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Near-field scanning microscopy and nonlinear spectroscopy on a molecular scale involve weakly
interacting subsystems that dynamically exchange electrons and electromagnetic energy. The
theoretical description of such processes requires unified approach to the electron-near-field
dynamics. By considering electronic structure and dynamics of two distant clusters or atoms we
show that adiabatic local spin-density approximation (ALSDA) fails to describe (even qualitatively)
essential details of electron dynamics in weakly interacting systems. A recently developed functional
addresses these ailments within a time-dependent setting. With this method we study the
spectroscopy of a composite system, namely, two weakly coupled metallic clusters. The near-field
(dipole-dipole) coupling and electron transfer display an interesting interplay, producing exponential
sensitivity of emission yield to the intercomponent distance. © 2006 American Institute of Physics.

[DOLI: 10.1063/1.2335841]

I. INTRODUCTION

Nanometer-scale characterization and control of materi-
als, catalytic processes, interfaces, and nanostructures are of
prime importance in materials science and related technol-
ogy. A suite of techniques that enable such feats is obtained
by combining near-field methods'”  with molecular
spectroscopy.&5 Near-field scanning optical microscopy
(NSOM) makes use of subwavelength light sources and
scanning probes, producing images with resolution well be-
yond the diffraction limit.™® Such techniques are routine in
various fields in chemistry, biology, and materials
science.”"" An impressively large body of theoretical work
forms the basis for interpreting and understanding NSOM
measurements.  Aiming at image prediction and
interpretation,“’ﬁ’lzfzo the focus is on the electromagnetic
field. Matter is less important at length scales much beyond
10 nm and can thus be described using a Drude model.!
This is appropriate when the external fields are sufficiently
weak to suppress nonlinear responses. Such NSOM theories
therefore apply for systems with length scale >10 nm. Yet
smaller length scales are vigorously pursued as molecular
resolution is becoming available using smaller tips and
probes.zz_26 Here, new challenges emerge. Interpretation of
near-field measurements is complex due to the proximity of
the subsystems, which enables electron transfer reactions to
take place. Furthermore, manipulating and controlling near
fields on the molecular scale are challenging. One example is
the need for accurate delivery of electromagnetic energy to
specific locations in a nanometric system. Experimental
progress in this direction was made recently by coupling
optical light to the collective electronic charge oscillations
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(localized surface plasmons) near metallic surfaces'®?’ or by
propagating light through crystalline nanowires.”**

It is possible to go beyond the Drude model and treat the
near field and the electron dynamics in a more balanced way
using the time-dependent density functional theory (TD-
DFT). A similar idea was suggested long ago, where a pre-
decessor of TDDFT, the electron gas random phase approxi-
mation (RPA), was used to study the dynamics of
electromagnetic near fields at surfaces and inside metals.”® In
applications such as excited states in molecules and metallic
clusters TDDFT delivers a good combination of accuracy
and efﬁciency.31 However, as we show below, typical local
functionals (including RPA) are unsuitable for treating
weakly coupled systems which is our focus here. Instead,
most applications use TDDFT within linear-response theory
in the frequency domain. 3235 TDDFT in real time*® ™ is a
less common approach, although it has a wider scope of
applicability and it can go beyond linear response. We will
use time-dependent methods in this paper. A growing number
of applications of TDDFT are in the domain of strong laser
fields.**~*® TDDFT is also useful for studying the dynamics
of electrons in small metal clusters and nanodots.”>*!"#~52

In this article, we develop a theory for molecular scale
near fields based on TDDFT. Applying TDDFT to this prob-
lem is not trivial. Functionals such as the adiabatic local
spin-density approximation (ALSDA) are often successful
for excited electronic states of molecules and clusters but are
inappropriate for weakly coupled systems. We developed a
functional for overcoming the long-range self-interaction
problem plaguing local functionals in DFT and TDDFT.>* An
important paper developed a similar approach to long-range
correction functionals™ leading to more consistent dipole
moments, polarizabilities, and hyperpolarizabilities of push-
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pull 7-conjugated systems.55 We explain here why these ap-
proaches are necessary for a correct qualitative behavior of
weakly coupled systems.

