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Near-field interactions between plasmons and molecules are treated in a simple unified approach.
The density matrix of a molecule is treated with linear-response random phase approximation and
the plasmons are treated classically. The equations of motion for the combined system are linear,
governed by a simple Liouvillian operator for the polariton �plasmon+molecule excitation�
dynamics. The dynamics can be followed in time or directly in frequency space where a trace
formula for the transmission is presented. A model system is studied, metal dots in a forklike
arrangement, coupled to a two level system with a large transition-dipole moment. A Fano-type
resonance �Phys. Rev. 103, 1202 �1956�� develops when the molecular response is narrower than
the width of the absorption spectrum for the plasmons. We show that the direction of the dipole of
the molecule determines the direction the polariton chooses. Further, the precise position of the
molecule has a significant effect on the transfer. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2790436�

I. INTRODUCTION

Plasmonics is an emerging field which examines the
transfer of light through surface plasmons, i.e., collective
excitations.1,2 Advances in fabrication and handling of sub-
wavelength structures, such as metal dots with sizes of tens
of nanometers and even smaller, have led to subwavelength
studies of plasmon motion and transfer. For example, plas-
mon arrays were excited on one side with emerging light on
the other,2,3 and collection of plasmons with different fre-
quencies was excited and then followed once the driving
pulse is turned off, to see their decoherence in time.4 Plas-
mons are generally described well by classical dynamics
down to as little as subnanometer distances where electron
transfer can occur. Plasmons’ wavelength can be tuned by
using different materials and different geometries,5 core shell
geometries, in particular, are widely tunable, with extremes
from the UV to the IR.6,7 As plasmons can be localized, this
raises an interesting ability to drive electromagnetic energy
into well-controlled and confined regions.2,8 Plasmons are
essentially dipole and higher moments of surface charge, and
as such have short-range �R−3 or faster decaying� interac-
tions, and therefore have been very useful in nanometric ap-
plications, using the shift of the absorption of a dipole-
coupled pair of nanodots.9 Further, because of their
collective nature and the large number of excitations, elec-
tromagnetic energy will typically be transferred in the near
field through plasmons, which can be manipulated and
multiplexed.10

Another interesting feature is polarization. Near-field ra-
diation supports three polarizations, as, in addition to trans-
verse excitations, it also supports longitudinal motion. The
frequencies of each polarization undergo curve crossing

which leads to facile transfer between polarizations, and this
is predicted to lead to sharp reflections and negative
refraction.11

The consistent treatment of the propagation of plasmons
on the subwavelength scale has attracted much
attention.3,12–16 For example, there has been several works on
coupling of molecular dots17 using electrodynamics methods
in both time and frequency domains18,19 as well as explicit
plasmon hybridization approaches14,15,20 and time-dependent
density functional theory �DFT� approaches;7,12 further, sim-
plified studies of propagation along chains of molecules11,21

have yielded dispersion curves with conical intersections
which lead to negative refraction and facile transport be-
tween the components.11

When plasmons interact with matter, a combined excita-
tion emerges: a polariton. Polaritons have fascinating prop-
erties; for example, in the solid state, Bose-Einstein conden-
sates of relatively high temperature polaritons �19 K and
higher� have recently emerged;22 polaritons have also found
increasing applications in terahertz radiation studies.23 For
near-field applications �see, e.g., Ref. 24� the relevant ques-
tion is the interaction of the light from the tip with mol-
ecules. This is exactly the problem that occurs when light
emerges from a tip to interact with a molecule, as in, e.g.,
near-field scanning optical microscopy16,25 and surface-
enhanced Raman spectroscopy, where the enhanced fields
near a surface are used to magnify the excitation of a
molecule.26 A closely related problem is ac conductivity,
where light transfers through molecules, typically by dipole
coupling.7,27 Note that here our focus is not only on the mo-
lecular response but also on the transmission of the polariton.

Plasmons and molecules have different scales, nanom-
eters and tens of nanometers for the plasmons and subna-
nometers for molecules. The difference in scales needs to bea�Electronic mail: lopata@chem.ucla.edu
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bridged. Further, the polariton is a combined structure, so its
treatment necessitates consideration of both matter and radia-
tion.

In this work we present a simple yet quantitative ap-
proach for the interaction of plasmons and molecules. Essen-
tially, our approach is a combination of a basis expansion for
the plasmon modes, with a linear-response assumption for
the molecule. The close-coupling expansion is very efficient
in handling large scale structures. The linear-response as-
sumption is the same as linear-response time-dependent
Hartree-Fock or DFT, leading to random phase approxima-
tion �RPA�, an approach which is very accurate for mol-
ecules. The combined resulting approach is similar to the
independent boson model �for chemistry uses see, e.g., Ref.
28�. The combination leads to a polariton basis set and a
Liouville-type evolution operator, with correlation functions,
as derived here, that are akin to well-known transmission-
type trace formulae. The Liouville-type operator is very ef-
ficient to propagate and invert, as it is not explicitly fre-
quency dependent, even though it yields a frequency-
dependent Drude refraction index.

