
THE JOURNAL OF CHEMICAL PHYSICS 137, 051103 (2012)

Communication: Monte Carlo calculation of the exchange energy
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In recent generalized Kohn-Sham (GKS) schemes for density functional theory (DFT) Hartree-
Fock type exchange is important. In plane waves and grid approaches the high cost of exchange
energy calculations makes these GKS considerably more expensive than Kohn-Sham DFT calcu-
lations. We develop a stochastic approach for speeding up the calculation of exchange for large
systems. We show that stochastic error per particle does not grow and can even decrease with sys-
tem size (at a given number of iterations). We discuss several alternative approaches and explain
how these ideas can be included in the GKS framework. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4743959]

The importance of exchange energy is deeply rooted in
electronic structure theory since its early days.1–3 The ex-
change energy can be calculated directly from an expression
involving the molecular orbitals or approximately through
local or semilocal density functionals.4–8 Recent advances
have shown that hybrid and range-separated hybrids (RSHs)
are essential for applications involving charge localization-
delocalization,9–11 charge transfer,12 and orbital gaps.13 In
these methods an explicit orbital exchange is added to the en-
ergy function, having the Fock-like form:

E
γ

X = −1

4

∫∫
|ρ(r1, r2)|2uγ (r12)d3r1d

3r2, (1)

where ρ(r1, r2) ≡ 2
∑

n φn(r1)φn(r2)∗ is the density matrix
and φn(r), n = 1, . . . , N/2 are the orthonormal generalized
Kohn-Sham (GKS) orbitals, N is the number of electrons, and
uγ (r12) = γ /r12 in hybrids (usually γ ≈ 0.2−0.25) or uγ (r12)
= erf(γ r12/a0) for RSHs, with γ ≈ 0.5. Application of such
an exchange energy functional in GKS calculations involves a
considerably higher numerical cost than for KS calculations.
This is especially true in calculations based on a plane-waves
(PW) basis or a real space grid, where evaluation of the ex-
change operator is O(N2) more expensive than the evaluation
of the kinetic energy operator, as opposed to the cost of the
Hartree operator which is O(N−1) less expensive. This scal-
ing makes the treatment of orbital exchange in systems com-
posed of hundreds of orbitals extremely challenging. Methods
that significantly reduce the numerical effort of exchange are
thus important for progress in modern DFT applications. (For
references on PW/real space implementation of explicit or-
bital exchange, see, e.g., Refs. 14–17; further, PW implemen-
tations can use auxiliary basis techniques to solve the explicit
exchange problem in a localized basis—as in, e.g., Ref. 18—
leading to an O(N2) calculation.)

Here we study the option of using Monte Carlo (MC)
methods for calculating the exchange energy. The Monte
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Carlo approach allows reduction of the algorithmic scaling in
return for a statistical error in the calculation. The statistical
error per electron is δεX = 1

N

√
σ 2

I
, where σ 2 is the variance

of one Monte Carlo step and I is the number of iterations.
We will give theoretical arguments and numerical evidence
that the Monte Carlo process can be formulated so that σ 2

is approximately proportional to N. The statistical error per
electron δεX is then proportional to 1√

NI
, showing that for a

required level of accuracy per electron the number of Monte
Carlo iterations I is proportional to 1

N
. Thus the larger the

system, the smaller the number of Monte Carlo iterations re-
quired, at a given level of relative accuracy. This property is
useful, e.g., for ab initio molecular dynamics which targets
statistical mechanical and thermodynamical properties of liq-
uids, water being an important example.

To start, let ψn be any orthonormal set of orbitals for
which ρ(r1, r2) ≡ 2

∑
n ψn(r1)ψn(r2)∗. One obviously has,

in terms of the GKS orbitals:

ψn(r) =
N/2∑
m=1

φm(r)Unm, (2)

where U is an arbitrary N/2 × N/2 unitary matrix. Our method
introduces the stochastic wave function:

χ (r) =
∑

n

eiθnψn(r), (3)

where the phases θn are N/2 mutually independent real ran-
dom numbers. We also use the following notations: 〈 〉I means
an average over I random samples of phases {θn}N/2

n=1 and
→ means convergence in the limit when I → ∞. It is straight-
forward to see that

〈χ (r1)χ (r2)∗〉I → 1

2
ρ(r1, r2)

(4)

〈|χ (r)|2〉I → 1

2
n(r),
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FIG. 1. The Hartree-Fock (uγ (r12) = 1/r12) exchange energy per electron (dotted line) of (H2O)m (m = 2, 5, 10, and 20) and the Monte Carlo estimates based
on Eq. (6) using the canonical (HF) orbitals (blue line) and localized orbitals (red line). The statistical error bars at 105 iterations are given as well (based on
data of Figure 2). Note that in panels (c) and (d) the calculations with canonical orbitals are far from convergence even at 105 iterations, but we have verified
that they will eventually converge if a much larger number of iterations (106–107) is used.

