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ABSTRACT: A fast stochastic method for calculating the second order Møller-Plesset
(MP2) correction to the correlation energy of large systems of electrons is presented.
The approach is based on reducing the exact summation over occupied and
unoccupied states to a time-dependent trace formula amenable to stochastic sampling.
We demonstrate the abilities of the method to treat systems with thousands of
electrons using hydrogen passivated silicon spherical nanocrystals represented on a
real space grid, much beyond the capabilities of present day MP2 implementations.

Post Hartree−Fock (HF), fifth rung density functional
theory (DFT) and many-body perturbation theory

(MBPT) calculations are of importance for the estimation of
observables dependent on correlation energy in large systems.
Examples include the calculation of cohesion energies and
molecular geometries, phonon/vibrational properties in large
molecules,1−11 electron dynamics,12−15 and quasiparticle
energies and gaps in nanocrystals.16−23 Application of such
methods in a straightforward way to large systems of
experimental relevance is often hampered by the steep scaling
of the computational effort (CPU time and memory) with
system size. This is mainly due to the huge number of
electron−electron Coulomb integrals needed for the calcu-
lation, namely between all pairs of occupied and unoccupied
orbitals. The problem is especially critical for grid-based
calculations, where the number of unoccupied orbitals easily
reaches millions. Thus, accurate first principles post HF/DFT
methods cannot treat but the smallest systems, and there is an
urgent need for new ideas to overcome the formidable barriers.
Lowering the scaling of such calculations is the topic of

recent works, such as localized density fitting methods24,25 and
virtual orbital selection techniques.26−28 Such approaches lead
to the development of linear scaling local second order Møller−
Plesset (LMP2) techniques11,24 which are extremely efficient
for low dimensional systems and have been used successfully
for small molecules containing 0(100) atoms. However, for
higher dimensional systems, these methods are too expensive
due to the computational cost of a prefactor.
In this letter, we develop an alternative approach that allows

treatment of post HF/DFT calculations for large systems and is
not particularly sensitive to dimensionality. The basic idea is to
use stochastic methods, giving up accuracy (introducing

statistical errors) in exchange for efficiency in a controlled
and automated way. Ultimately, we aim at systems such as
nanocrystals, containing 0(104) atoms and 0(105) valence
electrons, where one does not need high accuracy in absolute
total energy but requires a small average error per electron. As
an example of a case of interest, we refer the reader to a recent
stochastic correlation method that has been developed to study
multiexciton generation (MEG) rates in nanocrystals.29 The
calculation can address questions such as the dependence of the
MEG rate on the size and shape of the nanocrystal or the
comparison of the MEG rate with phonon emission decay
processes with relative accuracies of 1% at reasonable
computational effort
Here, we focus on the simplest of correlated electron

calculations, namely the MP2 correlation energy, yet the
concept we introduce is general and transferable to more
challenging correlation calculations. We rely on a novel
combination of stochastic and operator techniques allowing
MP2 calculations to be performed in grid-based representation
with linear scaling effort both in time and storage. The methods
we develop here share some ideas from recent work,29−31 but
the present combination and its use for MP2 is new.
The MP2 energy for a closed shell system, in terms of spatial

orbitals, is
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Here, ⟨ab|ij⟩ = ∫ ∫ a(x1)*b(x2)*x12
−1i(x1)j(x2) d3x1 d

3x2, εi, εj
(εa, εb) and i(x), j(x) (a(x), (b(x)) are, respectively, the
occupied (virtual) eigenvalues and eigenfunctions of the Fock
operator Ĥ0. When calculated as-is without further processing,
we label this formula as “full-summation.” For nanocrystals of
experimentally relevant sizes, the density of states in the valence
and conduction bands reaches several thousands per electron-
volt;29 thus the summation in eq 1 involves more than 1012

terms, but the nonlocal nature of the orbitals increases the
computations to 1015 to 1016 operations.
To replace the full summation by random averages,

we need to circumvent the state-specific energy denomina-
tor. This is done through time integration, using the identity Im

∫ 0
∞ eiεt erfc(t/τ) dt = 1/ε(1 − e−[(ετ)/2]