The model is developed in Sec. II; Sec. III presents re-
sults, and conclusion then follow in Sec. IV. Appendix A
briefly presents RPA, and the polariton model is extended to
finite difference time domain �FDTD� treatment of the radia-
tion part in Appendix B.

II. EQUATIONS OF MOTION

A. Plasmon equations of motion

Plasmons are charge waves that propagate on surfaces.
Here our derivation for the plasmons follows �with general-
ized notation� Ref. 15.

In the classical approximation where the plasmons are
purely surface waves and have zero penetration depth, one
starts with a Lagrangian describing the kinetic energy of the
plasmons and their potential energy. Assuming longitudinal
motion, the electron velocity in each material is written as a
gradient of a velocity-potential,

u = �� , �1�

and the electron current is, therefore,

j = n0eu = n0e � � , �2�

where we introduced the electron density in the material and
the �negative� charge of the electron.

Away from the boundaries of the light-conducting struc-
tures, i.e., within any dot or fiber, the density of the electrons
will equal that of the background and will be constant in
time; therefore, the continuity equation,

0 = ṅ + � · j = ṅ + n0e�2� , �3�

becomes then �away from the boundaries�

�2� = 0. �4�

This Poisson-type equation is then solved for the velocity
potential; the results are then presented as a basis-set expan-
sion as

� = �
J

ĊJ�t�fJ�r� , �5�

where the basis function satisfy within the boundaries of the
devices �2fJ=0, and the time-dependent coefficients are
written as derivatives with respect to time for convenience in
the derivation. The expansion parameter J runs over all the
basis function. �For example, for a sphere the basis functions
will be spherical harmonics times a power law, etc.�

The assumption that the charge densities are nonvanish-
ing only on the surface is equivalent to writing the electron
densities as

n�r,t� = n0�r� + ��r,t���������r�� , �6�

where the background density n0�r� equals n0 inside the plas-
mon carrying structures and vanishes outside; ��r� is a func-
tion which characterizes the surfaces, i.e., is vanishing on the
surface of each structure and its gradient, and we define
n�r�=�� / ��� the normalized gradient to the surface �note the
different meanings of n�r�, n�r��. The continuity equation on
the surface then becomes �after integrating perpendicular to
the surface, to remove the delta function�

�̇ = n0en�r� · �� , �7�

so that

� = �
J

CJ�t�sJ�r� , �8�

where

sJ�r� = n0en�r� · fJ�r� . �9�

Therefore, the basic time-dependent variables characterizing
the plasmons are the expansion coefficients CJ�t�.

The next step is the derivation of the equations for the
plasmons. There are two alternating methods. An elegant ap-
proach uses the Lagrangian for the plasmons. An alternate,
simple approach is to use the Drude formula. This has an
added advantage in that the Drude damping �friction� term is
easily incorporated in the formalism, so that the absorption
linewidth is included. We briefly review both derivations.

The plasmons’ kinetic energy can be written in terms of
the electron’s velocity and mass

Tp =
mn0

2
� u2�r�dr

=
mn0

2
� �� � �dr

=
mn0

2
� � � �dS −

mn0

2
� ��2�dr

=
m

2e
� ��̇dS , �10�

where the last equality presents the kinetic energy in terms of
a surface integral over the device �where the surface element
is dS=ndS�. This expression is readily converted to a bilin-
ear expression in terms of the plasmon coefficients, with the
final result that the total kinetic energy is
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Tp =
1

2�
J,K

ĊJĊKMJK, �11�

where we introduced the symmetric mass matrix

MJK =
m

e
� sJfKdS . �12�

The potential energy is similarly

Vp =
1

2
� ��r,t���r,t��

�r − r��
dSdS�, �13�

where the integral is over all surfaces. This integral also has
a bilinear form

Vp =
1

2�
JK

VJKCJCK, �14�

where the coefficients are

VJK =� sJ�r�sK�r��
�r − r��

dSdS�. �15�

There is an additional contribution to the potential energy
from the molecule, VM, which is discussed later in the paper.

The plasmon’s Lagrangian is then

Lp = Tp − Vp =
1

2�
J,K

ĊJMJKĊJ −
1

2�
JK

VJKCJCK, �16�

leading to the equation of state for the plasmons,

�
K

MJKC̈J = − �
K

VJKCK. �17�

The alternate derivation starts from Drude’s model for the
forces on the electron,

u̇ = −
e � �

m
−

u

�
, �18�

where we introduced the decay time of the excitations in the
material, and the electrostatic potential,

��r� =� sJ�r��
�r − r��

dS�.

