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A dynamic kinetic energy potential (DKEP) is developed for time-dependent orbital-free (TDOF)
density function theory applications. This potential is constructed to affect only the dynamical
(ω �= 0) response of an orbital-free electronic system. It aims at making the orbital-free simulation
respond in the same way as that of a noninteracting homogenous electron gas (HEG), as required
by a correct kinetic energy, therefore enabling extension of the success of orbital-free density func-
tional theory in the static case (e.g., for embedding and description of processes in bulk materials) to
dynamic processes. The potential is constructed by expansions of terms, each of which necessitates
only simple time evolution (concurrent with the TDOF evolution) and a spatial convolution at each
time-step. With 14 such terms a good fit is obtained to the response of the HEG at a large range
of frequencies, wavevectors, and densities. The method is demonstrated for simple jellium spheres,
approximating Na9

+ and Na65
+ clusters. It is applicable both to small and large (even ultralarge) ex-

citations and the results converge (i.e., do not blow up) as a function of time. An extension to iterative
frequency-resolved extraction is briefly outlined, as well as possibly numerically simpler expansions.
The approach could also be extended to fit, instead of the HEG susceptibility, either an experimental
susceptibility or a theoretically derived one for a non-HEG system. The DKEP potential should be
a powerful tool for embedding a dynamical system described by a more accurate method (such as
time-dependent density functional theory, TDDFT) in a large background described by TDOF with a
DKEP potential. The type of expansions used and envisioned should be useful for other approaches,
such as memory functionals in TDDFT. Finally, an appendix details the formal connection between
TDOF and TDDFT. © 2011 American Institute of Physics. [doi:10.1063/1.3574347]

I. INTRODUCTION

The orbital-free (OF) description of quantum electronic
systems dates back to the work of Thomas and Fermi, von
Weizsäcker, Dirac, Slater, and eventually Kohn and Hohen-
berg; the work of the latter laid the theoretical foundation
both to density functional theory (DFT) and also to orbital-
free DFT (OFDFT). However, the work of Kohn and Sham
shifted interest away from OFDFT to orbital-based DFT or
later its equivalent, density-matrix DFT, due to the improved
description of the kinetic energy. (For a review, see Ref. 1.)
Nevertheless, the last two decades have witnessed a flurry
of interest in OFDFT; as computer power grows, larger and
larger systems can be simulated by OFDFT thanks to its fa-
vorable linear scaling of computational time with respect to
the size of the electronic system.2–17 In particular, OFDFT
is indispensable for embedding approaches, where OFDFT is
used to describe both the large surrounding environment as
well as the interaction between the environment and a smaller
active region.18–21

Most of the research activity in orbital-free DFT has been
devoted to static properties. Specifically, appropriate kinetic
energy functionals (KEFs) have been generated by fitting to
the response of static electronic systems. This approach has
led to development of accurate KEF for both metals and semi-
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conductors. Although most of the KEFs have been used for
simulating static properties, progress has also been made for
describing excitonic coupling. However, up to date, all present
OFDFT approaches are based on the static description of the
KEF.

Time-dependent orbital-free (TDOF) descriptions have
also been explored.22–27 The work of Runge and Gross on
time-dependent DFT (TDDFT) lays the formal foundations
for TDOF,28 and there have been practical simulations which
use the static OFDFT potential in studying metal and fullerene
clusters.29 Formally it is possible to relate the TDDFT and
TDOF potentials; this can be done directly, as shown in
Appendix.

Moving away from the formal correspondence to a prac-
tical TDOF simulation, here we propose to improve upon
TDOF by adding a potential which imposes the correct dy-
namical susceptibility. Our proposal is similar in spirit to the
addition of the static linear response term in modern OFDFT
theories, except our aim is dynamic response. We introduce
therefore a new quantity, which we label dynamic kinetic en-
ergy potential (DKEP). The DKEP is a memory potential, but
it is different from the usual memory potentials in TDDFT,
as its aim is to capture only the kinetic energy. As we show,
the DKEP is numerically feasible so it could become a gen-
eral tool for OF studies. The implications of DKEP could
be widely ranging, as it should allow for smooth embedding
in general dynamical problems. In fact, any place where the
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background can respond, one should employ DKEP and not
resort to the static response; such applications could also be
excitonic coupling through a medium described by OF ap-
proaches; or even the interaction of high energy electrons with
metals.

Another possibly relevant case for OFDFT, even by its
own (i.e., separate from embedding issues), is Maxwell FDTD
(finite-difference time domain) simulations; here, the use of
OFDFT could potentially be sufficiently feasible for nano-
metric systems, while at the same time allow for nonlocal
response in a way not afforded by standard treatments30 of
metals in FDTD.

The remainder of the paper is organized as follows. In
Sec. II we discuss the transformation of TDDFT to TDOF,
and in Sec. III we introduce the DKEP. The fitting procedure
is presented in Sec. IV. Simulations of model systems are dis-
cussed in Sec. V. Implications and possible extensions are dis-
cussed in Sec. VI, including the plausible type of susceptibil-
ity to be used, frequency versus time-based applications and
propagation, implications for embedding, and future improve-
ments to the numerical representation. Conclusions follow in
Sec. VII. Appendix covers the relation between TDDFT and
TDOF.