Using the new theory, we study in detail a simple model
for a near-field microscope: a system consisting of two
weakly coupled metallic entities having variable distance.
We subject this composite system to a short ultraviolet laser
pulse, showing that the induced emission is sensitive to the
tip-substrate distance. There is growing experimental interest
in “nanometric rulers” of this type.56’60 Even though our
original driving field is not a “near field,” the induced charge
oscillations and currents in each part generate electrical fields
that affect all other parts. At long distances, such an interac-
tion is predominantly dipole-dipole. However, at small dis-
tances, and in the presence of bias potentials, other effects
may be important. These include overlap or charge transfer
effects as well as screening in metallic systems. The various
parts of the system create and react to local near fields. As
the two subsystems approach, electron currents can form be-
tween them and new effects kick in; these merging sub-
systems rapidly change their spectroscopic behavior. It is
possible to find transitions that display dramatic changes in
the absorption and emission properties in response to small
variations of the distances.

We present the theory for computing near field on the
molecular scale in Sec. II, followed by the application in
Sec. HI. A summary and discussion then follows in
Sec. IV. We add an appendix with the details of the new
functional.

Il. THEORY

We consider here the response properties of a composite
system consisting of two well-separated, weakly interacting
subsystems. We wish to determine the emission response of
the system on exposure to electromagnetic far-field radiation.
This response is dependent on a complex series of physical
processes. Not only do we have to compute the quantum
dynamics of the electrons localized in each subsystem, based
on the external electromagnetic fields, but we need also to
take account of the near-field interaction between the sub-
systems. In weakly coupled subsystems, the new complica-
tion is the tendency of electrons to localize in subsystems.
Therefore, long-range interactions play an important role.
This is a weakness of the local functionals often used in
TDDFT [such as ALSDA, generalized gradient approxima-
tion (GGA), and even the simpler RPA]. For single entity
systems, ALSDA is often a good theory. However, as we
show in Secs. II A and II B, for composite systems it may
not even be qualitatively correct. In Sec. II C, we discuss a
long-range self-interaction correction, allowing for a qualita-
tively correct long-range interaction.

Let us briefly cover a few methodological and numerical
details on the calculations reported in this paper. The elec-
tronic structure and dynamical calculations employ a plane-
wave basis-set method and the jellium calculations use a
simulation cell size of 20X 20X 7243 and cutoff kinetic en-
ergy of 1.2 E;. We used an image screening technique to
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isolate the cell.®! For the time-dependent calculations, a fifth

order adaptive Runge-Kutta method® solves the time-
dependent Kohn-Sham (KS) equations.

A. Charge quantization and derivative discontinuities

The local spin-density approximation (LSDA) involves
the use of the polarized homogeneous gas exchange- corre-
lation (XC) energy as a local functional of the density
El;((é“[nT,n 1]. This functional replaces the exact XC func-
tional of DFT in the Kohn-Sham equations.63 This approxi-
mation often leads to accurate estimates of the electron spin
densities 74(r) and n(r) [where r denotes a point in three-
dimensional (3D) space] in strongly interacting, chemically
bound systems. However, in composite systems this is not
usually the case. Suppose a LSDA calculation yields a good
approximation to the ground-state densities n,(r) and ng(r)
of systems A and B separately (for clarity, we suppress the
spin indices in this discussion). Furthermore, suppose the
two densities are localized in two well-separated regions, so
they are nonoverlapping. Then, the extensive nature of the
energy demands that E,[AB]=E,[A]+E.[B]. However, the
KS energy within the LSDA does not obey this constraint.”
This is surprising, since the LSDA XC energy functional is
strictly additive: EXny +ng]=EXn, ]+ Exrng).

This problem is a result of the combination of the varia-
tional KS approach and the LSDA XC functional. This blend
tends to produce electron densities that violate the principle
of charge quantization, namely, that each subsystem has an
integer number of electrons. Thus, the electron density ny
changes when system B is introduced no matter how far it is
and even though they should be physically noninteracting.
For example, consider the simplest one-electron system, Hj.

One nucleus, we label A is at a point R/2 and the other, B at
—R/ 2, so the distance between the two nuclei is R. We as-

sume R is large. For the electron, a symmetric double well
forms. The two 1s states in each well combine to form two
molecular orbitals with minute tunneling splitting A «exp[

—R/ ay]— 0. The ground-state density of the electron in this
double well delocalizes over the two wells, and at very large

R:

n(r) =[n,,(r + R/2) + n,(r - R/2)]/2. (2.1)

This delocalization exists only when exceptional symmetric

conditions prevail. Large values of R destroy the localization
because of the high sensitivity to fluctuations. Indeed, con-
sider a small change in the surrounding, which biases one of
the nuclei (say A), changing its energy by a small amount &
with |&|>A. It is obvious that the density response of the
system will be dramatic since the electron will localize in the
lower energy well:

n(r) =n(r—R/2) + O(A),
(2.2)
n_,(r)=n(r+R/2) + O(A).