Plugging in the definition of the velocity in terms of the
velocity potential leads to

�̇ = −
e�

m
−

�

�
, �19�

which, after a straightforward derivation, leads to the final
equation for the plasmons,

�
K

MJK�C̈K +
ĊK

�K
	 = − �

K

VJKCK, �20�

which has the same form as before, except for an additional
Drude damping term. Note that the derivation assumed that �
is constant, at least within a given structure, although in re-
ality � can be dependent on the material, so in the final for-
mula we labeled it as dependent on the plasmon; � is analo-
gous to an absorbing potential but will be a physical

parameter responsible for the attenuation dispersion; the
analogy is developed further below.

The derivation above neglected the role of the dielectric
constant surrounding the medium and the background
asymptotic dielectric in the metals; these effects can be in-
troduced by modifying the matrix elements MJK and VJK, and
more fundamentally, can be introduced by the FDTD model
�see Appendix B�.

B. Molecular part

The molecular part will be treated using linear response,
i.e., a RPA. The total density matrix for the molecule is writ-
ten as

�total = �0 + � , �21�

where we introduced the zeroth-order static density matrix
�which in the absence of magnetic fields is assumed to be
real� and the correction �, which is treated to first order in the
plasmon fields. The one-body Hamiltonian governing the
density matrix is

H = h + U��total� + q , �22�

where h is the one-body kinetic and nuclear attraction part;
U��total� is the two-body potential, including both the direct
electron-electron repulsion on the molecule as well as the
exchange-correlation component; and q is the potential on
the molecule due to the plasmon,

q�r,t� =� ��r�,t�
�r − r��

dS�. �23�

The Heisenberg equation governing the first order density
matrix is

i
d�

dt
= �H,� + �0� − i�� = �h,�� + �U�� + �0� − U��0�,�0�

+ �q,�0� − i�� + O��2� , �24�

where we introduced matrix elements for possible additional,
phenomenological T2 damping of the matrix elements �note
that �� is an element by element multiplication, i.e., ����ij

=�ij�ij�.
The most important term in this context is the driving

term due to the plasmon, �q ,�0�. To obtain it we introduce a
basis set used for the expansion of the density matrix and
note that the matrix elements of the potential are then defined
as

qij�t� =� 	i�r�	 j�r���r�,t�
�r − r��

drdS�. �25�

From the definition of the charge density in terms of the
plasmon we get the driving term

�q,�0�ij�t� = �
J
��

k

qik,J�0kj − �0ikqkj,J	CJ�t� , �26�

where
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qij,J =� 	i�r�	 j�r�sJ�r��
�r − r��

drdS�. �27�

To get working equations for the density matrix, we define as
usual in RPA the real and imaginary parts of the linearized
density matrix,

Xij = Re��ij� ,

Yij = − Im��ij� . �28�

These equations are most convenient in the basis set of oc-
cupied orbitals in, e.g., a Hartree-Fock or Kohn-Sham treat-
ment. Due to the hermiticity of the density matrix and the
fact that the only perturbation densities that are nonvanishing
couple to the zeroth-order density, it is enough to consider
particle-hole excitations, i.e., only store Xij ,Yij, with i and j
being an occupied and virtual orbitals. The final equations
for X and Y are then obtained by a straightforward derivation
�see Appendix A for a brief review�, which gives

dXij

dt
= 
ijYij − �ijXij ,

dYij

dt
= − 
ijXij − �

kl

Zijkl
2B Xkl − �

J

qij,JCJ�t� − YijYij , �29�

where


ij = � j − �i �30�

is the particle hole excitation energy.

C. Molecular and field effects on the plasmon

To conclude we need to include the effects of the mol-
ecule on the plasmon as well as external fields. The potential
energy associated with the molecule-plasmon interaction is

Vtotal
M =� ��r,t����r�,t� + �0�r��

�r − r��
dSdr�

= �
ij,J

��ij�t� + �0,ij�qij,JCJ�t� . �31�

The external field contribution will be

� vext�r,t���r,t�dS = �
J

CJ�t�vJ�t� ,

�32�

vJ�t� =� sJ�r�vext�r,t� .

Therefore, the equation of motion for the plasmons becomes

�
K

MJKC̈K = − �
K

VJKCK − �
K

MJK
ĊK

�K

− �
ij

��ij + �0
ij�qij,J − vJ�t� . �33�

The constant �ij�
0

ijqij,J can be shown to be very small and
serves only to shift the average position of the plasmon by

creating a permanent moment due to the presence of the
molecule; it will be therefore ignored below.

