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ABSTRACT: We use Redfield’s relaxation theory in the Davies formulation to study
primary charge separation reactions in bacterial photosynthesis. The specific model
studied is the standard one (spin-boson), with three states for the system, harmonic
oscillators for the bath, and linear ohmic system–bath coupling. The Redfield–Davies
formulation, which is equivalent to the secular approximation, is Markovian, of
second order in system–bath coupling, and is written for the system’s density matrix.
The approximation does not suffer from any negative probabilities (which appear in
the original Redfield approach) and can therefore be used for long-time processes (20 ps or
more here). Our results are in line with previous studies, especially to high bath
frequencies. They confirm the usefulness of the Redfield–Davies secular approach as
a convenient and simple tool for studying system–bath processes. © 2002 Wiley
Periodicals, Inc. Int J Quantum Chem 87: 254–263, 2002
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1. Introduction

O ne of the most intensively studied electron
transfer (ET) reactions in biological systems

is the primary charge separation in bacterial re-
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action centers (RCs) (Rhodopseudomonas viridis) [1].
Much of the focus of the research has been on
ET from an excited primary donor, P∗—a pair of
strongly coupled bacteriochlorophylls—to bacterio-
pheophytin, HL, which takes about 3.5 ps (Rhodobac-
ter sphaeroides) [2, 3]. The center-to-center distance
between these chromophores is 17 Å. Due to the
exponential scaling of the coupling with the dis-
tance, direct ET over such a distance with such a
fast rate seems implausible. The transfer is facili-
tated instead by the presence of a monomer of the
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bacteriochlorophyll molecule, BL, located between
the chromophores. The center-to-center distances
from BL to P and HL are ∼13 and 11 Å, respectively.
The primary charge separation process in bacterial
photosynthesis is therefore a multilevel process in-
volving at least three states: the donor state, P∗BLHL;
the intermediate or bridge state, P+B−

L HL; and the
acceptor state, P+BLH−

L .
Two alternative mechanisms (“sequential” and

“superexchange”) have been suggested for the role
of BL in the primary charge separation: a two-step
sequential process

P∗BLHL → P+B−
L HL → P+BLH−

L (1)

in which the electron resides a finite time on
the monomer bacteriochlorophyll molecule, and a
single-step, superexchange mechanism

P∗BLHL → P+BLH−
L , (2)

where virtual orbitals of BL are used to transport the
electron.

There have been a number of theoretical studies
of this problem [4 – 9]. Electronic structure calcu-
lations [4] determined that the two lowest excited
states of P are exciton states split by approximately
1300 cm−1. Molecular dynamics simulations using
these electronic structure results produced bath re-
sponse functions in the linear response limit [5]. The
calculations supported the superexchange mecha-
nism.

Egger and Mak [6, 7] employed a Monte Carlo
path integrals method to study primary charge sep-
aration in RCs within the three-state spin-boson
model (i.e., within a model which assumes that the
electronic degrees of freedom can be represented
by the three states, while the thermal fluctuations
are described by a collection of harmonic oscilators
coupled to the electronic motion). Ohmic spectral
density was used for the bath, and the simulations
were carried out up to 2 ps. The authors suggested
a set of intrasystem electronic and system–protein
coupling parameters which would reproduce the
experimentally observed reaction rates.

In an alternative approach Makri and co-workers
have shown that for systems near the Markovian
limit, the path integrals for the spin-boson model
are reduced to a series of matrix multiplications
[10, 11]. They applied the method to the ET in pho-
tosynthetic RCs [8, 9]. A set of parameters have
been obtained, which facilitates a fast reaction rate.
It was concluded that the sequential mechanism
greatly promotes ET. Later electronic structure cal-

culations [12] of the RC chromophores produced
values in support of these dynamics calculations.

