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Near-field: A finite-difference time-dependent method
for simulation of electrodynamics on small scales
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We develop near-field (NF), a very efficient finite-difference time-dependent (FDTD) approach for
simulating electromagnetic systems in the near-field regime. NF is essentially a time-dependent ver-
sion of the quasistatic frequency-dependent Poisson algorithm. We assume that the electric field is
longitudinal, and hence propagates only a set of time-dependent polarizations and currents. For near-
field scales, the time step (dt) is much larger than in the usual Maxwell FDTD approach, as it is
not related to the velocity of light; rather, it is determined by the rate of damping and plasma oscil-
lations in the material, so dt = 2.5 a.u. was well converged in our simulations. The propagation in
time is done via a leapfrog algorithm much like Yee’s method, and only a single spatial convolution
is needed per time step. In conjunction, we also develop a new and very accurate 8 and 9 Drude-
oscillators fit to the permittivity of gold and silver, desired here because we use a large time step.
We show that NF agrees with Mie-theory in the limit of small spheres and that it also accurately
describes the evolution of the spectral shape as a function of the separation between two gold or
silver spheres. The NF algorithm is especially efficient for systems with small scale dynamics and
makes it very simple to introduce additional effects such as embedding. © 2011 American Institute
of Physics. [doi:10.1063/1.3626549]

I. INTRODUCTION

The finite-difference time-dependent method (FDTD,
also labeled here as Maxwell’s FDTD) is one of the
main methods for quantitative simulations of electromag-
netic systems1–5 (alternatives include, e.g., the discrete
dipole approximation (DDA),6–8 plasmon hybridization,9

and frequency-domain approaches10, 11). Recently, there have
been much efforts directed at merging Maxwell’s FDTD with
the time-dependent Schrödinger (or alternatively Heisenberg
or Bloch) equations for describing near-field dynamics and
the effects on or of molecules (see e.g.,12). A difficulty in
these simulations, however, is the tiny time step required in
FDTD. Here, we show how to circumvent the time step diffi-
culty for small structures (below 50 nm).

In Maxwell’s FDTD, the time step dt needs to be smaller
than dx/(

√
3c), where dx is the minimal grid spacing and c

is the velocity of light, ∼137 a.u. For example, for near field
(NF) structures where the features are as small as 0.1 nm, dt
∼ 0.008 a.u = 0.2 attoseconds. This is a tiny step when con-
sidering that in real-time electronic dynamics dt can be as big
as ∼1 a.u.

A simple solution is to realize that in the near-field world,
where the structures are much smaller than the wavelength,
the electric field is mostly unrelated to the velocity of light;
instead, the dominant component of the electric field is longi-
tudinal, i.e., the quasistatic gradient of the Coulomb integral
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over the instantaneous charge distribution:

Enear field(r, t) = − ∇
4πε0

∫
ρ(r′, t)
|r − r′|d

3r′. (1)

We therefore propose here to propagate only the time-
dependent density and currents (see precise definitions later),
and to assume that the electric field is longitudinal. The re-
lation between electric fields and currents remains, however,
exactly as in Maxwell’s FDTD so that the crucial frequency
dependence of the permittivity, ε(r, ω), is fully captured. The
overall approach is therefore labeled NF. NF is simply the
time dependent version of the usual frequency dependent
Poisson approach (see, e.g., Ref. 11).

For the evolution of NF in time, we develop here a leap-
frog approach, analogous to Yee’s method for Maxwell’s
FDTD. As we show, a very large time step is feasible in
NF (2.5 a.u., ∼300 times bigger than the minimum time
step in FDTD for small features) at a price of a convolution
(Coulomb integral) each time step.

Note that as a matter of semantics we use the term NF
rather than quasistatic. The latter term could be misleading
as the frequencies involved here are as high as in any FDTD
simulations (up to 6 eV in our simulations); the NF label
only implies that the length scales are much smaller than the
wavelength of the light. Also, formally NF is also a finite-
difference time-dependent method, but for brevity we often
label it just as NF.

