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We present a linear-response approach for time-dependent density-functional theories using
time-adiabatic functionals. The resulting theory can be performed both in the time and in the
frequency domain. The derivation considers an impulsive perturbation after which the Kohn–Sham
orbitals develop in time autonomously. The equation describing the evolution is not strictly linear in
the wave function representation. Only after going into a symplectic real-spinor representation does
the linearity make itself explicit. For performing the numerical integration of the resulting equations,
yielding the linear response in time, we develop a modified Chebyshev expansion approach. The
frequency domain is easily accessible as well by changing the coefficients of the Chebyshev
polynomial, yielding the expansion of a formal symplectic Green’s operator. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1808412#

I. INTRODUCTION

The use of time-dependent density-functional theory
~TDDFT! within linear response~LR! theory is one of the
most robust and accurate methods for determining excitation
energies and properties of molecules.1–14 The application of
LR within TDDFT is usually based on a frequency domain
framework, similar to the random-phase approximation, and
is considered the method of choice. There has not been a
time-dependent alternative suggested, as far as we know, ex-
cept for a solution of the exact time-dependent density-
functional equations with a weak perturbation.12,15–17 The
latter method is very slow as the equations are nonlinear.
Linear equation formulation benefits from the availability of
efficient Chebyshev methods developed for molecular quan-
tum dynamics,18,19 which does not work well for nonlinear
problem.

In this paper we develop a time-dependent approach for
linear response. Instead of the sinusoidal perturbation used
for the frequency LR, we use an impulsive~d-function! per-
turbation. The resulting equations assume the form of linear
Schrödinger-like equations for theperturbed orbitals. All the
LR information about system is obtained from the time-
dependent propagation. The spectrum, if needed, can be ob-
tained directly; for example, by Fourier transforming. The
linearization in time potentially allows us to ‘‘watch’’ the
processes, obtaining useful insight, not available in the fre-
quency domain. It has an additional advantage by allowing a
host of methods developed originally for the usual linear
Schrödinger equation, including approaches for obtaining
very efficiently spectra from short-time propagation20,21 ~fil-
ter diagonalization!. In this paper we first derive the method-
ology and then exemplify for clamped~frozen! nuclei.

II. THEORY

A. Generalities

Consider 2N electrons in their singlet ground state. This
ground state can be treated using density-functional theory,
where the densityn0(r )52(k51

N ufk(r )u2 is written in terms
of the N normalized Kohn–Sham orbitals which are solu-
tions of the Kohn–Sham equations:

H0fk~r !5«kfk~r !, ~1!

where H05K1v@n0#(r ) is the Kohn–Sham Hamiltonian.
Herev@n#(r )5vext(r )1vH@n#(r )1vxc@n#(r ) is the Kohn–
Sham potential composed of the external, Hartree, and
exchange-correlation potentials.~We often suppress the ref-
erence to then dependence of the potential.! Suppose that at
time t50 the external potential is subject to a impulsive
time-dependent perturbation~with \51):

V~r ,t !5v~r !1hl~r !d~ t !, ~2!

whereh is a small parameter andl~r ! is a spatial function
~referred to below as the dipole function, although it could be
quite general!. The Runge–Gross theory assumes that there
exists~and proves uniqueness of! a time-dependent exchange
correlation potentialvxc@n#(r ,t) with which the time-
dependent density can be expressed asn(r ,t)
52(k51

N uck(r ,t)u2, where

ck~r ,0!5fk~r !, ~3!

and the time-dependent orbitals obey the following equations
of motion:

i ċk~r ,t !5Hck~r ,t ![@K1V~r ,t !#ck~r ,t !, ~4!

where we introduce the Hamiltonian, which, we recall, de-
pends on the wave function through its dependence on the
Kohn–Sham potential~so v5v@n#,H5H@n#). Note that
there is no problem with the use of ad-function pulse even if
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the functional is adiabatic, so that formally it requires
smooth time variation in the system. The reason is the use of
a linear response, which makes the system linear. Essentially,
by applying a weakd-function pulse and then Fourier trans-
forming the results, we get exactly the same results~up to a
trivial frequency-dependent normalization constant! that
would have been obtained if we were to apply a pulse made
of a smooth envelope function. If we were to derive the
formalism more strictly, we would need to apply a smooth
pulse of an arbitrary center frequency and then linearize the
evolution, but the results would be the same~for linear re-
sponse only! as those from a weakd-function pulse.

