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We develop a formalism for efficient iterative solutions of scattering problems involving the Maxwell
equations. The methods, borrowed from recent advancements in chemical reaction dynamics, represent
the scattering wavefunctions on two grids; one used for the initial wave and is one-dimensional; the other
is a small three-dimensional grid padded with absorbing-potentials on which the scattered function is
represented. The formalism is automatically suitable for scattering studies of transmission, reflection
and scattering components of a wave. The simulations can be done with time-dependent wavepackets or
direct iterative solution for the Green’s function, but the results are rigorous time-independent (frequency-
dependent) scattering amplitudes. Model time-dependent simulations involving up to a 100 × 100 × 100
grid for the inner wavefunction were numerically done on a simple PC.
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1. Introduction

The study of photonic band-gap materials is increas-

ing in importance.1–6 Together with the experimental

studies, it is important to develop simulation tools for

studying specific properties.7–9 The simplest proper-

ties are band-gaps of periodic systems. However, there

are other interesting problems which are more difficult

to simulate. These include specifically the scattering

and transmission probabilities from a perturbation in

the material10–12 as well as the scattering from a time-

dependent perturbation.

The problem is analogous to large-scale scatter-

ing problems of the Schrödinger equation. About ten

years ago, there was a flurry of interest in the devel-

opment of chemical reaction dynamics methods (for a

review see Neuhauser et al.13) with specific develop-

ment of several tools for the study of very large scale

problems including systems of 6 or more dimension,

which is what happens in four-body scattering14–17

or surface scattering.18 These tools included, among

others, the development of iterative techniques which

are based on wave-packets19–23 and so are able to

give immediate results at many energies; the use

of absorbing (negative imaginary) potentials for re-

ducing the grid size;24 and the use of projection

operator formalisms to turn the scattering prob-

lems into bound-state-like problem where the grids

need to cover essentially only the strong-interaction

region.25,26

In this work we outline the application of similar

techniques for the Maxwell equation. The idea of us-

ing wave-packet techniques for solving the Maxwell

equation is not new.27,28 But this work is distin-

guished by using the complete suite of development

from time-dependent reactive scattering techniques;

an in particular the use of a two-grid approach.
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The two-grid approaches aim to solve an inherent

problem in scattering techniques. On the one hand,

the initial wavefunction in scattering lies away from

the strong interaction region. On the other hand,

the physics of the scattering occurs only in a lim-

ited region so that it should be feasible to restrict

the numerical modeling into a small strong interaction

region. The solution is to divide the wavefunction into

two parts: one contains the initial wavefunction and

is one-dimensional; the other is multidimensional but

covers only a small strong interaction region, padded

with absorbing potentials. There are two possibili-

ties for dissecting the wavefunction to two parts in

chemical dynamics: one in which the wavefunction on

the 1-D grid is obtained by a projection-operator,23

and one in which it is a solution of a simpler zero-

order Hamiltonian;26 only the second approach would

be relevant here, as mentioned below.

The two-grid formalism solves a difficulty in the

simulation of electromagnetic waves with wave-packet

techniques. The formal initial state is typically a

waverfront extended over an infinitely large region

(perpendicular to the reaction direction). However,

if a single grid is used, it is impossible to describe

the initial single infinitely extended state in x − y.

The two-grid formalism solves this problem while re-

taining the homogeneity of the propagation equations;

the homogeneity is important since it allows the use

of time dependent techniques for extracting many

energy values from one wave-packet. Incidentally,

the situation is similar for the scattering of associ-

ating molecules in chemical dynamics, where two-grid

formalisms could also be very useful.

This paper lays down the basic theory and tech-

niques, and uses a simple system to demonstrate the

method. The theory is presented in stages; first,

the transformation of the Maxwell equation to the

Schrödinger equation is presented (analogous treat-

ments are prevalent). The most interesting aspect

is the form of the flux operator, which does not

involve a derivative directly. The formulation in

time-dependent language is presented later, followed

by the development of the two-grid formalism. Model

simulations follow, and the paper finishes with a dis-

cussion and conclusions. An appendix maps several

other chemical-scattering formulations in the Maxwell

problem.