As R grows, this relation exponentially becomes a “density
discontinuity,” where a minute change in the bias causes a
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huge large change in the ground-state density. This is the
source of “derivative discontinuities”® in the XC functionals
of many-electron systems.

In many chemical systems, even the simplest ones, local
density functionals violate harshly the charge quantization
rule and fail to display or approximate the required deriva-
tive discontinuity.5 As an example, consider a widely spaced
hydrogen-nitrogen cationic system, denoted [H...NJ*, and
suppose that for definiteness the interatomic distance is
10 A. The ionization potential of the nitrogen atom is higher
than that of hydrogen by 1 eV. Thus, in the ground state this
system consists of a neutral nitrogen atom and a bare proton
10 A away. Yet the LSDA calculation (with spin z
component=3/2) finds the two species share electrons. The
average electronic charge near the nitrogen atom in LSDA is
6.6¢ and near the proton is 0.4e. Furthermore, the energy is

asymptotically Coulombic proportional to R~!. This “bond
energy” is the same no matter how far the systems are.

This false behavior of LSDA exists in many weakly
coupled systems. Sometimes the problem is not dramatic.
For example, in [H...F]* with a HF distance of 10 A the
charge on the more electronegative fluorine atom is 8.97¢,
that is close to 9¢ and on the proton 0.03e—close to 0.

We note that this malady of LSDA is an expression of
spurious long-range self-interaction and therefore plagues all
local functionals, such as GGA.

B. Problem of ALSDA for weakly coupled systems

The approximation where LSDA is used as an instanta-
neous XC functional in TDDFT is called the adiabatic
LSDA.* We now wish to study ALSDA for weakly interact-
ing systems. We consider a system of metallic character,
namely, two separated metallic jellium spheres. A jellium
sphere is simply a static smeared positive charge in the form
of a sphere with electrons added to it. For example, a sphere
centered at the origin of radius a and density n, is described
by the following positive charge distribution:

o

(r=a)lw *

n,(r) = (23)

I+e
The sphere radius a is chosen such that the total charge,
In,(r)d®r=N,, is an integer. The parameter w is a smoothing
parameter that prevents abrupt discontinuity of the density at
the jellium surface; its value in all calculations we present
below is w=0.4a,. Such spheres are good approximations for
clusters of alkali metals.®®® The density n, determines the
“material” the sphere is made of. We consider two such
spheres, each containing eight nuclei (i.e., having N,=8
charges). One sphere is made of a high density material, such
as aluminum, with a density of 0.O3a53. The other sphere can
be thought of as made of silver (although silver is not an
alkali metal) with a density of 0.0088a,’. Below we refer to
the high density sphere as H (hard) and the low density
sphere as S (soft). The relevant characteristics of the spheres
are given in Table L.
We performed separate LSDA calculations on each
sphere and determined its ionization potentials (IPs). Note
that in DFT one can determine the ionization potential in (at
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TABLE I. The parameters and calculated properties of the H and S jellium
spheres.

Property/Parameter H sphere S sphere
Basic density ny/a;’ 0.03 0.0088
Radius a/ay 4 6
Total positive charge N, 8 8
Ionization LSDA ASCF 7.1 5.5
potential HOMO 4.7 3.6
(IP) (eV) y=1 ASCF 6.5 49
HOMO 7.1 5.4

least) two ways: either as the difference between the ground-
state energies of the neutral and the ion (ASCF) or as the
energy of the highest occupied molecular orbital (HOMO).”
The ionization results for the LSDA are both shown in Table
I. Note that the two types of IP estimates come out in LSDA
very different. This is a known defect of LSDA. One sees
that the IP of the H sphere is higher by 1.6 eV than that of
the S sphere. This means that the ground state of the weakly
coupled cation [H...S]* is H...S*. However, a LSDA calcu-
lation of a combined system, where both spheres are present
but far from each other, does not bear this out. It turns out
that the charge on the H sphere is 7.8¢ while on the S sphere
is 0.2e. This means that LSDA does not predict the correct
charge distribution for this system to start with. This is simi-
lar to the nitrogen-hydrogen cation we considered in
Sec. IT A.

