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Intermolecular Hamiltonian for solute–solvent n clusters and application
to the „1z1… isomer of anthracene–He 2

Peter M. Felkera) and Daniel Neuhauser
Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569

~Received 9 June 2003; accepted 20 June 2003!

Intermolecular kinetic-energy operators are derived~in the rigid monomer approximation! for
solute–solventn clusters of the type B–An , where B is a molecule and A is either an atom or a
molecule. The operators are obtained for a body-fixed frame embedded in the B moiety and parallel
to the principal axes of that species. They are expressed in terms of intermolecular coordinates that
represent the projection along the body-fixed axes of position vectors pointing from the center of
mass of B to the centers of mass of the A species. The results are particularly useful for calculations
on clusters in which A–B interactions dominate over A–A interactions in the intermolecular
potential energy surface and/or there is minimal interaction between subsets of the A moieties. This
utility is demonstrated in variational calculations of intermolecular states in the~1u1! isomer of
anthracene–He2 . © 2003 American Institute of Physics.@DOI: 10.1063/1.1599831#
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I. INTRODUCTION

A large body of work exists pertaining to the elucidatio
of the properties of clusters composed of a molecule~‘‘B’’ !
microsolvated by atoms or small molecules~‘‘A’’ !.1 Such
studies are valuable for the information that they can prov
on intermolecular forces, solvent structure and dynam
photodissociation dynamics, and finite-size effects on che
cal processes, on electronic and nuclear excitations, an
order-disorder phase transitions, to name but several are
interest. This literature is rich in both experimental~prima-
rily spectroscopic! and theoretical/computational studies. I
deed, the nature of the species as rather weakly interac
many-body systems in which large-amplitude nuclear m
tions are prevalent often demands close coupling betw
experiment and simulation for significant progress to
made. In this regard, the simulation of nuclear dynamics a
ing from intermolecular motions within the cluster can
particularly valuable in shedding light on cluster properti
Such simulations have been performed by classic2

semiclassical,3,4 and quantal~e.g., Refs. 5–18! methods.
However, most dynamically exact quantal simulations
rectly germane to characterization of intermolecular le
structures have been limited to one-to-one complexes of
type B–A ~e.g., Refs. 5–9, 11, 12, 15, though see Refs.
and 13 for examples of such calculations forn.1). In large
part this size limitation has been imposed by the lack
necessary computing power. With such power continuing
increase steadily, though, studies of larger systems are
coming much more feasible.

Our aim in this work is to help facilitate the applicatio
of dynamically exact~within the rigid-monomer approxima
tion! intermolecular level-structure calculations to B–An

species withn>2. Our first main focus is on the intermo
lecular kinetic-energy operator for such species when A is

a!Author to whom correspondence should be addressed; electronic
felker@chem.ucla.edu
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atom. In particular, we derive that operator in terms of then
intermolecular coordinates that are the components of
position vectors from the center of mass of B to each of
A moieties, such components being measured with respe
a body-fixed~BF! axis system embedded in B. Thereby, w
obtain for arbitraryn the kinetic-energy operator in terms o
coordinates that are particularly useful when A–B intera
tions dominate over A–A interactions.

A second focus of the present work pertains to the int
molecular kinetic-energy operator of B–An clusters when A
is a molecule. Specifically, we show that a generalization
the A5atom kinetic-energy operator to the A5molecule
case is straightforward. Again, the resulting operator depe
on coordinates that one would expect to facilitate the so
tion of the intermolecular problem when A–B interactio
dominate over A–A ones.

Finally, in specific application of the above-mentione
results for A5atom we report calculations of the low-energ
intermolecular level-structure of the~1u1! isomer of the
anthracene–He2 cluster ~the isomer in which the He atom
are bound to opposite sides of the anthracene plane!. Our
interest in the species is threefold. First, it is relevant
spectroscopic results obtained on anthracene–Hen cluster
beams.19 And, our results complement calculations report
elsewhere14 on the~2u0! ~same-sided! isomer of the cluster.
Second, the~1u1! isomer is a good example of the significa
effect that kinetic-energy coupling terms can have on
intermolecular states of B–An clusters. Notably, such term
are neglected under the approximation that the B moiet
fixed in space~infinitely massive!. Last, the species is a
excellent model case illustrating how the cost of interm
lecular level-structure calculations on B–An species can be
reduced significantly with little loss of accuracy in situatio
where some or all A–A pairwise interactions are small.

The paper is organized as follows. In Sec. II we der
the intermolecular vibrational (J50) kinetic-energy operato
for B–An , where A is an atom. Section III pertains to th
il:
8 © 2003 American Institute of Physics
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analogous derivation for the case where A is a molecule
Section IV we outline the procedure employed for the cal
lation of the intermolecular states of the~1u1! isomer of
anthracene–He2 and of the anthracene–He complex. Sect
V then presents the results of the intermolecular calculatio
A main focus of this section is on the great utility of consi
ering the ~1u1! states in terms of zeroth-order states co
structed from products of anthracene–He eigenstates.
tion VI concludes.

II. KINETIC-ENERGY OPERATOR FOR B–A n
CLUSTERS WHEN A IS AN ATOM

We consider a cluster of the form B–An where B is a
molecule and A is an atom. To obtain the intermolecu
kinetic-energy operator for the species we proceed by obt
ing a classical expression for that energy and then con
that to a quantal operator by using the Podols
transformation.20 The classical kinetic energy,T, of such a
species minus that associated with translation of its cente
mass is given by21

2T5mBṙB
21mA(

i 51

n

ṙ i
21(

a

1

I a
j a
2, ~1!

where the labelsi 51...n refer to the A moieties,mA andmB

are the masses of A and B, respectively, ther i are the posi-
tion vectors of the A species with respect to the center
mass of the cluster,rB is the position vector of B’s center o
mass with respect to that of the cluster, the dots~here and
below! denote time differentiation of vector componen
measured with respect to a space-fixed axis system with
gin at the cluster center of mass, the indexa runs over the
three principal axis directions of B, thej a are the compo-
nents of the angular momentum of B about its center of m
measured with respect to its principal-axis system, and thI a

are the principal moments of inertia of B. DefiningT8 such
that

2T8[mBṙB
21mA(

i 51

n

ṙ i
2 ~2!

and the internal coordinates

di[r i2rB ; i 51,2,...n, ~3!

which represent the vectors from the center of mass of B
each of the A moieties, it is straightforward to show that

2T85mAS (
i 51

n

ḋi
2D 2

mA
2

M S (
i 51

n

ḋi D 2

. ~4!

The momenta conjugate to thedi ~denotedpi) can be ob-
tained by taking derivatives ofT with respect to theḋi .21

Since thej a andI a are independent of theḋi , this is equiva-
lent to finding the analogous derivatives ofT8. From Eq.~4!
one finds

pi5mAḋi2
mA

2

M (
k51

n

ḋk . ~5!

With Eq. ~5! and a little algebra Eq.~4! becomes
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T85
1

2m (
i 51

n

pi
21

1

mB
(

k. i 51

n

pi•pk , ~6!

wherem[mAmB /(mA1mB). Finally,

T5
1

2m (
i 51

n

pi
21

1

mB
(

k. i 51

n

pi•pk1(
a

1

2I a
j a
2. ~7!

