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We extend our previous results [R. Baer et al., J. Chem. Phys. 126, 014705 (2007).] to develop a
simple theory of localized surface plasmon-polariton (LSPP) dispersion on regular arrays of metal
nanoparticles in the weak-field and weak-damping limits. This theory describes the
energy-momentum as well as the polarization-momentum properties of LSPP waves, both of which
are crucial to plasmonic device design. We then explicitly compute the dispersion relation for
isotropic and anisotropic two-dimensional square lattices, and show curve crossings between all
three levels as well as negative refraction where the phase and group velocities (refractive indices),
or at least their projection along the main axis, have different signs. The curve crossing implies that
scattering between the different polarizations, and therefore different velocities, is easy at the curve
crossing momenta, so that a quick change in wave packet direction can be achieved. Time-resolved
wave packet dynamics simulations demonstrate negative refraction and the easy scattering over
nanometer length scales. This paper also gives some computational schemes for future applications,
such as a way to include source terms and how to efficiently treat dissipative effects. © 2007

American Institute of Physics. [DOI: 10.1063/1.2796162]

I. INTRODUCTION

Recent theoretical®™* and experimentals’6 studies have
demonstrated the feasibility of using metal nanoparticle ar-
rays to guide electromagnetic energy of optical frequencies
along geometries smaller than the diffraction limit of light.
This transfer of energy is accomplished via near-field cou-
pling between localized surface plasmons on each nanopar-
ticle, resulting in a localized surface plasmon polariton
(LSPP) wave propagating along the device. Additionally,
metamaterials have been constructed which exploit surface
plasmons to exhibit negative refractive index’ at microwave
frequencies. Such devices may one day be used to build “su-
perlenses” capable of using visible light to resolve features
much smaller than optical Wavelengths.&9 An understanding
of the novel dispersive properties of LSPP waves and the
ability to perform large-scale simulations of potential plas-
monic devices are crucial to the further development of this
field.

Various approaches are taken to model plasmonic de-
vices, including computationally expensive complete solu-
tions of Maxwell’s equations using finite difference time do-
main schemes,>"’ point-dipole and coupled nanoparticle
approximations,l11 time-dependent  density  functional
theory,12 and plasmon hybridization schemes." In a recent
paper,1 we introduced a quantum mechanical approach based
on the exciton mode formalism, which we used to explore
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both the dispersion properties of one-dimensional arrays of
nanoparticles as well as LSPP dynamics on both one- and
two-dimensional lattices.

In this paper, we extend our previous results’ to develop
a dispersion relation for a two-dimensional lattice of metal
nanoparticles in the weak-damping and weak-field limits,
and also compare these results with time-resolved wave
packet calculations that demonstrate the ability of this type
of system to exhibit negative refractive index.

The calculations are vastly simplified by taking the
weak-damping limit, but in reality surface plasmon excita-
tions on any nanoparticle are highly damped. This damping
comes from radiative losses, plasmon-phonon coupling in
the nanoparticle, and coupling to electronic levels in the sur-
rounding substrate/matrix material.'* For any currently real-
izable system, this damping makes coherent LSPP transfer
impossible for chains longer than a few nanoparticles. Al-
though the weak-damping approximation is quite drastic, the
resulting formalism is still adequate enough to qualitatively
describe the dispersion (energy and momentum) and dynami-
cal properties of LSPP-based devices. More importantly, the
formalism gives a transparent, illustrative, and intuitive pic-
ture.

Il. THEORY

Here, we outline a simple yet effective method to ana-
Iytically compute the dispersion relation of a one-, two-, or
three-dimensional array of nanoparticles. Although the com-
putational part of this study was limited to a simple square

© 2007 American Institute of Physics

Downloaded 22 Nov 2008 to 169.232.128.66. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp


http://dx.doi.org/10.1063/1.2796162
http://dx.doi.org/10.1063/1.2796162
http://dx.doi.org/10.1063/1.2796162

154714-2 Lopata, Neuhauser, and Baer

two-dimensional lattice, the method is also applicable to
three-dimensional crystals. As before,1 we make the low-
damping and weak-field approximations, and assume spheri-
cal symmetry on each nanoparticle such that each particle
can support three orthogonal surface plasmon modes, corre-
sponding to x, y, and z oriented electron oscillations, respec-
tively. Thus, to describe a lattice of N particles, we require a
Hilbert space spanned by 3N functions W, , where n
=1,2,...,N is the nanoparticle index and a@=1,2,3 repre-
sents the three orthogonal polarizations x,y,z.

