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Spintronics birefringence with an extended molecular loop-wire
or spiral coupling
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A ring with spin-orbit effects coupled to a conducting wire is shown to exhibit a phase delay which
is spin dependent. The key is that the coupling of the ring to the wire is over an extended spatial
range and not just along a single point; this breaks the symmetry and makes the ring states couple
differently to forward and backward moving wire states. This results, for properly injected spin
states, in a spin-flipping probability which is dependent on the energy of the injected electron and
can therefore be easily controlled. Several systems are presented and shown to exhibit this effect
including the basic ring which couples to a wire as well as a ring which mediates between two wires,
and a spiral between two wires. © 2005 American Institute of Physics. �DOI: 10.1063/1.2126664�
I. INTRODUCTION

One of the basic problems in the molecular and nano-
electronics is spintronics, i.e., how to control electron-spin
degrees of freedom in solids or in artificially manufactured
semiconductor nanodevices.1–5 These devices include quan-
tum dots, wires, nanotubes, and even molecules. Recently,
new man-made semiconductor nanoscale systems have
emerged—nanorings on Si.6,7 Due to the nontrivial topology
of these systems they possess interesting quantum mechani-
cal and magnetic properties.8–12 Similarly, ring-based mo-
lecular systems exhibit interesting interference effects.13,14 In
this paper we study how ring-shaped nanodevices and mol-
ecules could be useful in electron-spin control.

Probably the most natural tool for controlling spins is the
magnetic field. The use of the magnetic field gives rise to
such mechanisms as Aharonov-Bohm and Zeeman effects.
Different ways for exploiting the magnetic field in spintron-
ics have been proposed and could be found in recent
reviews.1,2,5 Magnetic fields have the advantage that they are
externally applied,12 however, the effect of the magnetic field
is proportional to the flux so that it is difficult to apply it for
molecular systems which have inherently small areas, or to
very small nanosystems.

Another physical tool which can control spins is the
spin-orbit effect. Spin-orbit effects are often quite strong for
molecular systems �with splittings of more than an eV for
heavier atoms� but are trickier to apply. A possible device we
propose in this paper has the ring �Aharonov-Bohm� topol-
ogy and also has an inherent spin-orbit interaction. The rea-
son why such a device might be interesting for spintronics is
that the spin is coupled to the molecular angular momentum
lz, an internal quantum number of the device. If the device, in
addition, has the lz→−lz symmetry broken �e.g., geometri-
cally wise�, the spin degeneracy would also be broken.

The simplest geometry that breaks lz→−lz symmetry
would be to connect a heavy atom to two ligands at an angle;
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then the electron which passes through the heavy atom from
one ligand to the other one will travel in a definite direction
�clockwise or counterclockwise, depending on the geometry�
so that the lz→−lz symmetry is broken and due to the spin-
orbit interaction different spins experience different interac-
tions.

One feature of the spin-orbit interaction, however, is that
the phase delay it induces does not depend on the energy.
�Semiclassically, this is because the spin-orbit interaction is
proportional to the velocity of the particle, and the integral of
this interaction is just proportional to the length of the tra-
jectory of the electron�. This feature is advantageous in some
systems, since it makes the spin-orbit effects less sensitive to
perturbations. However, this also makes it more challenging
to gate the effect. Further, in the process of electron propa-
gation a single element, which does not retain the electron
for a considerable period of time, may not always be strong
enough to cause a considerable spin rotation. The loop cavity
geometry we propose in this paper allows both to effectively
extend and to gate the spin-orbit interaction.

The suggested geometry is equivalent to a cavity and
makes it possible to use either �or both� magnetic fields or
spin-orbit couplings to affect the spin. In its simplest version,
the geometry is just a loop weakly coupled to a wire, with
slightly different geometries presented later. The key, how-
ever, is to have the wire and the electron couple along a
range not just at a single point. By having this extended
coupling the lz→−lz symmetry of the loop is broken, so that
different magnetic spins experience slightly different phases
along their motion. Qualitatively, an incoming wave on the
wire would couple differently to a clockwise and to an anti-
clockwise state on the cavity. Therefore, different orbital an-
gular momenta experience different interactions, leading
through the spin-orbit interaction to a spin-dependent mo-
tion.

Heuristically, the difference in interaction has two ef-
fects: one is that at sufficiently strong energy differences one

spin projection could be blocked. This, however, requires the
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breaking of the planar symmetry so it would not appear in
the systems considered here which are all effectively planar.
The other effect is more subtle and is important even for
small energy-splitting and planar systems; it is the different
phase velocity of the two spins. This is completely analogous
to optical birefringence, where light that passes through an
uniaxial crystal experiences different phase delays for differ-
ent polarizations. This phase delay can be properly manipu-
lated to cause spin rotation.