Equation~7! is converted into a quantal operator by
trivial Podolsky transformation,20 yielding

T̂5
1

2m (
i 51

n

p̂i
21

1

mB
(

k. i 51

n

p̂i•p̂k1(
a

ĵ a
2

2I a
, ~8!

where

p̂i52 i S ]

]Xi
,

]

]Yi
,

]

]Zi
D

and (Xi ,Yi ,Zi) are the Cartesian components ofdi measured
with respect to a space-fixed axis system. Equation~8! as it
stands is not particularly useful since expression of the
tential energy of the cluster in terms of the spaced-fixed co
ponents of thedi is very inconvenient. Therefore, we re
express T̂ in terms of BF components of thedi

[(xi ,yi ,zi). As BF frame we choose an axis system ce
tered at the center of mass of the cluster with axes paralle
the principal axes of B. In terms of these coordinates Eq.~8!
becomes

T̂52
1

2m (
i 51

n

¹ i
22

1

mB
(
k. i

n

¹i•¹k1(
a

ĵ a
2

2I a
, ~9!

where

¹i[S ]

]xi
,

]

]yi
,

]

]zi
D

and where we have made use of the rotational invarianc
¹ i

2 and¹i•¹k .
We have one remaining issue to address inT̂, as given

by Eq. ~9!. That is, we seek expressions for theĵ a , the
operators corresponding to the rotational angular momen
of B about its center of mass, as measured along the BF a
We start by noting that

ĵ a5 Ĵa2 l̂ a , ~10!

where Ĵa is the operator corresponding to the total angu
momentum of the cluster measured along theath principal
axis of B, andl̂ a is the operator corresponding to the tot
orbital angular momenta of then atoms and B about the
cluster center of mass measured along theath principal axis
of B. We can find thel̂ a by starting with the classical orbita
angular momentum vector

l5mBrB3 ṙB1mA(
i 51

n

r iÃṙ i , ~11!

where, again, the dot denotes time differentiation of vec
components measured along the space-fixed axes. By in
ing Eq. ~3! and using Eq.~5!, one can show that
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l5(
i 51

n

di3pi . ~12!

Given Eq. ~12!, the expression for the space-fixed comp
nents ofl̂ in terms of the (Xi ,Yi ,Zi) is easily found to be

l̂SF5(
i 51

n

di3p̂i[(
i 51

n

l̂ i
SF, ~13!

where

l̂ i
SF52 i ~Xi ,Yi ,Zi !3S ]

]Xi
,

]

]Yi
,

]

]Zi
D . ~14!

It is straightforward to show12 starting from Eq.~14! that the
BF components~i.e., components along the principal axes
B! of the l̂ i are given by

l̂ i
BF52 i ~xi ,yi ,zi !3S ]

]xi
,

]

]yi
,

]

]zi
D . ~15!

Summing overi and using Eq.~10!, Eq. ~9! becomes

T̂52
1

2m (
i 51

n

¹ i
22

1

mB
(

k. i 51

n

¹i•¹k

1(
a

~ Ĵa2( i l̂ i ,a!2

2I a
, ~16!

with the l̂ i ,a given by Eq.~15! ~the superscript ‘‘BF’’ being
dropped for clarity!. Finally, we separateT̂ into a rotationless
(J50) part and a rotation–vibration (JÞ0) part

T̂5T̂v1T̂rv , ~17a!

where

T̂v[(
i 51

n F2
¹ i

2

2m
1(

a

l̂ i ,a
2

2I a
G

1 (
k. i 51

n F2
¹i•¹k

mB
1(

a

l i ,al k,a

I a
G ~17b!

and

T̂rv[(
a

~ Ĵa
222Ĵa( i 51

n l̂ i ,a!

2I a
. ~17c!

To obtain Eq.~17c! we have used the fact that all comp
nents ofĴ commute with all thel̂ i ,a . This is a direct result of
Ĵ being the generator of rotations of the whole cluster;8 the
BF components of thedi are unaffected byĴ.

Equation~17b! is one of the main results of this paper.
is pertinent to examine it in some detail. First, one notes
the case of a cluster in which the B moiety is fixed in spa
is recovered in the limit wheremB and theI a approach in-
finity, in which case

T̂v52(
i 51

n
¹ i

2

2mA
. ~18!

Comparison of Eq.~18! and Eq.~17b! indicates that the as
sumption of a rigidly fixed B moiety can introduce signifi
-

f

at
e

cant error into a level-structure calculation and that the m
nitude of that error will increase withmA /mB . Second, when
n51 Eq. ~17b! becomes

T̂v[2
¹1

2

2m
1(

a

l̂ 1,a
2

2I a
, ~19!

which is identical to the kinetic-energy operator that h
been used extensively in level-structure calculations
aromatic-rare gas complexes.6,8,9 In the light of Eq.~19!, it is
clear thatT̂v of Eq. ~17b! consists of two types of terms
One, corresponding to the first summation on the right ha
side ~rhs! of the equation, is a sum of kinetic-energy oper
tors, each identical to that for a single atom interacting w
B. The other term, corresponding to the second summa
on the rhs of the equation, constitutes pairwise kinetic c
plings between atoms that arise due to the translation
rotation of B.

Finally, and most important, it is useful to examine t
implications of Eq.~17b! in cases where there are two~or
more! groups of A atoms distinguished by lack of appr
ciable A–A interactions between atoms of the differe
groups. For example, consider the case of a rare-gas-solv
aromatic in whichm atoms are localized on one side of th
aromatic,n2m atoms are localized on the opposite side, a
there is no appreciable pairwise interaction between the
oms of these two types. The intermolecular potential ene
function can then be written as

V~d1 ...dn!5v ~m!~d1 ...dm!1v ~n2m!~dm11 ...dn!, ~20!

and the full J50 intermolecular Hamiltonian can be ex
pressed as

Ĥv5ĥv
~m!~d1 ...dm!1ĥv

~n2m!~dm11 ...dn!

1(
i 51

m

(
k5m11

n F2
1

mB

¹i•¹k1(
a

l̂ i ,a l̂ k,a

I a
G , ~21!

where

ĥv
~m!~d1 ...dm![(

i 51

m F2
¹ i

2

2m
1(

a

l̂ i ,a
2

2I a
G

1 (
k. i 51

m F2
¹i•¹k

mB
1(

a

l̂ i ,a l̂ k,a

I a
G

1v ~m!~d1 ...dm!, ~22!

and an expression analogous to Eq.~22! applies toĥv
(n2m) .

The important point, evident by a consideration of Eq.~22!

in the light of Eq.~17b!, is thatĥv
(m) is identical to the inter-

molecular Hamiltonian for the case of a cluster composed
m atoms A on one side of B and, similarly,ĥv

(n2m) is the
same as the Hamiltonian forn2m atoms on one side of B
An obvious strategy for solving the 3n-dimensional Schro¨-
dinger equation in which Eq.~21! is the Hamiltonian is
therefore to solve first the 3m- and 3(n2m)-dimensional
Schrödinger equations involvingĥv

(m) and ĥv
(n2m) , respec-
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tively, and then use those solutions (c I
(m) and cJ

(n2m) , re-
spectively! in a product basis to diagonalize the kinetic co
plings remaining inĤv . It is clear from Eq.~21! that the
kinetic-coupling matrix elements in such a product basis
all factorizable into products of the form̂c I

(m)uôuc I 8
(m)&

3^cJ
(n2m)uô8ucJ8

(n2m)&, whereô andô8 are operators depen
dent on one or two coordinates. Thus, their evaluation
considerably more tractable than if such factorization w
not possible. Notably, even if Eq.~20! is approximate and
there is some small interaction between the different gro
of atoms, this approach to diagonalizingĤv can be imple-
mented with the interaction terms handled perturbatively.
deed, we implement such an approach in Sec. V B in ap
cation to anthracene–He2 .