Both these approaches are in principle exact but
numerically intensive. It is therefore desirable to
examine approximate methods which scale gen-
tly with problem size and therefore are able to
handle larger systems. One such approach was re-
cently suggested by Friesner et al. [13], based on
the linearization of Makri’s matrix-transfer method.
Other approaches include semiclassical simula-
tions [14] and the secular approximation, equivalent
to Davies’ formulation of the Redfield theory. Here
we examine the latter and find that it gives quali-
tatively correct results in the high bath frequency
limit, in good agreement with the rigorous path
integral calculations. The temperature dependence
of the reaction rate from our calculations is the
same as those from the work of Makri and co-
workers [8, 9]. Long-time dynamics are also similar
to the path-integral simulations. However, some dif-
ferences emerge for short-time dynamics, and the
method fails for low-frequency baths.

The most widely used method for approximate
description of bath–system dynamics is the Redfield
theory [15 – 20]. This theory describes the system–
bath dynamics directly in terms of the system’s den-
sity matrix, using second-order perturbation theory
for propagating the system’s density matrix with
time. Originally the Redfield approach was de-
veloped for nuclear magnetic resonance [15, 16].
Recently it has been used in optical spectroscopy
as well. It was previously adopted to study as-
pects of ET processes in biological systems such
as DNA [17, 21] and RCs of photosynthetic bacte-
ria [22]. In these studies the quantum bath correla-
tion functions were replaced by classical correlation
functions. As is the normal practice, a thermal pref-
actor was added to ensure that the detailed balance
condition was satisfied. The work predicted the pos-
sibility of a long-range electron transfer in DNAs.
However, as was pointed out [18] the approach does
not reduce to Marcus theory in the proper limit.
Even more severely, the positive definiteness of the
density matrix is not conserved in the original Red-
field theory. This creates a problem in treating the
diagonal elements of the density matrix as popula-
tion numbers of the corresponding states.

In this article we report results of our study
on the primary charge separation in bacterial pho-
tosynthesis using the secular approximation, also
known as the Davies’ formulation of the Redfield
theory. Davies suggested a device which preserves
the positive-definite character of the system density
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matrix [23, 24]. It allows the use of quantum bath
correlation functions which account for the medium
reorganization energy and enables us to present
long-time dynamics of the reaction rate and its tem-
perature dependence.

The plan of the article is as follows. The next sec-
tion briefly describes the model Hamiltonian, the
Redfield formalism, and Davies’ device. Section 3
presents results and a discussion. Section 4 summa-
rizes and concludes.

2. Methodology

2.1. MODEL

The total Hamiltonian is a sum of system and
bath Hamiltonians and a system–bath interaction
potential

HT = HS + Hb + VSb. (3)

The Hamiltonian chosen is a three-state, of spin-
boson type [25], extensively used in studies of the
primary charge separation processes in bacterial
photosynthesis [6, 9]. The three-state system part is

HS =

 H11 H12 H13

H21 H22 H23

H31 H32 H33


 . (4)

The diagonal elements of the system Hamiltonian
correspond to the primary donor, P∗BLHL, bridge,
P+B−

L HL, and acceptor states, P+BLH−
L . In the calcu-

lations below H11 is set equal to zero. Nondiagonal
elements of HS arise due to electronic couplings:
H12 is the coupling between P∗BLHL and P+B−

L HL

and H23 is the coupling between P∗BLHL and
P+B−

L HL. Due to the large intermolecular distance
the electronic coupling of P∗BLHL and P+BLH−

L , H13,
has been set equal to zero.

The bath degrees of freedom are modeled as har-
monic oscillators:

Hb =
∑

α

p2
α

2mα

+ mαω
2
αx2

α

2
. (5)

The system–bath coupling is assumed to be a prod-
uct of system, S, and bath, B, functions and is linear
in bath displacements from their equilibrium:

VSb = S · B =

−1 0 0

0 0 0
0 0 1


 ·

∑
α

Cαxα, (6)

where Cα is the coupling constant of the system to
the αth mode of the bath. In forthcoming studies we

plan to consider additional effects such as inelastic
ET (nonzero nondiagonal elements in the system–
bath coupling matrix), multidimensional potential
energy surfaces and vibrational effects, and Hamil-
tonians beyond the Condon approximation (i.e.,
distance-dependent nondiagonal elements of the
system Hamiltonian).