2

), where erfc(x)
is the complementary error function. This expression converges
to 1/ε once τ ≫ 1/(2Eg) where Eg is the HOMO−LUMO gap
(note: it is not recommended to use the Laplace transform32

instead of the above identity; the advantage of using the erfc is
that it is not sensitive to the sign of ε and so can be used for
cases where denominators are not necessarily positive
preventing instabilities by numerical contamination of the
eigenstates). Defining ϕj(t) ≡ e−iεjtj(x) = (e−iĤ0tj)(x), where Ĥ0
is the DFT Hamiltonian (and we set ℏ =1), the MP2
correlation energy takes the form:

∫ τ
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We now replace the summation using a stochastic averaging
procedure. We introduce four random wave functions:
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where ηi etc. are independent complex random numbers,
normalized so that [ηi*ηi′] = δii′ (and similarly for the χ’s, ζ’s,
and ξ’s) and [ηi*χj] = [ηi*ξa] = ... = 0. Here, [...] denotes the
average over the random variables. With these, C(t) is given by

ξζ ηχ ξζ χη η χ ξ ζ= ⟨ | ⟩ − ⟨ | ⟩ × ⟨ | ⟩C t t t t t( ) [(2 ) ( ) ( ) ( ) ( ) ]
(5)

We consider in this work cases where the operation of Ĥ0 scales
linearly with system size. This is true in semiempirical and
basis-set calculations, where Ĥ0 is the sparse Fockian matrix
(for sufficiently large systems), and it is true in DFT using grid
representations (based on local/semilocal and hybrid exchange
correlation potentials) where MP2 type calculations can be
used in the context of double hybrid corrections.23

Naıv̈e construction of random functions through eqs 4
requires the calculation and storage of all possible eigenstates, a
prohibitive task for large grid systems. Alternatively, one can
perform this task using operator techniques. We first choose a
function with random values at each grid point xn, e.g., for 3D
systems,

η =
θ

x
e

h
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n

(6)

where θn is a random sampled uniformly from [0,2π] and h is
the grid spacing. A similar procedure applies for constructing
the other three random functions χ0, ζ0, and ξ0. The random
occupied-space function η is now obtained by applying a
“purification operator,” η(x) = ⟨x|θ(μ − Ĥ0)|η0⟩, where θ(E) ≡
erfc(−E/T)/2 and μ is the chemical potential (placed in the
middle of the HOMO−LUMO gap). T ≈ 1/4Eg is an artificial
temperature, and Eg is the HOMO−LUMO gap. To apply
θ(E), we use an iterative Chebyshev expansion for the step
function:33
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where

η η η η η= ̂ = ̂ −− −H H, 2N
k

N
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and ĤN = (Ĥ0−H̅)/(ΔH) is a normalized Hamiltonian34 where
H̅ and ΔH are the average and half-width of the spectrum of
Ĥ0; the normalization is required as the Chebyshev expansion
applies for operators with spectra between −1 and +1.34 The
coefficients γk are obtained using a numerical Fourier transform
of the periodic function f(α) = θ(μ − (H̅ + ΔH cos α)). We
repeat eq 7 also for χ, ζ, and ξ; however, for the latter two, since
they must be projected into the virtual space, we subtract the
“occupied” projected part from the original function to obtain
the “virtual” projected part, namely,

ζ ζ ζ ξ ξ ξ← − ← −,0 0 (9)

The number of required Chebyshev steps in the purification
stage can be estimated to be K ≈ 30 + (10ΔH)/T.

Figure 1. Left panel: Full summation vs a stochastic calculation with ∼105 iterations for the EMP2 energy per electron for the half-filled model as a
function of the number of electrons (sites) N. Middle panel: The MC error bars per electron decrease toward a plateau as the system size grows.
Right panel: The CPU times for full summation (scaling as N5) vs MC averaging (∼O(N)) for the MP2 energy for 105 (blue solid) and 103 (blue
dashed) MC runs. The costs above N = 1024 for full-summation and N = 2048 for the MC are extrapolated.
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Consider now the time propagation of each random orbital.
The total propagation time is tmax ≈ 3τ, determined by the
parameter τ ≫ Eg

−1 governing the exponential damping of C(t).
Each random orbital is evolved using a Chebyshev series of the
propagator35 e−iĤ0t, and the number of terms in the series is
∼30 + tmaxΔH. Alternatively, one can use a split operator to
carry out the propagation.
Summarizing the algorithm:

1. Construct the random complex functions, η0(x), χ0(x),
ζ0(x), and ξ0(x) on the grid (eq 4).

2. Purify these functions to yield random occupied η(x) and
χ(x) (eqs 7 and 8) and virtual ζ(x) and ξ(x) (eq 9) state
functions.