III. KINETIC-ENERGY OPERATOR FOR B–A n
CLUSTERS WHEN A IS A MOLECULE

The extension of the approach of the preceding sec
to the case where A is a molecule is straightforward. O
starts again with the classical kinetic energy apart from ov
all translation, which is given by

T5
mB

2
ṙB

21
mA

2 (
i

n

ṙ i
21(

a

j a
2

2I a
1(

i 51

n F(
a i

j i ,a i

2

2I a i

G , ~23!

where symbols common to Eq.~1! are defined as for tha
equation except thatr i now refers to the vector from th
cluster center of mass to the center of mass of thei th A
moiety, and wherea i is an index that runs over the thre
principal-axis directions of thei th A moiety, j i ,a i

is the com-
ponent of rotational angular momentum of thei th moiety
about its center of mass as measured along itsa i principal
axis, andI a i

is the moment of inertia of that moiety alon
that axis. It is clear that a development analogous to
leading from Eqs.~1!–~9! can be applied to Eq.~23!. That is,
if one defines internal coordinatesdi analogously to Eq.~3!,
then one ultimately obtains

T̂52
1

2m (
i

¹ i
22

1

mB
(
k. i

¹i•¹k1(
a

ĵ a
2

2I a

1(
i 51

n F(
a i

ĵ i ,a i

2

2I a i

G , ~24!

where

¹i[S ]

]xi
,

]

]yi
,

]

]zi
D

depends on the components ofdi measured with respect to
BF axis system parallel to the principal axes of B. As w
the A5atom case, though, we seek to eliminate theĵ a . To
do this we substitute into Eq.~24!

ĵ a5 Ĵa2 l̂ a2(
i 51

n

ĵ i ,a , ~25!

where, as in Eq.~10!, Ĵa and l̂ a are operators correspondin
to the components alonga of the total angular momentum o
-

e

is
e

s

-
li-

n
e
r-

at

the cluster and the total orbital angular momentum of
individual moieties’ centers of mass about the cluster cen
of mass, respectively, and whereĵ i ,a is the operator corre-
sponding to the component of the rotational angular mom
tum of thei th A moiety about its center of mass as measu
alonga. Analogously to Eqs.~17! one obtains a vibrationa
(J50) and a rovibrational kinetic-energy operator given,
spectively, by

T̂v5(
i 51

n F2
¹ i

2

2m
1(

a

~ l̂ i ,a1 ĵ i ,a!2

2I a
1(

a i

ĵ i ,a i

2

2I a i

G
1 (

k. i 51

n F2
¹i•¹k

mB
1(

a

~ l̂ i ,a1 ĵ i ,a!~ l̂ k,a1 ĵ k,a!

I a
G

~26a!

and

T̂rv[(
a

@ Ĵa
222Ĵa( i~ l̂ i ,a1 ĵ i ,a!#

2I a
. ~26b!

In Eqs.~26! the l̂ i ,a are given by Eq.~15!. The ĵ i ,a and ĵ i ,a i

can be expressed in terms of the Euler angles (f i ,u i ,x i) that
describe the orientation of thei th A moiety with respect to
the cluster BF axes.@For example, see Eqs.~3.9! of Ref. 12
for the ĵ i ,a and Eqs.~3.10! of the same reference for th
ĵ i ,a i

.]
Equation~26a!, the analog to Eq.~17b! for molecular A

moieties, is the second main result of this paper. Since
use it no further herein, we shall not give it the same scrut
as was applied toT̂v for the A5atom case. Nonetheless, w
do note that it behaves as it should for B fixed in spa
~infinite mB and I a) and that it reduces to the correct for
for n51 @compare with Eq.~3.12! of Ref. 12#. We also note
that its structure implies that it should be possible to obt
the analog of Eq.~21! for clusters composed of differen
groups of A species distinguished by the lack of A–A inte
group interactions. We shall take up this point elsewhere
study of benzene–(N2)2 .

IV. INTERMOLECULAR LEVEL-STRUCTURE
CALCULATIONS ON THE ANTHRACENE– „

4HELIUM…2
„1z1… ISOMER

To illustrate the application of the results of Sec. II w
have performed filter diagonalization~FDG!22–24 variational
calculations of the intermolecular level structure of the~1u1!
isomer of anthracene–4He2 . We have also performed suc
calculations of the anthracene–He complex’s intermolecu
states, since considerable insight into the results on thn
52 species can be gained by detailed knowledge of thn
51 species’ level structure. This Section outlines the pro
dures pertaining to these calculations.

A. Symmetry considerations, body-fixed axes

Under the assumption that He movement from one s
of the aromatic plane to the other is ‘‘unfeasible,’’25 the mo-
lecular symmetry group of the anthracene–He2 ~1u1! isomer
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TABLE I. G8 character table for anthracene–He2 ~1u1!.

Class:
equivalent rotation

CL1a

R0
CL2
Rz

p
CL3
Rx

p
CL4
Ry

p
CL5
Rz

p
CL6
R0

CL7
Ry

p
CL8
Rx

p

A18 1 1 1 1 1 1 1 1 (z12z2)b

A28 1 1 21 21 1 1 21 21 Rz

B18 1 21 1 21 1 21 1 21 (x11x2), Tx , G tot

B28 1 21 21 1 1 21 21 1 (y11y2), Ty

A19 1 1 1 1 21 21 21 21 (z11z2), Tz

A29 1 1 21 21 21 21 1 1
B19 1 21 1 21 21 1 21 1 (x12x2), Ry

B29 1 21 21 1 21 1 1 21 (y12y2), Rx , G tot

aThe classes are as follows: CL15E. CL25(3,8)(4,9)(5,10)(6,11)(7,12). CL35(3,8)(4,7)(5,6)(9,12)(10,11)* . CL45(4,12)(5,11)(6,10)(7,9)* . CL5
5(1,2)* . CL65CL2(1,2)* . CL75CL3(1,2)* . CL85CL4(1,2)* . Numbers 1 and 2 refer to the helium atoms. Numbers 3–12 refer to hydrogen
anthracene. Numbering begins with the central H on the bottom of the ring and proceeds sequentially counterclockwise around the ring.

bBF axes are defined as follows:x̂ is parallel to the vector that points from hydrogen No. 3 to No. 8.ẑ is parallel to the out-of plane symmetry axis o
anthracene and always points to the side of the ring plane that He No. 1 is on.ŷ completes a right-handed coordinate system.Ti andRi refer, respectively,
to translation along and rotation about BF axisî . x1 ,y1 ,...,z2 , etc. are the coordinates of the He atoms in the BF frame~see text!. G tot denotes the irreps tha
the full ~1u1! wavefunction must transform as.
t
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x-
is G8 ~isomorphic with theD2h point group!. The character
table ofG8 applicable to this species is given in Table I.~The
structure and notation of the character table matches tha
Ref. 25.! In the table the permutation–inversion operatio
comprising the group are denoted by feasible permutat
of equivalent helium and hydrogen nuclei~with parallel in-
terchange of C atoms implied but, for clarity, not explicit
denoted!. To represent permutation–inversion operations
label the helium nuclei as ‘‘1’’ and ‘‘2.’’ The hydrogen nucle
are labeled sequentially from ‘‘3’’ to ‘‘12’’ starting with a
nucleus along the short in-plane axis of the anthracene m
ety and proceding counterclockwise around the anthrac
ring.