The original system Hamiltonian, Eq. (4), is nona-
diabatic (nonzero nondiagonal elements). In the
next section we will mostly work in the interaction
representation, which is more easily presented with
the adiabatic system Hamiltonian, Hα

S :

Hα
S = A−1HSA (7)

where A is a unitary matrix consisting of eigen-
functions of HS. The system–bath coupling, Eq. (6),
is transformed similarly and becomes nondiagonal.
For simplicity, we drop the superscripts and work in
an adiabatic basis unless otherwise indicated. Note
here that the nondiagonal elements of the transfor-
mation matrix, A, are very small due to the large
energy separation and weak couplings in the sys-
tem. Therefore, the density matrices in the adiabatic
and diabatic representations do not differ signifi-
cantly.

In the case of linear system–bath coupling the
bath dynamics is completely characterized by the
bath spectral density, J(ω) [26],

J(ω) = π

2

∑
α

δ(ω − ωα)
C2

α

ωα

. (8)

In the simulation of the bacterial RCs an ohmic spec-
tral density is often used:

J(ω) = ηh̄ωπ

2
exp(−ω/ωc), (9)

where η is a Kondo factor and ωc is a cut-off fre-
quency. The value of η characterizes the system–
bath coupling strength, while ωc is the overall sys-
tem response frequency. The response function [26]
is defined by the spectral density via the relation-
ship

α(t) = 1
π

∫ ∞

0
dω J(ω)

(
coth

(
1
2

h̄ωβ

)
cos(ωt)

− i sin(ωt)
)

. (10)

In the calculations below we use an ohmic spectral
density with parameters that were obtained from
molecular dynamics simulations on RCs [5].

The values of η (= 1.67) and ωc (h̄ωc = 600 cm−1)
determined from the molecular simulation calcu-
lations [5] produce a reorganization energy, λr, of
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2000 cm−1 through the relationship

λr = 4
π

∫ ∞

0

J(ω)
ω

dω. (11)

The above formula for the reorganization energy
follows from the definition of the spectral density
and the form of the system–bath coupling operator.
The 2000 cm−1 energy is the energy gap between
donor and acceptor states in RCs of wild-type bac-
teria [27]. By choosing the reorganization energy
equal to the energy difference we have assumed
an activationless electron transfer from P∗BLHL to
P+BLH−

L .

2.2. REDFIELD THEORY

The Redfield formalism [15, 16] as it applies to ET
reactions has been discussed extensively in a recent
review [28]. Detailed analysis of the factorization of
the Redfield tensor into matrices dependent only on
bath and system variables are presented there. Here
we mostly follow van Kampen [29] for a brief re-
view of Redfield’s theory and Davies’ device. For
a detailed description of the secular approximation,
i.e., Davies’ approach to Markovian processes and
its mathematical foundations, refer to Refs. [23, 24].

The Redfield theory is of the second order of per-
turbation in system–bath coupling. The first step is
the quantum Liouville equation of motion for the
total density matrix of the system plus bath, ρT(t):

ρ̇T(t) = − i
h̄

[HT, ρT] ≡ LTρT, (12)

where LT is a superoperator in Liouville space. The
exact time evolution of the density matrix is given
in two equivalent forms:

ρT(t) = exp(tLT)ρT(0) ≡ exp
(

− i
h̄

tHT

)
ρT(0)

× exp
(

i
h̄

tHT

)
. (13)

The next step is to solve Eq. (12) perturbatively, and
in the second-order part of the perturbation to insert
the simplifying assumption that the density matrix
of the full system plus bath, ρT(t), factors out at all
times into system, σ (t), and bath, ρb(t), density ma-
trices:

ρT(t) = σ (t)ρb(0) ≡ σ (t)ρe
b. (14)

The bath density matrix is assumed to be time in-
dependent and in thermal equilibrium, ρe

b (basic
condition of irreversibility). This assumption is mo-
tivated by the fact that the bath is infinitely large

compared to the system and is not affected by it.
The condition implies that the system does not “re-
member” its past (Markovian process) or that bath
modes equilibrate much faster than system modes.