In this paper we explore the implications of the spin
birefringence in three Huckel models. Section II introduces
the models: wire loop, a similar wire-loop-wire model in
which the coupling between the two leads is only through the
loop, and a spiral which connects two wires. It then discusses
briefly several physical systems where this effect can be
used, including silicon rings, ringlike molecules, and nano-
tubes. Section III presents the results. Discussion of the rel-
evance of these effects to specific spintronics systems, using
either spin-orbit interactions or also magnetic field �in com-
bination with gating effects� follows in Sec. IV.

II. SYSTEMS

The numerical models we consider should possess the
two significant properties discussed in Sec. I. The first is the
broken lz→−lz symmetry, or broken “orbit symmetry” as one
might call it, and the second is the spin-orbit coupling inter-
action on the ring. We propose three such models �Fig. 1�.

A. Wire-loop geometry

The first model is of a wire in conjunction with a loop

FIG. 1. Three geometries studied. �a� The wire-loop geometry, �b� the wire-
loop-wire geometry, and �c� wire-spiral-wire geometry.
�Fig. 1�a��. The current flows along the wire, and the wire is
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coupled along a range to the loop. A Huckel Hamiltonian is
used; the coupling between different sites is then summa-
rized as

HI,J =�
2� , I = J

− � , I,J connected, both on wire

− �eigI,J, I,J connected, both on loop

− � , I,J connected; I on loop,

J on wire or vice versa.
� �1�

.
In detail, � is a weak coupling which connects wire and

loop sites that are neighboring �are in parallel sites�. Also, all
sites on the wire are connected by a kinetic coupling �2� on
the diagonal and −� on the off diagonal�; on the loop there is
a similar coupling but it is modulated by the spin-orbit effect.
The modulation is through a factor which we label as

gI,J = �±
a

�
u�max�I,J��sz, I = J ± 1

0 otherwise,
� �2�

where sz is the spin projection along the z axis, i.e., the axis
perpendicular to the loop, a is the strength of the spin-orbit
coupling, and the function u defines the specific model as
discussed below.

There are several options for the spin-orbit coupling. The
first one, considered here, is an equal spin-dependent cou-
pling along the loop. In this case, u�I�=1. Such an extended
spin-orbit coupling can be induced if the loop is surrounding
a single atom or a magnetic cluster which induces a magnetic
coupling. Such a coupling would typically be weak, since it
acts essentially by a remote-atom-effect, i.e., the electrons
which experience the spin-orbit effect would be far from the
heavy atom. The second option �not considered here� for the
wire-loop coupling is a loop which includes in it a single
heavy atom which is connected in an angle. It is straightfor-
ward to prove that such a connection provides a phase delay
which depends on the spin; formally, then, u�I� would be 1 at
the site of the single heavy atom and zero otherwise. Finally,
a more general option is a loop in which several heavy atoms
are placed.

In this geometry, the most important aspect is that the
wire-loop coupling is extended over several sites. Therefore,
an incoming wave on the wire couples mostly to the eigen-
states on the loop with clockwise rotation. Mathematically,
an incoming wave would have an eigenstate of the form
exp�ikj�, where j is the site on the wire and k is the associ-
ated �dimensionless� wavevector; on the loop it would be, if
the loop is essentially undistorted, exp�im��, where m is the
eigenvalue of lz and � is the angle spanned by the site. Ob-
viously, if there is a match between the arguments of the two
eigenstates �m��kj� there would be good coupling, and the
coupling would only be effective for m of a single sign �for
an incoming wave�.

The wire-loop geometry is reminiscent of a racetrack,
since the wave that comes into the loop �the “track”� joins

into the loop gradually, making it go only in one direction
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�counterclockwise or clockwise�, unlike a regular T junction
which distributes the particles symmetrically in both direc-
tions.

B. Wire-loop-wire and wire-spiral-wire general

The second geometry is a wire which connects to a loop
and that connects in turn to another wire. If only a single
loop is used, this geometry �Fig. 1�b�� is reminiscent of a
“packman,” but several loops can tie together to form a spiral
which self-connects. Here, coupling must occur through the
loop. The Hamiltonian used is the same as Eq. �1�, except
that now two �unconnected� wires are employed. The quali-
tative difference from the wire-loop geometry is that the out-
going wave inevitably passes through the loop.