The molecular symmetry group of the anthracene–
complex~for unfeasible crossing of the He from one side
the anthracene to the other! is theG4 subgroup ofG8 ~iso-
morphic with theC2v). The character table for this group
given by the upper left quadrant of theG8 character table of
Table I. In labeling the irreducible representations~irreps! of
this group we drop the primes associated with theG8 irreps.
We point out that our labeling of the BF axes~see below! and
of the G4 irreps coincides with that used by Heidenrei
et al.14 in their study of anthracene–He intermolecular stat

To apply the results of Sec. II one requires a BF a
system parallel to the principal axes of the anthracene mo
with origin at the cluster center of mass. In labeling the
axes we adopt for both species the following convention:x̂ is
taken to be parallel to the vector that points from the cen
of mass of anthracene to hydrogen No. 8~i.e., along the short
in-plane axis of anthracene!, ẑ is taken parallel to the out-of
plane principal axis of anthracene and always points to
side of the ring on which He No. 1 resides, andŷ completes
a right-handed coordinate system. In the notation of Tab
the full rovibronic-plus-nuclear spin wave function of th
~1u1! species (12C, 1H, and4He isotopomer! must belong to
either theB18 or B29 irrep of G8 . Since the part of the wave
function that corresponds to overall rotation of the spec
transforms asA18 , A28 , B19 , or B29 and that corresponding t
nuclear spin transforms asA18 , A28 , B18 , or B28 , the J50
intermolecular states for the~1u1! isomer can transform a
of
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any one of the eight irreps ofG8 . Similarly, the symmetry of
the full wavefunction of anthracene–He must transform
B1 or B2 , and its rotational and nuclear-spin states transfo
asA1 , A2 , B1 , or B2 . Hence, theJ50 intermolecular states
of the complex can transform as any one of theG4 irreps.

B. Basis sets

For the anthracene–He2 species a primitive basis se
comprised of products of six one-dimensional discre
variable representations~DVRs!, each associated with one o
the x1 , y1 , z1 , x2 , y2 , z2 BF coordinates~see Sec. II!, was
used

ua,b,c,d,e, f &[ux1,a&uy1,b&uz1,c&ux2,d&uy2,e&uz2,f&. ~27!

Note that the position of an index on the left side of Eq.~27!
has meaning: From the left the first position corresponds
the x1 DVR, the second to they1 DVR, etc. The one-
dimensional DVRs on the rhs of Eq.~27! are defined, as in
Eq. ~4.1! of Ref. 12, for example, in terms of one
dimensional harmonic-oscillator eigenfunctions (fn) and the
Gauss–Hermite quadrature points and weights associ
with those functions. For example, theNx functions of the
x1-dependent DVR are given by

ux1,a&[ (
n50

Nx21

Awafn~xa!fn~gxx1!, ~28a!

wherexa is a quadrature point,wa is the weight associated
with that point, andgx is chosen to tailor the DVR to the
intermolecular potential-energy surface~IPS!. The three re-
maining DVRs along thex and y axes are defined analo
gously. Thez1- andz2-dependent DVRs differ slightly from
these in that they each incorporate a second parameterz1,0

andz2,0, respectively! to better accomodate the IPS. For e
ample,

uz1,c&[ (
n50

Nz21

Awcfn~zc!fn~gz@z12z1,0# !. ~28b!
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In all cases the sizes of the two DVRs corresponding to
same BF axis were taken to be identical~e.g.,Nx is the same
for the x1 and x2 DVRs!, as were the ranges of the tw
DVRs ~as fixed by the relevantg values!. Table II gives the
parameters defining the six DVRs used.

For notational convenience we adopt the following co
vention in regard to the labeling of the DVRs. TheN func-
tions corresponding to a given DVR are assigned integ
sequentially starting with the function associated with
most negative quadrature point and ending with that ass
ated with the most positive quadrature point. For thex- and
y-dependent DVRs we take these integer labels to run f
2N/2 to N/2 with zero omitted. Hence, thea andb indices
run from2Nx/2 to Nx/2 ~zero omitted! andb ande run from
2Ny/2 to Ny/2 ~zero omitted!. With this convention the poin
x̃2a ([x2a /gx), for example, equals2 x̃a ( x̃a[xa /gx).
Analogous symmetries apply to the quadrature points a
ciated with the three otherx and y DVRs. For the
z-dependent DVRs, we label the functions from 1 toNz if the
relevant z0 is positive and from2Nz to 21 if the z0 is
negative. Sincez1,0 is positive andz2,052z1,0, the point
z̃f ([z2,01zf /gz) associated with theuz2,f& DVR ( f ,0) is
equal to2 z̃2 f , wherez̃2 f([z1,01z2 f /gz) is the quadrature
point associated with theuz1,2 f& DVR.

From the primitive basis set of Eq.~27!, a basis set sym
metry adapted to theG4 group comprised of the first fou
classes ofG8 can be easily constructed. The functions a
given by

ua,b,c,d,e, f ,;e,d&

[ 1
2@ ua,b,c,d,e, f &1~21!eu2a,b,c,2d,e, f &

1~21!dua,2b,c,d,2e, f &

1~21!e1du2a,2b,c,2d,2e, f &], ~29!

wheree andd can take the values 0 or 1. TheG4 transfor-
mation properties of these functions are determined by
values ofe andd. Sincea and2a refer to functions belong-
ing to the same DVR, as dob and2b, d and2d ande and
2e it is necessary to reduce the sizes of theseG4-adapted
basis sets from the fullNx

23Ny
23Nz

2 of the primitive basis to
Nx

23Ny
23Nz

2/4 in order to eliminate redundancies. We d
this by restricting the indicesa andb to the ranges2Nx/2 to
21 and2Ny/2 to 21, respectively.

The basis functions defined by Eq.~29! are those that we
employ in the wave function propagations central to FD
We do not use a fully symmetry-adapted basis in th
propagations owing to difficulties in programming the ope
tion of Ĥv on a fully symmetry-adapted wave vector. Instea

TABLE II. Basis set and inertial parameters for intermolecular-state ca
lation on anthracene–He and the~1u1! isomer of anthracene–He2 .