The “Hamiltonian” associated with the interaction of the
polarization can be written as

H=H,+H,, (1)

where H is a diagonal matrix with elements that are the
excitation frequency w, of each dipole, while H, is an off-
diagonal coupling Hamiltonian, which can be written in the
following schematic form:

Ho(xyx) = £V V. 2)

|Xn_X

m

where £ is the transition dipole moment of the nanoparticles
and |x,—x,,| is the separation between particles n and m. We
use atomic units, where i=m,=1; note that in these units
e?/4mey=1, and the velocity of light is ¢=137.036 a.u.

In an explicit form, the matrix elements of H for the
interaction of polarization « on site n with polarization 8 on
site m is

@, 008, n=m
2
H, na,mpB = f
5
L

[5aﬁ|an|2 - S(an)a(an)ﬁ]v n#m,
3)

where R,,,=|X,—X,,|. This Hamiltonian governs the motion
of time-dependent excitations, through

i— =HWV¥ 4
i , (4)

where we introduced the wave function associated with the
excitations. In the “Relation to Electrodynamics™ section be-
low, we discuss in greater depth the connection between this
“quantum-mechanical” model and electrodynamics and show
that the wave function amplitude ¥, is the polarization in
the media in direction «. We also show how it is possible to
include an external exciting field in the equation and how, in
principle, to treat dissipative effects by changing the transi-
tion dipole moment into a time-dependent memory term for
previous times.

For a homogenous system, the eigenfunctions of H can
be written in a separable form, as

\I,na: l/fﬂ]a- (5)

The dispersion relation w,(k) can be calculated from the
Schrodinger equation according to
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HY = 0,(k)V, (6)

N 3
2 2 Hyempthinp = 0p(K) ¥ e (7)

m=1 B=1
where n=1,2,...,N is an index over the nanoparticles and

p=1,2,3 is an index over the polarization vector (i.e., des-
ignates the pth eigenvector 7;, and we often omit the p in-
dex). The summations over m and B are likewise over par-
ticle number and polarization, respectively. In the large N
limit or for periodic systems, we know that the spatial part of
the wave function ¢, is simply a plane wave of the form
W, =e™Tn. Additionally, since all sites on the lattice are the
same, we can choose to look at the wave function on the first
site (n=1) with r;=(0,0,0), which simplifies Eq. (7) to
N 3

2 2 Hla,mﬁeik.rm 77,8[7 = wp(k) 77&[7' (8)
m=1 B=1

Now, we convert the sum over particle index m in Eq. (8)
into a triple sum over discrete positions, with grid spacings
of a,, ay, and a_, respectively,

3

2 2 Hoarpe 15, = 0,(K) 74 )
Ny, B=1

where r=(n,a,,n,a,,n.a,). The triple sum in Eq. (9) can then
be readily computed using a three-dimensional fast Fourier
transform

2 Hyarpe™™ = Fop(k), (10)
Ny,
giving
3
2 FalB(k) ﬂﬁp = p(k) 77047' (1 1)
B=1

All that remains, then, is to solve for the three eigenvalues
and eigenvectors of Eq. (11) for each value of k,, k,, and k..

