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ABSTRACT: A solution of the combined Maxwell–Schrödinger equations for the
propagation of an ultraviolet (UV) pulse in a sample of model H2

+-like molecules (with
only two electronic states), shows a significant increase of the emission at 5–10 harmonics
for a thick-density (line integrated density of 50 a.u.−2) vs. a thin-density case. The
increase is more than two orders of magnitude larger than the expected factor (the ratio of
the squared densities) and is due to a “sharpening” effect whereby Rabi oscillations induce
a spatially rapidly varying electric field that has very sharp peaks. Equally important, the
molecular degree of freedom is shown to exert a strong influence on the emitted radiation
so that multiharmonic emission can be controlled by preparing molecules in specific initial
wavepackets. c© 2001 John Wiley & Sons, Inc. Int J Quantum Chem 81: 260–267, 2001
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Introduction

W hen a strong laser pulse impinges on a mole-
cule and causes electronic excitation, the

resulting highly oscillatory dipole moment leads to
emission of radiation at high frequencies. This phe-
nomenon is called multiharmonic generation (HG).
Typically, HG is studied theoretically for small sys-
tems in which the emission is a perturbation on the
driving laser radiation. Most often, a single atom or
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molecule is studied theoretically (for early work see
[1, 2]; for more recent work, see [3 – 7]), while experi-
ments are typically done on a gas of sparsely spaced
emitting molecules. The experiments and theoret-
ical studies have established that HG can be very
significant at high harmonics (extending beyond the
100th harmonic for He), due to strong scattering
of the electrons, driven by the electric field, with
the nuclear core. Another interesting effect found in
studies of molecules in a strong field is selective ion-
ization at a critical internuclear distance [8 – 11].

In this article we take the next step in HG stud-
ies, emission from an optically thick media. We ask
what would be the effects of a high density of mole-
cules on the HG spectrum. Specifically, when there
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is a sufficient density of molecules (an optically
thick medium) the emission from these molecules
is not a perturbation but becomes significant and
affects the driving radiation. Thus, it is necessary
to treat self-consistently the wave function of each
emitting molecule together with the driving field.

For consistent treatment, we solve the combined
Maxwell equation for the field and a Schrödinger
equation for the molecules; in brief, a Maxwell–
Schrödinger set of equations. If collisional deex-
citation or spontaneous emission is important, it
becomes necessary to represent the molecular de-
grees of freedom by a density matrix, and then the
Schrödinger–Maxwell equations are replaced by a
Maxwell–Bloch set. However, we consider here a
very short pulse such that incoherent processes are
negligible and the Maxwell–Schrödinger set is ap-
propriate.

We note that there are several experimental and
theoretical studies that are relevant for our prob-
lem. Recently, harmonic emission was studied from
clusters and showed increased efficiency for HG
emission. Another example is a recent study of a
sparse collection of atoms or two-level systems (see,
e.g., [12]) that has demonstrated a significant de-
pendence of the emerging signal amplitude on the
driving pulse width.

The Maxwell–Schrödinger equations are very
computationally intensive, since a separate wave
function needs to be included for each molecule
along the fields’ propagation axis. For this first
study, we therefore consider an ultrasimplified
model for coherent multiharmonic emission from
molecules in which the molecules are placed in a
small region of size a few hundred atomic units
(a fraction of a single wavelength of the driving
field). This region contains many molecules that
absorb and emit simultaneously. We use a model as-
sociated with the simplest molecules, H2

+, placing
them on a one-dimensional (z) axis. The molecules
are all aligned pointing along the x axis, so that
rotation is not included. Upcoming works would in-
clude the possibility of random rotation of emitting
molecules. The electric field propagates along the
z axis and its polarization is along the molecular (x)
axis. The most drastic simplification is that only two
electronic states are considered per molecule. Thus,
the model misses the effects of very high harmon-
ics emission, which are dictated by electron–core
scattering. However, the description at intermediate
harmonics (up to 10–20) is the most important as far
as the effects on the driving field, since emission is
generally stronger at lower harmonics. An upcom-

ing study [13] uses a better model for the electronic
wave function.