Linear-response theory can be obtained by considering
only the first-order changes in the orbitals:

ck~r ,t !5e2 i«kt@fk~r !1hnk~r ,t !#. ~5!

The parameterh is the same as that in Eq.~2!. The normal-
ized response of the orbital isnk(r ,t) and the linear response
density is

hn1~r ,t !52h(
k51

N

fk~r !$nk~r ,t !1nk~r ,t !* %, ~6!

where

hn15n2n0 ,

n052(
k

ufku2. ~7!

The equation of motion fornk(r ,t) at t.0 is derived by
using Eq.~5! in Eq. ~4!. The existence of the perturbation is
manifest in noting that immediately after the perturbation
~formally at ‘‘t501’’ ! ck(0

1)5@12 ihl(r )#fk , or

nk~r ,t50!52 il~r !fk~r !. ~8!

The equations obeyed byn are obtained by plugging Eq.~5!
into Eq. ~4! and keeping only first order inh :

i ṅk~r ,t !5~H02«k!nk~r ,t !

1h21$v@n01hn1#~r ,t !2v0~r !%fk~r !, ~9!

wherev0(r )[v@n0#(r ),H0[H@n0#. We now show how the
last ~nonhomogeneous! term can be represented as a linear
operator acting on the unknownn. A shorthand notation is

i ṅk~r ,t !5~H02«k!nk~r ,t !1@Ln#k~r ,t !, ~10!

where«5diag$«1,«s,...%. The operatorL operates on the vec-
tor of functions$nk%k51

N in the following form:

@Ln~r ,t !#k5h21$v@n01hn1#~r ,t !2v0~r !%fk~r !

5fk~r !E dv@n#~r ,t !

dn~r 8,t !
n1~r 8,t !dr 8

54 (
k851

N E Lkk8~r ,r 8!nk8
8 ~r 8,t !dr 8, ~11!

where

Lkk8~r ,r 8!5fk~r !
dv@n#~r !

dn~r 8!
fk8~r 8!. ~12!

This form, whereLkk8(r ,r 8) is time independent, is strictly
correct only when the functional is adiabatic, i.e.,v@n#
3(r ,t)5v@n(t)#(r ), depending only on the present density
and not on its history. This is the case with most potentials
employed nowadays in TDDFT, and should carry over to
current-dependent functionals.

B. Practical evolution

Despite the existence of an explicit definition ofL in Eq.
~12!, this equation should not be used in practical calcula-
tions as it is extremely expensive numerically. We derive the
practical equations in two stages, the first employing sepa-
rately the real and imaginary parts, and then an even simpler
version, which employs complex algebra.
The starting point is to note that we can define directly

@Ln#k~r ,t !5 l ~r ,t !fk~r !, ~13!

where

l ~r ,t !5 lim
b→0

1

h
†v@n1hn1#~r ,t !2v@n#~r ,t !‡. ~14!

From Eq.~11! it is immediately evident that when operating
on a vector of real-valued functionsthis operator is linear.
~It turns out, as we will show in a future publication, that this
is alsopositive definite.! However, when operating oncom-
plex valued functions this operator is not linear because evi-
dently, for n real, L( in)Þ iLn. There is a very clear reason
for that. In essence, a purely imaginaryn does not change the
density ~to the first order, which we consider!, just like an
addition of a small imaginary part to a real number does not
change, to first order, its amplitude. However, a realn does
change the density.

Yet, we can go to a representation in which everythingis
linear, by working with purely real functions, the real and
imaginary part of the wave function~remember that the
imaginary part of a function is real!. Formally, this separa-
tion into real and imaginary parts,n5n81 in9, is a ‘‘sym-
plectic representation of quantum mechanics.’’22 From Eq.
~10!,

ṅk8~r ,t !5~H02«k!nk9~r ,t !,
~15!

ṅk9~r ,t !52~H02«k!nk8~r ,t !2~Ln8!k~r ,t !,

or, ignoring the indices,

d

dt S n8
n9 D

t

5AS n8
n9 D , ~16!

where

A5S 0 H02«

2~H02«!2L 0 D . ~17!

