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Abstract

We determine semi-classically the eigenvalues of a He±benzene model where the benzene is held ®xed in space (and

non-rotating). The results are analyzed with an e�cient approach toward extracting the eigenvalues from a short-time

(set) of correlation functions: cross-correlation ®lter-diagonalization. The use of this analysis tool allows quite accurate

determination of the eigenvalues, when compared to exact eigenvalues. One of the reasons that the eigenvalues are so

accurate is that the cross-correlation ®lter-diagonalization approach allows the use of very short times, for which semi-

classical is very accurate. Ó 2000 Elsevier Science B.V.

1. Introduction

The problem of extracting excited vibrational
states for ¯oppy van der Waals (vdW) systems is
fundamental for our understanding of cluster dy-
namics and of potential-surfaces. Existing ap-
proaches for extracting rovibrational information
for clusters include exact grid based methods [1±8];
vibrational con®guration-interaction and mean-
®eld methods and their hybrids [9±11]; and varia-
tional Monte-Carlo methods [12±14]. For large
systems it is desirable to have, however, comple-
mentary methods which scale gently with system
size and are accurate. In this work, we focus on the
use of semi-classical dynamics [15±22] for a non-
trivial system at low excitations, where the overall
phase-space sampled is not too large, so that
convergence of the technique could be achieved

using both semi-classical and standard exact
techniques, allowing comparison.

There are two issues relevant to semi-classical
techniques: how accurate these techniques are, and
how much numerical e�ort (trajectories) is re-
quired. Typically the numerical e�ort in semi-
classical methods increases with propagation (sig-
nal) time. Therefore, a simple approach to reduce
the e�ort is to apply methods that extract the nu-
merical e�ort from a short-time sample of the
correlation function. One such method is ®lter-
diagonalization [4,5,23±30].

Filter-diagonalization has been applied to many
systems, including semi-classical systems. The
original applications to semi-classical extraction of
eigenvalues were done with the original single-
correlation function formalism (see e.g. Refs.
[24,31]). In this work, we present the application of
a very e�cient (as far as signal time-length) mod-
i®cation, cross-correlation ®lter-diagonalization.
This approach, introduced several years ago [26],
has been previously applied to extract resonance
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and bound eigenvalues from a signal generated
exactly [25] and from a semi-classically generated
correlation function for a tunneling splitting [28].
In this work, we study its performance systemati-
cally for a challenging vdW system, He±benzene
(for rigid in®nitely heavy benzene), and verify the
surprising overall accuracy of the results.

The plan of the letter is as follows. In Section 2
we brie¯y review the methodology. Section 3
shows the results and Section 4 concludes with
future outlooks.

2. Methodology

There are two separate parts to the simulation:
the generation of a cross-correlation function
semi-classically, and the analysis of this cross-
correlation to extract bound-state eigenvalues.

2.1. Semi-classical dynamics

The starting time-dependent cross-correlation
function is ��h � 1�
Dii0 �t� � Ui exp�jh ÿ iHt�jUi0 i; �2:1�
where i; i0 � 1; . . . ; Iprimitive, and Iprimitive is the
number of cross-correlation `primitive' (meaning
purely Gaussian) functions. In this work we use up
to Iprimitive � 30 Gaussian basis-functions, and then
symmetrize the cross-correlation functions as ex-
plained below. The cross-correlation function is
calculated with a standard semi-classical algo-
rithm, the Herman±Kluk approach [15,17,18],

Dii0 �t� �
Z Z

dq0 dp0 Uih jgqf �t�pf �t�
�
F

��q�t�; p�t�; q0; p0�
� exp�iS� gq0p0


 ��Ui0
�
; �2:2�

where one chooses by a Monte-Carlo algorithm
the initial momentum and average position of
the starting Gaussian �gq0p0