where n(r) is the electron density and

〈|χ (r1)|2|χ (r2)|2〉I
→ 1

4
n(r1)n(r2) + 1

4
|ρ(r1, r2)|2

−
N/2∑
n=1

|ψn(r1)|2|ψn(r2)|2. (5)

These equations result from the statistical inde-
pendency of the phases leading to 〈ei(θn−θm)〉I → δnm

and 〈ei(θn−θm+θk−θl )〉I → δnmδkl + δnlδkm − δnlδkmδnmδkl . As a
side note, we see that χ is not an “orbital” in the usual, single
electron sense, as it represents, through ensemble averaging,
the N electron system in its entirety; its norm is in general of
order N. Rearranging (4) and substituting in Eq. (1) gives the
following MC estimate of the exchange energy:

E
γ

X,I ≡ E
γ

H

(
1

2
n

)
− 〈

E
γ

H (|χ |2)
〉
I
−

N/2∑
n=1

E
γ

H (|ψn|2), (6)

where E
γ

H is the Hartree-like integral

E
γ

H (f ) ≡
∫∫

f (r1)f (r2)∗uγ (r12)d3r1d
3r2. (7)

E
γ

X,I is a random variable with mean E
γ

X (or in the notation
above E

γ

X,I → E
γ

X) and variance σ 2/I, where σ 2 is estimated
as

σ 2 ≈ 〈
E

γ

H (|χ |2)2
〉
I
− 〈

E
γ

H (|χ |2)
〉2
I
. (8)

Loosely, we defined the statistical error (SE) as

SE =
√

σ 2

I
. (9)

In Figure 1 the Monte Carlo estimates of the exchange
energy per (valence) electron are shown for clusters of water
molecules of several sizes.19 All calculations are done using
plane waves and norm conserving pseudopotentials20 and on
a grid with spacing �x = 0.5a0. The single molecule calcula-
tions are enabled by using an image screening procedure.21

The blue trace in each pallet of Figure 1 shows that the
stochastic oscillations grow mildly as the size of the cluster
grows. Thus it seems that the squared variance in the energy
per electron is proportional to the number of electrons in the
system, σ 2∝N. However, in the following section we show
that this scaling can be reduced.

For each choice of unitary matrix U in Eq. (2) E
γ

X,I is
a random variable sampled from a distribution of mean E

γ

X
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independent of U but a variance σ 2 which does depend on it
and so a good choice of U is beneficial for fast convergence.
In order to understand how σ 2 can be reduced, consider an
extreme ideal case where the orbitals ψn(r) are fully localized,
i.e., L = 0, where

L ≡
∑
n�=m

∫
|ψn(r)|2|ψm(r)|2d3r. (10)

In this case, the variance σ 2 is zero (i.e., one gets
ρ(r1, r2) = χ (r1)χ (r2)∗ exactly for any choice of phases)
and so the exchange is obtained exactly in one iteration. Of
course such an ideal situation almost never occurs in practice,
but one can strive to minimize L. Alternatively, one can max-
imize L′ where L = 1

4 ∫ n(r)2d3r − L′, and

L′(U ) =
∑

n

∫
|ψn(r)|4d3r. (11)

(Procedures for finding the maximally localized orbitals
have been discussed extensively in the literature in other
contexts.22) Indeed, in Figure 1 we show the MC samples of
E

γ

X,I as a function of I when localized orthogonal orbital are
used in red. Comparing it to the samples obtained with the
GKS orbitals, the statistical error is now much smaller.

We study the statistical error
√

σ 2 per electron in wa-
ter clusters of M monomers ((H2O)M) in Figure 2. For small
clusters, localization does not make an essential difference in
the statistical error; however, in the larger clusters localization
has a dramatic effect. When localized orbitals are used, the
statistical error per monomer for large clusters does not grow
and even decreases as the system size grows. To understand
this, it is instructive to examine the following idealized case,
where the result can be determined analytically. Consider a
system composed of M disconnected (non-overlapping) iden-
tical monomers. Clearly, one can then perfectly localize or-
bitals on each of the monomers separately and the MC pro-
cess with these orbitals has a total variance of σ (M)2 = Mσ 2

1 ,
where σ 2

1 is the variance of one monomer. The statistical er-
ror per monomer is therefore σ (M)/M = σ1/

√
M , i.e., it de-

creases as M grows. In connected systems one cannot expect
the statistical error per electron to be reduced at this ideal rate

FIG. 2. Square root of the Hartree-Fock (uγ (r12) = 1/r12) exchange energy
variance per electron for water clusters (H2O)M, M = 1, 2, 5, 10, and 20, using
HF orbitals (blue triangles) and maximally localized orbitals (red diamonds).
For I MC iterations the statistical error is this variance divided by

√
I (see

Eq. (9)).

of 1/
√

M but if orbitals can be reasonably localized, one will
see lowering of the variance per electron or per monomer.
(Note that as the system grows bigger fewer Monte Carlo it-
erations are required for overall bulk properties, and eventu-
ally for a very large system, bulk properties, or general per-
electron quantities, can be calculated by a single iteration, be-
cause then the system becomes essentially a large ensemble
resulting in an ensemble average.)

