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ABSTRACT:  A fast method is developed for calculating the Random-Phase-Approximation (RPA) correlation energy for density func-

tional theory. The correlation energy is given by a trace over a projected RPA response matrix and the trace is taken by a stochastic approach 

using random perturbation vectors. The method scales, at most, quadratically with the system size but in practice, due to self-averaging, re-

quires less statistical sampling as the system grows and the performance is close to linear scaling. We demonstrate the method by calculating 

the RPA correlation energy for cadmium selenide and silicon nanocrystals with over 1500 electrons. In contrast to 2nd order Møller-Plesset 

correlation energies, we find that the RPA correlation energies per electron are largely independent on the nanocrystal size.  

Local and semi-local correlation functionals of the Kohn-

Sham (KS) density functional theory (DFT) fail to describe 

for long-range van der Waals interactions and other types of 

dynamical screening effects.1, 2 One route for overcoming 

these deficiencies is the RPA theory1, 3-6 based on the KS-

DFT adiabatic connection formalism7-9 in combination with 

the fluctuation dissipation theorem.10 In recent years this ap-

proach, especially when combined with exact exchange, was 

used successfully for treating various ailments of KS-DFT in 

molecular and condensed matter systems5, 6, 11-18.  

The greatest hurdle facing widespread use of RPA in systems 

of interest is its exceedingly high computational cost. Several 

approaches have been developed 5, 6, 13, 19, 20 for reducing the 

naïve  ( ̃ ) RPA scaling to  ( ̃ ), ( ̃ is a measure of sys-

tem size); however, this is still expensive. The problem is 

aggravated when plane-waves or real-space grids are used, 

suffering from the huge number of unoccupied states and the 

strong reliance of the RPA energy on the unoccupied ener-

gies.21-23  

In the present letter, we develop a stochastic sampling meth-

od for estimating the RPA correlation energy. Related sam-

pling techniques have been recently developed by us for es-

timating the rate of multiexciton generation in nanocrystals 

(NCs),24 for a linear scaling calculation of the exchange ener-

gy,25 and for overcoming the computational bottleneck in 

Moller-Plesset second order perturbation theory (MP2).26  

RPA, applied on top of a grid or plane waves calculation, 

starts from the KS Hamiltonian  ̂  which can be applied to 

any wave function in a linear scaling way.27 For a closed shell 

system of    electrons the   lowest energy eigenfunctions  

  ( ) of  ̂  are occupied and     are unoccupied.28 The 

RPA correlation energy can be written as5   
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Coulomb integrals,   is a coupling strength parameter (    

is full-strength Coulomb coupling and     is the non-

interacting limit), and           us the difference of ei-

genvalues of  ̂ . Usually, all  ̃   are real, however  ̃, alt-

hough having pure imaginary eigenvalues, is a real matrix 

operating on real vectors (
 
 
). Note that  ̃   are also the ei-

genvalues of the matrix (
  
    

) appearing in standard 

RPA treatments.5  

An alternative formulation starts from the expression:5  
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Where  ̃( )  
 

 
∑  ̃  ( )    ̃    . However, the calculation 

of  ̃( ) is still prohibitive for large systems because of the 

high cost of diagonalization of the   (   )  
  (   )  ̃ matrix (in grid representations   and   easily 

reach     and     respectively).  

Our formulation is based on linear-response time-dependent 

Hartree approach.29, 30   
    is still given by Eq. ‎(3) but  ̃( ) 

is replaced by the following trace: 

 ( )    [  (  ̂( ))]  (4)  

Here   ( )    ( ), where  ( ) is the Heaviside step func-

tion, which we approximate as  ( )  
 

 
    (   );  ̂ is a 

linear operator defined by:14, 30 
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  ( ) and   ( ) are functions, originally describing the time-

dependent Hartree response, but are used here as stochastic 

perturbations as detailed below.   [  ]( )   ∫
  (  )

|    |
     

is the Hartree perturbation potential depending linearly on the 

 ’s via 
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One can expand  ̂ in the basis of the KS orbitals and obtain 

its         matrix         having    positive imaginary 

eigenvalues      and an equivalent negative set.     can be 

divided into  (   ) “occupied-unoccupied” transitions 

    and    occupied-occupied transitions    . Obviously, 

the dimensions of   and  ̃ differ, as the latter describes only 

occupied-unoccupied transitions. Nonetheless, within the 

occupied-unoccupied space the matrices and eigenvalues are 

identical:31  

        ̃              ̃    (7)  

 ( ) in Eq. ‎(4) is computed in two principal steps: 

1) The trace is replaced by an average (denoted by curly 

brackets) over random perturbation vectors ( 
 
):  

 ( )  {⟨(  )|  (  ̂( ))| (
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At each grid point    we set   (  )  
 

      ,   (  )  
 

          where     and     are independent random var-

iables with values   or   , selected such that 

{         }  {         }           and {         }  

 . Thus, one has {⟨ | ⟩}  {⟨ | ⟩}      and 

{⟨(  )|( 
 
)⟩}                is the grid size. 

2) The action of the operator   (  ̂) on the random ( 
 
) is 

performed using an iterative modified Chebyshev poly-

nomial expansion approach, so that: 
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are the modified Chebyshev residues, and (  
  

) are calcu-

lated iteratively 
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Note that  ̂ is a real operator (Eq. ‎(5)) so all calculations 

are done on real functions.   
 