� for the evaluation
of the wavefunction, and the classical trajectory
�q�t�; p�t�� is de®ned by its initial position and
momentum. S is the action associated with the
trajectory, and F is a method-dependent amplitude
function. In our calculation we made a simple

modi®cation to the usual form of F to account for
the fact that the frequencies associated with in-
plane and out-of-plane motions are very di�erent
for the He±benzene IPS employed (the frequen-
cies determined from the force-constant matrix
at the minimum potential point are xx � xy �
19:351 cmÿ1 vs. xz � 60:125 cmÿ1 for in-plane and
out-of-plane motions, respectively). This implies
that in the development of the Herman±Kluk
semi-classical formalism, ellipsoidal (non-isotro-
pic) Gaussians should be used for optimal per-
formance, with di�erent widths associated with
di�erent axes. The ®nal formula can be straight-
forwardly shown to be simply:

F �
������������������������������������������������������������������������������
det

oq�t�
oq0

� op�t�
op0

� i
op�t�
oq0

ÿ i
oq�t�
op0

� �s

� 1

2p

� �Nd

; �2:3�

where Nd is the number of dimensions and we in-
troduce the scaled coordinates,

qa�t� �
qa�t�
ra

;

pa�t� � rapa�t�;
�2:4�

and the widths are simply

ra � 1����������
Mxa
p ; a � x; y; z �2:5�

where M is the helium mass.

2.2. Symmetrization

The next stage is the proper symmetrization of
the correlation function, since the molecule has
symmetry (here C6h, although we do not take into
account the inversion symmetry since the splittings
it introduced are too small). This is done as fol-
lows. Each of the initial primitive functions Ui is
taken to be a Gaussian concentrated at an initial
3-D position ~ri. (The momentum of these initial
Gaussians is taken as zero more general choices
would be pursued in the future.) We place the
Gaussians in rings, each containing six Gaussians,
which are related by a C6 operation, and relabel
the overall basis-function index i as j; k. The
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functions are now written as Ujk, where
k � 1; . . . ; 6 is the index of the function within the
ring and j � 1; . . . ; J is the ring index (where J is
the number of rings). We then formally write the
properly symmetrized combinations for any sym-
metry (the symmetry label is assumed implicitly
but not denoted in the formulae below) as

Wjn �
X

k

TknUjk; �2:6�

where n is either 1 (for a one-dimensional repre-
sentation) or 1, 2 (for a two-dimensional repre-
sentation). The ®nal correlation function is then

Cjn;j0n0 �t� �
X
k;k0

Ukn;k0n0Djk;j0k0 ; �2:7�

where from the previous discussion it is clear that
the simplest choice for the coe�cient matrix is
Ukn;k0n0 � TknTk0n0 . However, better statistics is ob-
tained if we use the symmetry property of the
correlation function,

Djk;j0k0 � Djmod�k�m;6�;j0mod�k0�m;6�; �2:8�
where m � 0; . . . ; 5. This leads to the ®nal expres-
sion

Ukn;k0n0 �
X

m

Tmod�k�m;6�nTmod�k0�m0;6�n0 : �2:9�

2.3. Signal extraction ± ®lter diagonalization

Once C�t� is available, the next step is seemingly
trivial: Fourier-transform C�t� and then extract the
vibrational frequencies from the peaks. As men-
tioned, however, a di�culty in any semi-classical
calculation is that it tends to numerically break
down at long times as the phases from di�erent
trajectories interfere destructively. To reduce this
problem, increasingly sophisticated amplitude
functions �F � have been invented. Nevertheless, at
some point in time these start increasing in mag-
nitude and thus also tend to destroy the numerical
convergence of C�t�.

To avoid these problems we use here ®lter-di-
agonalization, an approach toward extracting
frequencies from either a quantum correlation
function or a general signal. The method has been
presented in many publications so we only present
its most relevant points. In this method we ®rst

choose a set of a few �L� energies in the spectral
region of interest, El; l � 1; . . . ; L, and Fourier-
transform each initial wavefunction jWjn�t�i for a
short time T at each of these energies,

wjn;l �
X

t

exp�iElt�Wjn�t�; �2:10�

where we used the elegant discrete-transform ap-
proach of Ref. [27] rather than the original con-
tinuous-transform approach [26]. (The size of this
jwjn;li set is M � JL or M � 2JL, i.e., the number of
rings times the number of sampled energies, times
2 for a 2-D irreducible representation.) The re-
sulting functions are approximate eigenstates of H.
More precisely, each of these functions contains
essentially only contributions from the spectral
range of interest. If the total number of these
functions, M , is su�ciently large, the jwjn;li will
thus become a basis which spans the eigenstates in
the spectral range of interest. Therefore, the ei-
genvalues of H in the spectral range of interest,
labeled e, can be extracted by diagonalizing H in
this (non-orthogonal) energy-selective basis
through the solution of the (small) M �M equa-
tion:

uB � SBe; �2:11�
where, in the notation used above,

ujnl;j0n0l0 � wjnl

D ��� exp�ÿiH dt� wj0n0l0

��� E
sjnl;j0n0l0 � wjnl

D ���wj0n0l0

E
;