Note the similarity to a third option, a wire which con-
nects to a regular spiral. The main difference between a wire-
spiral-wire and a wire-loop-wire options is that a regular spi-
ral is open, so that the wave cannot do a full revolution in it.

C. Chemical relevance

There are several systems which can be envisioned built
on this model. Detailed simulations will be presented in fu-
ture papers, but for reference we briefly mention several op-
tions. The first is, as mentioned in the introduction, nanor-
ings. Here, the idea would be to coat the nanorings, from
inside, with a transition-metal compound. The transition-
metal compound would induce a spin-orbit rotation along the
ring. In this case the relevant energy scale would be in the
sub-eV regime.

A more immediately feasible approach would be to use a
molecular system. Here, a transition metal would be sur-
rounded by a ring of hydrocarbons. There are many other
variants on this; even a single transition-metal atom con-
nected at an angle to two ligands which are then connected
below would act as a small birefringent loop. Here, the en-
ergy scale would be similar to that in the simulations, a few
eV; since the gating will be done by tuning the working
Fermi level or the injection energy, the gating voltages will
also be a few volts.

Finally, the spiral simulation is obviously reminiscent of
a directed nanotube, built around a scaffold of transition met-
als, though other geometries are also feasible.

Similar geometries would be feasible for use with mag-
netic fields, which would necessitate, however, large fields or
the use of larger rings.

III. METHODOLOGY

We calculate both the total reaction probability for going
from the one lead to the other, as well as the scattering prob-
ability to start from a specific spin and end up, on the other
wire, with a different spin.

The total reaction probability is a function of the incom-
ing spin. All the systems we consider are planar or quasipla-
nar and therefore Sz would be approximately conserved, but
the scattering phase is spin dependent. Therefore, the Hamil-
tonian is just labeled by the value of 2Sz.

The total reaction probability is obtained from the flux-
15
flux reaction rate,
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N�E� = Tr��LG�RG†� , �3�

where14

G =
1

�E − H + i�L + i�R�
�4�

is the Green’s function in the presence of the absorbing po-
tentials �L and �R, which are applied at both edges of the
wire. The more interesting information, however, is in the S
matrix. We calculate that from the expression for the full
wave function in terms of the absorbing potential16

� = G�L�L, �5�

where �L is the free incoming wave in the left lead, i.e.,

�L�j� =
1
�v

exp�ikj� , �6�

where the momentum on the lead and its velocity are defined
from the energy in the Huckel model as

k = a cos	1 −
E

2�

, � = 2� sin�k� �7�

Then, the S matrix is obtained from the overlap of the full
wave function with the analogous free wave function from
the right lead15,16

TSz = ��R
* ��R�� = ��R

* ��RG�L��L , �8�

where we denote the explicit dependence of the transition
amplitude on Sz.

The T matrix determines the phase delay experienced by
each spin. The interesting aspect is that, if the initial spin is
polarized, the final spin would be polarized too but with a
possibly different polarization. Specifically, define the
spin-up �“	”� and spin-down �“
”� components to be rela-
tive to the z axis, which is by definition the axis perpendicu-
lar to the plane. Write then the initial spin as a combination
of these two states

�in = a+� +  + a−�−  . �9�

Then the outgoing spin would be, in an obvious notation,

�out = T+a+� +  + T−a−�−  = T+	a+� +  +
T−

T+
a−�− 
 . �10�

Therefore, the spin would be rotated. For simplicity, we as-
sume that the incoming electrons are prepolarized along the
positive x axis, so that their spin component would be
�in= ��+ + �−� /�2; one measurement of the device is then
the “flipping” amplitude �denoted by f�, i.e., the component
along the negative x axis,

f =
�T+ − T−�

2
, �11�

as well as the probability for spin flip �f �2.
The devices we propose are based on the effect of dif-

ferent phase delays during the propagation for different
spins. Therefore, it can operate only if the incoming elec-

trons are polarized and the polarization is in plane. If the
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incoming electrons are not polarized the effect of spin rota-
tion will be smeared due to statistical averaging over the
polarization direction.

IV. RESULTS

All simulations were done with a reasonable value of the
kinetic energy constant in the Huckel Hamiltonian for or-
ganic and chemical systems, �=2.7 eV. We used parabolic
absorbing potentials which extend through the last 50 sites of
the outer ends of the wires. Also, a weak wire-loop coupling
was used; for the wire-loop simulations we took �=0.2 eV.

The first simulations were for a model wire-loop system
�Sec. II A�, in which we applied a uniform spin-orbit cou-
pling throughout the loop, with a spin-orbit coupling
strength, for each site, of a=0.02 eV. The loop has then 40
sites. The number of sites in the wire just has to be large
enough for convergence, but, to avoid any convergence is-
sues, we took a total of 200 wire sites �more than needed�.
The loop wire coupling extended over ten sites.