With this Markovian assumption, the Redfield
theory reduces the quantum Liouville equation for
the system plus bath density matrix into the quan-
tum master equation for the system density matrix
[29, 30]:

σ̇ (t) = (LS + K)σ (t), (15)

where LS is a system superoperator and the opera-
tor K is

K =
∫ ∞

0
dτ Trb

(
LILI(−τ )ρe

b

)
, (16)

where LI is a system–bath coupling superoperator
and LI(−τ ) is its interaction representation:

LI(−τ ) = exp
(
τ (LS +Lb)

)
LI exp

(−τ (LS +Lb)
)
, (17)

which can be rewritten after several steps as

σ̇ (t) = − i
h̄

[
HS, σ (t)

] − {[
S, S̃σ (t)

] + h.c.
}
, (18)

where S̃ is determined from

S̃ij = Sij

h̄2

∫ ∞

0
dτ exp(−iωijτ )α(τ ). (19)

Eq. (18) is derived by using the properties of the
superoperators Eqs. (12) and (13) and the system–
bath coupling Eq. (6). By using those equations one
writes out [28, 31] the Redfield equation in superop-
erator form:

σ̇ij(t) = −iωijσij(t) +
∑

kl

Kijklσkl(t), (20)

where the relaxation matrix elements, Kijkl, are de-
fined as

Kijkl = (ij|K|kl) = S̃ikSlj + S̃∗
jlSik

− δlj

∑
r

SirS̃rk − δik

∑
r

S̃∗
rlSrj. (21)

Kijkl are in general complex valued. As is seen from
Eq. (20), the imaginary parts of Kijkl are frequency
shifts in the system due to the coupling to the bath,
while the real parts are the relaxation constants. The
secular equation associated with the Redfield equa-
tion is singular of rank 3 [32]: in practice this means
that the trace of the density matrix is a conserved
quantity but the density matrix is not positive def-
inite. In the next section we will use the Redfield
equation in form of Eq. (20) to obtain Davies’ device.
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2.3. DAVIES’ DEVICE

As noted before [28, 29] and as we show below,
Redfield’s theory may lead to negative values for
the diagonal elements of the density matrix. This
property complicates treating the diagonal elements
as population numbers. It has been argued [33] that
the only Markovian approximation consistent with
the positivity of the dynamics is Davies’ theory
[23, 34], also sometimes called Davies’ device or the
secular approximation. In this approach the super-
operator K is replaced by its time average; i.e.,

K̄ = lim
T→∞

1
2T

∫ T

−T
dt1 exp(−t1LS)K exp(t1LS). (22)

The quantum master equation in Davies’ theory be-
comes

σ̇ (t) = (LS + K̄)σ (t). (23)

The time averaging of the superoperator K elim-
inates oscillating terms ∼exp(i(ωij + ωlk)t) in the
Redfield equation:

(ij|K̄|kl) = lim
T→∞

1
2T

∫ T

−T
dt1

(
ij
∣∣exp(−t1LS)K

× exp(t1LS)
∣∣kl

)
≡ δ(ωij + ωlk)Kijkl, (24)

where the last δ function should be interpreted as a
Kronecker delta. In application to our Hamiltonian,
Eq. (3), the Davies’ device produces the following
equation of motion for reduced density matrix:

σ̇ij(t) = − i
h̄

[
HS + H′, σ (t)

]
ij

+
∑

kl

δ(ωij + ωlk)(S̃ikSlj + SikS̃∗
jl)σkl(t)

−
∑

k

(Sik Re S̃ki + Skj Re S̃kj)σij(t), (25)

where

H′
ij = h̄

∑
r

Sir Im S̃ri. (26)

Eq. (25) has a simple interpretation: the coupling
terms under the

∑
kl and

∑
k are real because of the

delta symbol and the definition of S̃, Eq. (19). Thus,
the system relaxation is due to this term. All fre-
quency shifts in the system due to the coupling to
the bath are included in the H′ (imaginary) term.