The operatorA is linear on the space of real vector functions.
Evidently, it is nonsymmetric, but this by itself does not pre-
clude using any of the standard computational approaches of
quantum mechanics.
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Equations~16! and~17!, together with the definitions of
L @Eqs.~13! and~14!# are sufficient to calculate the action of
A. However, it is interesting that there is an even simpler
shortcut,

AS n8
n9 D5S Reg

Im g D , ~18!

where

g5
1

ih
†H@n01hn1~n8!#@f1h~n81 in9!#2H0f‡, ~19!

and where the calculation is taken in the limit of weak per-
turbation (h→0). This is the form we used in practice.~It
may seem that this equation can be derived immediately, by
simply writing H as a complex function off1hn; however,
there are complications associated with the fact thatH is also
a function ofn* , so that the longer derivation is necessary.!

C. Time form

The formal evolution of the perturbation in time is

S n8
n9 D

t

5eAtS n8
n9 D

0
, ~20!

where the initial vector is

S n8
n9 D

0
5S 0

2lf D . ~21!

Interestingly, this leads to the following form for the total
dipole, using Eq.~6! and employing an obvious bra-ket no-
tation:

m[E n1~r ,t !l~r !dr54K lf 0UeAtS 0
lf D L , ~22!

which looks very much like a regular correlation function,
except that the order of the zero and nonzero terms in the bra
and the ket is switched. Note that this expression involves
purely real algebra.

The complex perturbation as a function of time is then,
in symbolic notation,

n t5n81 in5~1 i !S n8
n9 D

t

. ~23!

The exponential can be evaluated by any standard iterative
approach in which one appliesA repeatedly.~Note that it is
less suitable to use a split-operator approach23 sinceA is not
evaluated here explicitly but is only defined in terms of its
action on a vector.! The most common iterative approaches
are Chebyshev expansion18 and Lanczos methods, and we
will discuss here the Chebyshev approach~which has here a
slightly unfamiliar form sinceA replaces the usual2 iH
term, i.e., has the2 i implicitly !:

eAtS n8
n9 D

0
5(

m
~22dm0!Jm~ tD!zm , ~24!

wherezm are vectors that are obtained by a Chebyshev-like
iterative operation:

zm[S z8
z D

m

5T̃mS A

D D S n8
n9 D

0
, ~25!

where the action of the quasi-Chebyshev polynomials,T̃m

5cosh@mcosh21(A/D)# is defined through

zm5
2

D
Azm211zm22 , ~26!

and

Z05z05S n8
n9 D

0
, z15

1

D
Az0 .

Z15
A

DA
. ~27!

Here,D is a numerical parameter, conveniently taken to be a
typical half-width of the Hamiltonian, as usual in Chebyshev
expansion.

The time-dependent response of the orbitals is readily
then

hnk~r ,t !5h(
m

Jm~ tD!@zm8 ~r ,k!1 i zm9 ~r ,k!#, ~28!

so that the modified density is

n1~r ,t !5(
m

Jm~ tD!nm~r !,

nm~r !54(
k

fk~r !zm8 ~r ,k!, ~29!

while for the dipole,

m~ t !5(
m

Jm~ tD!Rm , ~30!

where the residues are

Rm54K lf 0Uzm8

zm9
mL 54E (

k
l~r !fk~r !zm8 ~r ,k!dr .

~31!

Similar residues can be defined for expectation values of
other operators.

D. Frequency form

The equations can be readily extended to a frequency
realm. Formally~ignoring orbital indices!,

nw5E e( iw2a)tn tdt5E e( iw2a)t~1 i !eAtS n8
n9 D

0
dt, ~32!

wheree2at is a convergence factor, such that

nw5E ~1 i !eAt1( iw2a)tS n8
n9 D

0
dt

5~1 i !
1

a2 iv2A S n8
n9 D

0
. ~33!
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The operator (1i ) @1/(a2 iv2A)# can be identified there-
fore as a Green’s functionG(v) for the linear-response
equations. The relevant equation for the dipole moment is
then

m~v!54K lf 0 U 1

a2 iv2A S 0
lf D L . ~34!

The Chebyshev expansion for the dipole is very simple:

m~v!54(
m

am~v!Rm , ~35!

where24,25

am~v!5~22dm0!E e( iw2a)tJm~ tD!dt

5
~22dm0!i m21

AD22~w2 ia!2
exp@2 im cos21~v2 ia2D!#.