D. Combined polariton equations of motion

Equations �29� and �33� yield an equation of motion for
the combined polariton. The plasmon momenta are defined
as

QJ = �
K

MJKĊK, �34�

and a supervector of variables f of length 2NJ+N� �where NJ

is the number of polaritons� is

f =

C

Q

X

Y
� , �35�

i.e., if all virtual and occupied orbitals are used,

f = �CJ,J=1,. . .,NJ
,QJ,J=1,. . .,NJ

,Xij,i=1,. . .,Nocc,j=1,. . .,Nvol
,

Yij,i=1,. . .,Nocc,j=1,. . .,Nvol
� . �36�

The evolution equation can then be summarized as

df

dt
= Lf + v , �37�

where L is a generalized Liouvillian operator, and from Eqs.
�29� and �33�, its form will be, with suppressed indices,

L =

0 M−1 0 0

− V − �−1 − q 0

0 0 − � 


− q 0 − 
 − Z2B − �
� , �38�

while

v =

0

− vJ

0

0
� . �39�

E. Polariton wave functions and transition amplitudes

Once the full Liouville operator for the system is given,
it is straightforward to derive wave-function-like expressions
as well as transition amplitudes.

In general, the time-dependent solution to Eq. �37� is

f�t� = �
0

t

exp��t − t��L�v�t��dt� + f0. �40�

For a driving field which is a delta pulse in time, and with
zero plasmon at earlier times,

vext�r,t� = v0�r���t� , �41�

it follows that
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f = eLtv0. �42�

Typically the driving field will excite one plasmon, or a set
of plasmons in one region, which will then propagate in
time. Equation �42� can then be used to follow the motion of
the combined polariton �plasmon+excitation� in time.

There are many other quantities which can be followed.
One will be the field and molecular dynamics if the driving
field is periodic, i.e.,

vext�r� = v0�r�ei�t. �43�

Then, the solution of Eq. �40� will be �again assuming that at
t=0 the molecule and plasmons are not excited�

f�t → � = ei�tD���v0 �44�

where frequency-dependent Green’s function for the polar-
iton will be

D��� =
1

i� − L
. �45�

An alternate goal is to obtain transition probabilities. There
are many possible versions of the desired transmissions. To
start, presume we excite one or several modes �e.g., excite an
initial range of nanodots� with a periodic field; for simplicity
we assume that we uniformly excite all nanodots in a given
range, denoted by a function �I, which is one on excited
initial modes and zero otherwise. We can then calculate what
will be the summed amplitude collected on another set of
modes. The transition probability, defined as the squared am-
plitude, will be calculated as

T�i → f� = �aFD���vI�2, �46�

where we introduced the initial and final vectors; the initial
vector is

vI =

0

�I

0

0
� , �47�

and the final vector is

aF =

�F

0

0

0
� . �48�

Equation �46� is automatically recasted as

Tr�WFD†���PID���� , �49�

where we introduced the projectionlike operators,

PI = vIvI
†,

�50�
WF = aFaF

† .

Note that these operators are also valid for coherent illumi-
nation of more than one plasmon, where the initial vector is
nonzero for several plasmons.

The same generic form of a correlation function involv-
ing D���, D†��� appears for many other possible transition
amplitudes. For example, one may ask how much energy is
absorbed per unit time from the system on one or more plas-
mons in the desired final region. Denoting by �F a projection
to the final region of interest, and presuming the mass tensor
does not couple plasmons from different regions, the desired
energy is then

EF =
Q�FM−1Q

2
, �51�

so that

dEF

dt
= Q�FQ̇ , �52�

where we introduced an absorbing-potential-like �fluxlike�
term,

�F =
1

2
�F�1

�
M−1 + M−11

�
	 . �53�

Therefore, the proper correlation function will be

Tr��FD†���PID���� . �54�

Similarly, we can write the symmetric correlation function
which measures, for a given energy flux due to friction from
the first plasmon, how much energy flux goes to the last
plasmon; the correlation function will be stipulated, by anal-
ogy to the molecular scattering expression,29 to be

P���i → F� = Tr��FD†����ID���� . �55�

To conclude this section, we note that the formulation pre-
sented here is easily extended beyond linear response. For a
self-consistent field �SCF�-type ansatz,30 the combined sys-
tem is described by separate plasmons and a �nonperturba-
tive� density matrix. The nonlinear evolution operator is de-
fined by Eq. �33� and by the Heisenberg equation for the total
density matrix,

i�̇total = �h0 + U��total� + �,�total� . �56�

This will be studied in later publications, for, e.g., tackling
multiharmonic emission from molecules acted on by plas-
mons from fibers and dots.