Nx512 gx51.296 575 Å21

Ny514 gy50.956 544 Å21

Nz510 gz52.290 773 Å21 z1,052z2,053.3 Å
mA54.0026 amu mB5178.078 amu

I x51088.140 amu Å2 I y5230.032 amu Å2 I z51318.173 amu Å2
e
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we impose full symmetrization during the course of the FD
procedure after the operation ofĤv ~see Sec. IV D!. For this
final symmetrization we require expressions for fully sym
metrized basis functions in terms of those of Eq.~29!. These
are given by

ua,b,c,d,e, f ;e,d,s&5ua,b,c,d,e, f ;e,d& ~30a!

when uau5udu, ubu5ueu andc52 f , and

ua,b,c,d,e, f ;e,d,s&5
1

&
@ ua,b,c,d,e, f ;e,d&

1~21!sud,e,2 f ,a,b,2c;e,d&]

~30b!

for all other values of the indices. Here,s50 or 1, and the
values ofs, e and d completely determine theG8 irrep to
which the function belongs. For Eqs.~30! the ranges of the
indices must be smaller than those that apply to Eq.~29! so
as to eliminate redundancies. Several equivalent ways
eliminate redundancies are possible. We choose the foll
ing. In all cases2Nx/2<a<21, 2Ny/2<b<21, 1<c
<Nz , and c<u f u<Nz apply. If 2 f Þc, then 2Nx/2<d
<Nx/2 and2Ny/2<e<Ny/2. If 2 f 5c, thenudu<uau in all
cases and the allowed values ofe depend on whetherudu
5uau or not. If 2 f 5c and udu,uau, then2Ny/2<e<Ny/2
in all cases. If2 f 5c and udu5uau, the allowed values ofe
depend ond, b, e, d ands, information that is summarized in
Table III. Also given in Table III are theG8 irreps that apply
to the various sets ofe, d, ands values. The overall sizes o
the fully symmetry-adapted bases, given the parameter
Table II, are 353 640 functions forA18 , 351 960 functions for
A19 , and 352 800 functions for each of the other six irrep

The basis set employed for calculations
anthracene–He was constructed from three-dimensio
products ofx1-, y1-, and z1-dependent DVRs@as given by
Eqs. ~28!#. The parameters defining the one-dimensio
~1D! DVRs were taken to be the same as those employe
the n52 calculations~see Table II!. These primitive basis
functions were symmetry-adapted to the complex’sG4 mo-
lecular symmetry group in a manner analogous to Eq.~29!,
giving rise to the functions

-TABLE III. Allowed values of the index ‘‘e’’ for f 52c and udu5uaua

Irrep e d s d5a d52a

A18 0 0 0 ueu<ubu ueu<ubu
A28 1 1 0 b<e,ubu b,e<ubu
B18 0 1 0 b<e,ubu b<e,ubu
B28 1 0 0 ueu<ubu ueu,ubu
A19 0 0 1 ueu,ubu ueu,ubu
A29 1 1 1 b,e<ubu b<e,ubu
B19 0 1 1 b,e<ubu b,e<ubu
B29 1 0 1 ueu,ubu ueu<ubu

aSee Sec. IV B.
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ua,b,c;e,d&[ 1
2@ ua,b,c&1~21!eu2a,b,c&

1~21!dua,2b,c&

1~21!e1du2a,2b,c&], ~31!

where the notation is analogous to that used for Eq.~29!.
Redundancies were eliminated by restricting the indicea
andb to the ranges2Nx/2 to 21 and2Ny/2 to 21, respec-
tively. The size of each symmetry-adapted basis is 420 fu
tions perG4 irrep.

C. Operation with Ĥv

The ~1u1! J50 HamiltonianĤv consisted of the sum o
the T̂v operator given by Eq.~17b! for n52 and the
pairwise-additive intermolecular potential energy functi
used by Heidenreichet al.14 in their calculations of the inter
molecular level structure of the~2u0! isomer of
anthracene–He2 . The values of the inertial parameters a
pearing inT̂v are given in Table II.

FDG requires repeated computation of the effect of
erating with the Hamiltonian on a wave vector. Operati
with the potential-energy portion of Ĥv ,
V(x1 ,y1 ,z1 ,x2 ,y2 ,z2), is straightforward in the basis em
ployed herein since all the matrix elements ofV are diagonal.
Further, they are given~to Gaussian-quadrature accuracy! by

^a,b,c,d,e, f ;e,duVua,b,c,d,e, f ;e,d&

5V~ x̃a ,ỹb ,z̃c ,x̃d ,ỹe ,z̃f !,

wherex̃a , ỹb , etc. are defined as in Sec. IV B above. In a
given FDG propagationV was calculated just once over th
entire (x̃a ,ỹb ,z̃c ,x̃d ,ỹe ,z̃f) grid. The values were stored i
memory to be used in the wave vector propagation.

To operate withT̂v we computed analytically the matri
elements of that operator in the basis of harmonic oscilla
eigenfunctions isomorphic to the DVRs. These were th
transformed to the primitive basis of Eq.~27! by using Eqs.
~28! and their analogs for the other coordinates. Finally, m
trix elements in the partially symmetrized basis of Eq.~29!
were constructed as needed from memory-stored primit
basis matrix elements. Unlike the potential-energy mat
that of T̂v has nonzero off-diagonal elements. As a result,
computation time forT̂vuc& dominates in the overall compu
tation of Ĥvuc&. Still, for the T̂v matrix considerable block
diagonalization obtains. Indeed, nonzero matrix elements
diagonal in no less than four of the six indices characteriz
the basis set. Thus, for example, theT̂vuc& calculation scales
roughly asN8 for an equal number,N, of DVRs in each
dimension.

For the anthracene–He complexĤv was taken as the
sum of T̂v , as given by Eq.~17b! for n51, plus the same
potential-energy function as used to model t
anthracene–He interaction in then52 cluster. Operation
with Ĥv was handled in a manner exactly analogous to t
described above for then52 species.
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D. Filter diagonalization

FDG was implemented by generating a random init
wave vectoruc0& in one of the fourG4-adapted basis set
defined by Table II and by Eq.~29! ~for n52) or Eq. ~31!
~for n51). The initial wave vector was propagated 512
1024 time steps by Chebyshev propagation.26 Window basis
functions filtered at selected energies within a set ene
window were accumulated after each propagation step
using Eq.~6! of Ref. 24. Window basis functions obtained
this fashion are symmetry adapted to the same exten
uc0&. Hence, for then51 species no further manipulation o
the window functions was required to achieve full symme
adaptation. However, for then52 species fully symmetry-
adapted window basis functions had to be calculated fr
the ones accumulated in the Chebyshev propagation by
erating on the latter with the projection operator

P̂e,d,s5 (
allstates

ua,b,c,d,e, f ;e,d,s&

3^a,b,c,d,e, f ;e,d,su, ~32!

with the ua,b,c,d,e,f; e,d,s& given by Eqs.~30!. The resulting
functions were then reexpressed in the Eq.~29! basis. For
both then51 andn52 species the completely symmetr
adapted window functions were orthogonalized by t
Gram–Schmitt method. The matrix of the relevantĤv in this
basis was then diagonalized to yield eigenvectors and eig
values within the chosen energy window.