2. Methodology

Maxwell’s equations are discussed here for non-

magnetic media (µ = 1) and without currents and

take the following simple form:

∂εE

∂t
= ∇×B (1)

∂B

∂t
= −∇×E . (2)

(The cases of magnetic media and currents can also be

included, as will be shown in future work). We work

in a system of units where c = 1 and the vacuum

permittivity is 1. We will use bold-face letters for 3-

dimensional vectors. The vector A with a caret will

denote the corresponding unit vector: Â = A/|A|.
Equations (1) and (2) are easily converted into

Hamiltonian-like equations. We define a super-vector:

ψ ≡
(√

εE

B

)

. (3)

which satisfying a Schrödinger-like equation:

i
∂ψ

∂t
= Hψ , (4)

where

H =







0
i√
ε
∇×

−∇× i√
ε

0






(5)

is the Schrödinger-like “Hamiltonian” giving rise

to the Maxwell equation (this operator should not

be confused, of course, with the Field-Theoretical

Hamiltonian of the electromagnetic field; the only rea-

son we label H as an Hamiltonian is due to its formal

similarity to Schrödinger equation). H is imaginary,

but the propagation can be completely real (details

would be provided in an upcoming paper).

H is manifestly Hermitian (except for the added

absorbing potential and the two-grid formalism

presented below). All the known scattering method-

ologies can be applied for this Hamiltonian, with

particular care to the initial and final states.
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2.1. Zero-order Hamiltonian

The first step is to define a zero-order Hamiltonian,

H0 as:

H0 =











0
i√
εb
∇×

−∇× i√
εb

0











, (6)

where εb is the permittivity of the background. This

background could be one of several choices of varying

complexity.

In the simplest case, the background would be of

constant permittivity, as happens when the scattering

is incident from a homogeneous isotropic crystal or

from air. Alternately, it could be periodic along a sin-

gle axis, either the dimension of propagation defined

as z [so εb = ε(z)], or another direction, and constant

in the perpendicular directions. It could be periodic

in three dimensions, one of which is the dimension of

propagation. In the most general case, it could be

periodic in three dimensions of arbitrary orientations.

The formalism is appropriate, with simple mod-

ification, for all cases above. For clarity, it is

presented in this paper for the first case (constant

background). Future works present the extension to

periodic backgrounds.

2.2. Scattering states

The next step is to define a scattering state. The time-

independent asymptotic purely outgoing scattering

states of H0 are denoted as ψ0(r;k, p̂), where we de-

fined the 3-D position vector r, the propagation axis

and the polarization vector. For constant background,

ψ0(r;k, p̂) is a plane wave:

ψ0(r;k, p̂) =
1√

16π3
exp(ik · r)fp̂ , (7)

where

fp̂ =

(

p̂

k̂ × p

)

. (8)

For this case, the state ψ0(r;k, p̂) is an eigenstate of

H0:

H0ψ0 = ωψ0 , (9)

with the frequency, or in analogy to Schrödinger equa-

tion, the “energy” (we will use the terms energy

and frequency interchangeably) independent of the

polarization:

ω(k) =
|k|√
εb
. (10)

The pre-factors in Eq. (7) are such that the following

normalization holds:

〈ψ0(k, p̂)|ψ0(k
′, p̂′)〉 = δ(k − k′)p̂ · p̂′ . (11)

Consider now a scattering state of the total Hamilto-

nian H,which reduces to H0 for |r| → ∞. Denote this

state as ψscatt(r;ki, p̂i). It corresponds to an incoming

wave ψin(r) of a given wave vector ki and polarization

p̂i where:

ψin(r) = ψ0(r;ki, p̂i) . (12)

The scattering state is also an eigenstate of H with

the same energy as the incoming wave:

Hψscatt = ωψscatt . (13)

We decompose the scattering state to a sum of the

incoming and outgoing components:

ψscatt(r;ki, p̂i) = ψin + ψout

≡ ψ0(r;ki, p̂i) + ψout(r;ki, p̂i) . (14)

Asymptotically, i.e. far from an interaction region, the

outgoing part is a superposition of plane waves with

the same energy ω. The amplitudes of each plane-

wave component is given by the T-matrix, defined by:

ψout(|r|→∞;ki, p̂i)

= 2π
∑

p

∫

t(k,ki, p̂, p̂i)δ(ω(k)−ω)ψ0(r;k, p̂)d3k.