II. DKEP: A POTENTIAL FOR TRANFROMING THE
NONINTERACTING N-ELECTRON PROBLEM INTO A
SINGLE-PARTICLE PROBLEM

Assume we have a system of electrons in N electrons in
N time-dependent orbitals, φ j (r, t) which formally should be
propagated under a TDDFT potential28

i
∂φ j (r, t)

∂t
=−�φ j (r, t)

2m
+ (vTDDFT(r, t)+ νext(r, t)−μ)φ j ,

(1)
where we introduced the chemical potential, and νTDDFT in-
cludes the interaction with the background nuclear densityρN ,
the direct electron–electron repulsion, and any desired
exchange-correlation potential (possibly including a memory
functional contribution):

vTDDFT(r, t) =
∫

ρ(r′, t) − ρN (r′, t)

|r − r′| d3r′+vTD−XC[ρ](r, t).

(2)
In addition,vext is any desired perturbation (typically interac-
tion with an electromagnetic field).

The TDOF approach tries to circumvent the full
TDDFT propagation of the N orbitals, and uses instead a
single-wavefunction-like orbital � (labeled the Madelung
wavefunction31) which is related to the time-dependent
density:

�(r, t) =
√

ρ(r, t)eiχ(r,t), (3)

and is normalized to the total number of electrons,

〈�| �〉 =
∫

ρ(r, t)dr = N . (4)

(Note that arguably the method should be better labeled as
“time-dependent single-orbital” rather than “time-dependent
orbital-free,” but we will use the prevailing notation.) The
goal of TDOF is to determine the proper extra potential, νOF,

which will allow to determine � from a Schrödinger-like
equation:

i
∂�

∂t
= −��

2m
+ (v(r, ρ, t) − μ)�, (5)

where the total potential is now

ν = νOF + νTDDFT + νext. (6)

Put differently, in addition to the TDDFT potential we intro-
duce an additional term, νOF, the goal of which is to ensure
that the density from the orbital-free approach is the same as
that from the many-orbital TDDFT propagation. The DKEP,
vOF is (together with the single-particle kinetic energy) essen-
tially the orbital-free approximation to the kinetic energy, i.e.,
the potential which allows that conversion of the N-orbital
propagation into a single-orbital dynamics.

A formal construction of the DKEP when the TDDFT
problem is solved is represented in Appendix; this is useful for
connecting to the TDDFT formulation. In practice, of course,
the TDDFT orbitals will not be known in a purely TDOF sim-
ulation, so we instead concentrate in the main body of the pa-
per on a fit of the DKEP.

We write the DKEP potential as having three terms:
Thomas–Fermi, von Weizsäcker, and a correcting term dis-
cussed later:

vOF = (3π2)
2
3

2m
ρ

2
3 − (a − 1)

�|�|
2m|�| + v ′

OF, (7)

where a is the numerical coefficient of the von Weizsäcker
term (typically in the range of 1 to 1/9). Note that the shift
of the von Weizsäcker term from a to a-1 is due to the time
dependence in the equation for �, as this modification negates
the appropriate part of the spatial derivative in the Laplacian
term in Eq. (5).

The correcting term is further decomposed of a nonlocal
kinetic energy potential vs (i.e., depending on the instanta-
neous density) as well as an important dynamical term u:

v ′
OF = vs + u. (8)

Here vs represents modern kernels for the static orbital-free
DFT which depends only on the instantaneous density:

vS(r) = δ

δρ(r, t)
VS, (9)

typically of the form

VS =
∫

ρα(r′, t)Q(ρ(r′, t), ρ(r′′, t), r′, r′′)ρβ(r′′, t)dr′dr′′,

(10)
where Q is a specific material-dependent kernel.

The final term u is the one proposed in this paper; its
purpose is to ensure the proper frequency-dependent linear
response. Therefore we label it as DKEP, which is explored
below.

III. ORBITAL-FREE SUCSEPTIBILITY AND DKEP

First, we focus on the simplest possible formulation
which is to obtain the DKEP by matching the response of a

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



144101-3 Dynamic kinetic energy potential J. Chem. Phys. 134, 144101 (2011)

noninteracting single-orbital system to that of a noninteract-
ing homogenous electron gas (HEG).22, 32, 33

We start with a homogenous electron gas with an initial
electron density ρ0. The unperturbed Madelung wavefunction
can be written as:

�0(r, t) = e−i E0t√ρ0, (11)

where

E0 = vOF(ρ0) − μ. (12)

The external linear perturbation is of the form

Vext = δVext = η exp(iq • r − iωt) + c.c, (13)

where η is the (complex) linear perturbation strength. The re-
sponse of the Madelung wavefunction is thus

� = �0 + e−i E0tδ�, (14)

where δ� and the response of the other quantities to the per-
turbation can be written as:

δ� = ηψ+(q, ω, ρ0)eiq•r−iωt + η∗ψ−∗(q, ω, ρ0)eiq•r−iωt

δρ = ηχ0eiq•r−iωt + c.c.
δvOF = ηζχ0eiq•r−iωt + c.c.
δvs = ησ (q, ρ0)χ0eiq•r−iωt + c.c.
δu = ηζ (q, ω, ρ0)χ0eiq•r−iωt + c.c.,

(15)
where these quantities have the obvious meaning

ζ = δvOF

δρ
, σ = δvs

δρ
, ξ = δu

δρ
. (16)

Note that as usual in linear response for wavefunctions,
the Madelung wavefunction contains both phases of the per-
turbation but not with the same strength. Also, here the non-
interacting susceptibility, χ0(ρ0, q, ω), is the response of the
density to the external potential in the absence of an electron–
electron interaction. Finally, the instantaneous potential is in-
dependent of the frequency.

