivity
emerges. This is because the overall shift is controlled by the
dielectric constant effects on the full plasmon, while the se-
lectivity is controlled by the response near the center of the
Y-shape where the electric fields split.

Finally, we note that while the simulations with gold
resulted in IR frequency absorption, different materials will
shift the overall frequencies from the IR to optical and even
UV region. Such shifts could be used to switch light into
different cutoff waveguides or spectral filters. Light control
shifts will allow, as mentioned above, to switch “light by
light” (or through other means such as change of pH, or elec-
trically) on the nanoscale.
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APPENDIX: 2-LEVEL PROPAGATION

The two-level systems is propagated here, D(t − dt
2 )

→ D(t + dt
2 ), by splitting the molecular time step, dt, to M

finer steps

dtm = dt

M
,

and then applying one of the two approaches. The simplest is
to apply M times,

D → D + dtm
dD

dt
.

Alternately, for a two-level system, we can use a three-step
part; in the first step the effect of the damping over half-time
step is calculated as

D̃

(
t − dtm

2

)
= W

(
D

(
t − dtm

2

))
,

where the matrix operator W is defined as

D̃ij

(
t − dtm

2

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp
(
− dtm

2T2

)
Dij

(
t − dtm

2

)
i �= j

exp
(
− dtm

2T1

)
D22

(
t − dtm

2

)
i = j = 2

1 − D̃22
(
t − dtm

2

)
i = j = 1

.

(A1)
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Then the Fock part is propagated as

D′
(

t + dtm

2

)
= UD̃

(
t − dtm

2

)
U †

where

U = exp

(
−i

dtm

2
F

)
. (A2)

For 2-level systems, we use a Pauli matrix notation for the
Fock operator,

Fdtm = −μ • E(r, t)dtmσx − λdtm

2
σz = v • σ,

v =
(

−μ • E, 0,−λ

2

)
dtm = vv̂,

v ≡ dtm

√
(μ • E)2 + λ2

4
,

(A3)

so that

U = exp (−iv • σ ) = cos (v) I − i sin (v) v̂ • σ

= cos (v) I − i
sin (v)

v
Fdtm,

and finally the density matrix is damped again using the same
transformation as before,

D

(
t + dtm

2

)
= W

(
D′

(
t + dtm

2

))
.
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