(15)

While we chose an example where H0 is of constant

“potential” εb, other choices can also be made. In par-

ticular problems, H0 can be chosen with a reflective

potential, for example. In this case, the “incoming”

wave will not be a pure plane wave and will include

the reflective part as well.

2.3. The flux operator

The flux through a closed surface S is defined in quan-

tum mechanics:29

F = i[H, θ] . (16)
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Here θ = θ(r) is a function defining the surface by

assigning the value 1 to any point with the surface

and 0 to any point outside it. The surface can be

infinite (for example, an infinite plane) which divides

space into two regions: one is considered “inside”, and

θ has the value 1 on it and the other “outside” with

θ = 0 on it.a F is the flux operator in the boundary

surface. Carrying the notion of flux to the present

study, it is straightforward to prove, using Eq. (5) in

(16) that:

F =









0 −∇θ√
ε
×

∇θ√
ε
× 0









. (17)

For our purpose here, S is taken as a plain surface,

defined by the equation s(r) ≡ â · r = s0, where â is

a unit vector perpendicular to the surface and s0 is a

large (nonzero) number, so that the surface is far from

the interaction region. Then:

θ(r) = h(s0 − s(r)) , (18)

where h(x) = 1 when x > 0 and 0 otherwise. Since at

large r ε is constant, this leads, in an obvious notation,

to:

F =









0 − δ√
ε
â×

δ√
ε
â× 0









. (19)

From this expression, it is straightforward to show

that, in analogy to the usual Schrödinger equation,

the following relation holds:

〈ψ0(k
′, p̂′)|F |ψ0(k, p̂)〉ω(k)=ω(k′)

=
k̂ · â
2π

δ(k⊥− k′
⊥)δsign(k·a),sign(k′·a)p̂ · p̂′ . (20)

Let us discuss the terms in Eq. (20). Since we are at

the asymptotes, there is full k vector conservation of

a plane wave crossing the surface S. Since we already

consider the same energy, it remains only to conserve

the perpendicular components of k and the sign of k̂·â.

The factor â · k̂/2π takes into account the direction of

the wave with respect to the surface.

2.4. The transition amplitude

Combining expressions (15) and (20), we get the tran-

sition amplitude in any direction k by considering the

quantity 〈ψ0(k, p̂)|F |ψout(ki, p̂)〉 for two asymptotic

surfaces defined by s(r) = k̂i · r = s0: one surface is

with s(r) > 0 and the other s(r) < 0. For the positive

case (s0 � k−1):

〈ψ0(k, p̂)|F |ψscatt〉s0�k−1

=
1

2π
δ(k⊥−ki⊥)δsign(k̂·̂ki)

p̂ · p̂i + t(k,ki, p̂, p̂i)
dk‖

dω
.

(21)

The first term is due to the incoming wave and the

second arises from the outgoing:

〈ψ0(k, p̂)|F |ψout〉s0�k−1 = 2π

∫

t(k′,ki, p̂
′, p̂i)

δ(k⊥ − k′
⊥)

2π
δ(ω(k) − ω)d3k′

=

∫

t(k′,ki, p̂
′, p̂i) δ(k⊥ − k′

⊥)δ(k‖ − k′‖)
∂k‖

∂ω
d3k′

= t(k,ki, p̂, p̂i)
dk

dω
. (22)

Here we used the fact that the surface is defined along

k̂, so that k‖ = k. Note also that we explicitly used

the fact that the flux is evaluated for large positive s0.

Upon repeating the calculation with |s0| large but s0
negative — i.e. a surface which, relative to k, is way

in the back, the T -matrix term drops and:

〈ψ0(k, p̂)|F |ψscatt〉s0�−k−1

=
1

2π
δ(k⊥ − ki⊥)δsign(k̂·k̂i)

p̂ · p̂i . (23)

aIt is not strictly necessary that the transition between the 1 and 0 be abrupt — the formalism is equally valid when the transition is
smooth, and in several implementations this is advantageous numerically, as it leads to a bounded Flux operator.
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Subtracting the two expressions in Eqs. (21) and (23)

gives the the T -matrix as:

t(k,ki, p̂, p̂i)
∂k

∂ω

= i〈ψ0(k, p̂)|Hθ̄ − θ̄H |ψscatt〉 , (24)

where θ̄ is defined as 1 in the interaction region, and

zero outside. This leads to:

〈ψ0|Hθ̄ − θ̄H |ψscatt〉 = 〈ψ0|Hθ̄ − θ̄E|ψscatt〉

= 〈ψ0|Hθ̄ −Eθ̄|ψscatt〉

= 〈ψ0|Hθ̄ −H0θ̄|ψscatt〉

= 〈ψ0|H −H0|ψscatt〉 (25)

where the last equality follows from the fact that

w − w0 is localized and from it results the usual ex-

pression for the T -Matrix as an integral over H −H0:

t(k,ki, p̂, p̂i)

= i

(

dk

dω

)−1

〈ψ0(k, p̂)|H −H |ψscatt〉 , (26)

where now the surface is defined in front of k, i.e. s0
is now here a large positive number. Using the

dispersion relation for light:

ω = k/
√
ε , (27)

we obtain the final expression:

t(k,ki, p̂, p̂i)

=
i√
ε
〈ψ0(k, p̂)|H −H0|ψscatt(ki, p̂i)〉 . (28)

2.5. Energy-dependent wavefunction from

time-dependent approach

To evaluate the T -matrix, which is a time-independent

quantity [see Eq. (28)], we move now to a time-

dependent approach. This will allow the simultane-

ous calculation of many transition matrix elements

at once. There are several ways for doing this, but

here we consider iterative methods which use very

efficiently the sparsity of the Hamiltonian.

We consider problems where the incoming waves

are propagating along the z-axis and the initial func-

tion is constant in the x − y direction. Thus we

introduce an initial wave-packet in the z-direction

denoted as

ϕin(x, y, z, p̂, t = 0) = ηin(z, p̂i, t = 0)N(x, y) (29)

where

N(x, y) = 1 . (30)

Remember that η is a 6-dimensional vector with

polarization p̂i. As it stands, it would be hard to

propagate in time the wave-packet |ϕin〉 since it would

require a grid that is formally infinitely long in x, y; for

that purpose, we use the two-grid formulation which

is reviewed below. Note that we will consistently use

different symbols for a wave-packet ϕ and for plane-

waves or scattering states ψ. We can view ϕin as a lin-

ear combination of time-independent wavefunctions,

each associated with an incoming planar wave emerg-

ing from the left along the z-axis and uniform along

the x− y coordinates:

|ϕin(t = 0)〉 =

∫

aω|ψin(ω)〉dω , (31)

where aω is a coefficient showing how much of the

initial wave-function ψin(ω) of energy ω is in the ini-

tial wave-packet, as explained below. Because ψin is

a plane wave, we can extract aω directly out of ϕin

using a 1-dimensional Fourier transform (taken over z

for x = y = 0):

aω =
√

εbψf
†
p̂

∫

exp(−ik(ω)z)†ϕin(z)dz . (32)

This relation is based on the following plane waves

orthogonally relation, including the dispersion rela-

tion Eq. (27):

∫

ψ0(r; k(ω)ẑ, p̂i)
†ψ0(r; k(ω

′ )̂z, p̂i)dz

=
1

4π2
δ(k(ω) − k(ω′)) =

δ(ω − ω′)

4π2√εb
. (33)

The choice of ϕin is such that the wave packet is spa-

tially localized in the incoming asymptote (z → −∞).

This means that the wave packet can be equally well

written as:

|ϕin(t = 0)〉 =

∫

aω|ψscatt(ω)〉dω . (34)



542 D. Neuhauser & R. Baer

Now let the clock tick and propagate ϕin in time, using

the “time-dependent Schrödinger equation iϕ̇ = Hϕ”

with solution:

ϕ(t) = e−iHtϕin (35)

The scattering state at energy ω can be projected out

of ϕin using:

|ψscatt(ω)〉 =
1

aω
δ(ω −H)|ϕin〉

=
1

2πaω





∞
∫

0

exp(i(ω −H)t)dt

+

0
∫

−∞

exp(i(ω −H)t)dt



 |ϕin〉

=
i

2πaω
[G(ω)|ϕin〉 + |ζ(ω)〉] , (36)

where the Green’s function is defined as: G(ω) =
1

ω−H . ζ(ω) is the part associated with the initial mo-

tion of the wave-packet (from –infinity to zero) and

can be ignored. Scattering calculations usually do not

calculate G(ω) but modify the integral to include an

absorbing part; this amounts to rewriting

G(ω) =
1

ω − H̃
, (37)

where H̃ = H − iΓ includes an absorbing poten-

tial assuring convergence of the integral in Eq. (36).