The three resultant eigenvalue surfaces, w;(k), w,(k),
and ws(K), are the adiabatic energy surfaces of the first, sec-
ond, and third lowest energy eigenstates, while the three
eigenvectors at each k represent the relative mixture of x, y,
and z polarizations of these eigenstates. This mixture of po-
larizations is a direct consequence of the coupling between
the three orthogonal (x,y,z) local surface plasmon modes
between individual nanoparticles in the Hamiltonian (3). In
three dimensions, therefore, where all three are coupled, the
eigenstates are generally not pure but rather a mixture of x, y,
and z polarizations. In two dimensions where z is decoupled
from x and y, one of the eigenstates is pure z and the other
two are mixed xy, and in one dimension all surface plasmon
modes are decoupled, so all eigenstates are pure.

lll. RESULTS
A. Dispersion relation

Here, we describe the results of the theory as applied to
a two-dimensional regular square lattice of nanoparticles.
The simulations scale with the size of the dots (as long as the
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Isotropic (a, = 1.0, ay = 1.0)

FIG. 1. (Color) The three adiabatic energy (eigenvalue) surfaces for the isotropic lattice (top) and the anisotropic lattice (bottom). The sharp features around
k=0 in the w, and w; surfaces are artificial and due to the singularity at that point. See the discussion for the meaning of the energy units.

ratio of nanoparticle size to spacing is held fixed). We have
therefore used scaled atomic units. The simulations were
done where the spacing of the nanoparticles in the x axis is
the basic length unit, and the energy is measured in units of
&/a®, where a is the lattice spacing. Typical coupling
strengths have been measured and calculated to be a few
tenths of an eV.’

We now present the dispersion relations for two particu-
lar examples: An isotropic lattice with spacings a,=a,=1.0
and an anisotropic lattice with a,=1.0 and a,=1.5. Our sub-
sequent analysis will focus on the anisotropic lattice, which
displays interesting phenomena not seen in the isotropic one,
such as broad curve crossing and negative refractive index.
We include, however, the results for the isotropic lattice for
comparison.

Figure 1 shows the three eigenvalue surfaces of Eq. (11)
for both an isotropic lattice with spacings a,=a,=1.0 (top)
and an anisotropic lattice with a,=1.0 and a,=1.5 (bottom).
In both cases, the lattices were 128 X 128 nanoparticles large
to facilitate taking the fast Fourier transform (FFT). The an-
isotropy of the lattice introduces a clear asymmetry into the
adiabatic surfaces and also contracts the first Brillouin zone
in the k, direction.

As the energy units are scaled, this figure (i.e., Fig. 1)
applies generally for a dipolar system of any size or material.
For concreteness, the longitudinal coupling energy for metal
particles is two times the basic unit, which is &/a’. Further-
more, for metal particles, we can write, = kb2, where b is
the radius of the particles. Our energies, therefore, are calcu-
lated in terms of the basic parameter x*(b/a)’. For the spe-
cific example of gold particles with an interparticle spacing

of three times their radius, k>~ 1.3 eV, so we conclude that
our basic energy unit is approximately 1.3 eV(b/a)®. Thus,
the basic energy unit (i.e., “1” on the plots) would be
0.05 eV. Further, note that our zero energy is the frequency
of the light, which is a constant that we subtract from the
energy. As such, negative energies are frequencies lower than
that of the light and positive energies are higher frequencies.
Of particular interest is the intersection of these three
adiabatic surfaces, which corresponds to particular momenta
where there is a ready conversion between different LSPP
eigenmodes. Figure 2 shows the differences between the sec-
ond and first surfaces and the third and second ones, respec-
tively, for both the isotropic and anisotropic lattice. The ring
shaped region of intersection of w; and w, is significantly
broadened in the anisotropic lattice, which is visible as two
bands around k,=—(7/3) and /3. This broad range of in-
tersection can be seen clearly when slices of the three w(k)
surfaces are viewed for fixed values of ky, as in Fig. 3 (for
the meaning of the energy units, see the discussion of Fig. 1).
To completely describe the eigenstates, we also need to
consider the eigenvectors. The three eigenvectors of Eq. (11)
at each value of k describe the relative proportion of x, y,
and z polarizations of the three eigenmodes. On this two-
dimensional lattice, one of the eigenmodes must correspond
to pure z polarization, while the other two are generally
mixed xy. Figure 4 shows, for the anisotropic lattice, the
azimuthal (¢) and zenith (6) angles of the first (lowest en-
ergy) eigenvector as a function of k, for four values of k,.
The jumps in eigenvector angle, which correspond to
switching of the lowest energy eigenstate among the three
possible modes (two xy; one z), occur at the curve crossing
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FIG. 2. (Color online) Contour plots of w,(k)—w;(k) and w;(k)—w,(k),
illustrating regions of intersection between the three adiabatic surfaces. The
intersection is significantly more pronounced in the anisotropic lattice (bot-
tom) than in the isotropic one (top).