�2:12�

where B is the eigenvector coe�cient matrix. A key
realization was that the u; s matrices can be written
directly in terms of the correlation function, C�t�,
and, further, the formulae are quite elegant if one
uses a discrete Fourier transform, e.g.,

sjnl;j0n0l0 �
X

tt0
exp�ÿiElt � iEl0 t0�Cjn;j0n0 �t ÿ t0�:

�2:13�
The ®nal formulae are natural extensions of the
Fourier method, and enjoy its power while re-
quiring shorter signal lengths.

While even the single correlation function (a
single j; n) version of ®lter-diagonalization requires
less signal time than a Fourier-transform ± as do
other methods, such as MUSIC, linear-prediction,
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maximum-entropy, etc. (for a review see Ref. [32]) ±
the use of a cross-correlation function makes
®lter-diagonalization quite powerful, as shown
below, as it facilitates the separation of even
closely spaced eigenvalues at short times.

3. Results

To examine the use of cross-correlation func-
tions, we studied a sample vdW problem, the ei-
genvalues of the three-dimensional He±benzene
system (with the benzene held ®xed). This problem
is amenable to exact investigation, while also being
a challenge for semi-classical methods owing to the
large anharmonicities in the potential surface (the
ground to ®rst excited-state level spacing, 11.1
wavenumbers, is smaller by a factor of almost two
than the smallest in-plane frequency as obtained
from the force-constant matrix).

The Hamiltonian used here has a simple three-
dimensional vdW pair-potential for the He, inter-
acting with each of the atoms in benzene [33]:

H � p2

2M
�
X6

i�1

vHeC�rÿ rCi� �
X6

i�1

vHeH�rÿ rHi�;

�3:1�
with

vHeC�r� � 4eHeC

rHeC

r

� �12
�

ÿ rHeC

r

� �6
�
; �3:2�

and vHeH similarly de®ned. The parameters for the
Lennard±Jones functions are recorded in Table 1.

The exact simulations were done using standard
grid techniques: a single random-valued wave-
packet was propagated in time [34] and the
correlation function was analyzed by ®lter-diago-
nalization [4,26,27]. We checked convergence with
grid parameters.

Turning to the semi-classical simulations, Fig. 1
shows schematically the location of some of the
initial Gaussians. Table 2 records the values of the
initial location of the Gaussian functions and
other parameters used in the simulations. Up to
®ve rings were used; for most symmetries, all rings
can participate, but for the B1 symmetry only rings
with Gaussians that are at the same angles as the

carbons can be used (rings 1±3) while for the B2

symmetry only the staggered rings (4±5) can be
used. Since L � 2±7 sampled energies were used,

Table 1

Parameters used in the simulations (see also Table 2 for

Gaussian placement)a

Time-step �dt� 10.618 fs

�� 0:002=cmÿ1�
He mass �M� 0.12 �cmÿ1�A

2�ÿ1

rHeC 3.099 �A

eHeC 13.92 cmÿ1

rHeH 2.903 �A

eHeH 5.761 cmÿ1

Minimum potential ÿ100:317 cmÿ1

Location of minimum potential �0; 0; 3:148� �A

Position of ®rst C (in benzene) �1:40; 0; 0� �A

Position of ®rst H (in benzene) �2:48; 0; 0� �A

Number of sampled energies �L� 2±7

a Note that cmÿ1 refers here to an energy unit, wavenumbers.

Fig. 1. Planar schematics of the position of each initial

Gaussian in one ring, relative to the benzene atoms. Note that

the plane of the initial Gaussian wavepackets is set above the

benzene plane by z � 3:148 �A.

