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Efficient linear-response method circumventing the exchange-correlation
kernel: Theory for molecular conductance under finite bias
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An iterative approach for calculating the frequency domain linear response of molecular systems
within time-dependent density-functional theory is presented. The method completely avoids
computing the exchange-correlation kernel which is typically the most expensive step for large
systems. In particular, virtual orbitals are not needed. This approach may be useful for treating the
response of large systems. We give an outline of the theory and a demonstration on a jellium model
of an elliptic gold cluster. A detailed theory is appended discussing the computation of conductance
and ac impedance of molecular junctions under bias. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2121607�
I. INTRODUCTION

Time-dependent density-functional theory 1 �TDDFT� is
a framework for calculating the response of molecular sys-
tems to temporal perturbations.2–10 In the linear-response do-
main the method has been used extensively in recent years,
especially in its frequency form.10–18

In a recent paper we derived a real-time approach for
propagating the TDDFT Kohn-Sham equations in their lin-
earized form.4 For the commonly used adiabatic functionals,
the linearization makes the kernel of the equations time in-
dependent so that one can use the efficient approaches devel-
oped for time-dependent Schrödinger equations for
propagation.19

In the time domain, the linearized response may suffer
from instabilities due to the complex eigenvalues of the lin-
earized propagator. This problem is absent in real-time cal-
culations that are not linearized, since the full time-
dependent Kohn-Sham equations are gauge invariant and
therefore norm conserving. A common way to sidestep this
difficulty in linear response is to treat the system in the fre-
quency domain. This gives a formalism which is analogous
to the well-established random-phase approximation �RPA�
for time-dependent mean-field theories.20

Most of the approaches to linear response in TDDFT
�Refs. 11, 12, and 18� involve, in one way or the other,
calculation of the exchange-correlation kernel3 fXC�r ,r� ; t
− t��=��XC�n��r , t� /�n�r� , t�� �where �XC�r , t� and n�r , t� are,
respectively, the time-dependent exchange-correlation poten-
tial and the electronic number density� or its Fourier-
transformed frequency domain counterpart fXC�r ,r� ;��.
For local exchange-correlation functionals the kernel
fXC�r ,r� ;�� is proportional to the delta function ��r−r��.
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This is no longer true for hybrid functionals, such as the
often used B3LYP,21 which mix in nonlocal explicit ex-
change. However, even when local functionals are used,
most applications of linear response compute the kernel
within a nonorthogonal atomic-orbital basis, where it as-
sumes a four-indexed nondiagonal form. In particular, most
applications use the Kohn-Sham occupied and virtual orbit-
als which must all be computed, a relatively expensive op-
eration for large systems.

A physical advantage of the resulting formalism �which
is absent from a fully-time-dependent formulation without
linearization� is that it is suitable for calculating molecular
conductance,22,23 or in general for cases where the underly-
ing static density is extended. This is exactly the case in the
calculation of molecular impedance. In this case, a weak per-
turbation is applied which starts up an electron current. Since
only a finite part of the system is actually represented �on a
grid, for example�, this current needs to be absorbed at the
boundaries, while the other part of the electron density must
not be absorbed. When treated in linear response, this differ-
ent boundary conditions for different parts of the electron
density are naturally enforced, as discussed in Appendix A.

The balance of the paper is as follows. In Sec. II we
present the linear-response formalism starting from time do-
main moving into frequency domain. We emphasize the po-
tential efficiency of our approach for large systems. In Sec.
III we present an example on a model system, followed by
conclusions in Sec. IV.

An integral part of the paper is given in the appendixes.
Appendix A discusses the extension of the formalism to an
unbounded ground state. This could be a conducting ground
state, in which case the formulation gives the necessary in-
formation for calculating the impedance. Specifically the
most natural application would be to calculate the impedance

of a conducting system under a dc bias �so that the ac per-
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turbation is applied in addition to the possibly strong dc
bias�. The static system would be evaluated typically by a
nonequilibrium Green’s function method while the dc pertur-
bation would be calculated by a linearized TDDFT as pre-
sented here.