momenta between the w; and w, adiabatic energy surfaces
(see the dark bands in Fig. 2 and intersections in Fig. 3). For
example, when ky=0, the lowest eigenmode switches from
being pure x to pure y at k, = /4.

Of particular note is that the lowest energy eigenmode is
mostly pure x (¢=0°, =90°) for a range of k, values around
0, and this range is large only for momenta away from the
intersection bands. When the angles of the other two eigen-

Isotropic
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vectors are also considered (not shown), for each given mo-
mentum one of the three eigenmodes of this two-dimensional
lattice is indeed pure z (6=0°), while the other two are, in
general, an xy mixture, as predicted from the Hamiltonian
(3).

Also of interest are the group and phase velocities of the
LSPP waves, which are defined as

«_ 0(k) - o(0)
T (12)
and
vg= a‘;),ff) : (13)

respectively (with a=x,y,z). The second term in Eq. (12)
corresponds to choosing the zero energy to be at k=0. The
derivative in Eq. (13) is conveniently calculated in reciprocal
space using a FFT according to

dw(K)
oK,

=FFT{ir,a(r)}, (14)

where @(r) is the inverse fast Fourier transform of w(k).

Figure 5 shows the y phase and group velocities for the
lowest energy eigenmode of the anisotropic lattice for fixed
k,=m/2. Although the singularity around k,=0 overwhelms
the shape of the phase velocity curve, it is clear that for a
large region between k,= /2 and 37/2, the phase velocity
has the opposite sign of the group velocity. This is a feature
of negative refractive index, and its implications are further
explored in the following section.

0W;, ®,, O3

[V O N N N

<

FIG. 3. Slices of the first (solid), sec-

Anisotropic

ond (dashed), and third (dash-dotted)

k dispersion surfaces for the isotropic

lattice (top) and the anisotropic lattice
(bottom). The two figures on the left
correspond to ky=0, while the two at
the right occur at one of the broad
bands of intersection (k),=77/ 2 for the
isotropic lattice; ky: 7r/3 for the aniso-
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o tropic lattice).
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90 TABLE I. Parameters used in the wave packet dynamics calculation.
60
k. =0 Grid Wave packet Chebyshev
30 Y
0 N=2100 ke mm Neheby=670
“\27 3
. a,=1.0 ro=(12,21) AE=50
;o0 k =1/6 a,=15 0=5.0
wie 'y :
30 Ay=52l=o.75
D o
~ 90
T k, = /3 y(r:0) =0,
= 30 . . . .
-5 o was evolved similarly to Ref. 1, except that instead of diago-
o nalizing the Hamiltonian, a Chebyshev propagation scheme
was utilized."> The values of the various simulation param-
60 =2 eters are given in Table L.
30 On this anisotropic lattice and for this particular choice
0 of chosen momentum k=(7/2,-(7/3)), the xy eigenmodes
-

FIG. 4. The azimuthal (¢, solid) and zenith (6, dashed) angles of the first
eigenvector of the anisotropic lattice for various values of k,. The direction
of the eigenvectors corresponds to the relative proportion of x, y, and z
surface plasmon polarizations of the eigenstate. The jumps in angle occur at
the w;, and w, curve crossing momenta and correspond to switches among
the three possible eigenpolarizations (two xy and one z). When the state is
pure z(6#=90°), the azimuthal angle is not well defined and is thus omitted.