We have several goals here. First, we study the
effect of the emitting region’s size. We show that
increasing the size has dramatic effects on the HG
spectrum. If the increase was just due to superra-
diance, i.e., coherent emission of all molecules at
once based on the incoming field, we would have
expected that the emitted intensity would increase
quadratically with the number of molecules (as the
polarization field would increase linearly with the
number of coherently emitting molecules). How-
ever, the increase in HG with number of molecules
is found to be higher than quadratic at high fre-
quency. We show that it is due to an interesting
phenomenon whereby the total electric field gets
sharp cusps due to the interaction with the mole-
cules. These sharp cusps are due to the fact that the
polarization gets closely spaced peaks (spatial oscil-
lations) that are due to Rabi oscillations. Specifically,
at a given time molecules in different regions would
feel the effects of the field differently. For exam-
ple, there are regions with molecules that the pulse
has just hit while others that have been passed al-
ready by the pulse. The amount of Rabi oscillation
is different for the different molecules. Therefore,
the propagation gets a spatial dependence (due to
the spatial dependence of the Rabi oscillations). At
the very strong fields we consider the spatial de-
pendence of propagation leads to emission at short
wavelengths.

Next we examine what are the effects of vibra-
tionally exciting the molecular degree of freedom.
In a previous work [14] we have shown that the
harmonic emission profile for a single molecule de-
pends strongly on vibrational excitation. We have
further shown that the strong dependence of the
emission on the vibrational excitation implies that
for any desired spectral region, it is possible to
prepare the molecule in an initial wavepacket that
will lead to preferred emission in that range. In
this study we show that even for multiple-molecule
emission, there is a dependence of the emitted pro-
file on the vibrational excitation. Thus, the emission
profile could in principle be controlled by preparing
the molecules in a specific wavepacket before the
laser interacts with them.

The work is organized as follows. The next sec-
tion gives a more detailed formulation of the prob-
lem, the third section discusses the results, which is
followed by conclusions.
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Formulation and Methodology

In this study, the noninteracting H2
+-like model

molecules are situated linearly on the z axis. No
center of mass motion is allowed. Relative motion
(vibrational motion) is allowed only in the x direc-
tion (i.e., perpendicular to z). The wave function
of each molecule, situated at z, is formally then
9(r, x, z, t), where r is the electronic coordinate and x
is the vibrational coordinate. This wave function is
controlled by the Schrödinger Hamiltonian:

ih̄
∂9(r, x, z, t)

∂t
= H9(r, x, z, t). (1)

The Hamiltonian is

H = − h̄2

2M
∂2

∂x2 +Hel(r; x)− eE · rx, (2)

where M is the reduced mass of H2
+ and Hel is an

electronic Hamiltonian that contains all the interac-
tion potential terms (Hel has no explicit dependence
on z). The last term is the laser molecule interaction
(rx is the x component of r, and E is parallel to the x
axis). The most important feature of (2) is that there
is no kinetic term in z, so that the wave functions for
each z are not mixed.

In the two-electronic state approximation, the
wave function is

9(r, x, z, t) =
2∑

i= 1

κi(r; x)ψi(x, z, t), (3)

where κi is the ith electronic state of the molecule,
and it fulfills

Helκi(r; x) = Vi(x)κi(r; x), (4)

where Vi are the Born–Oppenheimer potentials for
this problem. The two-electronic state approxima-
tion, while crude at the intensities considered (up to
1017 W/cm2), is motivated, as mentioned above, by
our desire to concentrate on the molecular degree
of freedom. (A description of very high harmon-
ics would necessitate a more proper description of
the electronic wave function and its motion near the
core.) The two-electronic-state analysis should be
sufficient to obtain generic features for other types
of systems for which two electronic states are dom-
inant, as well as lower intensity situations, in spite
of the omission of the ionizing component and the
core–electron scattering. More quantitative studies
using a larger electron basis would be pursued in
future calculations, but the features found in this
study (electric field and polarization field cusps,

FIGURE 1. Static potential curves for H2
+ (ground

and excited, in a.u.) and the linearly rising dipole
moment (multiplied by 0.07), as a function of the
distance between the atoms.

Rabi oscillation effects, and dependence on vibra-
tional states) should be generic.

Substituting Eqs. (3) and (4) in Eqs. (1) and (2),
we eventually get the final set of Schrödinger equa-
tions:

ih̄
∂ψj(x, z, t)

∂t
= − h̄2

2M
∂2ψj(x, z, t)

∂x2 + Vj(x)ψj(x, z, t)

−
2∑

i= 1

µj,i(x)E(z, t)ψi(x, z, t), (5)

where µij is dipole moment

µji(x) = 〈κj(r; x)
∣∣erx

∣∣κi(r; x)
〉
. (6)

Figure 1 shows the ground ( j = 1) and first excited
( j = 2) potentials for H2

+, which are bound and
repulsive, respectively, as well as the off-diagonal
dipole coupling, which rises linearly with distance.