The conclusion is that the initial charge distribution and
the Kohn-Sham orbitals of LSDA are not a proper starting
point for TDDFT. To see the consequence of starting with a
wrong initial distribution, let us consider the absorption spec-
trum of the [H...S]" system. First, take each subsystem
separately. There are four components: H, H, S, and S*. We
compute their photoabsorption spectra within ALSDA in the
following way. We expose the system to a short Gaussian
electric field pulse:

E(r) = Ege™ =27 cos wr, (2.4)
with Ey=10"* Ey(eay)™!, T=8h E;', o=2h E;', and o
=0 E,h~". The field couples to the system via the electronic
dipole operator. Because of this time-dependent perturbation,
the system is set into motion and we record the electronic
dipole moment d(f)=/n(r,/)rd’r at constant intervals of
time. Fourier analysis of this transient gives the absorption
cross section or the emission yields as a function of
frequency.39’43 The results for the four types of spheres are
shown in Fig. 1. It is interesting to note that the absorption
spectrum of the cationic system is dominated by a single
absorption line while the neutral system has several lines of
comparable strengths.

Physical intuition has it that the photoabsorption cross
section of the [H...S]* system, given in Fig. 2, should re-
semble the combination of the H and S* spectrum although
lines may shift a little due to weak interactions between the
spheres (the sphere centers are 24a, apart). An inspection of
Fig. 2 reveals that indeed the strongest lines are due to H and
S* spheres but these are shifted quite a bit. For example, the
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FIG. 1. The LSDA photoabsorption spectrum for the H, H*, S, and S* systems.

line of the isolated S* sphere at 4.13 eV is redshifted in the
presence of the H sphere to 3.99 eV, as shown in Fig. 2. The
3.31 eV line of the isolated H sphere is blueshifted to
3.55 eV in the presence of S*. We have built a table of the
transition lines of the isolated H and S* spheres and the
combined [H...ST" system for a large separation (of 24ay).
The assignment of a spectral line in the composite system
considers the location with respect to the separate sub-
systems and their response to a localized bias potential as
described below. The lines in the 5—6 eV range are difficult
to assign because both spheres have spectral lines in this
range so there is strong dipole coupling (see below).
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FIG. 2. The LSDA absorption spectrum of the [H...S]* system at
R=24a,,.

Let us now also study the effect of a local perturbation
on one of the spheres on the combined spectrum. We apply a
small bias potential on the H sphere. The functional form of
this bias potential is

b

TR b=-046V,

Upigs(T) = (2.5)

where Ry is the radius vector to the center of the H sphere.
This potential affects only electrons in the H sphere, and not
in the S* sphere. It deepens the external electrostatic poten-
tial in the H sphere making the potential gradient steeper. An
electron in the H sphere thus feels a stronger localizing force
at the sphere surface. Upon application of the bias, the tran-
sitions associated with the H sphere will therefore slightly
shift to the blue while those associated with the S sphere
should be unaffected. In Fig. 2, we observe that this behavior
is approximately obeyed. Lines associated with internal tran-
sitions in the H sphere are blueshifted by 0.07 eV, while
those corresponding to internal transitions in the S* sphere
are blueshifted by 0.02 eV.

Summarizing, we find two problems with the ALSDA
functional when treating weakly coupled systems:

(I) The spectral lines are shifted considerably. In our case
the lines of the H sphere are shifted to the blue by more
than 0.2 eV and those originating in the S* sphere are
shifted to the red by more than 0.1 eV. This is a direct
result of the partial, noninteger charge transfer.

(2) The lines of the S* sphere are too sensitive to the local
bias exerted on the H sphere. This sensitivity is not
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FIG. 3. The y=1 photoabsorption spectrum for the H, H*, S, and S* systems.

physical and is again a result of the partial charge
transfer, which makes the system too “ultranonlocal.”

We now show how to eliminate these problems by using a
long-range self-repulsion corrected functional.