Finally, we develop here a new and very accurate, 8- and
9-oscillator fit (containing a total of 24-27 terms) to the per-
mittivity of gold and silver. The fit yields very closely the ex-
perimental values between near IR and UV. The main feature
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in the new fit is that all damping constants (explained below)
are not overly large, so the fit can be used with the large time
steps allowed in NF.

The remainder of the paper is developed as follows. The
method is explained in detail in Sec. II, the fit is examined in
Sec. III, and Sec. IV shows absorption profiles for both single
spheres and dimers; the results are favorably compared to Mie
theory (for single spheres) and numerical Maxwell’s FDTD
simulations (metal dimers). Discussion and conclusions fol-
low in Sec. V.

II. METHODOLOGY

A. Overall equations

For each material the permittivity is represented as a sum
of Drude oscillators:

ε(ω) = ε∞ + ε0

Nj∑
j=1

βj

ω̄2
j − iαjω − ω2

, (2)

where αj , ω̄j , βj ,are (real) material-dependent parameters;
most studies use Nj ∼ 2–4 Lorentzians (i.e., Drude-
oscillators) (see e.g., Ref. 13 and references therein), but as
mentioned, here we apply 8-9 Lorentzians to give an excel-
lent fit over a wide frequency range. Further, the first version
developed here requires a spatially constant ε∞ (here we use
ε∞ = ε0); the next version will relax this requirement, as ex-
plained in the conclusions. Equation (2) is natural for metals,
so in this first paper we only simulate metals + vacuum.

We aim for an overall time-dependent density which ful-
fills the continuity equation,

∂ρ

∂t
= −∇ · J, (3)

such that the permittivity will be associated with an overall
polarization which fulfills the Poisson equation

∇ · (ε(r, ω)Ẽ(r, ω)) = 0, (4)

where the Poisson equation vanishes since the density is due
to the polarization in the metal, and there are no free charges
in this version (they could be straightforwardly added). Also,
Ẽ refers to the field in frequency space. The frequency-
dependent Poisson equation and the continuity equation are
both fulfilled if we define currents and polarizations Jj (r, t),
Pj (r, t), which are evolved as follows:

∂Pj (r, t)
∂t

= Jj (r, t), (5)

∂Jj (r, t)
∂t

= −αj (r)Jj (r, t) − ω̄2(r)Pj (r, t) + ε0βj (r)E(r, t),

(6)

such that the total current and polarization are

J(r, t) =
∑

j

Jj (r, t),

P(r, t) =
∑

j

Pj (r, t).
(7)

Equations (5)–(7) give the usual relation between the cur-
rent and the electric field, i.e., when transforming from time
to frequency, then at each point in space

J̃(r, ω) = −iω(ε(r, ω) − ε0)Ẽ(r, ω),

P̃(r, ω) = (ε(r, ω) − ε0)Ẽ(r, ω).

The total density is

ρ = −∇ · P, (8)

and the potential is obtained from the density by a convolu-
tion:

φ(r, t) = 1

4πε0

∫
ρ(r′, t)
|r − r′|d

3r′. (9)

(The numerical approach for calculating the convolution
integral is discussed later.) The total field is made from any
external fields applied as well as the contribution of the po-
tential, i.e.,

E(r, t) = −∇φ(r, t) + Eext (t). (10)

A proof that this description yields the correct frequency-
dependent Poisson equation is straightforward and presented
later. Note that Eqs. (3) and (9)–(10) also yield

∂E − Eext

∂t
+ JT

ε0
= 0,

where
JT = 1

∇2
∇∇ · J,

i.e., Eqs. (3) and (9)–(10) are equivalent to the Maxwell equa-
tion, except that the curl of the magnetic field is neglected.

Finally, note that the electric field is not propagated inde-
pendently; only the currents and polarizations are integrated
forward in time, as shown below.

B. Leapfrog propagation

Equations (5) and (6) are simplest to propagate forward
in time in a leapfrog fashion; i.e., the currents Jj (r, t) are
stored at times dt/2, dt + dt/2, 2dt + dt/2, . . . , while the
polarizations Pj (r, t) are stored at 0, dt, 2dt, . . . .