In addition to the window-function variant of FDG,
time-correlation-function version23,24 was also applied. This
was done in order to get information onĤv eigenvalues so
that the latter could then be used as energy-filter inpu
window-function FDG. The Chebyshev/correlation-functio
approach of Eqs.~12! and~13! in Ref. 24 makes direct use o
the Chebyshev coefficientscn5^c0uXn&, whereuXn& is the
Chebyshev vector obtained aftern operations of a scaledĤv
on uc0&. The main point we would make here is that it
straightforward to obtain fully symmetry-factored eigenva
ues from this procedure even if the propagated eigenvect
not symmetry adapted. This is done as follows. One obta
symmetry-factored Cheybshev coefficientscn,G by: ~a! sym-
metrizing uc0& with a projection operator forG, the irrep of
interest: P̂Guc0&[ucG,0&, and ~b! computing cn,G

5^cG,0uXn& as theuXn& are generated by the propagation
uc0&. Thecn,G are then used in Eqs.~12! and~13! in Ref. 24
to obtain eigenvalues specific toG. This works becauseP̂G

commutes with the scaledĤv , P̂G
25 P̂G , and Chebyshev

propagation amounts to operation on the initial wave vec
with a polynomial in the scaledĤv . Hence,^cG,0uXn& is
identical to the Chebyshev coefficient that would be co
puted if ucG,0& were propagated instead ofuc0&.

E. Rigid-body diffusion Monte Carlo calculations

As a partial check on the results of the variational c
culations described above, we have performed rigid-bo
diffusion Monte Carlo calculations~RBDMCs!27 of the zero-
point energies of anthracene–He and the~1u1!



5565J. Chem. Phys., Vol. 119, No. 11, 15 September 2003 Hamiltonian for solute–solventn clusters
TABLE IV. Properties of computed intermolecular states for anthracene–He.

G4 irrep DEa ^z&b Dz Dx Dy Assignment

A1

1 0.00 3.33 0.28 0.59 0.75 Zero point
2 13.13 3.34 0.29 0.60 1.87 u2ny&
3 24.64 3.33 0.31 1.62 0.98 u2nx&
4 27.99 3.37 0.30 0.69 2.26 u4ny&
5 37.50 3.35 0.32 1.67 1.79 u2nx,2ny&
6 41.55 3.32 0.35 1.74 2.06 u4nx&; u6ny&
7 42.44 3.34 0.33 1.52 2.33 u4nx&; u6ny&
8 49.03 3.74 0.52 0.90 1.11 unz&
9 50.33 3.39 0.37 1.70 2.60 u2nx,4ny&

10 54.46 3.39 0.34 1.00 3.39 u8ny&
11 54.57 3.31 0.37 2.10 2.05 u4nx,2ny&
12 60.14 3.65 0.55 1.27 2.35 unz,2ny&
A2

1 21.00 3.36 0.30 1.21 1.44 unx ,ny&
2 34.37 3.38 0.30 1.18 2.15 unx,3ny&
3 38.60 3.27 0.33 2.09 1.42 u3nx ,ny&
4 47.38 3.39 0.32 1.35 2.85 unx,5ny&
5 52.54 3.32 0.34 2.06 2.32 u2nx,3ny&
6 55.18 3.21 0.36 2.38 1.43 u5nx ,ny&
7 58.38 3.34 0.36 1.62 3.44 unx,7ny&
8 63.20 3.27 0.38 2.10 3.19 u3nx,5ny&
9 65.64 3.84 0.55 1.46 1.55 unz ,nx ,ny&

10 68.26 3.27 0.40 1.89 3.47 u3nx,7ny&
B1

1 14.61 3.35 0.29 1.15 0.84 unx&
2 27.49 3.37 0.30 1.18 1.81 unx,2ny&
3 33.32 3.28 0.32 2.03 0.97 u3nx&
4 41.16 3.39 0.31 1.25 2.47 unx,4ny&
5 46.06 3.30 0.33 2.06 1.78 u3nx,2ny&
6 50.10 3.23 0.36 2.35 1.14 u5nx&
7 53.17 3.37 0.34 1.51 3.11 unx,6ny&
8 58.17 3.34 0.39 2.05 2.68 u3nx,4ny&
9 60.58 3.79 0.55 1.46 1.24 unz ,nx&

10 62.85 3.26 0.37 2.36 1.84 u5nx,2ny&
B2

1 7.71 3.35 0.29 0.62 1.48 uny&
2 20.16 3.35 0.29 0.60 2.04 u3ny&
3 30.41 3.33 0.31 1.70 1.42 u2nx ,ny&
4 35.27 3.38 0.30 0.66 2.63 u5ny&
5 44.11 3.37 0.33 1.67 2.26 u2nx,3ny&
6 47.03 3.25 0.35 2.19 1.51 u4nx ,ny&
7 48.33 3.39 0.33 0.88 3.23 u7ny&
8 55.11 3.71 0.54 1.09 2.06 unz ,ny&
9 55.69 3.42 0.43 1.70 2.79 u2nx,5ny&

10 59.23 3.39 0.35 0.82 3.57 u9ny&

aVibrational energy in cm21. Zero-point energy is290.52 cm21 relative to dissociation.
b^z& is the expectation value ofz1 . Dx, Dy, andDz are, respectively, the root-mean-square deviations ofx1 ,
y1 , andz1 . All are given in Å.
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anthracene–He2 isomer for the same IPSs and inertial p
rameters that were employed in the variational studies. E
such calculation involved 4000 replicas. After 1000 equ
bration time steps of 50 a.u., energies were averaged
2000 or 3000 time steps of 5 a.u. The average energies
responding to several such runs were then averaged to o
a final result. The isomeric form of then52 species was
enforced by choice of the initial replicas and by eliminati
of any replicas undergoing the crossing of an He atom fr
one side of the anthracene plane to the other~extremely rare
events, in practice!. The RBDMC zero-point energies s
computed are290.360.4 cm21 for anthracene–He an
ch
-
er

or-
ain

2181.560.9 cm21 for the ~1u1! species. They match thos
obtained variationally~Sec. V! within the precision of the
RBDMC calculation.

V. COMPUTATIONAL RESULTS

A. Anthracene–He

A summary of calculated results pertaining to the int
molecular states of anthracene–He having energies less
;60 cm21 above the zero point~;30 cm21 below dissocia-
tion! is presented in Table IV The energies and geometr
properties of the states differ slightly from those reported
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Ref. 14. There are two reasons for this. First, the basis
employed in this work is different than those of Ref. 14. T
effect is a shift to lower energies~e.g., about 2 cm21 for the
zero-point level! for our results. Second, the Hamiltonia
employed here does not treat the anthracene moiety as b
fixed in space, as in Refs. 14. One consequence of acco
ing for anthracene motion is a level-structure shift to high
energies that partially cancels the shift due to different ba
sets. Further, some states are shifted to a greater degree
others. In particular, those states involvingnx , the vibration
of the He along thex ~short in-plane! axis of anthracene
have significantly higher energies above the zero-point le
relative to what their energies are computed to be under
assumption of fixed-in-space anthracene. This is clear
consequence of the fact thatnx;A1/m1^z1

2&/I y
28 versus

nx;A1/mHe for the two cases, respectively, and the form
inertial factor is significantly larger than the latter. Final
the small differences in the expectation values of geometr
properties between the two sets of results are likely due
the difference in the way that the anthracene moiety
handled.