III. RESULTS

For the model, we chose a simple system which shows
nontrivial effects.

For the plasmons, a set of metal nanodots is considered.
For each dot, only the three dipole plasmons are used. The
expansion functions for the plasmons are then

fJ�r� =
r

�bJ
3
Y1mJ

��� ,

�57�

sJ�r� =
n0e

�bJ
3
Y1mJ

��� ,

where the distances and solid angles are measured relative to
the position of the dot associated with the Jth plasmon, bJ is
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its radius, and m denotes the polarization of the plasmon.
The plasmon mass vector is then easily shown to be

MJK = �JKn0me. �58�

The diagonal part of the potential matrix is also simple,

VJJ = n0me�J
2, �59�

where formally the surface-dipole plasmon frequency de-
pends only on the density,

�J =�4�n0e2

3me
. �60�

Materials with different densities, or more complicated ge-
ometries such as nanoshells, will produce different plasmon
frequencies.

Assuming the dots are sufficiently far apart, the off-
diagonal potential matrix elements are essentially that of two
coupled dipoles,

VJK = n0
2e2�bJbK�3/2

R2�mJmK
− 3RmJ

RmK

R5 , �61�

where R is the distance vector between dots J and K and mJ

and mK �=1,2 ,3 for spherically symmetric dots� are the in-
dices for the surface plasmon polarization on dots J and K,
respectively.

For all simulations, we took n0=0.009 bohr−3, similar to
the values for Au and Ag. The simplest plasmon model
yields a surface dipole plasmon frequency of �4�n0e2 /3me

=5.2 eV/�; to fit to experimental values we have taken a
much smaller value, �s=2.5 eV/�. The Drude damping time
was taken as 6 fs, appropriate for Au.

To study the model, we first examine it relative to known
results for a systems of plasmons alone. Figure 1 shows the
absorption of radiation of a single 25 nm radius particle and
a chain of four such dots with center to center distance of
75 nm, when a totally symmetric pulse is used, i.e., a pulse
which excites all plasmons identically and simultaneously.
This figure is to be compared with the work of Ref. 31 �and

Ref. 2�, employing similar parameters for the dots and using
FDTD; very similar results are obtained.

The absorption spectrum when only one dot is present is
shifted when a completely symmetric longitudinal pulse is
used with four metal dots; the symmetric pulse excites the
lowest bound wave of the four-dot system, which is shifted
relative to the one-dot pulse, and in addition a second plas-
mon resonance state is more weakly excited. The reason for
the two resonances is physically simple. The lowest reso-
nance is associated with an eigenvector in which the dipoles
of the two inner dots are strong in one direction, and the two
dipoles on the our dots have the same sign as the inner dots
but are weak; the reason is that the leftmost and rightmost
dots only interact with dots on one side, while dots in the
middle interact with both sides. Therefore, the lowest reso-
nance is not associated exactly with a uniform excitation, but
with an excitation which is stronger at the middle of the
four-dot structure. The exciting field itself will be essentially
uniform, so it will weakly overlap—in addition to the �not-
exactly uniform� lowest excitation—also with the other sym-
metric excitation, which is associated with strong dipole of
one sign in the outer dots, and weak dipole, of opposite sign,
in the two inner dots.

In Fig. 1�c�, we also plot the maximum absorption fre-
quency as a function of the number of nanodots, for longitu-
dinal and transverse driving waves �i.e., waves with polar-
ization along the x or y axis, where the dots are placed along
the x axis�; the shift with the number of nanodots matches
well Fig. 3�a� in Ref. 31.

Next, we include the effects of the molecules. The mol-
ecule is assumed to be a single level oscillator with fre-
quency �M, narrow damping �we used three values, �
=�M

−1=0, �24 fs�−1, �12 fs�−1�, and transition dipole d. The
zero damping is a severe restriction, but in practice the re-
sults will be valid for a system �atom or molecule� with a
narrow absorption line and a large transition dipole moment.
The oscillator has two states, 0 and 1, and the transition
dipole between the states is

FIG. 1. Normalized absorption spec-
trum for a single gold nanoparticle �a�
and for a linear chain of four particles
coherently illuminated with
x-polarized light �b�. The maximum
absorbance frequency as a function of
chain length is shown in �c�, for both
longitudinal �x polarized� excitations
and for transverse �y or z polarized�
excitations. The resonant frequencies
of the chains are found to saturate af-
ter approximately four particles. The
results are essentially identical to
FDTD results �Ref. 31�.
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d � 	0�r��r − rJ�	1�r�dr . �62�

Using a first order expansion, the coupling matrix element
becomes

q01,J �� 	0�r�	1�r��r − rJ� � � sJ�r��
�r − r��

�
r=rJ

dS , �63�

leading, in the dipole approximation, to

q01,J � n0ebJ
3/2

R2dmJ
− 3d · RRmJ

R5 . �64�

We note that the formalism is not limited to a dipole
approximation; for dots and molecules that are sufficiently
close, higher order terms as well as the permanent dipole
term have to be considered.