Appendix B then extends the derivation to the use of a
density matrix, rather than using the molecular orbitals. Such
a formulation may be useful when large systems are treated
and the density matrix is easier to compute than the molecu-
lar orbitals, as in some linear scaling density-functional
theory algorithms.24

II. FORMALISM

In this section we present the linear-response method. A
real-time formalism is first presented and then extended to
frequency domain. We emphasize the fact that the present
method can completely circumvent the computation of the
exchange-correlation kernel.

A. Time picture

We start with a Kohn-Sham �KS� Hamiltonian H, which
depends nonlinearly on the particle density and therefore on
the set of occupied KS orbitals or density matrix. For sim-
plicity, we develop the formalism in terms of orbitals, and
extend the theoretical treatment to a density-matrix picture in
Appendix B.

We imagine a system of interacting electrons in its
ground state. The electronic density n0�r� is described by a
set of N Kohn-Sham spatial orbitals �k�r� and corresponding
occupation numbers fk:

n0�r� = �
k

fk�k�r�2. �1�

These ground-state orbitals �assumed real, for simplicity� are
eigenfunctions of the stationary Kohn-Sham Hamiltonian,
H0�HKS�n0�:

H0�k = �k�k, �2�

where �k are the corresponding eigenvalues.
At time t=0 a small instantaneous external perturbation

is applied to the system for an infinitesimal amount of time.
The time-dependent perturbation is described by the operator

��̂��t�, where � is, in principle, an infinitesimal �of the cor-
rect units�, but in practice, a small quantity which serves as

the linear-response parameter. �̂ is any one-electron operator
of interest �for example �but not limited to�, a component of
the electronic dipole moment er�, where �=x, y, or z, of the

quadrupole moment or even of the current density Ĵ��r��.
The ground-state orbitals serve to build the initial wave func-

tions 	k�r , t=0�=e−i��̂�k�r� which then evolve according to
the time-dependent Kohn-Sham equations,1 which are writ-
ten here as

i
d	k

dt
= �H�n� − �k�	k. �3�

Clearly e−i�kt	k�r , t� are the time-dependent Kohn-Sham or-

bitals describing the time-dependent electronic density:
n�	��r,t� = �
k

fk�	k�r,t��2. �4�

Note that there is freedom in the description of the initial
density. It could be a ground-state density, when spectro-
scopic applications for isolated systems are studied. Alter-
nately, it could be the zero-order nonequilibrium Green’s
function25 density for current-carrying system, which means,
in practice, simply that it would be composed of a different
amount of scattering orbitals from each lead. The determina-
tion of the initial set of orbitals and therefore of n0 would be
done by standard techniques.

In preparation for the linear-response treatment, we write
each orbital in terms of the original Kohn-Sham orbital and a
response:

	k�t = 0+� = �k + 
k�t = 0� , �5�

where the small initial response orbital is obtained by linear-

izing the propagator e−i��̂=1− i��̂+O��2�:


k�t = 0� = − i��̂�k. �6�

At any later time we then define 
k�r , t� by its relation to
	k�r , t�:

	k�r,t� = �k�r� + 
k�r,t� . �7�

Note that 
k�r , t� is “small” �i.e., of order ��. We further
separate 
 into its real and imaginary parts so that �suppress-
ing the orbital index k�


 = 
� + i
�. �8�

From Eq. �3�, the equation governing the evolution of
the “small” response 
 is, to first order,

i
d


dt
= �H0 − ��
 + �H�n�� + 
��� − H0�� , �9�

where n depends, to first order, only on the real part of the
orbital perturbation 
� since from Eq. �4�,

n�� + 
�� = �
k=1

N

fk��k + 
k� + i
k��
2

= �
k=1

N

fk��k + 
k��
2 + O��
�2� . �10�

Equation �9� can be written as a coupled equation for the
real and imaginary parts of 
:

d

dt
�
�


�
	 = A�
�


�
	 , �11�

where the action of the operator A is defined implicitly by

A�
�


�
	 = �H − ��� 
�

− 
�
	 − � 0

�H�n�� + 
��� − H0��
	 .

�12�

Equation �12� is crucial for our-derivation. The important
point to notice is that the operator A is formally a linear
operator as long as 
 is small �we refer the reader to Ref. 4

concerning the technical details of the meaning of linearity
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of A�. In practice this latter condition can always be assured
by selecting � small enough. The point we emphasize is that
only the difference �H�n��+
��−H0�� needs to be com-
puted, and thus it is not necessary to compute the functional
derivatives of the exchange-correlation potential. Thus the
computation of fXC�r ,r� ; t− t�� is completely circumvented.