The assignments of anthracene–He intermolecular st
presented in Table IV were made on the basis of the c
puted values ofDx, Dy, andDz, as well as the nodal prop
erties of the computed eigenfunctions. The notation e
ployed in making the assignments accounts for th
intermolecular vibrational modes,nx , ny , and nz , corre-
sponding to relative motion of the He and the anthrac
center of mass along thex̂, ŷ, and ẑ BF axes, with the
coefficient in front ofn i denoting the number of quanta i
the i th mode and withn i omitted completely when its coef
ficient is zero. One sees from the Table that the level str
ture is built on modes whose 1←0 fundamentals occur a
14.61, 7.71, and 49.03 cm21, for nx , ny , and nz , respec-
tively. Not unexpectedly, bothnx and ny are significantly
anharmonic.~Undoubtedly,nz is, as well, though our calcu
lations do not encompass states with two or more quant
nz .) Further, there is considerable coupling between all th
modes. Perhaps the most notable feature of the results
marked upon in Ref. 14, is the marked delocalization of
He atom parallel to the anthracene plane, delocalization
increases substantially with vibrational excitation.

B. Anthracene–He 2 „1z1… isomer

Table V summarizes calculatedJ50 intermolecular
level-structure results for the ~1u1! isomer of
anthracene– (He)2 for states at energies less than;30 cm21

above the zero-point level. Also given in the table are
lected expectation values and state assignments. The not
employed for the assignments reflects the fact~considered in
detail below! that the~1u1! states are well approximated b
zeroth-order states that are products of intermolecular eig
functions of the anthracene–He1 complex:

u lnx ,mny ,nnz ; l 8nx ,m8ny ,n8nz&

[u lnx ,mny ,nnz&13u l 8nx ,m8ny ,n8nz&2 , ~33!

where the subscripts ‘‘1’’ and ‘‘2’’ refer to the He bindin
sites above and below the anthracene plane,
et
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u lnx ,mny ,nnz& i is an eigenvector of anthracene–He1 for an
He atom in thei th site. For (l ,m,n)5( l 8,m8,n8) the func-
tions of Eq.~33! are already symmetry adapted toG8 . For
( l ,m,n)Þ( l 8,m8,n8) symmetry adaptation requires con
structing plus and minus linear combinations of the form

u lnx ,mny ,nnz ; l 8nx ,m8ny ,n8nz&6

[
1

&
@ u lnx ,mny ,nnz ; l 8nx ,m8ny ,n8nz&

6u l 8nx ,m8ny ,n8nz ; lnx ,mny ,nnx&]. ~34!

The notation of Eqs.~33! and~34!, together with the conven
tion that the omission of a givenn i denotes zero quanta i
that mode and that ‘‘0’’ denotes 0nx , 0ny , 0nz , is what
appears for assignments in Table V. Thus, for example,
1B18 state is assigned as

uny ;0&1[
1

&
@ uny&1u0&21u0&1uny&2]

in which one quantum ofny is shared in-phase between th
two He atoms. Similarly, the 1B19 state is assigned as

uny ;0&2[
1

&
@ uny&1u0&22u0&1uny&2]

in which one quantum ofny is shared out-of-phase betwee
the He atoms.

The close connection between~1u1! anthracene–He2 and
anthracene–He1 intermolecular states arises because the
dimensional IPS of the former species is the sum of t
three-dimensional terms that are each the same as
anthracene–He1 IPS plus a very much smaller six
dimensional He–He interaction termV12. Therefore, given
Eq. ~21!, Ĥv for the n52 species is the sum of twon51
Hamiltonians plusV12 plus the kinetic coupling term

T̂12[2
1

mB
¹1•¹21(

a

l̂ 1,a l̂ 2,a

I a
. ~35!

The product basis defined by Eq.~33! diagonalizesĤv

2T̂122V12. Hence, that basis provides a good represen
tion of the ~1u1! states to the extent thatT̂121V12 is small
compared to the rest ofĤv .

To investigate quantitatively then51 composition of
the ~1u1! intermolecular states, and to assess the suitability
the approach outlined at the end of Sec. II for the solution
intermolecular Schro¨dinger equations, we have calculate
the ~1u1! states variationally by using the Eq.~33!/~34! basis.
This was done as follows. The eigenvectors correspondin
the 42 n51 states enumerated in Table IV were used
construct product basis functions as per Eqs.~33! and ~34!.
The 1764 resulting functions divide amongst theG8 irreps as
243A18 , 201A19 , and 220 for each of the other six. For ea
irrep the matrix ofĤv was constructed in the product bas
under the assumption of negligible off-diagonalV12 matrix
elements. Off-diagonal elements ofT̂12 were taken fully into
account. Finally, the symmetry-factored matrices were dia
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TABLE V. Properties of computed intermolecular states for the~1u1! isomer of anthracene–He2 .

G8 irrep DEa ^z&b Dz Dx Dy Assignment

A18
1 0.0 3.33 0.28 0.59 0.76 Zero-point
2 13.13 3.34 0.29 0.59 1.43 u2ny;0&1

3 15.43 3.35 0.29 0.62 1.48 uny ;ny&
4 24.06 3.33 0.29 1.20 0.86 90%u2nx;0&1 ; 9%unx ;nx&
5 26.23 3.35 0.29 0.60 1.87 u2ny;2ny&
6 27.78 3.35 0.29 0.62 1.74 44%u4ny;0&1 ; 54%u3ny ;ny&1

7 28.03 3.35 0.29 0.63 1.73 52%u4ny;0&1 ; 45%u3ny ;ny&1

8 29.68 3.35 0.29 1.17 0.87 8%u2nx;0&1 ; 87%unx ;nx&
A19
1 13.13 3.34 0.29 0.59 1.43 u2ny;0&2