To derive χ0 for TDOF, we first note that since the wave-
function is related to the density,

δρ = �∗δ� + c.c, (17)

it follows that

χ0 = √
ρ0(ψ+ + ψ−). (18)

The time-dependent equation for the Madelung wave-
function,

i
d

dt
δ� = q2

2m
δ� + (δvOF + δvext)�0, (19)

yields then

ωψ+ = q2

2m
ψ+ + √

ρ0(ζχ0 + 1)

(20)

−ωψ− = q2

2m
ψ− + √

ρ0(ζχ0 + 1),

i.e., by combining with Eq. (18),

χ0 = ρ0(1 + ζχ0)

(
1

ω − q2

2m

− 1

ω + q2

2m

)
, (21)

which rearranges to yield

1

χ0(q, ω, ρ0)
= 1

ρ0

⎛
⎜⎝ 1

ω− q2

2m

− 1

ω+ q2

2m

⎞
⎟⎠

− ζ (q, ω, ρ0).

(22)

Next, we notice that from Eqs. (7) and (15) the response
of the kinetic energy part has the form:

ζ = (3π2)
2
3

3m
ρ

− 1
3

0 + (a − 1)
q2

4mρ0
+ σ + ξ. (23)

There are two possibilities now for fitting, which will
lead to different results. In both cases, however, the role for
ξ is clear: it needs to match the orbital-free susceptibility χ0

to the desired susceptibility, as explained below.
The first is to note that in Eq. (23) the only frequency-

dependent part is the last one, ξ (q, ω, ρ0). We can then ap-
ply Eq. (22) at a fixed frequency, ω0, which typically could
have a zero real part and a small imaginary part to en-
sure nonsingularity. By subtracting the susceptibilities at a
general and fixed frequency (i.e., ω and ω0), we remove
the contribution of the instantaneous terms (Thomas–Fermi,
von Weizsäcker, and the static part), yielding the following
expression:

ξ (q, ω, ρ0) = 1

ρ0

(
1

ω− q2

2m

− 1

ω+ q2

2m

) + q2

4mρ0
− 1

χ0(q, ω, ρ0)

+ 1

χ0(q, ω0 → 0, ρ0)
. (24)

This choice is ostensibly very simple and yields a well-
defined prescription for u which can then be fitted as ex-
plained later. The attractive feature of this equation is that it is
independent of the specific terms being used such as Thomas–
Fermi, von Weizsäcker, etc. However, it relies on the assump-
tion that Eq. (22) is valid at ω0, i.e., that a successful static
fitting has to be achieved. This may or may not be the case
in practice. Furthermore, even in case where formally we im-
pose the correct susceptibility at zero frequency, in practice
the imposition may not be sufficiently accurate.

We therefore need to consider a second choice, where we
impose Eq. (22) only in a specific frequency range and not
necessarily for the static case:

χ0(q, ω, ρ0) =
⎡
⎣(

ρ0

ω − q2

2m

− ρ0

ω + q2

2m

)−1

− (3π2)
2
3

3m
ρ

− 1
3

0

− (a − 1)
q2

4mρ0
− σ (q, ρ0) − ξ (q, ω, ρ0)

⎤
⎦

−1

(25)
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IV. FITTING AND APPLYING THE DKEP

A. DKEP representation

We will write the dynamic term in a way which mani-
festly vanishes for static simulations

u(r, t) = dy(r, t)

dt
. (26)

The goal is then to fit y, which we call a generating po-
tential. There are several options for representing the DKEP
potential.

One option in static simulations is to expand in the terms
of the density around a reference density and integrate analyti-
cally over q.18, 34 Here, we could have taken a similar route but
the frequency dependence will still need to be accounted for,
i.e., without an explicit integration from time to frequency,
as we only have information about previous times during
the propagation. We note that if results are required at a sin-
gle frequency only, then a procedure analogous to the static
case (i.e., numerically exact using a reference density) could
have been employed. This may be applied in future, more spe-
cialized, simulations.

For general time-dependent simulations covering a range
of frequencies, we therefore adopt instead a global-fit ap-
proach, and represent the 3D parameter-space of wavevectors,
frequencies, and densities without a reference density:

y(r, t) =
∑

j

d jρ(r, t)a j

∫
e−κ j |r−r′|−iω j (t−t ′)

×ρ(r′, t ′)β j dr′dt ′ + c.c, (27)

where we chose a large number of terms “j” (typically
14). This expansion is clearly analogous to the static fit.