C. Long-range self-repulsion correction

The ailments of ALSDA discussed above are all associ-
ated with the self-repulsion problem: each electron repels
itself, so it is energetically advantageous for the Kohn-Sham
orbitals to delocalize between the two atoms or metal
clusters, causing false charge sharing. Furthermore,
the same problem has the result that in ALSDA the
energy required for charge transfer excitations is much too
small.®®

Recently we described™ a functional with the correct
long-range behavior which introduces in a rigorous manner a
long-range correction through a new density functional y{n].
Details of the functional are given in the Appendix. Using
this functional we obtain the ionization energies shown in
Table I. These are similar to the LSDA values, but notice that
the HOMO energies are much closer to the ionization ener-
gies. Furthermore, when the ground state of the [H...S]*
system is computed the resulting charge distribution yields
integer values for the charge on each subsystem: eight elec-
trons on the H sphere and seven electrons on the S sphere.

In order to study the performance of the new functional
for the response properties of the weakly coupled systems,
consider the photoabsorption spectrum, as computed for each

sphere in Fig. 3, and for the combined [H...S]* system at
R=24a, in Fig. 4. When comparing to the results of the
ALSDA functional, one should note two striking differences.

(I) The absorption lines of the combined system in Fig. 4
are almost exactly the same as those of the separate
systems in Fig. 3, except for lines which interact elec-
tromagnetically in the range of 5-6 eV, discussed be-
low.

(2) There is a complete indifference of the levels on the S*
sphere to the localized bias potential exerted on the H
sphere. This is physical and unlike in the ALSDA case,
where the S* sphere is affected (although less than the

H sphere itself).

100 —
b=0.0eV -
.............. b=04eV [H.S] R=242a,
80 4~~~ H sphere
et &% spifere

Photoabsorption Yield (arb. units)

o [eV]

FIG. 4. The y=1 absorption spectrum of the [H...S]* system at R=24a,.
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Thus we find that the new functional is better suited to
study the spectrum of weakly coupled systems, as it gives
correct qualitative behavior.

D. Dipole-dipole coupling

Lastly, we discuss the phenomenon of dipole coupling
which is seen in the 5—-6 eV range where the two spheres
have similar absorption lines. The TDDFT calculations we
present already take account of this phenomenon (except for
retardation effects, which are negligible on this scale). In
order to understand why the line positions and intensities are
sensitive to the distance R we invoke the well known theory
of dipole-dipole coupling due to Eisenschitz and London.%

Consider two coupled spectroscopic lines, one on each
subsystem, with similar frequencies w;, where i=H, S*. The
dipole coupling is C=~dyds+/R>, where d; is the relevant
transition dipole moment on each sphere. The resulting spec-
tral lines can be determined by diagonalizing a 2 X 2 matrix,
giving frequencies

Q.=+ A+ (2, (2.6)

where A=(wy—wg+)/2 and @=(wy+wg+)/2 and an overall
transition dipole for each line:

(D+) ( cos 6/2 sin 0/2 )(dH )
D_) \-sin @2 cos 2/ \ds+)’
where tan =C/A. When |A| is much larger than |C| the
energy level splitting (), —€)_is sensitive to C?/A propor-
tional to R™S. But when |A| is much smaller, the splitting is
proportional to |C|, i.e., R7. In this latter case 6 is close to
/2 (assuming C>0) and we find large attenuation of the
total transition dipole: D, is the sum of the dipoles (super-
radiance) and D_ is their difference (subradiance).

In our case, C is of the order of 0.05 eV and in the
5-6 eV range there are two pairs of transitions (at least) that
can interact quite strongly via the dipole coupling. Thus, the
combined spectrum is sensitive to the distance between the
spheres. As discussed below, when this distance is further
reduced by 1.5 A an additional phenomenon comes in—

charge transfer and direct (overlap) interaction. To account
for this in the above two-level theory, we can change C.

(2.7)

lll. DISTANCE SENSITIVE EMISSION YIELD

In the previous section, we studied a TDDFT functional
which is appropriate for describing a composite system con-
sisting of weakly coupled components. In the [H...S]* sys-
tem we considered, we found strong dipole-dipole coupling
between the two spheres for transitions in the 5—6 eV range.
Here, we investigate the consequences of this in more detail.
We first discuss the absorption spectrum and then show an
application where the dipole coupling affects the emission.