In addition to the Schrödinger equation, we need
to consider the Maxwell equations for the laser
field. One simplification is that we consider only
the polarization contributions and ignore the cur-
rent density (i.e., the magnetic dipole moment). The
Maxwell equations are then given below:

1
c
∂D
∂t
= ∂B
∂z

, (7)
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1
c
∂B
∂t
= ∂E
∂z

, (8)

where B is the magnetic field, the displacement vec-
tor is D = E+ 4πP, while the polarization is

P(z, t) = ρ(z)
∫
ψ∗1 (x, z, t)µ1,2(x)ψ2(x, z, t) dx+ c.c.

(9)

The Schrödinger and Maxwell equations are con-
nected here through P and E. P is defined in terms
of the molecular wavepacket but appears in the
Maxwell equations, and E also appears in both
equations.

The final set of equations is then Eqs. (5), (7),
and (8). Together, these equations are of an initial
value form, so that from the values of the wave func-
tion and electric field at t = 0 we can find the values
at any later time.

Numerically, the Maxwell–Schrödinger equa-
tions, Eqs. (5), (7), and (8), are solved by a very sim-
ple fifth-order Runge–Kutta algorithm. The method
is straightforward. We discretize a long grid con-
taining Nz points for E(z, t) and B(z, t),

z = z0 + j ∗ dz, j = 0, . . . , Nz.

The molecular wave function ψj(x, z, t) is repre-
sented on a two-dimensional x–z grid (see Fig. 2):

z = z0 + j ∗ dz, j = js, . . . , js + Lz, (10)
x = x0 + i ∗ dx, i = 0, . . . , Nx, (11)

where js and Lz are the starting point and the num-
ber of grid points in the z direction for the wave
function part. Lz is much smaller than Nz, since we
assume that the molecules are placed on a small
(subwavelength) region.

FIGURE 2. Schematic representation of the grids
employed a long one-dimensional grid for E(z, t) and
a small two-dimensional grid for ψj(x, z, t).

The main ingredient fed into the Runge–Kutta
propagation is a routine into which we input the
instantaneous values of E(z, t) and B(z, t) along the
long grid and the values of ψj(x, z, t) and which out-
puts the values of ∂E/∂t, ∂B/∂t, and ∂9/∂t. The cal-
culation of the time derivatives is straightforward. It
necessitates the spatial derivatives of B and E, which
are calculated by a simple five-point formula, and in
Eq. (5) the spatial derivatives in x are calculated by
an DVR-FT-based formulas [15]. We tested different
methods for calculating the derivatives and settled
on this combination for improved efficiency.

Results

DENSITY DEPENDENCE

Our first goal was investigating the dependence
on the emitted radiation on the density and total
number of emitting molecules. For this purpose we
used a Gaussian density profiles. Two profiles were
used; a thick and a thin density (although even the
“thick” density extends over a less than a funda-
mental’s wavelength). The thick density was

ρ(z) = ρmax exp
[−(z− z0)2/2a2], (12)

where ρmax = 0.1 (a.u.)−3, z0 = 18, 750 a.u., and
a = 200 a.u. The thin density was

ρ(z) = ρmaxe−(z−z0)2/2a2
, (13)

where ρmax = 0.18 (a.u.)−3 and a = 7 a.u. The line
integral of this density is significantly smaller than
that of ρ(z): ∫

ρ(z) dz = 1 (a.u.)−2,∫
ρ(z) dz = 49.5 (a.u.)−2. (14)

The reason for using an artificially smooth Gaussian
density (rather than using, e.g., a slab density) was
to ensure that our final results are due to genuine
strong-field effects and not due to reflection from
any edges of a slab.

An Nz × dz = 8000 × 10 a.u. grid was em-
ployed for the electric and magnetic fields, with
fewer points in z (Lz = 250) for representing the
molecular wavepacket. For x, an 121× 0.11 a.u. grid
was used.

The initial field profile was a wide-frequency
(narrow spatial extent) Gaussian-like ultraviolet
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(UV) pulse of duration ≈3 fs:

E(z, t = 0) = E0e−z2/2σ 2
[
−w0

c
cos

(
w0

c
z
)

− sin
(

w0

c
z
)

zw0

σ 2

]
, (15)

where σ = 1440 a.u. The maximum intensity was
at h̄ω0 = 0.43 a.u., i.e., a wavelength λ0 = 2000 a.u.
This field is very wide in spectral content and ap-
proximately resonant with the Franck–Condon tran-
sition frequency. A strong field was employed, with
the E0 coefficient adjusted so that the maximum
amplitude was 1 a.u., i.e., a maximum intensity of
1.4 × 1017 W/cm2. The pulse is thus extremely in-
tense and causes significant excitation to the excited
state (i.e., it has a large “area”). For real molecules (if
the two-state approximation is not used) this field
would cause much ionization.