3. Propagate the purified functions to time tmax. At each
time step along the propagation, evaluate the two-
electron integrals and the MP2 correlation function given
by eq 5, and carry out the time integration in eq 2.

4. Repeat steps 1−3 to average over the random functions.

To study the performance of this method, we first consider a
Pariser−Parr−Pople Hamiltonian of a one-dimensional system
of N sites and N electrons at half-filling, described in ref 36. In
the limit N → ∞, this model has a gap Eg = 0.11Eh and energy
span ΔH = 0.3Eh. For the calculation, we took (in atomic units)
τ = 20 and tmax = 60.
Figure 1 (left) shows the MP2 energies per site as a function

of the number of sites (electrons) from a tiny (N = 4) to a large
system (N = 2048). There is excellent agreement between the
full-summation and stochastic results, and the scale of the
deviation, per particle, is far better than chemical accuracy. The
middle panel of Figure 1 shows that the statistical error per
electron decreases toward a plateau as the number of electrons
increases. The asymptotic value of the error is proportional to
the square root of the number of MC iterations and can be
easily controlled. The right panel of Figure 1 shows the cost in
CPU hours (measured per a regular 2.5 GHZ i7 Intel
processor) of the full-summation and the stochastic methods
(costs beyond 2048 sites for the stochastic method and 1024
for the full-summation are extrapolated based on the methods’
scaling). We also show results for lower accuracy (103) MC
runs. The calculations are very fast and still yield chemical
accuracies of about 10−30 meV per electron. The stochastic
method is already faster than the direct MP2 calculation for 600
sites at high accuracy and is 2 orders of magnitude faster for
2000 electrons/sites.
Next, we apply the stochastic method to hydrogen passivated

spherical silicon nanocrystals (NCs) of several sizes, reaching
systems with over 3000 electrons. The different systems are
described in Table 1. We use a semiempirical pseudopotential
model to construct Ĥ0 as described in ref 37.

In the lower panel of Figure 2, we show the MP2 energy for
the silicon NCs, which grow with the size of the NC. The full

summation MP2 results can only be carried out for the smallest
system, where we find that 20 000 MC iterations are sufficient
to converge the results within an error smaller than 1 meV.
The top panel of Figure 2 shows the total CPU time for a

calculation that yields a statistical error of 30 meV per electron.
Of course, the error can be reduced by running longer in time,
and for the largest NC an error of 1% requires 104 CPU hours.
It is seen that CPU times grow by a factor of ∼5 when going
from the 87 to the 705 silicon atom clusters. There are two
distinct regimes for the scaling which are influenced by several
factors: (a) The decrease of Eg with NC size (almost a factor of
2 between the smallest and largest NCs studied) leads to an
increase in the Chebyshev expansion by the same factor. (b)
The statistical error grows when going from the small sized to
353 NCs, requiring more MC iterations. The difference in CPU
time from Si353H196 to Si705H300 is rather small (sub-linear),
since the decrease in Eg is rather small and this is also correlated
with a decrease in the statistical errors. We note in passing that
for even larger NCs (above 3 nm), Eg becomes nearly system
size independent, and both the Chebyshev length and statistical
errors saturate (the latter can also reduce with system size).
Indication of this is seen in the inset of Figure 2, where the
dependence of the statistical errors on system size (for 2500
iterations) is shown.
Summarizing, we have developed a stochastic method for

calculating the MP2 correlation energies for systems of
unprecedented sizes. The method was shown capable of
addressing silicon nanocrystals with over 3000 electrons.
Comparing to linear scaling local MP2,11,24 the present method
is considerably less dependent on dimensionality since it is not
highly sensitive to density matrix localization, as long as the
zero order Hamiltonian can be operated in linear scaling. A
second advantage of the method is its low memory require-
ments, involving only four orbitals, while linear scaling local
MP2 will still require a huge amount of memory in calculations
for three-dimensional dense systems. Another advantage is that

Table 1. Parameters for the Hydrogen Passivated Silicon
Nanocrystals (NC)a

NSi NH Ne D (nm) grid Eg (eV)

1 4 8 83 10.7
35 36 176 1.3 323 3.9
87 76 424 1.6 483 3.2
353 196 1608 2.4 643 2.2
705 300 3120 3.0 723 2.0

aShown, the number of silicon (NSi) and hydrogen atoms (NH), the
number of electrons (Ne), the NC diameter (D), the number of grid
points, and the occupied-virtual energy gap Eg.