 
(         ) is half the 

eigenvalue range of   ̂. The    are numerical coefficients 

obtained as follows: First, prepare a series of length    , 

     (    (
 

   
 )),             and then set 

   
 ̃ 

   (     )
 (for         ) where { ̃} are the 

discrete Fourier transform of { }. The series length    is 

chosen large enough so that the sum in Eq. ‎(9) converges, 

i.e. |   
| is smaller than a prescribed tolerance.  

Table 1: Parameters for the CdSe nanocrystals NCs. Shown are the 

number of Cd (   ) and Se (   ) atoms, electrons (  ), NC diame-

ter ( ), the numerical effort involved in operating with   in a per-

turbation vector    
 

 
     , where    is the number of grid-

points and the occupied-unoccupied energy gap   . 

           D (nm)      (  ) 

   19                       

                             

                                 

Table 2:  Same as Table 1, but for hydrogen passivated silicon NCs. 

          D (nm)      (  ) 

                  

                            

                             

                                 

We rely on correlated sampling to reduce the statistical error 

in computing   
    : We compute   for 3 values of        

and –   (with       ) using the same random number 

seeds, and then the RPA energy is estimated by: 
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We now demonstrate the performance of the stochastic meth-

od by applying it to calculate the RPA correlation energies of 

spherical cadmium-selenide (CdSe) and hydrogen passivated 

silicon NCs, where the Hamiltonian  ̂  is constructed from a 

semiempirical pseudopotential model.32, 33 The   occupied 

states of the NCs were obtained using the filter diagonaliza-

tion technique34 with the implementation described in Refs. 
32, 35. We used       

   for approximating the step func-

tion   ( ) and         (see discussion of Figure 3), and 

      , slightly larger than half the maximal eigenvalue 

range for both NCs. Various features of the NCs are summa-

rized  in Table 1 and 2. 

As a test, we compared the stochastic estimate and a full 

summation calculation of the RPA energy for the smallest 

silicon system on a       point grid. We found that for 

       sampling iterations the stochastic estimate deviates 

by ~  meV from the full summation value. Such deviation is 

comparable to the Chebyshev truncation error at       . 
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Figure 1: RPA (blue) and MP2 (red) correlation energies per elec-

tron vs. the number of electrons   , for silicon (top) and CdSe (bot-

tom) NCs. Insets show the statistical errors in the RPA energies, 

normalized to 1000 stochastic iterations. 

Figure 1 shows the RPA correlation energies for CdSe and 

silicon NCs up to       electrons along with a comparison 

to MP2 energies obtained using the Neuhauser-Rabani-Baer 

(NRB) method.26 The RPA correlation energy depends weak-

ly on NC size in contrast to that of MP2. This is because the 

NC gaps decrease with system size and MP2 energies are 

sensitive to small gaps (diverging for metals). The RPA ener-

gy of silicon is somewhat above that of CdSe, and is within 

the LDA bulk limit21 range of         .  

The insets of Figure 1 show the corresponding statistical er-

rors normalized to 1000 stochastic iterations. The errors de-

crease when the number of electrons in the system increases. 

This shows that the algorithm profits from statistical self-

averaging. The statistical error of the CdSe NCs is approxi-

mately twice smaller than that for silicon despite having simi-

lar gaps for the same NC size. This suggests that the statisti-

cal errors are not trivially correlated with the gap.  

Figure 2 shows the total CPU time for calculations that yield 

a statistical error of    meV per electron. The method 

scales, at most, quadratically with system size but in practice, 

due to self-averaging, requires considerably less statistical 

sampling as the system grows and the resulting performance 

is close to linear scaling. Furthermore, in comparison, the 

RPA CPU time for the same statistical error is an order of 

magnitude smaller than the CPU time required for the MP2 

calculations. Regarding memory requirements, for the RPA is 

scales quadratically with system size (17GB for the largest 

silicon NC) and linearly for MP2.  

 

Figure 2: The CPU times for achieving a statistical error of  
  meV per electron for the RPA and MP2 calculations of CdSe 

NCs. 

For some systems, mainly with small gaps, the RPA matrix 

   may include several imaginary eigenvalues, because elec-

tron-hole interactions are not properly screened and become 

larger than the quasiparticle gap. In this case the Chebyshev 

interpolation method, which only samples the real axis, can 

become unstable. This is shown in the upper panel of Figure 

3 for the           NC where we plot the RPA energy esti-

mate as function of the length of the Chebyshev expansion. 

The results (dashed line) clearly diverge as the Chebyshev 

expansion length grows. For CdSe NCs (results shown in the 

lower panel of Figure 3) this instability is absent. 

When the Chebyshev expansion diverges we develop a dif-

ferent interpolation polynomial scheme which samples inter-

polation points in both the real and imaginary axes, based on 

the Newton interpolation.36 This method is effective, as seen 

in the solid line corresponding to the           NC, however 

it requires     times more memory and   times as much 

CPU time. Details of this approach will be described in future 

publications. 

Summarizing, we have presented a new stochastic approach 

for calculating RPA energies for large electronic systems of 

exceptional size. The method scales formally as  ( ̃ ) in 

terms of memory and CPU time but due to self-averaging has 

a near-linear scaling performance. We calculated the RPA 

correlation energy for CdSe and silicon NCs up to diameters 

of       with over      electrons. The stochastic approach 

developed here bloats, by orders of magnitude, the size of 

systems that can be treated using RPA theory. 
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Figure 3: The RPA correlation energy as function of the length of 

the Chebyshev interpolation polynomial for silicon (top) and CdSe 

(bottom) NCs. For the largest silicon NC the dashed line shows di-

vergence of the Chebyshev scheme. The solid line for this case uses 

a Newton interpolation with sampling points in the complex plane. 
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