The discretization of the evolution equation for the cur-
rent is then

Jj

(
r, t + 1

2dt
) − Jj

(
r, t − 1

2dt
)

dt

= −αj (r)
Jj

(
r, t + dt

2

) + Jj

(
r, t − dt

2

)
2

− ω̄2(r)Pj (r, t) + ε0βj (r)E(r, t), (11)

so that the evolution equation for the current is

Jj

(
r, t + dt

2

)
= 1 − αj (r)

2

1 + αj (r)
2

Jj

(
r, t − dt

2

)

− dt

1 + αj (r)
2

(ω̄2(r)Pj (r, t)−ε0βj (r)E(r, t)).

(12)
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The evolution of the polarization is even simpler:

Pj (t + dt) = Pj (t) + dt Jj

(
t + dt

2

)
. (13)

The initial conditions for the evolution are then

Jj

(
t = −dt

2

)
= 0,

Pj (t = 0) = 0,

Eext (r, t = mdt) = f (t = mdt)E0,

where E0 is the spatial profile of the external field (either
uniform or concentrated in a given area); we chose a delta-
function pulse for the time-dependent external field, i.e.,

f (t = mdt) =
⎧⎨
⎩

0, m > 0
1

dt
, m = 0

,

but other choices, such as a step function, could have also
been used.

In algorithmic form, the resulting formalism is straight-
forward:

Start with Jj = Pj = 0. Then, at each time step:

� First calculate the density, potential, and electric field.
� Then, update the current (Eq. (12));
� Finally, update the polarization (Eq. (13)).

The form of NF should allow for simple embedding, as
discussed later.

C. Relation to frequency-space Poisson algorithm

The NF algorithm is reminiscent of two other formu-
lations: Maxwell’s FDTD, where the electric and magnetic
fields are propagated rather than the polarizations, and where
the current is also included; and the discrete dipole approxi-
mation.

The NF algorithm is also the time dependent version
of the frequency dependent Poisson algorithm, whereby one
solves

∇ · (ε(r, ω)∇φ̃) = −∇ · (ε(r, ω)Ẽext (r, ω)),

(i.e., the same as Eq. (4), with E = Eext − ∇φ, and Eext is
the external field). The proof relies on the fact that the density
and potential are related, from the potential’s definition, by
the usual Coulomb potential, so that, in frequency space,

∇ · (ε(r, ω)Ẽ(r, ω))

= ∇ · ((ε(r, ω) − ε0)Ẽ(r, ω))

+ε0∇ · (Ẽ(r, ω) − Ẽext ) + ε0∇ · (Ẽext )

= ∇ · (P̃(r, ω)) − ε0∇2φ̃(r, ω) + ε0∇ · (Ẽext )

= −ρ̃(r, ω) + ρ̃(r, ω) + ε0∇ · (Ẽext ),

and if the external field is constant in space, the last term van-
ishes.

D. The convolution integral

A remaining issue is how to calculate the convolution in-
tegral. Here, we adopt the simplest approach, i.e., using a spa-
tial Fourier transform; specifically, we write

ρ(r) → ρ̃(k),

φ̃(k) = 4π

k2
ρ̃(k),

φ̃(k) → φ(r).

For consistency, we also could use a similar approach
when calculating the divergence of the polarization field, al-
though we found in practice that the results are quite similar
when a few-point formula is used for the calculation of the
divergence.

There are many possible variations on this theme; for ex-
ample, wrap-around effects can be accounted for by modify-
ing the 4π/k2 coefficients; or the Poisson equation (−∇2φ

= ρ/ε0) could be solved explicitly by iterations; these vari-
ants will be explored in future work.

E. Extinction cross section

The extinction cross section is calculated by the usual for-
mulae from the polarization or current. Specifically, we use a
homogenous external field profile E0δ(t), which has a uniform
frequency distribution (Eext (r, ω) = E0 = const.) and get

Cext = 4πω

c|E0|2 Im

(∫
P(r, ω)dr

)
· E0

= 4π

c|E0|2 Re

(∫
J(r, ω)dr

)
· E0, (14)

where the Fourier transform has a unit overall coefficient
(i.e., J(r, ω) = ∫ ∞

−∞ J(r, t)e−iωtdt). Therefore, we just need,
as usual, to calculate the total spatial current, integrate it over
time, and Fourier transform to frequency space.