B. Dynamical simulation

Here, we compare the results of the dispersion relation to
a LSPP dynamics simulation of a simple hypothetical device
consisting of a two-dimensional lattice of 2100 ideal metal
nanoparticles patterned on a flat substrate, whose effects we
ignored. We take the interparticle spacing to be the same as
the above studied anisotropic square lattice (a,=1.0; a,
=1.5), and additionally introduce a step perturbation by shift-
ing the y location of the nanoparticles on the right half of the
slab by Ay.
An initial pure x polarization Gaussian wave packet of
the form
v =1y

i (r;0) = GXP(7 +k-(r- 1'0)),

(15)

Ve ), Ve )

i
-2m/3 -T/3 0 /3 2n/3

FIG. 5. The y-phase velocity of the first eigenmode (dash-dotted) and the
y-group velocities of the first (solid) and second (dashed) eigenmode. of the
anisotropic lattice for fixed value of k,= /2. The phase and group velocities
have opposite signs for a range of momenta between k,= /2 and 27/3.
This is a characteristic of negative refractive index. .

are not pure. For example, as shown in Fig. 4, at this par-
ticular momentum, the lowest energy eigenmode is an ex-
actly half-half mixture of x and y polarizations (¢p=45°, 0
=90°) and thus, this initial state is not an eigenstate of the
system.

Figure 6 shows four snapshots of the dynamics of this
LSPP Gaussian wave packet, with an additive color scale
representing wave function intensity. Blue represents x po-
larization LSPP wavefunction intensity, red represents y po-
larization, and shades of purple a relative mixture. The initial
north-east traveling pure x polarization (blue) wave packet is,
upon hitting the step perturbation, split into a refracted north-
east continuing pure x wave packet (blue) and a reflected
north-west heading x wave packet, both of negligible inten-
sity, and an intense south-east traveling pure y polarized
wave packet (red). This splitting of an incident north-east
traveling ray into a south-east traveling one is not observed
in conventional optical materials, but is characteristic of

t=3

t=11

FIG. 6. (Color online) LSPP dynamics on an anisotropic lattice with a
perturbation. The color scale is additive, where blue represents x polariza-
tion wave function intensity, red represents y polarization, and the various
shades of purple represent mixed states. The initial north-east traveling pure
x wave function is, upon hitting the perturbation, converted largely into a
south-east traveling y polarized wave function, along with negligible x po-
larized reflected and refracted parts. The inset shows a schematic of the
corresponding ray diagram. This conversion from a north-east traveling ray
to south-east traveling one is analogous to the negative refraction.
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t=0

FIG. 7. (Color online) A rudimentary superlens based on the device in Fig.
6. The negative refraction of the two incident x polarized LSPP wave pack-
ets into y polarized ones results in a focusing of the electromagnetic energy
on the length scale of a few spacings. The inset shows a simplified ray
diagram for the device.

metamaterials such as this. The negative refraction behavior
exhibited by this system is a direct result of rich coupling
between orthogonal surface plasmon modes and the resulting
dispersive properties. This is of particular physical impor-
tance, and the design of any potential LSPP-based plasmonic
device hinges on understanding both the energy-momentum
and polarization-momentum dispersion properties.

As a concrete example of the utility of such a device, we
now demonstrate how this metamaterial waveguide can use
negative refraction to act as a rudimentary superlens.8 Since
the surface plasmon resonance frequency of the nanopar-
ticles can be tuned by choosing the particle size'® and com-
position (e.g., a core-shell structurelz’”), such a device could
potentially operate at a wide range of optical frequencies.

Figure 7 shows such a device, where we have repro-
duced the device simulated in Fig. 6, only with two initial
wave packets with opposite y group velocity, created by tak-

J. Chem. Phys. 127, 154714 (2007)

ing their initial momenta to be k;=(m/2,—(7/3)) and k,
=(m/2,/3), respectively. These two wave packets play the
role of rays diverging from a point object somewhere to the
left of their starting points (shown as a blue dot in the inset
of Fig. 7). As before, the two wave packets are negatively
refracted into two y polarized wave packets, which then
cross at a point on the other side of the perturbation. In
effect, this device takes diverging x polarized light and fo-
cuses it into y polarized light a point. What makes this lens
so interesting is that it functions on length scales much
smaller than the wavelength of light being guided, allowing
one to beat the diffraction limit. For example, one could
build a device which uses visible light (wavelength on the
order of hundreds of nanometers) to resolve features on the
order of tens of nanometers. Using such a superlens as a
means of subwavelength imaging has enormous potential in
a variety of fields, ranging from lithography to biological
imaging.