The absorption spectrum of the two-sphere system in the
5-6 eV range as a function of the distance between the
spheres is shown in Fig. 5. One sees that the position and
strength of the absorption lines are very sensitive to the dis-
tance R. This can be explained in terms of the dipole-dipole
interaction discussed in Sec. II D, where we found that an
absorption line w; on the H sphere can combine with a line

J. Chem. Phys. 125, 074709 (2006)
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FIG. 5. The absorption spectrum of the [H...S]" system for several
distances.

w, of the S* sphere to give a pair of “dressed” lines given by
(2.6). When the frequency difference A is comparable to the
dipole-dipole coupling C the position and yield of the new
lines will be sensitive to C, or since Coc R~ to the distance R.
As a result, one can easily find, for small enough R, an
absorption line of [H...ST*, such as 5.6 eV, which is not an
absorption line of the H sphere or the S* sphere separately.
Iluminating the system in this frequency will result in a
sensitive probe: the emission yield will be sensitive to the
distance R. In Fig. 6 we plot the emission yield following
exposure to a 5 fs Gaussian pulse of frequency 5.6 eV.
We used the electric field given in Eq. (2.4), with
Ey=10"* Ey(eap)™, T=600h E;', o=2004 E;', and
0=0.206 E,£i~'. During and after the application of the pulse
we computed the time-dependent dipole moment from which
the emission yield is deferred. The total emission in the
5-6 eV interval is shown in Fig. 7 as a function of R. The
emission yield increases by an order of magnitude as the
distance changes from 26q, to 21a,. We find emission ex-
tremely sensitive to R and angstrom resolution is possible.
Since the spheres approach each other quite significantly,
a question may be raised as to the role of charge transfer and
“overlap” of the electronic clouds in shifting the lines. The
sharp response to the distance is indicative of an exponential

10!

R=22a0

100 § |eeeeee R=2420 2
=== R=26a0

107 +

102 4

Emission Yield (arb. units)

o (eV)

FIG. 6. The 5.6 eV stimulated emission as a function of the distance be-
tween the spheres.
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FIG. 7. The stimulated emission yield (at 5.6 €V) and the charge transferred
as a function of distance R (lines are shown as a guide to the eye).

dependence of the coupling on the distance. In Fig. 7 we
observe charge being transferred from the H to the S* sphere.
This sets in concurrently with the steep rise in emission
yield. This indicates that significant overlap or direct inter-
actions are becoming important. However, it is difficult to
assess the rate of charge transfer because of the weak pulses
being used (the amount of excitation is very small to begin
with).

The temporal dynamics of the charge transfer is studied
in Fig. 8 for several intersphere distances R (these are filtered
transients, where high-frequency oscillations were elimi-
nated). Notice that charge transfer appears tens of femtosec-
onds after the pulse is over. Concluding this section, we have
shown that it is possible to achieve a fine (angstrom) distance
sensitivity by monitoring the emission yield following exci-
tation by a short Gaussian pulse.

IV. SUMMARY AND DISCUSSION

We studied here some aspects of the electronic spectros-
copy of a system composed of two weakly coupled entities.
ALSDA, which is useful in other contexts, was shown here
to be unsuitable because it harnesses self-interaction, causing
unphysical ultra-non-local coupling between the two entities.
We then considered a new functional for TDDFT and we
demonstrated that it overcomes these difficulties. Using the

104 4

Charge Transferred

108

Time (fs)

FIG. 8. The smoothed transient of charge transfer following exposure to a
weak 5 fs pulse at a frequency of 5.6 eV as a function of time for several
distances R.

Theoretical studies of molecular scale electron dynamics

J. Chem. Phys. 125, 074709 (2006)

new theory, we studied the spectroscopy of a composite sys-
tem of two weakly coupled spherical metal clusters as a
function of their distance.

The new functional will be useful to describe many pro-
cesses in near-field molecular and molecular electronics ap-
plications. Specifically, conductivity of molecular system un-
der bias with or without a driving field; the electric field can
result from a tip or, as here, be an external field. An impor-
tant future direction is the study of nonlinear effects in
weakly coupled systems.