The time development of Eq. �12� was discussed in our
previous paper on this subject,4 where we have shown how
to employ a Chebyshev propagator19 to study this equation in
real time. However, in many systems, there is an underlying
problem. The equations possess some complex eigenvalues
which make the calculation inherently unstable at long times.
This is not a problem if one is interested only in the �linear�
behavior at short times. This is not the case for spectroscopic
applications and thus they require further development,
which we pursue in Sec. II B.

B. Frequency picture

When the frequency response is needed, the singularity
in time propagation can be avoided by noticing that the half-
Fourier-transform at a specific frequency


k�r,�� = 

0

�


k�r,t�e�i�−��tdt �13�

can be regularized by an appropriate damping constant �.
Thus, the frequency response of the system can always be
defined.

Continuing our derivation, we emphasize an important
technical point: even though 
��t� is real, 
���� is not since
the latter is the half-Fourier-transform:


k��r,�� = 

0

�


k��r,t�ei�tdt ,


k��r,�� = 

0

�


k��r,t�ei�tdt . �14�

From 
���� we can compute the frequency-dependent linear
density response �see Eq. �10��,

�n�r,�� = 2�
k

fk
k��r,���k�r� . �15�

Combining Eqs. �11� and �13� leads to the formal equality

�
����

����

	 = 

0

�

exp�i�� + i� − A�t��
��t = 0�

��t = 0�

	
=

i

� + i� − A
�
��t = 0�


��t = 0�
	 =

− i

� + i� − A
� 0

���
	 .

�16�

This equation involves the operation of the inverse of a lin-
ear complex operator �+ i�−A on a two-spinor. For large
systems, the inverse operation can be obtained by a standard
iterative approach, for example, the Lanczos or quasi-
minimal-residue �QMR� algorithm.26 The Lanczos method
can give for this case many energies at once; however, if one
intends to calculate the results for a smaller number of ener-

gies, it is possible to significantly reduce the number of it-
erations by using a preconditioner, labeled q, so that

�
����

����

	 = q
− i

q�� + i� − A�q
q� 0

���
	 . �17�

The simplest preconditioner is the kinetic energy K
which is diagonal in reciprocal �k� space,

q �
1

�K + a
, �18�

and a is a small positive regularization constant.
With the preconditioner, the inversion of the modified

operator amounts to applying an iterative algorithm �such as
QMR� which only requires the ability to apply the modified
operator, q��+ i�−A�q, on any given spinor. There is a fine
point here, however. The application of the only nontrivial
part, A, needs to be done on a general complex spinor. Spe-
cifically, we need to be able to perform

A�
�


�
	 = �H0 − ��� 
�

− 
�
	 − � 0

�H�n�� + 
��� − H0��
	 ,

�19�

where, unlike Eq. �12�, the components of this spinor, 
k��r�
and 
k��r�, are complex. In other words, the components lose
their original meaning of a real part and an imaginary part
and become complex.

A corollary is that n��+
�� is now a complex quantity
since it is defined in Eq. �10� as n��+
��=�kfk��k+
k��

2. In
order to use a regular density-functional program, which is
defined for real functions, we simply use the underlying lin-
earity in the perturbation so that

�H�n�� + 
��� − H0�� = �H�n�� + Re 
��� − H0��

+ i�H�n�� + Im 
��� − H0��

+ O�
�2� . �20�

The final, technical ingredient is to ensure the linearity
of the A operator �by making sure 
 stays small�. For this,
we scale 
, prior to the application of A, by a normalization
factor:


 → �
 � =
10−m

�
�
, �21�

where the parameter m is typically taken as m�6–7 �at this
value � is small enough for linearity and is not too small so
that there are no numerical stability problems�. The final al-
gorithm for applying the preconditioned iterative operator is
then

q�� + i� − A�a�
�


�
	 = �
out�


out�
	 , �22�

where


out� = q�� + i��q
� − q�H0 − ��q
�,


out� = q�� + i��q
� + q�H0 − ��q
�

+ �−1q�H�n�� + � Re�q
����� − H0��
−1
+ i� q�H�n�� + � Im�q
����� − H0�� . �23�
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Equations �22� and �23� serve as the basic ingredient in the
application of the numerical algorithm.