IV. RELATION TO ELECTRODYNAMICS

The discussion so far has been in terms of excitations, in
a simple excitonic picture of the motion. Here, we relate this
discussion to a more usual electrodynamical approach. The
connection shows clearly where the approximations are in
the discussed approach, and what next steps are needed for a
more rigorous theory.

We treat the nanodots as a collection of dipoles. The
discussion will be done for one dipole, and then applied to
the multiple dot case. The final results do not depend on the
explicit form considered for each dipole (at least in the lim-
iting case we consider, where the dipole excitation of each
dot is not large). Therefore, for simplicity, we consider a
nanodot dipole as one made from a fixed positive charge g at
a position X, and a negative charge g at a position xy+s(z),
so the dipole is u=g¢s(z).

In the Lorenz gauge, the potential at a point x due to a
dipole at a position x is

P(x,1) =f e |X_X,|/C)[— gl o(x" —x¢—s(t")) = &(x" —xo)]1dr" dx’

[x - x']

f[é‘(z’—t+|x—x0—s|/c) c‘)‘(t’—t+|x—xo|/c)] )
=—q - dt

|X—X0—S| |X—Xo|

1 1
:—q —_
{|x—x0—s(t—|x—x0—s|/c)| |x—x0)|}

1 ( |X—X0—S|)
— V Ly t—
|x = x| ¢

=_V ! (,u,(t—w> —E(V|X—XO|'S)>.
c c

B [x = x|

(16)
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Similarly, the vector potential reads

1 Q&@ k—mg
clx—xo| dt c /)

so that the total electric field is

A(x,1) =

1 0A
E=ZE—V¢+E€3Xt

_ 1 fu@_k—mg

__cz|x—xo|% c

Vix - d - 1
_ |X2Xo|<_,u<t_|x XO')-V )

c dt c x — x|

1

+
|X - Xo|

|X - X0|

+,u,<t— )-VV E..., (17)
c

where we introduced an external field. The first, near-field

approximation is to set c=2 so that only the ¢ independent

terms Survive;

1
E(x,1) = ,uxo(t) VV——+E,. (18)
Ix — %o

Put differently, the near-field approximation leads back to
electrostatics. The near-field approximation is easy to extend
but will be valid for short distances.

The next ingredient is the relation between the electric
field and the dipole on each dot. If the dots are very closely
packed, the electric field on each dot will be strongly space
dependent and can reach extremely high values near the sur-
face of the dot, as what happen in surface-enhanced Raman
spectlroscopy.18 However, if the packing is not maximal, we
can connect the dipole moment with the electric field as

,u(x,t):j Yt —1")E(x,t')dt’", (19)

where we introduced the time-dependent polarizability (z),
which can be a tensor in the general case; in frequency space
this is, of course,

p(x,0) = Y(w)E(X, ). (20)

We can rewrite the equation above as

d
d—/;(x,t)z'yoE(X,t)+f n(t—1t")E(x,t")dt’,

_ &
(1) = I 1)

Yo=Yt—1t'"=0).

The approximation we pursued in the article, of no dissipa-
tion, is equivalent to assuming that the time derivative of
instantaneous dipole moment only depends on the instanta-
neous field; this is the same as saying that the polarizability
is independent of frequency.

Extending now the discussion to the case of many di-
poles, each labeled by an index j, we get the final equations

Curve crossing and negative refraction of coupled nanoparticle arrays
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du; 1
= ?’02 (1) * VV———+ yEqy(X;,1). (22)
dt k) [x; =%y

This form is completely equivalent to the Schrodinger-type
Hamiltonian, if we first identify 7, with the square of the
dipole coupling moment, and also assume that the external
electric field is only used to create an instantaneous excita-
tion, after which its effect is removed. We thus find that the
“wave function” is simply the polarization at site i. Two
future methodological issues are mentioned below in the ap-
pendix; these will be applied in future papers.