Here, d j , κ j , ω j are complex parameters but for simplicity we
choose α j , β j as real (although a complex choice is equally
feasible). The real part of κ j needs to be positive, and the
imaginary part of ω j is negative.

Next we review the determining equations for the coef-
ficients, and then the practical application of y in the time-
domain.

B. DKEP parameters

In linear response, ρ(r, t) = ρ0 + δρ, where δρ is the pe-
riodic perturbation of Eq. (15), the generating potential is

y = y0 + δy, (28)

where y0 = y(ρ0) and

δy(r, t) =
∫ ∑

j

d jα jρ
α j −1
0 δρ(r, t) exp(−κ j |r − r′|

− iω j (t − t ′))ρβ j

0 dr′dt ′

+
∫ ∑

j

d jβ jρ
α j

0 exp(−κ j |r − r′|

− iω j (t − t ′))δρ(r′, t ′)ρβ j −1
0 dr′dt ′ + c.c. (29)

For a periodic perturbation, Eqs. (13) and (15) yield

δy = iηχ
ξ

ω
eiq•r−iωt + c.c. (30)

After some straightforward algebra, Eqs. (29) and (30)
yield

ξ (q, ω, ρ0) = −ω
∑

j

d jρ
α j +β j −1
0

(
8πα j

ω jκ
3
j

+ 2iπβ j

(ω j − ω)q

(
1

(κ + iq)2
− 1

(κ − iq)2

))

+ω
∑

j

d∗
j ρ

α j +β j −1
0

(
8πα∗

j

ω∗
jκ

∗3
j

+ 2iπβ∗
j

(ω∗
j + ω)q

(
1

(κ∗ + iq)2
− 1

(κ∗ − iq)2

))
.

(31)

C. DKEP fitting

In practice, we fit the parameters in the expansion
of y to minimize the difference between the susceptibility
χ0(q, ω, ρ0) that results from Eq. (25) and the desired suscep-
tibility; the latter is usually (though not necessarily always,
see later) the HEG susceptibility, χHEG

0 :

χHEG(q, ω, ρ0) = (kF )2

2π2q

((
1 − A2

2

)
In

(
A + 1

A − 1

)

+ A +
(

1 − B2

2

)
In

(
B + 1

B − 1

)
+ B

)
,

(32)

where
A ≡ − q

2kF
+ ω + i0+

qkF
(33)

B ≡ − q

2kF
− ω + i0+

qkF
, (34)

and the Fermi momentum is

kF = (3π2ρ0)1/3. (35)

The fitting is carried out by minimizing an objective func-
tion. Specifically, we separate the parameters to the linear co-
efficients and the set of nonlinear parameters

b ≡ {α j , β j , Re(κ j ), Im(κ j ), Re(ω j ), Im(ω j )}, (36)
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and then define an objective function

J (b, d) =
∑

m

|χHEG(qm, ωm, ρm)

−χ0(qm, ωm, ρm ; b)|2 + c |d|2 , (37)

where the number of terms m is typically ∼5000, and
qm, ωm, ρm are randomly chosen points within a given range
of wavevectors, frequencies, and densities, respectively; the
regularization parameter c ensures that the coefficients will
not be too large due to over-completeness.

For each choice of the nonlinear parameters, b, we op-
timize with respect to the linear coefficients, d, i.e., we first
find numerically

I (b) = mind J (d, b). (38)

Then, we use steepest to optimize the nonlinear parame-
ters, b. Finally, each parameter in the fit has an allowed region
with which it varies, and this is accomplished by transforming
the parameters; for example, instead of using α j we optimize
a related parameter, which is unrestricted and yields α j at a
restricted range, and similarly for the other parameters.

In practice, the summation of the terms in y should be
viewed as an expansion, rather than a fit; owing to the large
number of terms, we find that we can fit well the linear co-
efficients d j for any reasonable choice of the other nonlinear
parameters.

A final technical point is the sampling set of
(qm, ωm, ρm). These are chosen randomly within a given de-
sired parameter space. The results depend of course on the
sampling space (i.e., the range of values of the wavevector,
frequency, and density). However, within a given sampling
domain, we found that the results are sufficiently independent
of the specific set of sampling points used. For example, to
converge well with about ∼5000 randomly chosen sampling
points, it is preferable to add a small imaginary part to the
frequency, i.e., the sampled frequencies have the form

ωm = ωr,m + i�, (39)

where in our simulations � = 0.001 a.u.was sufficient. (The
positive imaginary sign is required by the Lindhard expres-
sion.) Note that the complex frequency is used both in the
Lindhard expression and in Eqs. (25) and (31).

The results of a specific fitting used are presented in
Sec. V.