As a reminder, the presence of the velocity of light in this
quasistatic expression is due to the definition of the extinction
coefficient as the ratio of the energy-dissipation rate and the
incoming flux, as the latter is proportional to c.

III. FITTING THE PERMITTIVITY OF GOLD
AND SILVER

The parameters in the fit, αj , ω̄j , βj , have a clear physi-
cal meaning from Eq. (2), as well known from textbooks and
previous work. For each local “oscillator” j, αj is the damp-
ing, ω̄j is the restoring frequency of the oscillator, and βj

(taken here as either positive or negative) is the contribution
to the overall permittivity.

Here, we fitted the permittivity of gold and silver, over a
wide frequency range (for gold 0.6–6.7 eV, the range of data
for Johnson and Christy14). As mentioned above, there are
several fits in the literature over narrower ranges, as well as
a four-Lorentzians fit over the same range we covered (see
Ref. 13 and references therein); these fits, however, have a
wider range of values of the parameters. Here, a very large
time step is used (2.5 a.u.); with such large time-steps, the
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damping constants αj and oscillator frequencies cannot be too
large, so, as mentioned, a refit is necessary.

The fit was done by standard methods. An objective is
defined:

I {αj , ω̄j } = Min{βj }

(
1

eV

∫
g(ω)(Re(ε(ω) − εexp(ω))2

+CIm(ε(ω) − εexp(ω))2)dω+ 10−5

(eV)2

∑
j

β2
j

)
.

(15)

For each value of the set of parameters, {αj , ω̄j } the op-
timal coefficients {βj } are found analytically by differentia-
tion of the two terms in the right-hand side of Eq. (15) since
the objective is bilinear in the coefficients, βj . The objective
functional with the optimal coefficients was minimized with
respect to the nonlinear parameters, {αj , ω̄j }, by a steepest de-
scent algorithm, with the damping and restoring frequencies
allowed to vary only in a restricted range,

0.1 eV < αj < 2 eV,

0.001 eV < ω̄j < 1 2eV,

and we chose a weight function which will de-emphasize the
lower frequency part where the permittivity is larger but has
less structure: g(ω) = ω2

ω2+(1eV)2 .
Note that since the coefficients {βj } are real we could

treat the real and imaginary part in the objective indepen-
dently; therefore, for the best fit we have set the coefficient
of the imaginary part as C = 10.

Tables I and II show the fit parameters. Figures 1 and 2
show the quality of the fit over the Johnson and Christy range.
As shown the fit is very accurate. Of course, in many simula-
tions a lower quality fit (or the one tailored to a smaller spe-
cific region of frequencies) will suffice, so fewer terms could
be used. A similar fit could have been applied to other metals;
dielectrics would be more challenging, as mentioned.

Since the goal of the fit was numerical, we should be
careful with allocating specific features in the permittivity
(with their origin in inter- or intra- band transitions) to specific
terms in the fit. However, we could tentatively relate some of
the features of the permittivity to specific terms, for example,
the features around 3 and 4 eV for gold or 4–5 eV for silver,
where the permittivity changes rapidly.

TABLE I. Fitting parameters for gold.

ω̄j (eV) αj (eV) βj (eV)2

0.2350 0.1551 95.62
0.4411 0.1480 − 12.55
0.7603 1.946 − 40.89
1.161 1.396 17.22
2.946 1.183 15.76
4.161 1.964 36.63
5.747 1.958 22.55
7.912 1.361 81.04

TABLE II. Fitting parameters for silver.

ω̄j (eV) αj (eV) βj (eV)2

0.1696 0.1795 135.0
0.3655 0.2502 − 40.30
0.6312 2.114 − 50.06
1.175 1.627 16.73
2.077 1.820 7.651
4.018 1.049 − 15.36
4.243 0.9967 18.07
5.303 2.592 40.42
7.197 2.774 31.02

IV. RESULTS

To test NF we studied two types of systems: first, a sin-
gle uniform gold or silver sphere; then, two uniform gold and
silver spheres (more precisely balls) of 10 nm diameter as a
function of the distance between them.