2 24.60 3.33 0.30 1.22 0.87 u2nx;0&2

3 27.79 3.35 0.29 0.62 1.76 54%u4ny;0&2 ; 84%u3ny ;ny&2

4 28.07 3.35 0.29 0.63 1.72 84%u4ny;0&2 ; 54%u3ny ;ny&2

A28
1 20.43 3.35 0.29 0.93 1.16 77%unx,ny,0&1 ; 22%unx ;ny&1

2 22.87 3.35 0.29 0.95 1.19 22%unx,ny,0&1 ; 77%unx ;ny&1

A29
1 20.52 3.35 0.29 0.93 1.16 79%unx,ny,0&2 ; 21%unx ;ny&2

2 22.72 3.35 0.29 0.95 1.19 21%unx,ny,0&2 ; 79%unx ;ny&2

B18
1 13.58 3.34 0.29 0.90 0.79 unx;0&1

2 26.58 3.35 0.29 0.91 1.42 56%unx,2ny;0&1 ; 43%unx;2ny&1

3 27.78 3.36 0.29 0.94 1.46 uny ;nx1ny&1

4 28.57 3.35 0.29 0.95 1.42 43%unx,2ny;0&1 ; 56%unx;2ny&1

B19
1 15.57 3.34 0.29 0.94 0.80 unx;0&2

2 26.60 3.35 0.29 0.91 1.42 56%unx,2ny;0&2 ; 44%unx;2ny&2

3 28.56 3.35 0.29 0.95 1.42 43%unx,2ny;0&2 ; 55%unx;2ny&2

4 29.63 3.36 0.29 0.98 1.46 uny ;nx,ny&2

B28
1 7.65 3.34 0.28 0.60 1.17 uny;0&1

2 20.14 3.34 0.29 0.59 1.55 u3ny;0&1

3 20.77 3.35 0.29 0.61 1.68 u2ny ;ny&1

4 30.08 3.33 0.30 1.25 1.14 u2nx,ny;0&1

B29
1 7.78 3.34 0.28 0.60 1.18 uny;0&2

2 20.15 3.34 0.29 0.59 1.55 u2ny;0&2

3 20.95 3.35 0.29 0.61 1.69 u2ny ;ny&2

4 30.11 3.33 0.30 1.26 1.14 u2nx,ny;0&2

aVibrational energy in cm21. Zero-point energy is2181.09 cm21 relative to dissociation.
b^z& is the expectation value ofz1 . Dx, Dy, andDz are, respectively, the root-mean-square deviations ofx1 ,
y1 , andz1 from their expectation values. All are given in Å.
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nalized numerically. The differences between energies
tained by this procedure and those obtained by diagonali
the full Ĥv in the 6D DVR basis~Table V! differ from one
another by only 0.01 cm21 ~root mean squared!. Obviously,
there is excellent agreement between the two sets of res
This agreement clearly points the way to the assignmen
the cluster’s intermolecular states in terms of the prod
basis states. The assignments given in Table V are base
quantitative analysis of the product-basis-state composi
of the intermolecular eigenvectors obtained from the cal
lation just described.~All basis states contributing 8% o
more to an eigenstate are listed in the table.! The agreemen
is also significant in that the calculation based on
anthracene–He1 product basis is much less costly than t
full six-dimensional calculation of~1u1! states. This is be-
cause:~a! the only off-diagonal elements involved in th
former are those ofT̂12, and each such matrix element ca
b-
g

lts.
of
t
on
n
-

e

be factored into two three-dimensional integrals, and~b! the
product basis states are excellent zeroth-order approx
tions of the true eigenstates, so that convergence of low
lying states in a variational calculation can be achieved w
a relatively small basis. The~1u1! species is thus a good cas
in point illustrating that accurate results can be obtained w
considerably reduced computational effort by using the g
eral approach discussed at the end of Sec. II.

In regard to the details of the calculated~1u1! level struc-
ture, one notes the presence of three types of eigenst
First, there are those~‘‘type one’’! that are essentially pure
zeroth-order states of the Eq.~33!/~34! type with vibrational
energies that are almost identical to those of their counter
states in anthracene–He. Two examples are 2A18 ~99.7%
u2ny ;0&1) and 1A19 ~99.9% u2ny ;0&2), which are both at
13.13 cm21 in the ~1u1! species compared with the 13.1
cm21 vibrational energy ofu2ny& in anthracene–He. Second
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there are also states~‘‘type two’’ ! that are pure Eq.~33!/~34!
states but that have vibrational energies that deviate ap
ciably from those of anthracene–He states. For exam
1B28 is 99.7%unx ;0&1 but has vibrational energy;1 cm21

lower than theunx& anthracene–He state. Similarly, 1B29 is
99.8% unx ;0&2 but has vibrational energy;1 cm21 above
that of unx&. Third, there are states~‘‘type three’’! that have
significant contributions from more than one Eq.~34!/~35!
function. Two such states are 6A18 and 7A18 .

The source of the difference between these three cla
of ~1u1! states relates to the magnitude of off-diagonal ma
elements ofT̂12 in the basis of the anthracene–He produ
states of Eq.~33!. Expressing a general such matrix eleme
as

^Lnx ,Mny ,Nnz ;L8nx ,M 8ny ,N8nzuT̂12u lnx ,mny ,nnz ;

l 8nx ,m8ny ,n8nz& ~36!

one can readily show from Eq.~35! and knowledge of
harmonic-oscillator matrix elements that it will generally
appreciable in just three cases:~a! when u l 2Lu5u l 82L8u
51, (m2M )5(m82M 8)5(n2N)5(n82N8)50; ~b!
when um2M u5um82M 8u51, (l 2L)5( l 82L8)5(n2N)
5(n82N8)50; and ~c! when un2Nu5un82N8u51, (l
2L)52( l 82L8)5(m2M )5(m82M 8)50. A type-one
state corresponds to a product state that is not nearb
zeroth-order energy to any other such state that can sa
these approximate selection rules. As a result the prod
state itself is essentially a~1u1! eigenstate, and its vibrationa
energy is very close to its zeroth-order~anthracene–He! en-
ergy. Going back to the examples of the type-one statesA18
and 1A19 , uny ;ny& is the product state closest in energy
u2ny ;0& and its degenerate partneru0;2ny& that can also
couple with the latter two according to the selection ru
above. However, it is 2.3 cm21 higher in energy, a separatio
that apparently is too large to allow for effective couplin
The upshot is that the two symmetry-adapted combinati
of u2ny ;0& andu0;2ny& are~1u1! eigenstates with vibrationa
energies almost equal to one another as well as to tha
u2ny&.

Type-two states arise when the only other product s
in the vicinity of product state
u lnx ,mny ,nnz ; l 8nx ,m8ny ,n8nz& that can also satisfy the se
lection rules to couple with it is its zeroth-order-degener
partneru l 8nx ,m8ny ,n8nz ; lnx ,mny ,nnz&. The coupling be-
tween the two states leads to plus and minus linear com
nations that are essentially~1u1! eigenstates. The vibrationa
energies of these eigenstates can deviate appreciably
anthracene–He energies due to the coupling. As a cas
point, the 1B28 and 1B29 type-two examples given above aris
from the product statesunx ;0& and u0;nx&. There are no
other product states close in zeroth-order energy to these
that can also couple effectively with them according to
selection rules above. However, coupling between the
themselves is allowed, leading to plus and minus comb
tions with vibrational energies below and above that ofunx&.

Finally, type-three states arise when appreciable c
pling is allowed between nearby, though nondegener
product states. The result of such coupling is a set of eig
re-
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states that have significant admixtures from more than
zeroth-order state and vibrational energies that deviate f
anthracene–He energies. As examples, the product s
u4ny ;0& and u3ny ;ny& have zeroth-order energies about 0
cm21 apart and can couple with one another according to
selection rules above. The same situation applies tou0;4ny&
anduny ;3ny&. The coupling gives rise to the four, type-thre
states 6A18 , 7A18 , 3A19 , and 4A19 , each of which is an ad-
mixture of the four product states.

VI. CONCLUSION

We have presented expressions for the intermolec
kinetic-energy operators of solute–solventn clusters of the
type B–An , where A is an atom or a molecule and B is
molecule. The operators are expressed in terms of coo
nates referred to a body-fixed frame that is embedded in
B moiety. As such, they are valuable in intermolecular lev
structure calculations involving clusters wherein:~i! A–B in-
teractions tend to dominate over A–A interactions and/or~ii !
B is significantly larger than A. As an illustration of th
application of the results we have performed 6D variatio
calculations of the intermolecular states of t
anthracene–He2 ~1u1! isomer for the IPS of Heidenreich
et al.14 We have shown that these states can be readily
signed in terms of products of anthracene–He1 intermolecu-
lar eigenfunctions, assignments that are especially trans
ent given the form of the intermolecular Hamiltonia
employed. Finally, we have outlined a procedure that s
stantially decreases the cost of calculations of intermolec
states in B–An clusters containing subsets of A moieties th
do not interact appreciably with one another. We have de
onstrated the application of this procedure in calculations
the anthracene–He2 ~1u1! isomer.
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