In scattering calculations over a large grid, Γ is an

imaginary potential padding the grid. But here, the

calculations are more complicated, since the initial

wavefunction is infinitely extended in the x, y direc-

tions. This difficulty is resolved by the two-grid for-

malism, as explained in the next section.

Using Eqs. (28), (32) and (36) a compact expres-

sion for the T -matrix is then:

t(k,ki, p̂,pi)

=

i〈ψ0(k, p̂)|H −H0|
∫

ϕ(r, t) exp(iωt)dt〉

2(π)3/2√εb

∫

exp(−ikz)f †
p̂
ϕin(z)dz

. (38)

This expression can be used with the wave-packet

ϕ(r, t) represented on a grid and filtered for each

energy, and then the overlapped with ψ0(k, p̂); or al-
ternately, one can first calculate the overlap with each

ψ0(k, p̂) at each time-step and only then filter this

overlap.31 The choice between the methods depends

on the application, as explained in the appendix.

3. The Two-Grid Formalism

To alleviate the problem due to the fact that the initial

wavefunction is defined on an extended grid, we write

the time-dependent wave-packet as:

ϕ = χ+ φ . (39)

where the i sub-script is omitted. There is a free-

dom in the choice of φ and χ. For this application,
it is appropriate to use a version in which φ is de-

termined by a zeroth-order Hamiltonian, in which the

index of refraction is independent of x and y, and is

either a constant or dependent purely on z, the prop-

agation direction. (Such a version is different from
the projection operator formalism used in chemical

applications.) Specifically, we write:

i
dφ

dt
= H0φ, φ(t = 0) = ϕin , (40)

where H0 is analogous to H but with ε replaced by
εb(z), as in Eq. (6). Since the index of refraction and

the initial wavepacket are both independent of x, y, it

follows that they would always be independent of x, y,

so that

φ(x, y, z, p̂, t) = η(z, p̂, t) . (41)

The propagation of φ is therefore completely equiv-

alent to the evolution of η under the z-dependent
Hamiltonian

i
dη

dt
= h0η (42)

where

h0 = i































0
−1√
εb

∂

∂z
0

0
1√
εb

∂

∂z
0

0 0 0

0
1√
εb

∂

∂z
0

−1√
εb

∂

∂z
0































.

(43)
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The equation for χ is now:

i
dχ

dt
= (H −H0)Nη +Hχ . (44)

Note that η is a function of z so the grid on which

η is represented is a 1-dimensional grid, while χ is

a 3-dimensional wave packet, represented on a 3-

dimensional grid. As discussed in the previous section,

we actually need to modify Eqs. (40) and (44) by

adding absorbing potentials, so that the waves reach-

ing the 1-dimensional and 3-dimensional grid bound-

aries are not reflected. We denote these absorbing

potentials as Γφ and Γχ:

i
dη

dt
= (h0 − iΓφ)η , (45)

i
dχ

dt
= (H −H0)Nη + (H − iΓχ)χ ,

χ(t = 0) = 0 . (46)

The introduction of Γχ is essential to eliminate the

need to represent χ beyond the interaction area. The

final equations can be recast in the following homoge-

neous Hamiltonian form:

i
d

dt

(

χ

η

)

= H− iΓ

(

χ

η

)

≡
(

H − iΓ (H −H0)N

0 h0 − iΓφ

)(

χ

η

)

. (47)

This form allows for a very convenient and ef-

ficient propagation, in particular the Chebyshev

propagator19 (which works well despite the non-

Hermitian nature of H26). The filter of this combined

two grids wavefunction yields the Green’s function for

H:
(

χ(ω)

φ(ω)

)

=
1

2πaω

∞
∫

0

exp(iωt)

(

χ(t)

φ(t)

)

dt

=
1

2πiaω

1

(ω −H + i)