D. DKEP application

Next we turn to the application of the DKEP, as part of the
time-dependent Schrödinger equation [Eq. (5)]. We represent
the DKEP generating potential, y, as a standard convolution
term

y(r, t) =
∑

j

d jρ(r, t)a j Q j (r, t), (40)

where

Q j (r, t) ≡
∫

exp(−κ j |r − r′|)Pj (r′, t)dr′, (41)

and

Pj (r, t) ≡
∫ t ′=t

t ′=−∞
exp(−iω j (t − t ′))ρ(r, t ′)β j dt ′, (42)

which is determined by propagating:

∂ Pj (r, t)

∂t
= −iω j Pj (r, t) + ρ(r, t)β j . (43)

The initial conditions are that the time derivative of the
Pj terms vanish (before the application of any perturbation),

∂ Pj (r, t = 0−)

∂t
= 0, (44)

so that

Pj0 ≡ Pj (r, t = 0) = − iρ
β j

0

ω j
. (45)

At each time-step, once these Pj (r, t) terms are known,
the resulting Q j (r, t) [Eq. (41)] are determined by the stan-
dard spatial convolution with FFT, as it is easy to show that
[analogous to Eq. (31)]

Q j (k, t) = 2iπ

k

(
1

(κ j + ik)2
− 1

(κ j − ik j )2

)
Pj (k, t).

(46)

These convolutions are the most expensive part in the
applications of the OFDFT term. An alternative is presented
later.

There is some flexibility on the choice of how to propa-
gate the time-dependent equation, Eq. (46), and the Madelung
equation, Eq. (5). Here, at each time t we did the following:

� First, propagate Eqs. (5) and (46) (for
d�(r, t)/dt, d Pj (r, t)/dt), but without including
the DKEP in the time-dependent Hamiltonian of
Eq. (5); schematically

�(r, t), Pj (r, t) → � ′(r, t + dt), Pj (r, t + dt).
(47)

For this step we used Runge–Kutta, but a Taylor
or split-operator expansion would have been equally
valid.

� Next, construct the spatial convolutions and sum-
mations that yield the generating potential, using
Eqs. (40) and (46):

Pj (r, t + dt) → Q j (r, t + dt) → y(r, t + dt).
(48)

� Next, construct the DKEP potential by backward
derivative,

u(r, t + dt) = y(r, t + dt) − y(r, t)

dt
. (49)

� Finally, apply the DKEP potential

�(r, t + dt) = e−iu(r,t+dt)dt� ′(r, t + dt), (50)

� and then repeat the algorithm for the next step.
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The DKEP potential is usually quite small so that con-
vergence did not necessitate the reduction of the time-step
beyond that required for an ordinary TDOF propagation. Mul-
tiple time-step algorithms should improve the efficiency of the
approach.

E. Regularization

One complication that can occur in time-dependent prop-
agations is the possible blow-up of the equation. This will
happen if the numerical value of Im χ (q, ω, ρ) > 0 for some
value of the argument which is relevant (i.e., in the simula-
tions below close to the plasmon resonance). Put differently,
the analytical value of Im χ is never positive, but the numer-
ical fit may lead to a small positive imaginary value. While
this difficulty did not occur in our test, it could happen in fu-
ture applications. To alleviate this difficulty, we could regu-
larize the potential; the simplest way is to damp the Pj terms
by adding an additional negative imaginary term, −i�, to the
fitting frequencies:, i.e., modifying (43) to

∂ Pj (r, t)

∂t
= (−iω j − �)Pj (r, t) + ρ(r, t)β j . (51)

The addition of � will damp the correlation function
and widen the spectrum. An alternative would be to use a
frequency-based iterative scheme.

V. SIMULATIONS

All quantities below are in a.u. units.

A. DKEP parameterization

The DKEP was optimized for a large range of frequen-
cies, densities, and wavevectors:

0.05 < ω < 0.18, 0.001 < ρ < 0.005, 0.03 < q < 1.8.

(52)

The resulting set of parameters for a fit with 14 terms is
shown in Table I.

The RMS deviation of the real and imaginary parts of
the susceptibility [from the first term on the RHS of Eq. (37)]
has been, with this fit, 0.004; for comparison, the maximum of
the static susceptibility is about 12 times higher at this density
range.

Figure 1 shows a cut, at one value of the density and fre-
quency, of the real and imaginary dynamic susceptibilities as
a function of frequency, both the analytical and fitted expres-
sion; the agreement is generally satisfactory although the fit-
ted susceptibility has near-singularities near ω = q2/2m due
to the structure of the TF term.

Figure 2 is similar to Fig. 1, but also includes a compar-
ison to the susceptibility in the usual OF approach, without
DKEP (i.e., purely TF+VW). This usual OF susceptibility is
purely real and has a very large change of values near the
ω = q2/2m range.

TABLE I. A set of parameters used to fit the DKEP potential to fit the HEG
susceptibility over a large range of frequencies, densities, and wavevectors.
Purely real density-exponents (α j , β j ) were used.