Figure 2 shows the effect of placing a molecule in a
chain of four metal dots, oriented along the x axis. Here we

used a much smaller set of dots, with radius of 2.5 nm and
center to center separations of 7.5 nm. The molecular transi-
tion dipole matrix element is fairly large, �4 a.u., and we
used three values of decreasing molecular dephasing time
�increased damping; increased absorption linewidth�. We as-
sume that the molecular dipole is oriented at a 45° to the
plasmon chain and that the molecule is midway between the
second and third metal dots. We use Eq. �54� to study the
reactivity, by exciting the leftmost molecule with x-polarized
light, and measuring the polarized-light intensity at the right-
most molecule. The effect is very strong; a
Fano-resonance-like32 dip develops in the transmission factor
for driving with an x-polarized light and obtaining an
x-polarized light �i.e., a longitudinal to longitudinal transi-
tion�. An even more striking effect is a strong and very nar-
row longitudinal→ transverse excitation, with a width much
narrower than that of the plasmon-only spectrum. In essence,
the molecule scatters amplitude from one polarization to an-
other, over a narrow frequency range. Increased damping on
the molecule strongly reduces the magnitude of this conver-
sion.

Finally, we consider the effect of a molecule on a fork-
like junction geometry. This junction is comprised of ten
gold nanoparticles of 2.5 nm radius, with center to center
separation of 7.5 nm. There is a single “input” chain in the x
direction and two “output” chains aligned at 45° with respect
to the input, as seen in the insets of Fig. 3. A molecule with
a very strong dipole moment �7 a.u.�, which is also oriented
at 45° with respect to the input chain, is placed 2.5 nm above
the x axis �input� of the junction, midway between the third
and fourth particles. The oscillator frequency of the molecule
was taken to be 2.39 eV/�. The first particle of the input
chain was excited with x-polarized light, and the
x-polarized-light intensity was measured on the terminal par-
ticles of the top and bottom output chains.

Figure 3 shows the resulting transmission spectra
through the top and bottom outputs. The transmission spec-
trum for the device without the molecule is also shown for
comparison. The effect of the xy oriented dipolar molecule is
to strongly bias the transmission into the top output of the
junction, for a broad range of frequencies around 2.39 eV.
This directed transmission phenomenon is severely dimin-
ished with increased damping on the molecule. Thus, this
fork+molecule device acts as an efficient switch for control-
ling polariton flow; by varying the strength and orientation of
the molecule, as well as its position with respect to the chain,
one can choose which of the outputs the polariton travels
into. Conversely, this device can be used as a highly sensitive
detector of a molecule’s dipole strength, orientation, and po-
sition by measuring the relative transmission through to top
and bottom outputs.

IV. CONCLUSIONS

In conclusion, we have shown that it is possible to uni-
formly describe nanoscale polaritons due to near-field inter-
actions with molecules. The description unifies the simple
plasmon picture of electromagnetic interactions with linear
response for the molecule. The results are completely analo-

FIG. 2. �Color online� The effect of a dipolar molecule on x-polarized
polariton transmission through a linear chain of four gold nanoparticles, the
frequency-dependent transmission through the chain without a molecule is
featureless �a�; while for a chain with a molecule �shown schematically as a
triangle� positioned midway between the second and third particles, the
transmitted x-polarized intensity shows a very strong resonance dip around
the oscillator frequency of the molecule �b�. There is also a strong and
narrow transmitted y-polarized excitation �c�, arising from longitudinal to
transverse coupling due to the molecule. Three different molecular dephas-
ing times were used �labeled on plot�.
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gous to the well-known state-to-state expressions in molecu-
lar dynamics. The use of the RPA simplified the problem by
turning it into a set of coupled harmonic oscillators, and the
use of a correlation function makes the combined problem
analogous to that of molecular scattering or electron trans-
mission, with the combined Liouvillian operator playing the
role usually used for a Hamiltonian.

Physically, the interesting phenomenon discussed here is
the facile control that can be exerted on the transfer of the
plasmons using dipole moments. This raises an intriguing
question, whether, if the control is sufficiently significant, the
linear-response assumption can break down since the mol-
ecule excitation will be beyond linear response. While this
will be study in model close-coupling and SCF calculations,
the indications of the linear-response study are that molecu-
lar motion can significantly affect transfer between

plasmons, as long as the dimensions of the structures carry-
ing the plasmons �or of the end of the tips if a tip configu-
ration is used� are sufficiently small.