Table 2

Locations of the initial Gaussiansa

�2:75; 0; 3:148� �A

�1:75; 0; 3:148� �A

�0:75; 0; 3:148� �A
�2:38; 1:375; 3:148� �A

�1:52; 0:875; 3:148� �A

a Each entry is the ®rst member of a ring of six Gaussians, re-

lated one to each other by a C6 symmetry. Rings 1±3 were

aligned with the C±H angular positions, and rings 4±5 were

staggered (see also Fig. 1).
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the size �M� of the matrices in Eq. (3.3) was, for all
eigenvalues except those of the B representation,
up to 2JL � 2� 5� �2±7�.

The semi-classical calculation, Eq. (3.4), neces-
sitates the propagation of classical trajectories. We
used a fourth-order Runge±Kutta ®xed time-step
algorithm.

Fig. 2 shows the dependence of the results on
the number of cross-correlation functions for a
single probed eigenvalue (the ®rst excited state of
the one-dimensional irreducible representation, A1)
and a small number of trajectories (500). Results
are compared for a calculation using one ring and
with ®ve rings (i.e., for a 1� 1 and a 5� 5 time-
dependent symmetrized correlation function). The
use of multiple correlation functions, even for a
small number of trajectories, reduces the total time
necessary.

Table 3 shows the converged results from a
larger number of trajectories (500±10 000) in
comparison to the exact values. The values are
quite accurate. This is both a result of the intrinsic
properties of semi-classical propagation, and also
a result of the short time used (since the Herman±
Kluk approach, like other semi-classical methods,
is exact at short times).

Overall, the results are quite accurate, within
about half a wavenumber. There are several pa-
rameters in the calculation, most notably the total
signal-length used. However, in practice it is easy

to choose this and other parameters by stability of
the results. In addition, we ®nd that another pa-
rameter, the imaginary part of each eigenvalue
(which vanishes rigorously and exists only due to
numerical imprecision in calculating the correla-
tion function by a Monte-Carlo algorithm) tends
to vanish at precisely the times when the real
part of the eigenvalue is most stable. These two
criteria lead to precise determination of the
eigenvalues.

4. Discussion

The high quality of the results examined here
and in previous studies show that ¯oppy vdW
systems can be examined with semi-classical
methods. As shown here, the results are quite ac-
curate when the signal is both symmetrized and
used with a cross-correlation ®lter-diagonalization
algorithm.

In this study, the number of degrees of freedom
was limited to a small number (three), so that the
results could be compared to grid studies. Future
applications of cross-correlation ®lter-diagonal-
ization to this problem would examine the de-
pendence of the eigenvalues on the benzene
vibrational degrees of freedom, and on vibrational
excitation. The next, and non-trivial step, would
be the incorporation of the rotational motion.

There are several other methodological ad-
vances which can be envisioned. One would be the
use of interaction picture techniques [16] for
improving the convergence of the correlation

Fig. 2. Convergence with time of eigenvalues for the ®rst ex-

cited state of the A1 symmetry, for a 5� 5 (solid) vs a 1� 1

(dashed) fully symmetrized correlation function.

Table 3

Converged results from a 5� 5 cross-correlation analysis vs

exact results for di�erent symmetriesa

Symmetry Semi-classical Exact

A1 ÿ56.5 ÿ56.57

E1 ÿ46.0 ÿ45.46

A1 ÿ38.8 ÿ38.77

E2 ÿ37.7 ÿ36.96

E1 ÿ32.6 ÿ32.45

B2 ÿ31.4 ÿ30.92

B1 ÿ30.2 ÿ29.39

A1 ÿ28.0 ÿ27.82

E2 ÿ27.2 ÿ26.99

a All energies are in wavenumbers.
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function. This would be useful for studies involv-
ing clusters of weakly interacting He particles.
Another would be the use of an improved ®lter-
diagonalization equation, where the propagator
matrix u is replaced by a Hamiltonian matrix h
evaluated by Monte-Carlo methods [30,35].

Overall, the study shows that with the proper
cross-correlation ®lter-diagonalization analysis
tool, semi-classical calculations are very powerful
for studying ¯oppy vdW systems.
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