j Re d j Im d j Re κ j Im κ j α j β j Re ω j Im ω j

1 0.0364 −0.0183 0.330 −0.0634 0.5630 0.734 −0.0023 −0.0001
2 0.0221 −0.0148 0.489 1.7700 0.300 0.300 0.1820 −0.0034
3 −0.0157 0.0420 0.498 0.1290 0.607 0.791 −0.1480 −0.0031
4 −0.0155 −0.0228 0.406 0.4470 0.455 0.695 −0.0498 −0.0001
5 −0.0326 0.0070 0.401 0.2040 0.594 0.793 −0.1230 −0.0049
6 −0.1073 −0.0866 0.400 1.5100 0.574 0.616 −0.1429 −0.0025
7 −0.0110 −0.0078 0.400 −0.0056 0.502 0.894 0.0940 −0.0023
8 0.0137 0.0281 0.410 −0.0853 0.333 0.336 0.1302 −0.0495
9 0.0027 −0.0057 0.405 −0.0443 0.452 0.593 0.1779 −0.0007
10 −0.0020 −0.0036 0.484 0.4620 0.347 0.667 −0.0802 −0.0012
11 0.0051 −0.0158 0.399 0.0439 0.567 0.681 0.1152 −0.0029
12 0.0878 −0.1984 0.400 1.4400 0.566 0.692 −0.1590 −0.0068
13 0.0006 0.0009 0.494 0.3830 0.517 0.625 −0.1571 −0.0009
14 0.0135 0.0168 0.394 −0.0883 0.575 0.601 0.0498 −0.0009

B. TDOF simulations

Next we turn to preliminary time-dependent simulation
of the correlation function. As an initial test, we simulated two
jellium clusters: the first, with an 8 a.u. radius associated with
Na9

+ and the second, with about twice the radius, associated
with Na65

+. The maximum jellium density is 0.0042 a.u.; the
density is a sigmoid function with a sharp rise. A cubic grid
was used, with a spacing of 1.5 a.u and with (16)3 points for
the small simulation and (32)3 for the large one. The smaller

FIG. 1. Analytical vs fitted noninteracting susceptibilities for the electron
gas. χHEG

0 (ω, q, ρ) as a function of wavevector q, for a single value of the
complex frequency (ω = 0.125 + i · 0.001 a.u.) and density (0.004 a.u.); the
numerical susceptibility was fitted within a 3D range of values, but is only
shown for a single density-frequency cut.
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FIG. 2. Analogous to Fig. 1.a, but now including the (purely real) suscepti-
bility of a noninteracting HEG without a dynamical kinetic energy potential
(i.e., the response of a purely TF+V.W. OF Jellium). Note the different scale
from Fig. 1.

cluster has been used for testing TD theories (both TDDFT
and TDOFDFT),22 as well as RPA.35

Since our focus was on the dynamic response, the static
simulation used a purely Thomas–Fermi and von Weizsäcker
kinetic energy, without the static susceptibility term of
Eq. (10); however, the Madelung Hamiltonian in Eq. (5) con-
tains a local LDA exchange and correlation term, i.e., we used
an adiabatic LDA potential in Eq. (6). Solving for the static
simulation [i.e., the ground state of Eq. (5)] yields ρ(r, t = 0).

We now added to the Madelung Hamiltonian an electric
field potential, which is a delta function in time, i.e., by setting

�(r, t = 0) =
√

ρ(r, t = 0)e
−υ sin

(
2π z

Ns dz

)
, (53)

where we defined the number of grid points and grid spacing,
and υ = 0.01 is the strength of the excitation. The Madelung
function was propagated with Eqs. (5) and (47)–(51). No
damping parameter �was necessary.

Figure 3 shows the resulting dipoles as a function of time;
for comparison, similar calculations without DKEP are in-
cluded. The DKEP potential has a huge effect for the very
small cluster, but as expected, its effect is less pronounced
for the larger cluster, where the oscillations are much more
peaked.

The DKEP has clearly two effects: first, damping of the
correlation function in time, and further, a clear blue-shift
of the frequency. This is demonstrated in Fig. 4, showing
the imaginary part of the frequency-dependent dipole corre-
lation function, yielding the absorption spectrum. The peak
is around 0.13–0.14 a.u.; interestingly, using the standard
TDDFT package Octopus,36 we have also determined the ad-
sorption frequency to be 0.13.

Finally, Fig. 5 shows that the DKEP is appropriate both
for small and large excitations; a very large excitation of
the small cluster, yielding a dipole moment of 40 a.u. for 8
electrons (i.e., an average per electron shift of 5 a.u.) still
yields converging results.

These results should not be compared directly to TDDFT
simulations, since no static susceptibility potential was used
to fix the underlying density to fit the TDDFT static density.
Put differently, the static simulations we first do in OFDFT

FIG. 3. Dipole as a function of time for Na9
+ using TDOF with a DKEP

(dynamical kinetic energy potential) using a 14 term and a 28 term fit; also
shown is the dipole when no DKEP potential is used (i.e., only TF+VW for
the kinetic term). These simulations include an LDA exchange-correlation
potential. (a) Small cluster (Na9

+); (b) Larger cluster (Na65
+).

FIG. 4. Im (d(ω))vs ω, i.e., the absorption spectrum, for the system shown
in Fig. 3; for both clusters d(t) was scaled by exp(−0.003 · t) prior to the
Fourier transform. (a) Small cluster; the No-DKEP results scaled down by
5 for visibility; (b): larger cluster, no scaling needed. Note that the DKEP
spectra get sharper for larger clusters, as expected.

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



144101-8 Neuhauser et al. J. Chem. Phys. 134, 144101 (2011)

FIG. 5. DKEP for an ultrastrong excitation (υ = 1, associated with a max-
imum dipole of more than 6 a.u. per electron), for a small cluster. These
simulation show that DKEP is useful even far away from linear response.