Lindblad [35] derived a general form of the
equation of motion for the density matrix which
preserves its positivity. As is well known, Davies’
device is a specific example of this form [29]. To

show this we recast Eq. (25) in the following form:

σ̇ (t) = − i
h̄

[
HS + H′, σ (t)

] + 1

h̄2

∑
ω

Re
(
θ (ω)

)

× {[
Sωσ (t), S∗

ω

] + [
Sω, σ (t)S∗

ω

]}
, (27)

where

Sω =
∑

ωkl = ω

Skl|k〉〈l| (28)

and

θ (ωkl) =
∫ ∞

0
dτ exp(−iωklτ )α(τ ). (29)

Eq. (27) is of the form first established by Lindblad.
This type of equation conserves the positive-definite
character of the density matrix [35, 36]. The Lind-
blad equation may also be obtained by constructing
a general Schrödinger–Langevin equation for wave
function and estimating a density matrix at two
close times t and t + δt [29].

Davies’ device has a very simple form in a non-
harmonic system, as considered here. The frequency
spacings in this system are generally not equal (i.e.,
ω21 �= ω32, etc.). Thus, the delta function symbol in
Eq. (24) has a zero argument only in two cases. For
nondiagonal elements (i �= j), the argument would
vanish only if k = i and l = j, while for diagonal el-
ements (i = j), it is necessary that l = k. In short, the
only elements that are retained are of the form Kiikk

and Kijji. This is illustrated in the following equa-
tions of motion for σii(t),

σ̇ii(t) =
∑

k

Kiikkσkk(t)

≡
∑
k �= i

((
S̃ikSki + SikS̃∗

ik

)
σkk(t)

− (
Sik Re S̃ki + Ski Re S̃ki

)
σii(t)

)
, (30)

and for σij(t),

σ̇ij(t) = −iωijσij + Kijjiσij(t)

≡
(

−i(ωij + H′
ii − H′

jj) −
∑
k �= i

Sik Re S̃ki

−
∑
k �= j

Skj Re S̃kj

)
σij. (31)

Davies’ device essentially amounts to the “secular”
approximation [31]; i.e., the equations of motion for
the diagonal and nondiagonal density matrix ele-
ments are uncoupled. Therefore, the coefficients in
the equations of motion for diagonal elements can
be considered as reaction rates. Note however that
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in our application these equations refer to the adia-
batic representation.

Below we will mostly report results obtained by
using Davies’ device. For a comparison a figure
characteristic of Redfield theory results will be pre-
sented. For both of the approaches Chebyshev poly-
nomials [37, 38] have been used to propagate the
density matrix. Numerical issues related to propa-
gation of the Liouville equation have been recently
discussed in the literature [39, 40].

3. Results

At present not all of the parameters character-
izing ET in bacterial photosynthesis are known.
However, thanks to a large number of studies of this
process a set of parameters most efficient in promot-
ing ET has been emerging. We test our approach by
using these parameters. Besides confirming the pre-
vious conclusions our study also reveals some new
features. As was discussed above, we take the re-
organization energy equal to the energy difference
between donor and acceptor states, �G31 = H33 −
H11 = −2000 cm−1 [41], corresponding to activation-
less ET. Given the reorganization energy, the ohmic
spectral density is characterized by one parameter
only. It may be either the cut-off frequency at which
the spectral density is maximum or the system–bath
coupling coefficient. In dynamics simulations two
sets had been used for these parameters. In the first
of them the cut-off frequency was 166 cm−1 [6, 7]
and in the second 600 cm−1 [8, 9]. The first set ac-
counts for strong system–bath coupling and low
frequency modes of the bath. The second set ac-
counts for a wider range of frequencies while the
system–bath coupling is assumed to be small. We
will present results with both sets.

Another parameter is the energy difference be-
tween the bridge and acceptor states, �G21 =
H22 − H11. For wild-type bacteria �G21 is thought to
be in the range of −480±180 cm−1 [41]. These values
are inferred from analysis of magnetic data [42] for
P+BH− and time-resolved data for the RCs obtained
by site-directed mutagenesis [43]. In the calculations
below we use the values of �G21 in this range.