III. RESULTS

We have used Eqs. �22� and �23� to study a simple model
system, similar to that used in a previous study on this sub-
ject: An elliptical ball of jellium matter with a density of n
=0.0088a0

−3, corresponding to the Wigner-Seitz radius of rs

=3a0. This is a model for a small elliptic gold cluster. The
elliptical cluster had extensions of z=10.64 a.u., y
=1.1z, and x=1.2z.

For the numerical simulation, we used a plane-wave ba-
sis spanned by a grid of 16�16�16 points with plane-wave
cutoff of Emax0.8 Eh. The number of iterations required for
converging the QMR algorithm was less than 128, although
the calculation needs to be repeated for each energy. In com-
parison, a full time-dependent simulation requires a total
propagation time of at least 3000 a.u. with a time step of
about 0.1 a.u. or less, i.e., a minimum of 30 000 steps. Of
course, the time-dependent simulation gets all energies at
once while in the QMR approach each energy must be cal-
culated separately. We could have used information from one
energy as a starting vector for calculating other energies,
thereby reducing further significantly the number of itera-
tions, but have not done it in this model study.

The spectrum of the model cluster is shown in Fig. 1,
where a few resonances appear around a surface plasmon
mode at �3 eV. By comparing with a real-time �nonlinear�
propagation, we find the results captured by the simulations
using Eqs. �22� and �23� are virtually the same.

IV. CONCLUSIONS

In conclusion, the paper and the appendixes develop an
approach to the calculation of frequency-dependent response
of an electronic system, which is iterative and requires only
the calculation of the Kohn-Sham potential. This approach

FIG. 1. The dipole-dipole linear response of an elliptical ball of jellium
described in the text. Two calculations are shown, which are almost indis-
tinguishable: a Fourier-transformed dipole response from the direct solution
of the Kohn-Sham equations �not linearized� and the present frequency do-
main method.
has the potential to be applicable to large systems, where the
calculation exchange-correlation kernel fXC�r ,r� ;�� is pro-
hibitive. The approach is extended in the appendixes to treat
an extended system in which absorbing potentials are
needed, but they do not affect the underlying static density.
Such an approach is appropriate to the calculation of the
frequency-dependent impedance of a conducting system in a
finite bias.

In future papers this work would be used to study the
impedance and frequency-dependent response of molecular
current conducting systems.
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APPENDIX A: LINEAR RESPONSE FOR SYSTEMS
WITH A FINITE BIAS

The formalism presented gives also a practical recipe for
systems with a finite bias in which the initial state is a non-
equilibrium scattering states. These states serve as equivalent
to ground states in the calculation of coherent current con-
ducting systems, i.e., the underlying system is described by
the nonequilibrium Green’s function method �as noted in
Ref. 27 there are still formal difficulties with this approach�.
The formalism here would be used to calculate the imped-
ance of such systems.

As a precursor to the calculation of the impedance, one
calculates the initial orbitals. Briefly, each initial DFT state is
presented as

�k�r� = �in,k�r� + �k�r� , �A1�

where k is the vector of the incoming state from one of the
leads. The state includes an incoming known part, and an
outgoing part �k, which includes both the components re-
flected into the original lead and the components transmitted
into the other leads; it is determined as part of the self-
consistent evaluation of the density of states. The final equa-
tion is then

�H − �k − �k��k�r� = Sk�r� , �A2�

where we introduced the self energy ��k� and the source term
�Sk�, which are both localized as the edges of the grid. These
equations are solved self-consistently by standard tech-
niques.