~36!

Similarly,

nw~r ,k!5h(
m

am~v!@zm8 ~r ,k!1 i zm9 ~r ,k!#. ~37!

III. RESULTS

We simulated the dipole response using Eqs.~35!, ~31!,
~25!, ~18!, and~19!. The system was a jellium~constant posi-
tive density! ellipsoid on a grid with 83838 points. The
grid spacing was 2.5a0 , and the Jellium radii in thex, y, and
z directions were 5.88, 6.47, and 7.06 Bohrs, respectively.
The jellium density was 0.008 841 9/a0

3, and it was smoothed
at the edges using a Fermi-Dirac function with a width of 0.5
Bohr. The total jellium charge was 10.6e and a total of eight
electrons~four orbitals! were used, so that the overall system
is not neutral. The length of each Chebyshev vector was the
number of grid points times the number of orbitals, i.e.,
833452048.

For the simulation we usedD53 a.u. Further savings
could have been obtained if we were to use also a shift of the
A operator, but no shift was applied here.

Figure 1 shows the dipole response of this simple sys-
tem, which is essentially a plasmon resonance, using the
linear-response equations enumerated above, and compared
with a simple Runge–Kutta calculation of the response. The
agreement is excellent.

The results were stable with respect to the numerical
parameterh within a more than six orders of magnitude.

IV. SUMMARY AND DISCUSSION

We have presented a formalism of LR within adiabatic
TDDFT with which a TD picture of the electronic response
can be calculated. This formalism is an efficient alternative
for LR calculations in the frequency domain, particularly if
the underlying electronic basis is very large, like a plane
wave or grid. With the advent of attosecond laser pulses,26–28

the TD picture may reveal an interesting wave packet dy-
namics which is hidden in the frequency regime.

Performancewise, the use of a linear propagator~Cheby-
shev here! makes the approach much more efficient than the
original time-dependent propagation; for comparison, for a
total time propagationT, we needTD Hamiltonian opera-
tion, or one Hamiltonian operation per 1/D;0.3 a.u.; in a
nonoptimized Runge–Kutta we ran, we needed at least 100
times more Hamiltonian operations. As far at the spectrum,
the resolution needed to get a width ofa is easily shown to
be about~5–10!D/a, leading to about 3000 Hamiltonian op-
erators in our case.

The numerical effort may be reduced even further once
the filter diagonalization or other signal processing ap-
proaches are used, as will be studied in a future work.

One drawback of this algorithm which we did not dis-
cuss is runoff solutions. Specifically, the time-dependent lin-
ear response equation is non-Hermitian, and therefore the
eigenvalues may have nonzero imaginary values, leading to
damped and run-off solutions. This is an intrinsic problem of
linear response; we did not encounter this problem here, but
even when it exists the spectra can be still calculated directly
using Chebyshev or Lanczos methods.24,25

We note that previous work by Kohnet al.17 have also
analyzed the relation between the time-dependent approach
and the formal Hamiltonian of the system in the linear re-
sponse regime, and the use of a weak perturbation to extract
the spectra has been done by several groups.12,15–17All those
works have used, however, time-dependent methods appro-
priate for time-dependent Hamiltonians~most usually split-
operator methods!. The key point distinguishing this paper is
that we have shown that it is possible to use methods of
time-independent Hamiltonians to extract the time-dependent
orbitals. In fact, in an upcoming work we show that with this
linear-response reduction we can use the extremely efficient
QMR approach to extract spectra with a minimal number of
Hamiltonian applications, even though the original func-
tional is nonlinear; this also avoids the problem of run-off
solutions.

Finally, note that the formalism was developed for a
single determinant. However, it is valid for more general

FIG. 1. The dipole spectrum for a metallic~jellium! shell of densityn
50.0088a0

3. The solid line shows the result of the Fourier transformed spec-
trum directly from the full TD Kohn–Sham equations, and the dotted line
shows the results of the linearized Chebyshev propagation.
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cases. No matter what the ingredients are—single determi-
nant, multiple determinants, or even a density matrix—the
main idea can be used: propagate linearly and add to the
zero-order part the propagated linear part at each evolution
step.
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