(before the dynamics) yield a somewhat different density than
the static TDDFT results.

VI. FUTURE EXTENSIONS

The DKEP simulations discussed here can be extended
in several directions, briefly outlined below:

A. Vector potentials

The DKEP approach discussed here was based on the
Madelung single-orbital propagation. However, a more gen-
eral approach can be used, in which an electromagnetic po-
tential couples to the density and currents, schematically,

∂ρ

∂t
= −∇ • J

∂J
∂t

= F(J, ρ, A).

(54)

Here, higher order responses will be used to construct the
dynamic kinetic vector potential, A.

B. Iterative frequency-dependent approach

We concentrated on real-time simulations. However,
many applications will simply require a frequency-dependent
transform rather than a real-time simulation. Such frequency-
dependent iterations usually require an adiabatic potential; to
ensure a kinetic general potential, we simply rewrite the orig-
inal propagation equation as:

i
d�

dt
= heff(ρ, u, Pj )�, (55)

where now the coupling is instantaneous, i.e., the propaga-
tion equations depend only on the instantaneous values of the
wavefunction and of Pj so that the linearization scheme can
now work. One slight complication is the fact that the poten-
tial depends on the time derivative of y; recalling that the only
reason for that was to make static term disappear, we define
a new potential u′ (to be used instead of u) that has an easy

form in this context and is also devoid of a static term:

u′(t) = y

τ
− 1

τ 2

∫
e−(t−t)/τ y(t ′)dt ′ ≡ y

τ
− u

du

dt
= u

τ
+ y

τ 2
= u′

τ
, (56)

where τ is a short-time parameter. When coupled with
Eq. (43), an effective Liouville linearized operator (“L”)
results,

L

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψr (r)

ψi (r)

ur (r)

ui (r)

pr, j (r)

pi, j (r)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Re f

Im f

Re

(
u′

τ

)

Im

(
u′

τ

)
Reg j

Img j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

f ≡ −i
1

s
(heff (ρ, u, Pj )� − heff (ρ0, 0, Pj0)�0) s → 0

g j = −iω j (pr, j + i pi, j ) + ρβ j − ρ
β j

0

s
,

where

� = √
ρ0 + s(ψr + iψi )

Pj = P0, j + s(pr + i pi )

u = ur + iui . (57)

The Liouville operator could be then used for a
frequency-dependent iterative solution, amounting to invert-
ing L − iω for a range of frequencies ω using iterative meth-
ods (see, e.g., Refs. 37 and 38).

An analogous approach obviously could apply for a
frequency-dependent iterative solution for a general time-
dependent memory potential and not just DKEP.

C. More efficient representations of the DKEP

A possibly more efficient representation of the DKEP
could be replacing Eq. (42) by

Pj (r, t) =
∫

exp(−i(ω j − κ j q̂2)(t − t ′)ρ(t ′)β j dt ′

≡
∫

[exp(−i(ω j − κ j q̂2)(t − t ′)]r,r′ρ(r′, t ′)β j dr′dt ′

(58)

where q̂ = −id/dr ′, and the meaning and units of the param-
eter κ j is now different.

Possible advantages for this representation are twofold.
First, the time evolution is now simpler:

∂ Pj

∂t
= −i(ω j − κ j q̂2)Pj + ρβ j , (59)

as it only involves derivatives (which could be evaluated by a
few-point formulae) and not convolutions.
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Further, this presentation mixes the frequency and
wavevector for each term, so that it potentially could bet-
ter represent the complicated 3D landscape of the suscepti-
bility. In fact, the Lindhard susceptibilities for the HEG are
constructed by integrating over terms that are reminiscent of
Eq. (58).

D. Memory and functionals

The DKEP as presented is a potential which is not de-
rived from a functional; future work will aim to relate it to a
functional. This task should start, from example, from aiming
to satisfy the harmonic potential theorem of Dobson39; this
may be achieved by casting the method in the form of an ac-
tion principle on the Keldysh contour as done within orbital-
TDDFT.40

In addition, we clarify the difference between DKEP and
the memory functionals in TDDFT. DKEP aims at capturing
the effect of the kinetic energy for OF applications (so it is fit-
ted to a noninteracting susceptibility); TDDFT memory func-
tionals aim at capturing nonadiabatic exchange correlation,
and should therefore be much weaker.

Finally, we note that the near singularity of the OF sus-
ceptibility when Re(ω) = q2/2 complicates the fit, as is ev-
ident in Fig. 1. One possible solution is to abandon the von
Weizsäcker term altogether in favor of the static susceptibility
potential and the DKEP; a possibly better alternative would be
to replace the von Weizsäcker term by either an instantaneous
term

i
∂�

∂t
= ( f (q2) + v − u)�(t),

or even a nonlocal kernel in time,

i
∂�

∂t
=

∫
K (t − t ′, q̂)�(t ′)dt ′ + (v − μ)�(t), (60)

where the potential depends as before on time and position,
but we omitted spatial coordinates.

VII. CONCLUSIONS

In conclusion, we outlined here the theory and have
shown that DKEP is feasible with a simple and well-defined
numerical representation, so that the effect of kinetic energy
can, in linear response, be captured based on the HEG expres-
sions. Further, the simple simulations demonstrate the numer-
ical stability of DKEP.