We now discuss how to incorporate the MC method in
GKS calculations. The GKS energy functional will include
the usual deterministic terms (kinetic energy, and external,
Hartree, local XC potentials) and an energy estimate obtained
from an average over I iterations (Eq. (6)). For a given (con-
stant) set of random phases one can find the orthonormal or-
bitals ψn that minimize this energy functional. This is an issue
for further research, and we note here only that for the mini-
mum search one will require the variation of the energy with
respect to ψn, which gives, in addition to the usual determin-
istic terms a “stochastic” part, which for real orbitals is given
by

δ
〈
E

γ

H (|χ |2)
〉
I

δψn(r)
= −Re

〈∫ |χ (r ′)|2
|r − r ′|d

3r ′χ (r)e−iθn

〉
. (12)

Note that this quantity is obtained almost “for free” as a
by-product of the calculation of 〈Eγ

H (|χ |2)〉I .
Upon closing, we note two additional stochastic cal-

culation schemes of the exchange energy. First, a version
involving real phases. Define η(r) = ∑

j ajφj (r) and ζ (r)
= ∑

j bjφj (r), with aj and bj real independent random vari-
ables, sampled from ±1, so that 〈ajbk〉 = 0, 〈ajak〉 = δjk, 〈bjbk〉
= δjk. The exchange energy is then EX = − 1

2 〈Eγ

H (ζ (r)η(r))〉,
where the averaging is on the a’s and b’s. A different ap-
proach altogether is to represent the exchange energy as EX

= −N
2 〈uγ (r12)〉, where the average is over random 6D config-

urations (r1, r2) sampled from ρ(r1, r2) using a Metropolis
random walk.

So far, we have described a new stochastic method for
calculating the exchange energy in GKS/Hartree-Fock (HF)
calculations. We have given theoretical and numerical evi-
dence that the stochastic error in the exchange energy per
electron can be made to decrease as system size grows. Future
work involves two directions: first, involve the combination
of the methods produced here within a GKS/HF SCF calcu-
lation. In a stochastic hybrid GKS application of exchange,
only a fraction γ of exact exchange enters the energy equa-
tion. For a given level of statistical error, this will result in
less iterations, by a factor γ −2. The hybrid functionals have,
typically γ = 0.2 and range-separated hybrids, such as BNL
(Baer-Neuhauser-Livshits, see Refs. 23 and 24) with a typi-
cal range parameter γ = 0.5. Both functionals have a sim-
ilar reduction in the exchange energy, and therefore in the
statistical error.

The second direction of future work is the choice of sam-
pled quantity and improved sampling. We considered the vari-
ance of the total exchange energy; in practice energy differ-
ences and forces are more important, and correlated sampling
is expected to be useful for retaining the same relative accu-
racy. The overall scaling of the suggested approach depends
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on the desired quantity and the level of the localization used,
and has therefore a large range. At one extreme, localization
with fixed error per electron, scaling of order I × Nw log Nw,
where Nw is the number of plane waves or grid points. I is
the number of required MC samplings, a constant of order
105–106. Thanks to the localization, the effort in preparing
a stochastic wave function is of order Nw and not Nw × N

and thus does not change the scaling. At the other extreme is
a metallic system for which localization is impossible (e.g.,
a metallic system where the fragments are entangled over
a large range), and further, a fixed total error is desired. In
this case, the scaling is dominated by the preparation of the
stochastic wave functions and is of order I × Nw × N . Other
cases (e.g., localized basis set and fixed total error) lie in be-
tween these two extremes. Scaling can be improved consid-
erably if we use selective sampling (so basis sets near a spa-
tial or energy region of interest are sampled more often while
most other basis functions are sampled rarely). This will be
studied in future work.

The above scaling of the MC approaches can be com-
pared with an N2 × Nw log Nw scaling for non-stochastic
methods not utilizing local orbitals and N × Nw log Nw when
local orbitals can be used. Thus the stochastic method is ex-
pected to be more efficient in the limit N > I; the crossover
point which determines which method will be more or less
efficient will depend on the details of implementations and on
the specific system. The present simulations, of course, are
quite far from the crossover point so that the Monte Carlo
method took more than two orders of magnitude than the tra-
ditional non-stochastic approach.

To conclude, the method described here is the first step
in constructing a fully variational GKS approach to electronic

structure based on a large given set of random phases. It opens
a route for improved performance for DFT calculations in-
volving exact exchange in very large systems.
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