There are several directions that emerge from this work
and will be extended in future studies. First, we have only
studied a simple structure where on each metal dot only the
dipole is considered. Future work will consider more com-
plicated structures, which can carry up to a near continuum
of states, such as a tip, nanotubes, or skewed structures. Ef-
fects of dielectrics will also be incorporated �see also Appen-
dix B�.

An additional direction is to consider molecules which
have more than one dipole excitation, for example, nano-
tubes and similar structures, where a set of excitations can be
considered; then, of course, the distinction between a mo-
lecular dipole and a plasmon is becoming blurred.

Additional effects not considered here but which will be
straightforward to incorporate include spins and magnetic
fields. More specifically, the spins can be manipulated both
through spin orbit effects33 and through magnetic fields.34

An effect which is straightforward to incorporate is that
of nuclear motion. The strongest effects will typically be
indirect, i.e., the plasmons will excite molecules, and the
molecular electronic excitations will cause nuclear motion.
The plasmon will heat or cool the nuclear excitations. Within
the RPA, the nuclear motion effects will be that of an addi-
tional harmonic oscillator coupling, which will leave the
overall Hamiltonian linear; in practice, the Liouville operator
will be extended to include the additional nuclear degrees of
freedom.

An additional issue is systems where there is physical
bonding between molecules and tips. Then, the coupling ma-
trix elements between the molecules and the plasmon need to
be calculated more precisely and extend beyond the dipole-
dipole order. While numerically involved, the calculations
are straightforward.

The effects of chemical bonding on the interactions be-
tween the plasmons and the molecule will be more involved,
since when there can be electron transfer between the
plasmon-supporting structure �e.g., a metal dot� and the mol-
ecule. One simple way to account for the coupling will be
through using embedding formalisms, in which the total den-
sity of the system is divided to an explicitly treated part and
a background part, where the latter will support the plasmon
here. The two parts can be overlapping, as in several modern
embedding approaches; or, alternately, they can be separated.
The separation will be done by “carving” a part of the metal
dot and treating it explicitly together with the molecule
which it supports; the rest of the dot or tip will be treated as
a plasmon.

The effect of the polarization of the wave can be quite
important, as near-field light supports both longitudinal and
transverse excitations, which have different group velocities
and interesting conical-intersection effects. These effects
were previously studied in an idealized model in which, ef-
fectively, the frequency dependence and broadening of the
response of the plasmons were ignored.11 A future study will
examine polarization effects in the present framework, in-
cluding the time-dependent response.

FIG. 3. �Color online� A simple switching junction, which utilizes coupling
to a dipolar molecule to guide an x-polarized input polariton �at site “I”� into
one of two possible output paths. �a�–�c� differ in the value of the molecule’s
dephasing time �values shown on plots�. The top �blue� curve shows the
x-intensity spectrum for the top output �dot “T”� and the bottom output
intensity �dot “B”� is shown below �red�. The middle curve shows the trans-
mission for the device with no molecule �both top and bottom outputs then
have the same signal�. There is a clear bias toward the top output for a wide
range of frequencies around the molecule oscillator frequency �2.39 eV�;
this effect decreases with decreased molecular dephasing time �increased
damping�. Depending on mode of operation, this device can act as a switch
or as molecular sensor. All curves were normalized with respect to the top
output.
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The present formulation uses linear response for the di-
poles. As mentioned, it is straightforward to go beyond linear
response with a SCF formulation where the field induced by
the plasmons is propagated at the same time as the molecular
density matrix �which will now be far from �0�; this can be
used to study the modified polaritons in this unique regime
of nonlinear response. An intriguing but numerically costly
approach is to use influence functionals,35 which in this con-
text will account for the effects of all the modes except the
starting mode, leading to a time-dependent kernel for the
combined density matrix and higher tensors of the molecule
and the driving plasmon mode.