We first examine the emission in the thick-density
case. Figure 3 shows the electric field (solid line)
at different times. Initially the electric pulse is just
entering the molecular interaction region. Then the
pulse is inside the region and is modified, and
finally the pulse is just leaving the region. The in-
coming pulse is smooth but the outgoing pulse has

FIGURE 3. Electric field and polarization at different
times. At t = 1.2 fs the laser pulse is just approaching the
molecular interaction region, at t = 1.6 fs the pulse is
inside the interaction region, and at t = 1.9 fs the major
part of the pulse has left the interaction region.

sharp cusps. We have checked that the cusps are real
and are not spurious effects of the discreteness of the
grid, i.e., our simulations are converged even in the
presence of the sharp cusps. (The simulations were
repeated with the original grid spacing, 10 a.u., and
with a finer grid spacing, 3.333 a.u., yielding iden-
tical results.) Figure 3 also shows the polarization
(dotted line) at different times. The polarization is
discussed below.

Figure 4 shows the energy density of the emer-
gent electric and magnetic fields, defined here as
(|E(ω)|2 + |B(ω)|2)/8π , where E(ω) is the spectral
component of the emergent electric field as mea-
sured at large (positive) values of z. (Approximately
a quarter of the pulse energy reflects back toward
the negative z region, but the reflected part has
very few multiharmonic components.) It is clear

FIGURE 4. Energy density of the emitted electric and
magnetic fields, (|E(ω)|2 + |B(ω)|2)/8π , calculated at
large z where the particle density is already vanishing.
Shown are the emergent spectra for the thick- and
thin-density cases, as well as the initial field profile. The
≈103–104 ratio in harmonic generation efficiency at
frequencies up to 2 a.u. is due to the N2 coherent
emission factor (2500 here), while at higher frequencies
(2–4 a.u.) the ratio between the emission intensities
becomes larger than 105. On the same graph we also
have power spectra of one molecule calculated directly
from time-dependent polarization.

264 VOL. 81, NO. 4



DENSE SAMPLE OF MOLECULES

that much of the pulse energy was converted to
emission at higher frequencies.

We now turn to a comparison between the thick
and thin density cases. As Figure 4 shows, the emis-
sion for the thin density is significantly lower in
magnitude. (We verified that the exact details of
the thin density are not important, only the line in-
tegral, provided the width a is sufficiently small.)
Equally important, the emission spectrum falls off
much more rapidly in the thin-density case than in
the thick-density case.

The reasons for the different emission profiles for
the two densities are twofold. The obvious reason
is the increase in the number of emitting molecules,
which increases the polarization by N2, where N is
the ratio in effective number contributing, i.e., the
ratio of the integrated densities. Here N2 is approxi-
mately 2500, which gives the order of magnitude of
the ratio of intensities up to frequencies of ≈2 a.u.
(see Fig. 5). However, beyond 2 a.u. the emission in
the thin-density case falls off more rapidly with fre-
quency, while the emission in the thick-density case

FIGURE 5. Ratio of the envelope of the emission
intensities for thick and thin densities as a function of
frequency. At 2–4 a.u. the initial N2 ('2500)
superradiance emission mechanism is dominant, while
at later frequencies the ratio grows due to the cusps
that lead to long tails in the frequency-dependent
emission profile.

falls off only slowly. The typical ratio between the
emission amplitudes becomes 105 or larger (Fig. 5).

The intense emission profile for the thick density
is related to the sharp peaks in the emitted elec-
tric field [E(t)]. In the high-density case shown in
Figure 3 and in more detail in Figure 6, the evolu-
tion and origin of the cusps is quite interesting. The
main clue to the specifics of the cusp emission is the
polarization at short time (Figs. 3 and 6). This po-
larization has a shorter wavelength than the electric
field. As mentioned, the spatial oscillations of the
polarization at short times are not due directly to
the frequency of the field, but are Rabi oscillations.
To see that, we show in Figure 6 the population, as
a function of position, which clearly shows the Rabi
oscillations in the polarization and the population.

For very high frequencies (above 4 a.u., i.e., above
the 10th harmonic), the ratio between the emis-
sion for the thick and thin densities should start
decreasing, eventually becoming of order N (inco-
herent emission) or less, since the high-frequency

FIGURE 6. Effects of Rabi oscillations on the electric
field at different times. (Note the similarity to Fig. 3 but
the different length scale, covering only the region with
the molecules.) The population at short times exhibit
spatial Rabi oscillations, which involve similar
oscillations in the polarization. These then cause
(second panel) oscillation in the electric field.
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harmonics have wavelengths that are comparable
to or smaller than the size of the emitting region.
However, the energy density is so small for high fre-
quencies that we cannot trust the numerical results
and have therefore not plotted results with energy
density below 10−8 a.u.