Figure 2 shows the main results of the loop-wire simu-
lations. We first show in Fig. 2�a� the phase of the transmis-
sion amplitude for the two spins. Near specific resonance
energies the phases vary rapidly with energy. Therefore, the
spin-flip probability, which is related to the difference in the
transmission phases, show marked energy dependence near
the specific resonances �Fig. 2�b��.

Qualitatively, the results of Fig. 2 can be understood as
follows. The transmission pattern in Fig. 2 shows clear Fano
resonances associated with the electron states on the loop. In
the absence of the spin-orbit coupling the electron states are
the orbital states with the quantized angular momentum
number, m=0, ±1, ±2. . .. The states with opposite electron
rotations �m= ± �m�� are twofold degenerate. In the effective-
mass approximation the energies of the states are simply pro-
portional to the angular momentum quantum number

FIG. 2. Results for wire-loop geometry: �a� The phase of the transmission
amplitude for spin up �solid line� and spin down �dashed line�. The trans-
mission probability is identical for the two spins �b� spin-“flip” probability
�f �2 �see Eq. �11��.
squared,
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Em = m2,

where  is the parameter depending on the electron effective
mass and the physical size of the loop.

When one turns on the spin-orbit coupling the degen-
eracy is lifted for an electron with a given spin direction. The
energy of the states becomes

Em = m2 + �sm ,

where � is a constant characterizing the strength of the spin-
orbit interaction, and related to the parameters in the Hamil-
tonian.

In the wire-loop model the electrons passing by the loop
are mostly coupled to the loop states with angular momen-
tum quantum numbers of a specific sign. In other words,
only the loop states in which the electrons rotate clockwise
are coupled to the electrons going from the upper part of the
wire to the lower one �see Fig. 1�a��. Thereby, only these
states would result in the Fano resonances in the complex
amplitude.

For electrons with the opposite spin direction these states
are going to be at different energies due to spin-orbit cou-
pling. This means that Fano resonances are going to appear
at different energies for the two opposite spins. For instance,
the nearby resonances for two spins, which correspond to the
loop state with angular momentum m�0, are going to be at
energies

Em = �m2 + ��s�m , s = 1
2

m2 − ��s�m , s = − 1
2 .
� �12�

The separation of the resonances for the two spins is clearly
seen in Fig. 2�a�, where we give the phase of the complex
transmission amplitude for the two spins as a function of
electron energy.

However, the phases of the transmission pattern are not
identical, so the flipping amplitude �Eq. �11�� would be non-
zero. The transmission coefficients of both spins enter
equivalently, so that both types of resonances �resonances for
both spins� contribute to it. Therefore, the flipping amplitude
has Fano resonances at energies of both spin-up and spin-
down loop states �see Fig. 2�.

The discussion of the wire-loop system is seemingly
valid only for weak wire-lead coupling. However, the unidi-
rectionality would be valid even for quite strong coupling,
since to any perturbation order the coupling of an incoming
state on the wire to clockwise states would be different than
to anticlockwise states.

We next move to the wire-loop-wire system, which is
shown in Fig. 3 to have a different profile of the flipping
probability. Specifically, Fig. 3 presents the transmission
phase and flipping probability for both spins in a wire-loop-
wire system. The parameters used for this figure are some-
what different from the wire loop; a coupling strength of
�=0.15 eV, and a spin-orbit coupling of 0.015 eV; each wire
couples to the loop along ten points.

The wire-loop-wire geometry �Sec. II A� does not reveal
the simple physics of the loop wire. The reason is that the
upper wire �see Fig. 1�b��, as well as the lower wire, have a

boundary �indicated by the blue dashed line�. On this bound-
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ary an incoming electron can rebound backwards. Therefore,
the electron is going to be coupled not only to the “clock-
wise” loop states �m�0� but also to the “counterclockwise”
states �m�0�. Both spins would have the Fano resonances at
the both types of energy levels Eq. �12�.

Another interesting issue is the transmission probability
in the two models. The transmission probability �T+�2 for
both models is given in Fig. 4. This probability is indepen-
dent of spin. This is due to the symmetry of the Hamiltonian
under inversion coupled with a spin change. Therefore, if an
up electron was going backwards along the wire it would
couple to the same angular states that a down electron would
going forward; but since the transmission probability is in-
dependent of the spatial direction in this two-channel model,
it follows that these probabilities cannot depend on spin.