First we present the results obtained using recent
electronic structure calculations [12], which esti-
mated that H12 = 17 cm−1 and H23 = 122 cm−1 with
the spectral density cut-off of 600 cm−1. To obtain
an ET rate of about 3 ps we varied G21 and found
that �G21 = −450 cm−1 gives this rate. The data are
graphed in Figure 1. The results are obtained using

FIGURE 1. Population analysis of the ET reaction in
RCs using couplings from electronic structure
calculations [12], H12 = 17 cm−1 and H23 = 122 cm−1.
�G21 = −450 cm−1.

Davies’ device, Eq. (25). As it is seen from the fig-
ure the simulations predict correct overall behavior
of the reaction dynamics; i.e., the donor state decay
rate is ≈3 ps for �G21 in the above indicated in-
terval. Asymptotically the kinetics picture obtained
using quantum mechanical correlation functions is
also consistent with the classical results and satisfies
the detailed balance condition. However, the maxi-
mum of the bridge population reaches ≈25% of the
total population. This is larger than what has been
predicted in experiments (maximum less than 20%).

Figure 2 illustrates results obtained using cou-
pling terms of H12 = 22 cm−1 and H23 = 135 cm−1

from recent dynamics simulations [8] in which the
optimal value of �G21 was found to be −400 cm−1.
In this case too, the overall dynamics behavior is
consistent with the experimental results. However,
differences appear at short-time dynamics. Thus,
the population of the intermediate state, P+B−H,
reaches a maximum at ≈37% by 2 ps and has a
long-lasting tail. This dynamics behavior if present
in the experiments should have been observable.
However, as discussed above the signal from the B−,
when observed, is very weak. Therefore, according
to our simulations the values of electronic coupling
elements are slightly overestimated if �G21 is set
equal to −400 cm−1.
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FIGURE 2. Time evolution of the diagonal elements of
the density matrix from Davies’ theory with
H12 = 22 cm−1, H23 = 135 cm−1, and
�G21 = −400 cm−1 [9].

To predict dynamics behavior consistent with
experimental observations, i.e., population of the
bridge less than 20% of the total population, Davies’
device suggests smaller intrasystem coupling terms.
This is demonstrated in Figure 3 where the cou-
plings are 125 and 20 cm−1 for H12 and H23, re-
spectively. �G21 was found to be −550 cm−1. The
H12/H23 ratio predicted in this study is in accord
with the theoretical prediction of 6 ± 2 [44].

With an ohmic cut-off frequency of 600 cm−1 and
a free energy of �G31 = −2000 cm−1 for activa-
tionless electron transfer we can make the following
conclusions based on results from Davies’ device.
H12 most strongly affects the decay rate of the donor
state, σ11, and to a large extent the maximum of
the bridge population, σ22, and the overall reac-
tion rate as well. H23 mainly affects the population
growth rate of the acceptor state, σ33, the decay of
the bridge state, and to a lesser degree the maxi-
mum population on the bridge state. A change of
the acceptor–bridge gap (�G21) mainly affects the
bridge population: an increase of �G21 decreases the
maximum bridge population.

We show only one figure obtained by using Red-
field theory, Eq. (18). Figure 4 is typical of results
from this method. It should be compared with the
Figure 3 since all electronic structure and spectral

FIGURE 3. Density matrix time evolution with optimum
parameters of Davies’ device: H12 = 20 cm−1,
H23 = 125 cm−1, and �G21 = −550 cm−1.

density parameters are the same in both calcula-
tions. After a short propagation time the popula-
tion numbers become negative. Furthermore, when
quantum mechanical correlation functions of bath
modes are used, for asymptotic times the dynamics
does not agree with the classical asymptotes. The
breakdown of the density matrix positivity in the
original Redfield theory has been discussed before
in the literature [28, 45].