Figure 2. MP2 calculation data for hydrogen-passivated silicon
nanoclusters (NCs) with NSi silicon atoms. Top panel: CPU time
for computing the MP2 correlation energy to a statistical error of 30
meV. Bottom panel: The MP2 energy per electron as a function of NC
size. Inset: the statistical error for 2500 MC iterations as a function of
NC size.
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the stochastic method is naturally parallelizable where each
processor is an independent sampler and propagator and due to
the low memory requirements can be implemented on graphic
processing units.
There are several ways to extend the proposed approach.

Higher order MPs, e.g., MP3 or MP4, seem within reach using
similar ideas: one needs to replace energy denominators by
time integrations as done here. This has the potential to allow
efficient calculation of high order perturbation energy
calculations. Another interesting feature is the extension to
finite temperatures, which is straightforward to implement
within the present formalism. Finally, we plan to investigate
whether for very large sizes a localization scheme could reduce
the error per electron as the system gets larger.

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: roi.baer@huji.ac.il; dxn@chem.ucla.edu; eran.rabani@
gmail.com.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
D.N. is grateful to Julien Toulouse who suggested to apply our
exchange scheme also to MP2 energies and to Andreas Savin
for a useful discussion. D.N. was supported by the NSF, grant
CHE-1112500. R.B. and D.N. were supported by the U.S.−
Israel Binational Foundation (BSF). E.R. would like to thank
the Israel Science Foundation (grant number 611/11) for
financial support.

■ REFERENCES
(1) Marsman, M.; Gruneis, A.; Paier, J.; Kresse, G. J. Chem. Phys.
2009, 130, 184103.
(2) Reimers, J. R. Computational Methods for Large Systems: Electronic
Structure Approaches for Biotechnology and Nanotechnology; Wiley:
Hoboken, NJ, 2011.
(3) Casassa, S.; Halo, M.; Maschio, L.; et al. Theor. Chem. Acc. 2007,
117, 781.
(4) Feller, D.; Jordan, K. D. J. Phys. Chem. A 2000, 104, 9971.
(5) Furche, F. J. Chem. Phys. 2008, 129, 114105.
(6) Hellgren, M.; Rohr, D. R.; Gross, E. K. U. J. Chem. Phys. 2012,
136, 034106.
(7) Kozuch, S.; Martin, J. M. L. Phys. Chem. Chem. Phys. 2011, 13,
20104.
(8) Chai, J.-D.; Head-Gordon, M. J. Chem. Phys. 2009, 131, 174105.
(9) Zhang, Y.; Xu, X.; Goddard, W. A. Proc. Natl. Acad. Sci. U. S. A.
2009, 106, 4963.
(10) Sharkas, K.; Toulouse, J.; Savin, A. J. Chem. Phys. 2011, 134,
064113.
(11) Schutz, M.; Hetzer, G.; Werner, H.-J. J. Chem. Phys. 1999, 111,
5691.
(12) Rabani, E.; Baer, R. Nano Lett. 2008, 8, 4488.
(13) Jaeger, H. M.; Fischer, S.; Prezhdo, O. V. J. Chem. Phys. 2012,
136, 064701.
(14) Reboredo, F. A.; Franceschetti, A.; Zunger, A. Phys. Rev. B 2000,
61, 13073.
(15) Wang, X. Y.; Ren, X. F.; Kahen, K.; et al. Nature 2009, 459, 686.
(16) Ogut, S.; Chelikowsky, J. R.; Louie, S. G. Phys. Rev. Lett. 1997,
79, 1770.
(17) Berman, O.; Mukamel, S. Phys. Rev. A 2003, 67, 042503.
(18) Blase, X.; Attaccalite, C.; Olevano, V. Phys. Rev. B 2011, 83,
115103.
(19) Hybertsen, M. S.; Louie, S. G. Phys. Rev. B 1986, 34, 5390.
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