A very interesting outcome and quite general result is
that for the wire-loop geometry the transmission probability
is almost unity for most of the energy range. Heuristically,
the reason is that reflection is a much more “violent” event
than phase change, which is cumulative. More mathemati-
cally, referring to Fig. 1�a�, a wave which impinges on the
device from the top lead couples only to clockwise rotating
waves. These waves do not couple to outgoing states on the
top lead, only to outgoing states on the bottom lead, and
therefore the transmission probability is close to unity over a
large energy range. �At low energies, the coupling length, ten
grid points, is not sufficiently large compared to the de Bro-
glie wavelength so that the coupling is less unidirectional
and the overall transmission is therefore less than unity.�

FIG. 3. The same as Fig. 2 for wire-loop-wire geometry.

FIG. 4. The transmission coefficient probability �T�2, which is spin indepen-

dent, for the wire-loop �solid line� and wire-loop-wire �dashed line� models.
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The transmission coefficient T+�ei� is therefore charac-
terized mainly by the “transmission phase,” � �in analogy
with the scattering phase in the scattering problem in two
dimensions �2D� and three dimensions 3D�. The “transmis-
sion phase” characterizes the average “time” the electrons
spend on the loop, so that at resonances it has singularities
�see Fig. 2 for the phase variation�; at the same time, even for
resonances, the transmission probability would be close to
unity because the rapid variation is of the �cumulative�
phase.

In contrary, in the wire-loop-wire problem the transmis-
sion probability is almost zero unless the electron is at reso-
nance with one of the loop states. This fact is also easy
understandable. A probable route for an electron just entered
the loop-wire junction is to stumble on the upper wire �blue
dashed line in Fig. 1�b�� and be reflected back into the upper
wire. Therefore, the transmission probability in the wire-
loop-wire model has a pronounced peak structure. In addi-
tion, the singularities for both spins, appearing at similar
energies, compensate each other to some extent.

The results for the spiral model are given in Fig. 5. The
parameters used here are a loop-wire coupling of 0.2 eV and
a stronger spin-orbit coupling of 0.1 eV; the two spirals are
each connected over five sites. The stronger coupling is
needed since electrons do not rotate several times as the spi-
ral is not closed. The spin-flip probability is now usually
below 1, but it is still considerable at some regions so that
the phase birefringence induced by the spins is considerable.

V. DISCUSSION

An interesting outcome of the simulations emerges, as
mentioned, from comparing Figs. 4 and 2�b�: For loop-wire
systems, the current is almost energy independent but the
flipping probability is strongly dependent on energy. There-
fore, the system would play a small differential resistance
with a strong differential spin resistance.

Another effect, which we did not consider, is the inter-
action with magnetic fields and their application with loop-
wire systems. Magnetic fields interact in two ways: first, they
can couple directly to the spin; in addition, they couple to the
orbital angular momentum. Therefore, effectively the mag-

FIG. 5. Similar to Figs. 2 and 3 for the spiral geometry.
netic field can induce an additional spin-orbital momentum
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coupling which was not considered here but will be exam-
ined in future publications. The key point using either spin-
orbit or magnetic effects is that the coupling or the wire�s� is
not symmetric, since the wire and the loop are not at right
angles.

There are several ways to use the spin-orbit effects with
systems suggested here for practical application. The sim-
plest approach would be to polarize the incoming spin of the
electron �using, e.g., a permanently magnetized lead�, inject
the electrons at specific energies, and then use a gating volt-
age to modulate the incoming electron internal energy. This
will lead to a flipping probability which is easily modulated.

Another possibility is to modulate directly the spin-orbit
interaction. This would be possible if the spin-orbit effect is
affected by an electronic change �as would be, for example,
if it acts by a remote heavy-atom effect� so that it would be
affected by light or a chemical change.

To go beyond this, it would be interesting to consider a
wire interacting with several consecutive rings. This would
lead, presumably, to a sharper band structure which is more
easily controlled. Alternately, an effect which we did not
consider is nonplanar geometries. Even the spiral we studied
is associated with a completely planar Hamiltonian. A true
single-handed spiral �left or right handed� could lead to spin
rotation rather than just phase delay and flipping.

The phase delay between spin-up and spin-down elec-
trons has other important ramifications. If it could be modu-
lated, then a spin modulator would emerge; this is in com-
plete analogy to electroptic modulators. The modulation
would be by light, gating, or even a chemical change. An
Downloaded 22 Nov 2008 to 169.232.128.66. Redistribution subject to
interesting use of such modulators would be to measure the
polarization amount of the incoming electrons.
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