Finally, an intriguing possibility is whether a polariton
can undergo lasing. Specifically, since the combined system
is essentially a boson, many quanta can be placed. As the
intensity becomes higher, the linear-response approximation
for the molecule will lose its validity, so more sophisticated
formalisms of coupling the boson plasmon bath to a mol-
ecule need to be addressed. It is clear, however, that a polar-
iton mode will be able to support multiple bosons as long as
the product of the number of bosons times the intensity of
the contribution of the density matrix to the mode will be
significantly smaller than one; otherwise, the response will
be determined as a SCF level.
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APPENDIX A: BRIEF OVERVIEW OF THE DERIVATION
OF THE RPA

In the ground state, without a plasmon effect, the zeroth-
order Kohn-Sham or Hartree-Fock Hamiltonian,

h0 = h + U��0� , �A1�

commutes with the zeroth-order density matrix,

�h0,�0� = 0. �A2�

Equation �24� can then be rewritten in a superoperator form,

i
d�

dt
= Z� + �v,�0� , �A3�

where the meaning of the superoperator is clearest if we
include specific indices,

i
d�ij

dt
= �

kl

Zij,kl�kl + �
J

dij,JCJ�t� . �A4�

The superoperator in index form can be written as

Zij,kl = hik� jl − hij�ik − Z2B
ijkl − i�ij�ik� jl, �A5�

where we introduced the two-body contribution to the den-
sity, defined formally as

Z2B
ijkl = −

1

�
�U��0 + ���k��l� + �l��k��� − U��0�,�0�ij , �A6�

where � is a small number inserted to ensure linearity. For a
Hartree-Fock description,

Z2B
ijkl = �

n

�0,in�Vnjkl
2B − Vjnkl

2B � − �
n

�Vinkl
2B − Vnikl

2B ��0,nj ,

�A7�

with different expressions for a density-functional represen-
tation. Here we introduced the matrix element of Coulomb
electron-electron interaction.

In a diagonal representation,

h0 = �
k=1

Nocc+Nvirt

�k��k�k� ,

�A8�

�0 = �
i

Nocc

�i��i� .

Using i and j for occupied and unoccupied levels, the super-
operator can be recast. In terms of the real and imaginary
terms of the density matrix; Eq. �29� results, with the simpli-
fication that now

Z2B
ijkl = Vijkl

2B − Vjikl
2B , �A9�

and, as mentioned, the second term will be modified for a
density-functional description, where it accounts for ex-
change and correlation.

APPENDIX B: POLARITON IN FDTD CALCULATIONS

Although the polariton formalism has been derived here
in the framework of plasmon modes, the methodology is
equally relevant to other approaches. For example, in mod-
ern FDTD approaches, the electric and magnetic fields are
supplemented by a single �or multiple� current vector J that
represents the Drude response to the electric field. Upon add-
ing the contribution of the molecule, the relevant equation
will read

�H

�t
= −

1

�0
� � E ,

�D��
�E

�t
= � � H − J − JM , �B1�

�J

�t
= − �DJ + �D

2�0E ,

where these equations use the magnetic and electric fields,
and the Drude dielectric constant, frequency, damping pa-
rameter, and asymptotic refraction index �see, e.g., Ref. 19�.
The one new ingredient in the equations will be the
molecular-induced current, which will read as

JM�r� = �
ij

jij�ij��r − rM� , �B2�

where we introduced the coefficients of current term and the
location of the molecule. The only problematic term is the
delta function, which involves the position of the molecule.
When the electromagnetic fields and J are represented on
grids, the simplest choice for delta function will take the
following form:
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��r − rM� �
1

d3r
sinc���r − rM�

dr
	


1

dxdydz
sinc���x − xM�

dx
	sinc���y − yM�

dy
	

�sinc���z − zM�
dz

	 . �B3�

Note that this allows the molecule to be placed in between
grid points. This representation is obtained by Fourier trans-
forming the delta function to momentum space analytically
�leading to a constant Fourier coefficient� and then trans-
forming it back numerically. Other choices are feasible and
may be desirable to reduce the long-range “ringing” of the
delta function; for example, one can use the distributed ap-
proximating functionals �DAF� composition36 to get a more
localized representation of the delta function away from the
grid. Alternately, a larger basis set can be used, encompass-
ing both grid points �i.e., sinc-type functions as in Eq. �B3��
as well as a set of localized functions �l�r� describing the
plasmon near the molecule, i.e.,

E�r,t� = �
g

Eg�t�sinc���r − rg�
dr

	 + �
l

al�t��l�r� , �B4�

where we introduced a summation index over the grid. Note
that the set of functions �l�r� will be most efficient when it is
made orthogonal to the grid point, so that the set of equations
for the grid coefficients and the extra function has a unit
overlap matrix. Simulations using this approach will be pre-
sented in future work.

Finally, the equations for the electromagnetic field are
supplemented by an equation for the molecule, as follows:

i
��ij

dt
= �

kl

Zij,kl�kl + �� · E�rM�,�0�ij , �B5�

where we introduced the dipole operator on the molecule and
have ignored the magnetic coupling to the molecule. To-
gether, Eqs. �B1� and �B5� give a linear set which define the
effective evolution operator for this scheme; the usual
Heisenberg equation �without the RPA approximation� can
be used if nonlinear effects are desired.
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