Finally, the electrodynamical picture confirms the simple
interpretation of the polarization eigenvectors in Eq. (11).
The F tensor (3 X 3) is a near-field equivalent of the permit-
tivity (when the constant diagonal part is removed) so that its
eigenvectors are the near-field eigenpolarizations, i.e., those
directions of the external field which induce a dipole current
that will be parallel to the external field.

The extension of the relation between the dipoles and the
electric fields is qualitative, as it is within the electrostatic
approximation. The frequency dependence of the relation be-
tween the electric field and the dipole moment is due to
currents and damping terms, which arise from forces within
the dipoles. Therefore, a more quantitative analysis will be
needed to account for Lorenz-force contributions and current
effects on the equation of motion; nevertheless, the relation
between the eigenvectors and the permittivity is qualitatively
revealing.

V. CONCLUSIONS

We presented here a dispersion theory for idealized
(weak-field, weak-damping) localized surface plasmon-
polariton propagation on evenly spaced lattices of metal
nanoparticles. The theory is simple and easy to implement,
yet predicts both the energy and polarization character of the
eigenmodes of the lattice. We have also connected the theory
to electrodynamical simulations.

The interplay between orthogonal modes results in rich
physical behavior that, under the appropriate conditions,
manifests itself as negative refraction. An understanding of
the energy and polarization properties enables one to design
devices which support LSPP wave packets that, for certain
momenta around the intersections of the adiabatic energy
surfaces, readily scatter between different polarization
modes. This facile scattering results in quick changes in
wave packet direction upon hitting a perturbation. We have
demonstrated using time-resolved wave packet simulations
that, at least in the low-damping and low-excitation limits,
such systems are expected to exhibit negative refractive in-
dex. This can be used to construct a crude superlens capable
of focusing energy at length scales much less than the wave-
length of light being guided.
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APPENDIX A: THE SOURCE TERM
IN THE TIME-DEPENDENT TREATMENT

In this appendix, we give an outline of an efficient
method for propagating an equation such as Eq. (22).
Consider the Schrodinger equation with a source:

i(t) = Hy(t) + o),
(A1)
¥(0) = ¢y.

Here, o is the source function and we assume that H is time
independent. The solution to the problem can be found by
noting that ie=3,(e" ) =iy— Hyy. Thus, when o is a time
independent function, the exact solution is

—iHt

lﬁ(l):u

7 " e .

(A2)

~iH'_1)/H can be done easily using

The application of this (e
Chebyshev polynomials. 15

Now, for the more general case, when o is time depen-
dent, we usually consider a pulse of some sort, which dies
out over time. If we take, for example, o= Ent’”"e‘ﬁnlcn, then

this is also tractable:

Y=-i2 I(H)o,+ ™y, (A3)
where
t
I(a)= e‘“’f 1" @B gy (A4)
0

Once again I, (H)o, can be easily applied using efficient and
fast Chebyshev propagation.15 The only caveat is that if one
needs a large expansion, this might be expensive.

APPENDIX B: PROPAGATION WITH DISSIPATION

To account for dissipation, we need to solve equations of
the form

t
i(r) = Hyt) +f Wt —1")ydt')dr', (B1)
0
assuming that we can approximate
N
A7) =2 a,e (B2)
n=1

We can convert the equation to an instantaneous set of N
+1 equations.]9 Indeed, using

J. Chem. Phys. 127, 154714 (2007)

N
id (™ yf1) = id(p(1)) = 2 a,if (1),

n=1

where

2

t
e_”"(t_t,)l,lf(l")dt’ — f e(iH_n")(t_t,)(ﬁ(t’)dt’.

0

lr//n(t) = ethf

0

Taking the time derivative of this last equation, we obtain a
set of coupled instantaneous equations:

l.ﬂn(t) = ¢(t) + (lH— 77}1) wn’
(B3)

N
ip(t) = 2 a ().
n=1

Thanks to the removal of memory, a source term can now be
combined with this approach, as was done in Appendix A.
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