Emission from a Single Molecule

To check the consistency of the calculation, we
compared the thin-density case with the emission
spectrum from one molecule. The emission spec-
trum is calculated from

I(ω) ∝ ω4
∣∣∣∣∫ ∞

0
eiωtP(t) dt

∣∣∣∣2, (16)

where the polarization is calculated here by solv-
ing Schrödinger’s equation for the wave function
subject to the original electric field. The polarization
is directly used to calculate the emission spectrum.
The emitted intensity [I(ω)] does not contain the
contribution of the original pulse to the radiation in-
tensity, which is contained automatically in the cal-
culation of the transmitted intensity in the Maxwell–
Schrödinger equation. Therefore, at low frequencies
the thin-density and single-molecule curves do not
overlap; however, at higher frequencies where the
spectral content of E0(ω) is small, the thin-density
and single-molecule spectra agree completely.

Effects of Vibrational Excitation

Next we examine (for the thick-density case) the
role of the molecular degree of freedom, the H–H
distance (x). Specifically, we study the effects of
vibrationally exciting the molecules or alternately
fixing them (fixing x by setting the molecular mass
to be M = ∞). As shown in Figure 7, the simula-
tions give qualitatively similar results. However, the
peak positions and heights are very different, and
the order varies with the vibrational state. (Qual-
itatively, the system samples a large number of
Floquet states, associated with different frequen-
cies, and the coefficients associated with the Floquet
states vary depending on the initial molecular state.)
Physically, the effective potential energy difference
(excited-ground) sampled by the first vibrational
eigenstate has a big spread, especially stretching
toward larger x, i.e., lower values of the energy dif-
ference. This can explain why there is depletion of
the low-frequency field for the first vibrationally ex-
cited state as it is converted to higher frequencies.

FIGURE 7. Spectrum of the emergent electric fields,
for ground and excited initial H2

+ vibrations and for a
rigid molecule (obtained by setting M = ∞).

The results of Figure 7 show that, in principle,
one can envision the following approach [14, 16]
toward controlling the spectra of emitted multi-
harmonic radiation: first letting a long-time well-
defined laser pulse impinge on a sample caus-
ing large-scale vibrational excitation, which in turn
causes a specific multiharmonic emission profile
when the strong pulse is turned on. (For other ap-
proaches for controlling emission using a mixture
of strong and weak lasers see, e.g., [4]; for the use
of a prebuilt molecular symmetry to build specific
emission at the specified harmonics see [17].)

Wavepacket Evolution

Finally, Figure 8 shows the evolution of the wave
function, for the thick-density case and with all
molecules initially in a vibrationally excited state.
Specifically, the figure shows |92| on the ground
and upper electronic states, for a diatom placed at
z = z0. The most notable feature is that there are
times where a very large portion of the wave func-
tion is on the repulsive state, but eventually most
of it returns to the ground state so that most mole-
cules have not been dissociated. This is a general
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FIGURE 8. Evolution of the wavepacket density
|ψj(x, z, t)|2 for the maximum density point (z = z0). The
solid and dashed lines denote the population on the
ground and excited electronic surfaces. The initial
wavepacket is on the first excited vibrational state. Note
the Rabi oscillation at t = 1.2 fs.

feature (found also when the molecules are initially
in the ground vibrational state) and is due to the
steepness of the excited-state potential, which leads
to destructive interference of the components on
the excited state. In addition, even at long times
the wave functions on the upper and ground states
overlap; however, the resulting dipole is too weak to
cause significant modification of the emission spec-
trum, so that by t = 7.2 fs the fields’ spectra are set.

Conclusions

In conclusion, with a slab of molecules less than
a micron in thickness, it is predicted that multihar-
monic emission will be very powerful, both due to
coherent multiparticle emission as well as the pres-
ence of sharp features in the electric field caused
by Rabi oscillations in the propagation. The multi-
harmonic emission could be in principal controlled
by changing the initial molecule profile or even by
making an appropriate initial coherent wavepacket
combination [16] of different vibrations [14], as will
be examined in future studies. Other future goals
are the inclusion of higher lying electronic states
(for better treatment of higher harmonics and ion-
ization) for the molecular problem. Since this work

does not treat core–electron scattering, which is re-
sponsible for the long tail of the multiharmonic
generation, it cannot be directly applicable to pre-
dict a large magnitude of multiharmonic emission
in strong fields, but the effects found (cusps, in-
creased tail, and dependence on vibrational state)
should be relevant in general.
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