Most dimer simulations below included a grid of 64 × 32
× 32 points, with the grid spacing about 1/10th of the sphere
radius; for single spheres, where high accuracy was required
(as the results were compared to the analytical Mie theory,
see below), we increased the number of grid points to (64)3

and interpolated the results to the infinite-cell limit. Future
publications will investigate the overall dependence on cell
length.

We first study the extinction cross section for a sin-
gle sphere. We scaled the results by the sphere volume and
present below the scaled extinction cross section,

C ′
ext ≡ Cext

V
= Cext

πd3

6

,

where d is the sphere diameter.
Figure 3 compares NF to the analytical solution of

Maxwell’s equations for a single sphere (Mie theory) for
different sphere sizes. NF is formally exact in the long-
wavelength limit, where the well-known extinction cross sec-
tion is, from Mie theory,

C ′
ext = Cabs + Cscat

V
∼= Cabs

V

= 3ω

c
Im

(
ε − 1

ε + 2

)
(as d → 0), (16)

and we introduce the absorption and scattering cross section,
where the latter is negligible for small spheres.

As Fig. 3 shows, the numerical NF simulations agree with
the exact Mie-theory Maxwell results for small spheres. For
small diameters (d = 1 nm, d = 10 nm), the Mie-theory re-
sults equal to the limiting form in Eq. (16). The numerical NF
simulations are slightly different from Eq. (16) due to grid-
discretization and finite grid volume.

At low frequencies, where the wavelength is large, the
larger-spheres Mie-theory results are reasonably similar to NF
up to diameters of d ∼ 50 nm; at higher frequencies, good
agreement is obtained till d ∼ 30 nm.

Figure 4 shows the evolution of the spectral shape for
Maxwell’s FDTD vs. NF as a function of spacing for both
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9-Oscillator Fit of ε(ω) for Silver
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FIG. 1. Comparison of the fitted permittivity of silver: The Johnson-Christy data (triangles) vs. the new fit. The upper and lower panels show the real and
imaginary parts. The left side shows the fit over a large range, and the right side zooms to a smaller frequency range, 1.5–4.5 eV.
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FIG. 2. Similar to Fig. 1, for gold, using 8 Lorentzians.
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ωωωω

FIG. 3. Scaled extinction coefficient (C′
ext ≡ Cext /V ) for small gold spheres using both Mie theory at various sizes as well as NF. The Mie theory results are

calculated and marked at the Johnson and Christy’s experimental frequency point values.
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in particular, NF shows the redshift that is expected with the decrease in the separation between the spheres.
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FIG. 5. NF is stable and accurate even for large time-step, as shown by the
dependence of the absorption of a single gold sphere on time step. The figure
shows that even for a time step of 3.0 a.u., the algorithm is convergent.

gold and silver dimers. The external electric field polarization
is parallel to the dimer axis, and we study the absorption for
different dimer spacings. The agreement is quite good. The

lowering of the absorption peak at low separations15 (essen-
tially due to hybridization of the plasmon modes16) is evi-
dent, and reproduced very similarly in both approaches. There
are some differences for small inter-sphere spacings; these are
mostly due to the different spatial discretization schemes. NF
uses a spatial-Fourier transform to calculate the electric field
potential, rather than the nearest-neighbor spatial differences
in Maxwell’s FDTD.

Figure 5 shows that the method is well converged even
for large time-steps.

Finally, Fig. 6 compares the electric field intensities for
a challenging case, two silver spheres with a minimum dis-
tance of about 1 nm. The time-dependent electric fields were
Fourier transformed at a frequency of 3.26 eV, and we show
the intensity of the Fourier transformed fields along a slice in
the x-y plane (near z = 0). The fields are quite similar; the dif-
ferences are slightly due to the neglect of retardation effects in
NF, but mostly due to the use of a different spatial discretiza-
tion scheme. The intensities, which should be compared to the
initial field intensity set at |Ẽ0(r, ω)|2 = 1 are quite large, due
to the well-known enhancement of fields in confined regions
near metal edges.
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encompass the full dimers, while the bottom panels zoom in to the central region and show clearly the high intensity between the spheres. For comparison, the
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V. DISCUSSION AND CONCLUSION

To summarize: The NF algorithm presented here is very
efficient for systems with small scale dynamics, and enables
very large time steps. There are several further improvements
and extensions which are discussed in detail below.