(

0

ϕin

)

≡ 1

2πiaω
GH(ω)

(

0

ϕin

)

. (48)

The advantage of this form is that only one Green’s

function is needed and will be used to extract many

 

 

Strong
Interaction

(3-D) grid

Absorbing

 

1D grid 

Initial

Fig. 1. Schematics of the 2 grid approach. Shown, a small
3-D grid, and a simple grid showing the strong-interaction
region. The shaded regions are covered with an absorbing
potential. A localized initial wave-packet is also shown.

energies; the extra price, in terms of the two-grid prop-

agation, is negligible, since the 3D grid is small (cover-

ing just the strong interaction region); the other grid,

while longer (to cover the initial function region) is

just 1D. (See Fig. 1.)

The initial wave-packet used here is an x-polarized

wave-packet

ϕin(z, t = 0) =

√

1

πσ
exp(−(z − z0)

2/2σ2)



















1

0

0

0

0

0



















.

(49)

This initial wave-packet is real, and therefore the

whole simulation is real (the wave-packet is purely

real, without an initial magnetic field) and the only

necessary complex algebra enters into the calculation

of ψ(ω). The fact that the initial wavepacket contains

both incoming and outgoing components (positive and

negative kz and polarization components) is because

the outgoing components are absorbed by the left ab-

sorbing potential (on the 1-D grid) and they do not

influence the results.

4. Summary of Approach

The resulting approach is summarized as follows:

(1) Place an initial wavefunction,
(

0

ϕin

)

far from

the interaction region.



544 D. Neuhauser & R. Baer

Table 1. Some simulation parameters.

1D grid extent (for φ) [−60, 15]

Strong-interaction grid extent (for χ) in each dimension [−15, 15]

Time-step 1

Total time 120

Chebyshev min/max parameters −5, 5

Absorbing potential width 10 (or 6 — see below)

Absorbing potential height 2

Index of refraction parameters ε0 = 1 β = 0.5 b = 5.

(2) Propagate this wavefunction in time,

(

χ(t)

ϕ(t)

)

= exp(−iH− iΓ)t

(

0

ϕin

)

, (50)

using any of the established approaches

(especially, Chebyshev19 or Chebyshev with

modified coefficients to account for the absorb-

ing potentials22).

(3) Filter this wavefunction at several energies

(i.e., frequencies), to obtain
(

χ (ω)

ϕ (ω)

)

; again,

either a direct filtering of a time-dependent

wavefunction or a filtering which takes into

account the properties of the Chebyshev

propagators.22,32,33

(4) Determine the transition amplitudes at any de-

sired direction and polarization from Eq. (38).

Several variants, completely equivalent to those in

scattering theory, are presented in the appendix.

5. Model Simulation

We simulated the Maxwell equation for a very simple

polarization function

ε(r) =

{

ε0 r > b

ε0(1 − β cos2(πr/2b)) r ≤ b
(51)

where parameters are presented in Table 1. We

used dimensionless units; for simplicity, it can be as-

sumed that lengths are in micron and times are in

(c/micron)−1 = 3.3 · 10−15 sec.

Some simulation parameters are presented in

Table 1. The absorbing potential was parabolic and

Fig. 2. The squared transmission probability density, de-
fined here as (2π)3|t(k,ki, p̂, p̂i)|2, for a reflected wave, for
several different grid spacing and absorbing potentials, as
explained in the text; the only curve which shows (slight)
deviation from the rest is the dashed-curve, where the ab-
sorbing potential width is set at 6 rather than 10. The
other curves, associated with different grids and grid spac-
ings, are all virtually identical.

extended over all 6 sides of the 3-D grid and the two

sides of the 1-D grid. The Chebyshev min/max pa-

rameters are smaller than those nominally needed (the

min/max eigenvalues of the H operator) but were

sufficient since dt was small. Our goal was to ver-

ify insensitivity to grid parameters. This is shown in

Fig. 2, which superimposes the squared modulus of

the transition amplitudes for several cases, as follows:

40 points in each 3D direction;

30 points in each 3D direction;

20 points in each 3D direction; and
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30 points in each 3D direction with an absorbing

potential width of 6.