Next one solves the time-dependent equations. These
equations are only modified by the presence of an imaginary
potential which is located at the edges of the grid; specifi-
cally, these equations become

i
d
k

dt
�H0 − �k − iVI�
k + �H�n�� + 
��� − H0��k, �A3�

where we introduced a complex imaginary potential which
absorbs the time-dependent wavefunction at the edges of the
grid. It is important to differentiate between this imaginary
potential, iVI, which acts on the time-dependent perturbation,
and the energy-dependent self-energy which acts on the
time-independent part of the wave function. The reason for

the difference is that the imaginary potential absorbs wave



204105-5 Molecular conductance under finite bias J. Chem. Phys. 123, 204105 �2005�
functions which have many energy components while the
self-energy is optimized for wave functions of specific ki-
netic energy. Furthermore, note that we assume that the per-
turbation 
 is absorbed way before the edges of the grid so
that there is no need to insert the self energy into Eq. �A3�.

The absorbing potential modifies the equations for A and
for the QMR solution in a trivial way. Assuming, for sim-
plicity, that it is purely imaginary �i.e., that VI is a real func-
tion�, it follows that

A�
�


�
	 = �H0 − ��� 
�

− 
�
	 − V1�
�


�
	

− � 0

�H�n�� + 
��� − H0��
	 �A4�

so that the QMR or Lanczos iteration, Eqs. �23�, is modified
to


out� = q�� + i�� + VI��q
� − q�H0 − ��q
�,


out� = q�� + i�� + VI��q
� + q�H0 − ��q
�

+ �−1q�H�n�� + � Re�q
����� − H0��

+ i�−1q�H�n�� + � Im�q
����� − H0�� . �A5�

This constitutes the complete methodology for extracting
the frequency-dependent orbitals for a finite bias. An alter-
nate approach for extracting the density-dependent matrix
directly without using orbitals is outlined in the next appen-
dix.

The last stage is the extraction of impedance information
from the time-dependent orbitals; this is detailed, e.g., in
Ref. 22. The electric conductivity tensor between two points
r and r� can be calculated as the correlation function28

����r,r�,�� =
e2

��
��J��r,��,J��r���� , �A6�

where � and � are Cartesian directions �x, y, or z� and
J��r ,�� is the � component of the current density. In order
to compute this expression in our method, we take advantage
of the fact that the commutator in Eq. �A6� is equal to the

expectation value of �Ĵ��r ,��� when the perturbation is the

current density, i.e., �̂�J��r��. This expectation value is
given by

�J��r,��� = 2�
k

fk��k�Ĵ��r��
k����� . �A7�

APPENDIX B: A DENSITY-MATRIX DESCRIPTION

Since much of the methodology, especially in basis-set
language, uses directly the density matrix rather than the
specific orbitals, we write the equivalent description in this
appendix.

The time-dependent density matrix, in linear response, is
now written as

��t� = �0 + � + � , �B1�
where
�0 = �
k

fk��k���k� �B2�

and

� = �
k

fk�
k���k� ,

� = �†. �B3�

Here, we neglected the second-order term �kfk�
k��
k�.
A simple multiplication of Eq. �A3� by fk��k� followed

by summation over occupied states yields

i
d�

dt
= �H0,�� − iVl� + �H�0, �B4�

where �H�H�n��0+�+���−H0, and we used

�
k

fk�k�
k���k� = �
k

fk�
k���k�H0 = �H0. �B5�

�Note that if there are no absorbing potentials, the equa-
tions for � can be added to its Hermitian conjugate to yield
an equation involving only the Hermitian part of �; however,
the presence of the absorbing potentials yields additional
terms mixing the Hermitian and anti-Hermitian parts of �.�

The equation for � and the associated one for � are then
combined in a superoperator language,

d

dt
��

�
	 = L��

�
	 , �B6�

where we write the evolution equation for the density as

L��

�
	 = i� �H − iVI�� + �H�0

− ��H − iVI� − �0�H
	 . �B7�

In frequency space this equation becomes

�����
����

	 =
1

� − i� − L
��0

�0
	 , �B8�

where

���� = 

0

t

exp��i� − ��t����t��dt�,

�B9�

���� = 

0

t

exp��i� − ��t����t��dt�,

and

��0

�0
	 = �− i���0

i��0�
	 . �B10�

The evolution equations in can be solved by QMR com-
pletely analogously to the orbital case.

Equations �B7�–�B10� are the final equations determin-
ing the frequency-dependent response of the density matrix.

In this density-matrix formalism, the conductivity of Eq.
�A6� can be calculated by replacing Eq. �A7� with
�J��r,��� = 2 Re Tr�����J��r�� . �B11�
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