A. Convolutions and dielectrics

There are two challenges in the approach as it stands.
First is the use of a convolution to get the electric field from
the density; this is quasilinear in the number of points (if an
FFT convolution algorithm is used), so it will not slow the
approach significantly, but an alternative approach to convo-
lution will still be welcomed, as discussed below.

A different issue is, as mentioned, dielectrics, where
the permittivity is almost constant over a large frequency
range (and typically almost purely real). The difficulty is that
the NF approach presented here requires that the frequency-
independent term (associated with the first term in Eq. (2))
will be uniform (i.e., so that if a vacuum is used it equals ε0),
so that the Poisson equation could be easily solved. Possible
solutions are as follows.

First is the combination of several terms as in Eq. (2)
so that the sum of these terms will be fairly constant over
a large frequency range; the difficulty is that then very wide
Lorentzians (with large damping constants and large coeffi-
cients) will be needed, making the necessary time step quite
small.

A second choice will be to use ε∞ = const., i.e., the
same static term for all the materials. This choice would have
been useful for the description of, e.g., metals with a single
dielectric (e.g., water) without vacuum, where the same ε∞
constant of the dielectric could be used for ε∞ of the metal (at
the cost of an additional fit of the metal parameters with the
new ε∞).

A more elegant solution allows for dielectrics with mul-
tiple different values of ε∞ and has no convolutions. In this
modification, the potential will be treated as an independent
Car-Parinello type variable, and its evolution will be deter-
mined by

μφ̈ = −
(

∇ · (εs∇φ) − ρ

ε0

)
, (17)

where εs is the frequency-independent part of the permittivity
instead of the first term (ε0) of the RHS of Eq. (2) for met-
als. Here, μ is an artificial Car-Parinello type mass. Since this
equation is scalar it could be solved with a smaller time step
than that used in the main set of equations of the NF approach
(Eqs. (5) and (6)) without loss of efficiency.

B. Embedding and magnetic fields

We note that the NF approach as presented here is ideal
for embedding into it a smaller region where the material is
presented more accurately. This will amount to adding an ad-
ditional “quantum” current into the system, JQ, which will be
propagated by more accurate approaches; either orbital-free
TDDFT (time-dependent density functional theory), where
the current is obtained by propagating a Schrödinger equation

for a single orbital, or even TDDFT. The added current will
be supplemented by an additional quantum density ρQ; em-
bedding could be done by overlapping the two regions or by
using a small transition region which will interpolate between
the quantum and NF Poisson regions.

We also note that the method could potentially also be
applicable to magnetic fields. While by its nature it cannot
describe propagating far-field waves, it will be suitable to
describe static magnetic fields or more generally near-fields
due to the underlying currents. Details will be furnished in
future publications.

C. Relation to FDTD features: Total-field scattered
field (TF/SF) and absorbing layers

Finally, we comment on the equivalence in NF of two
time-saving features in the usual Maxwell-FDTD.3 The first is
the TF/SF approach, where only the electric field in the inner
scattered region is represented. This feature is automatically
included in NF for most cases; for example, a planar incident
field is represented by a spatially homogenous E0; the reason
is that the k-dependence (exp(ik · r)) of the incident field is
ignored in NF, as it only deals with sub-wavelength features.

The second modern feature in FDTD is boundaries. Mod-
ern FDTD methods often employ the perfectly matched layers
approach, which is essentially equivalent to exterior scaling in
molecular scattering. NF could, in principle, have employed
a similar approach; however, in practice, reflection is less of
an issue in NF since the electric fields fall off quite rapidly
in the subwavelength (near-field) regime. One could also pad
the grids by a gradually rising layer of a conducting mate-
rial, which will absorb any electric field which impinges on
the boundaries. Detailed studies of the preferred approaches
to handle boundaries will be presented in future publications.
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