The approach could also be extended to fit either an ex-
perimental susceptibility or a theoretically derived one for
a non-HEG system. In fact, the fitting should be even sim-
pler for experimental susceptibilities, which will not have the
sharp features of the HEG susceptibility.

The DKEP potential should be a powerful tool for em-
bedding a dynamical system described by a more accurate
method such as TDDFT in a large background described by
time-dependent orbital-free (TDOF) with a DKEP potential.

The type of expansion used and envisioned here should
be useful for other approaches, such as memory functionals
in TDDFT.

Finally, the method clearly has many possibilities, as out-
lined in Sec. IV. With a static susceptibility potential for the
static part, as outlined, it should be possibly to include by
DKEP the effects of the correct kinetic energy in a wide vari-
ety of orbital-free simulations.
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APPENDIX: CONNECTING TDOF TO TDDFT IN THE
GENERAL CASE

The scalar Madelung equation, i.e., the time-dependent
single-particle equation for the orbital-free density, has long
been used in TDOFDFT (see, e.g., Ref. 22). An (almost-
complete) proof of its formal applicability starts with TDDFT,
where we know that the orbitals fulfill the TDDFT equation,
Eq. (1). Left-multiplying (1) by φ∗

j (r, t) and summing yields

i
∑

j

φ∗
j

∂φ j (r, t)

∂t
= − 1

2m

∑
j

φ∗
j �φ j (r, t)

+ (vTDDFT(r, t) + νext(r, t))ρ,

(A1)

where the sum extends only over occupied orbitals and we
assume for simplicity (with no loss of generality) populations
of 1 for the occupied orbitals, and 0 otherwise. The imaginary
part of this equation leads to

∂ρ(r, t)

∂t
= −∇ • F(r, t), (A2)

where the flux is

F(r, t) ≡ Im
∑

φ∗
j ∇φ j (r, t)

m
= Im

m

∑
j

(
√

ρ j e
−iχ j ∇√

ρ j e
iχ j )

= 1

m

∑
j

(ρ j∇χ j ),

where we defined φ j = √
ρ j eiχ j ; therefore

∂ρ(r, t)

∂t
= − 1

m

∑
j

(∇ • (ρ j∇χ j )), (A3)

The TDOF equation, on the other hand, can be written as
(multiplying Eq. (5) by �∗ = |�| e−iχ , with |�| = √

ρ)

i
2

∂ρ

∂t
− ρ

∂χ

∂t
= −e−iχ√

ρ�
√

ρeiχ

2m
+ (v − μ)ρ

= −
√

ρ�
√

ρ − ρ (∇χ )2 + i∇ • (ρ∇χ )

2m
+ (v − μ)ρ.

(A4)
Therefore, in order to match the imaginary part of

Eq. (A4) to (A3), we need to impose an effective Poisson-
like equation for the phase (with the instantaneous electron
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density being the equivalent of the electromagnetic index of
refraction):

∇(ρ(r, t) • ∇χ (r, t)) = 2m∇ • F(r, t)

=
∑

j

∇(ρ j (r, t) • ∇χ j (r, t)). (A5)

We postulate without proving that this Poisson-like equation
can be fulfilled, i.e., solved for χ . (Note that the uniqueness
of the solution to Eq. (A5) up to a constant is actually proved
in exactly the same way as the analogous proof in a differ-
ent context in the Runge and Gross paper (Ref. 28, the dis-
cussion after Eq. (6); here this means that in Eq. (A5) we
cannot have a homogenous solution ∇ • (

ρ(r, t)∇χ ′(r, t)
) =

0, since if we had then we will multiply by −χ ′(r, t) and

integrate over space to get

0 = −
∫

χ ′(r, t)∇(ρ(r, t) • ∇χ ′(r, t))dr

=
∫

(∇χ ′(r, t))2ρ(r, t)dr,

i.e., a contradiction since the density is non-negative and
any practical calculation the density will be nonvanishing
throughout space.)

Given then the solution to Poisson-like equation (A5),
then the remaining part, i.e., the real part of Eq. (A4), is ful-
filled once the DKEP potential (νOF ≡ ν − νTDDFT − νext) is
defined as

νOF = −∂χ

∂t
+ 1

ρ

∑
j

ρ j
∂χ j

∂t
+ (

√
ρ)�

√
ρ − ρ(∇χ )2 − ∑

j ((
√

ρ j )�
√

ρ j − ρ j (∇χ j )2)

2mρ
. (A6)

Two interesting corollaries are:

� Since it is possible to numerically find the N-electron
TDDFT orbitals for small and medium scale problems,
it will be interesting to study the DKEP potential in
such cases and see the deviations from the DKEP po-
tential as defined in the main body of the paper which
is developed by the fit to HEG;

� The proof here will proceed completely analogously if
we use a different mass in the OF and TDDFT prop-
agations [Eqs. (1) and (5)], except for a mass-ratio
scaling factor in Eqs. (A5) and (A6), so numerically
it could be useful to use a different (“effective”) mass
which could give a better representation of the physics
of the problem.
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