Egger and Mak calculated reaction rates with
a cut-off frequency of 166 cm−1 (η = 6.036) and
bridge energy, �G21, varying between −666 and
+666 cm−1. They fixed the H23/H12 ratio at 4. The
authors also varied the reorganization energy to
produce high values of the reaction rate. We are not
able to reproduce fast ET with Davies’ device for
reasonable values of electronic structure parameters
if the cut-off frequency is fixed at 166 cm−1. A char-
acteristic result is demonstrated in Figure 5 where
H12 = 38 cm−1 and �G21 = −600 cm−1. We point
out here that the apparant inability of Davies’ de-
vice to produce a fast ET rate is due, in this case, to
the low value of the cut-off frequency rather than
to the large system–bath coupling (i.e., the break-
down of the second-order approximation). This is
shown in Figure 6, in which we keep the Kondo fac-
tor, η, and the electronic couplings unchanged while
ωc = 300 cm−1 (λr = 3600 cm−1). The difficulty is
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FIGURE 4. Results from the Redfield theory, with
electronic structure and system–bath coupling elements
the same as in Figure 3.

that at a low cut-off frequency the bath relaxation
times are large and the Markovian approximation
becomes invalid.

The electron transfer rate in primary charge sepa-
ration of bacterial photosynthesis slightly increases
by lowering the temperature [43]. For different bac-
teria the reaction rate is increased 2–5 times in going
from room temperature to the cryogenic tempera-
tures. Most of the increase occurs up to 150 K. Re-
organization energies, free energies, and electronic
and system–bath couplings are all affected by tem-
perature. Experimental studies with mutated RCs
had suggested that variations in free energies do not
appear to increase the reaction rate sufficiently [43].
The observed acceleration of the ET was attributed
mainly to the increase in the electronic coupling
elements and/or a decrease in the reorganization
energy. It has been suggested [46] that the main
contributor to the rate increase is the contraction of
the reaction centers which may reduce the center-
to-center distances by up to 1 Å and thus increase
the electronic coupling terms by 2-fold. A rigorous
dynamics simulation should take account of these
effects. So for our model of activationless ET with
fixed electronic structure and system–bath coupling
elements the reaction dynamics should not exhibit
strong temperature dependence. This is what we

find in Figure 7 where we depict the transient state

FIGURE 5. Transient populations in ET reaction with
low cut-off frequency, ωc = 166 cm−1, and
H12 = 38 cm−1, H23/H12 = 4, and �G23 = −600 cm−1.

FIGURE 6. Results with the cut-off frequency of
300 cm−1. All other parameters are the same as
in Figure 5.
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FIGURE 7. Low temperature, T = 150 K, behavior of
the ET dynamics as obtained from Davies’ device. All
parameters are the same as in Figure 3.

population computed with the same parameters as
in Figure 3 but at 150 K. The absence of strong
temperature dependence of the reaction rate for the
parameters employed is in agreement with the pre-
vious dynamical simulations [8, 9].

The power of the secular approximation is its
gentle scaling with problem size. Once the system is
cast in terms of adiabatic system states, the method
scales formally as N2 where N is the number of
system states (due to the coupling of the i–k ele-
ments). In practice, if localized states are used, the
scaling can be made even gentler, closer to linear
in N. Thus, the secular approach can in principle
be applied to very large systems. The results pre-
sented here verify the utility of the approach and
its potential for larger systems. The only difficulty
in the secular approach is with low-frequency bath
motion, which can be handled by dividing the sys-
tem into a low-frequency part to which the system
responds adiabatically and a high-frequency part
which is handled by the secular approximation. This
and other partition strategies will be studied in fu-
ture publications.

4. Conclusions

We have implemented the secular approxima-
tion, i.e., Davies’ approach to Markovian dynamics

to study primary charge separation processes in
bacterial reaction centers. For a comparison, results
obtained from the traditional Redfield relaxation
theory are also presented. While Davies’ formula-
tion preserves the positive-definite nature of the
density matrix, the Redfield theory breaks it down.
Therefore Davies’ device is suggested to be a useful
tool to study charge separation process happening
in Markovian limit. The results agree well with the
previous theoretical calculations and experiments
where data are available. Long-time dynamics and
the time dependence of activationless KT in sim-
ulations confirm the results of recent studies. Dif-
ferences emerge in short-time dynamics, where we
predict a suitable set of electronic coupling parame-
ters to promote efficient ET.
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