We have also done a very large-scale simulation

with 100 × 100 × 100 points (with a 3D grid extent

of [−35, 35] in each dimension) where we filtered the

wave-packet only at a few energies. The goal of this

case was simply to show that a simulation over very

large grids is viable.

The most encouraging aspect of the simulation was

their good scaling with problem size. Even without

code optimization (for example, we did not take into

account that the simulation can use only real algebra

— this would be done in an upcoming publication),

a 40 × 40 × 40 points simulation with 100 frequen-

cies simulation took 8 hours on a 1 GHz workstation

(about 10 times more than for 20× 20× 20), and the

100×100×100 simulations took about 20 times longer

— since the simulation is essentially linear in over-

all grid size. When we sample at many frequencies,

about half the CPU time was occupied with filtering

the wave-packet at the different frequencies, and this

is also where most of the memory was used.

6. Discussion

This work shows that Maxwell’s equations can be very

easily and efficiently solved with the two-grid formal-

ism. The equations are homogenous and the results

are extracted for a large set of photon energies from

a single calculation. Because two grids are used, the

initial wave-packet can be quite compact without any

approximation. In addition, several alternative ap-

proaches are discussed in the appendix.

There are several directions for extending this

work, both methodologically and for applications:

Extend the two-grid formalism to waves that prop-

agate in a periodic crystal (so H0 is associated with

a periodic crystal, while H includes a local departure

from H0), both for waves that propagate along one of

the crystal axis and waves that emanate from an ar-

bitrary direction. This is feasible, as would be shown

in an upcoming publication.

Extend the formalism further to cases with

time-dependent perturbations, e.g. due to excited

molecules. This is feasible, for example, with the t, t′

formalism.34,35

The one down side in the simulation is that for ev-

ery energy value (frequency), a different resolved grid

function is extracted. This adds to the storage, and

also to the CPU time (although this is not signifi-

cant unless more than about 50 frequencies are used,

since most of the effort is in applying the Hamilto-

nian operator). The way to avoid the additional stor-

age, as explained above, is that instead of first filter-

ing the wavefunction and then overlapping it with a

final state, one reverses the order (first overlap the

time-dependent wavefunction with the final function

and then filter). This results in storage saving at the

expense of extra CPU, since the overlap with each

final state needs to be calculated at each time-step.

If the wavefunction is transformed to a different co-

ordinate system, associated with the wave-vector of

the final state, then the extra CPU time required is

minimized; however, this removes one of the advan-

tages of the wave-packet techniques: that a host of fi-

nal amplitudes (each associated with a different wave-

vector direction as well as energy) is extracted from a

single wave packet.

Other alternatives from scattering that can

be employed are the product-reactant decoupling

approach.36

Even though the improvements are desirable, the

formalism, even as written, is directly applicable to

large-scale photonic band-gap studies of deviation

from periodicity, as will be described in upcoming

simulations.
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Appendix

In the appendix, we show various extensions and other

options feasible. The extensions have either been re-

ported earlier or are slight variations of previous work,

and are presented only for completeness.

First, the propagation equation can be written

directly for (ψ, η) rather than (χ, η) yielding:
(

ψ(E)

η(E)

)

=
1

i(E −H′ + iΓ)

(

0

ηi

)

≡ GH′ (ω)

(

0

ηi

)

(52)
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where

H′ − iΓ =

(

H − iΓ iΓ

0 h0 − iΓφ

)

, (53)

associated with a time-dependent propagation of the

form:

i
d

dt

(

ψ

φ

)

=

(

H − iΓ iΓ

0 h0 − iΓφ

)(

ψ

φ

)

. (54)

Another alternative is to write the equations directly

using G(ω), i.e. without using the two-grid formalism.

ψ(ω) = φi(ω) +
1

ω −H + iΓ
(H −H0)φi(ω) , (55)

or equivalently:

ψ(ω) =
i

ω −H + iΓ
Γφi(ω) . (56)

This algorithm is simpler conceptually, since it in-

volves the inversion of the Hamiltonian matrix of a

single 3D grid over a small region; however, it requires

a different inversion for each energy so that one loses a

major advantage of wave-packet techniques the abil-

ity to extract results for many energies at once. It

is appropriate when preconditioning is used to reduce

the number of Hamiltonian evaluations.35
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