We have identified a specific spectral region where each
of the two components exhibits optical activity. In this region
the weakly coupled system can interact via dipole-dipole
coupling, and we indeed found sensitivity of the absorption
lines to distance, even at large distances R. Once the distance
between them is sufficiently reduced to about 0.7 nm, charge
transfer excitations become increasingly important and the
combination of increased sensitivity of the emission yield to
R is observed. We have mentioned an additional handle on
the system, namely, a bias potential, which is useful to fine
tune the dipole-coupled resonances.
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APPENDIX: THE y=1 FUNCTIONAL
1. Time-independent DFT

We will not repeat here the derivation of the functional
(see Ref. 53) and merely state the theorem that the exact
ground-state energy can be written as a sum of density func-
tionals:

E, Mn]=T[n]+ Ey[n] + Ey[n] + E}[n] + EXc[n].
(A1)
The usual DFT terms such as T [n], E.[n], and Eg[n] are,
respectively, the noninteracting kinetic energy functional of

Kohn and Sham and the energy associated with the electron-
nuclear potential and the Hartree energy,

1 !
Ey[n]+ = f H(Ln(l:)d3rd3r'. (A2)
2) |r-r'|
Also, an explicit Kohn-Sham exchange energy appears:
1
B == [ 1P Pale e dnds', (a3

with P[n](r,r’) being the density matrix of noninteracting
electrons having density n and

|
uy(r)=——

(A4)
is a descreened electron-electron interaction potential. We
proved that the descreening parameter y is a density func-
tional (i.e., it is a single-valued parameter depending on the
density, y=yn]). The last term is the new XC energy:
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Bell= (Vi) 5 [ ntemce)

Xy A|r —r'|)drd’r’, (AS)
where W, is the exact ground-state wave function and f’y

yr)=e"Ir. (A6)

The first approximation is to assume y{n] to be independent
of the density and take a value of y=1a61. The functional
(A5) is then treated as a local density approximation, based
on a Monte Carlo evaluation of the first term on the right of
(A5) for a homogeneous electron gas. The result of this pro-
cedure gives

E}c[n]= f e4c(n(r))n(r)d’r, (A7)
with
ec(n) = e}(n) + el(n), (A8)
and
_ ke (v
ecln) =- 477H( kF>’ (A9)

where kp=(37%n)'3 is the Fermi momentum associated with
density n and

2 4 2 2 4
H(q;r)zl—q———qtan_1 - +q—(12+q2)ln —+1
6 3 q) 24 q

(A10)
is the exchange energy per particle of a homogeneous gas of

particles of density n interacting via the force derived from
Eq. (A4). Finally

g2(n) = n,(yryeg(n), (A11)
where g.(n) is the LSDA correlation energy and
C B
7(x) = A r ALt T AZI L AT 4 (AT S In
(A12)

This form and selection of C=1.6976, B=12.8 ensure correct
asymptotic r;— % and r;— 0 limits. The low density behav-
ior of 7 is determined from an analog of Wigner’s theory for
low density gas of particles interacting by a screened Cou-
lomb potential70 and the high density limit is based on cor-
relation energy estimates given in Ref. 71. The parameters
A’;y, i=0,...,4, are determined using Monte Carlo calcula-
tions, as described in Ref. 53. For y=1a;' and 0.8a;' they
are given in Table II.

2. Time-dependent DFT

The application of the functional as a TD method can be
done using the optimized effective potential method. This,
however, is numerically costly and we make an approxima-

J. Chem. Phys. 125, 074709 (2006)

TABLE II. The parameters A; for the y functional.

i y=1a;' y=0.8a;'

0 5.377083 59 4.327613 43
1 —2.224 92999 —1.796 749 68
2 0.140 242 88 0.180797 73
3 7.090 280 96 2,531 11942
4 15.675 084 16 23.052 568 19

tion by which the equations of motion are obtained by find-
ing the stationary value of the following “noninteracting”
action:

1 Ne .
S[n]=f i () = E,aln(0)] pdt, (A13)
o | j=1

producing Kohn-Sham equations for the N, orbitals ;(r,?)
of the form

i(x,1) = Hys[n(0](0) g (x. 1), (A14)

where Hyg[n] is the Kohn-Sham Hamiltonian:
HKS = TS + Uext(r’t) + UH(r’t) + I%)‘}é + U)}éc(”(r,l))’ (Als)

while vy (r,t)=fn(r',0)/|[r=r’'|d*" is the Hartree potential
and

IA(}lﬁ(r,t):—JP(r,r’,t)zﬁ(r’)uy(|r—r'|)d3r' (A16)

is the relevant exchange operator. Finally, vxc(n)=e(n)
+edc(n)n.
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