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In a previous work the authors developed a family of orbital-free tensor equations for the density
functional theory [J. Chem. Phys. 124, 024105 (2006)]. The theory is a combination of the coupled
hydrodynamic moment equation hierarchy with a cumulant truncation of the one-body electron
density matrix. A basic ingredient in the theory is how to truncate the series of equation of motion
for the moments. In the original work the authors assumed that the cumulants vanish above a certain
order (N). Here the authors show how to modify this assumption to obtain the correct
susceptibilities. This is done for N=3, a level above the previous study. At the desired truncation
level a few relevant terms are added, which, with the right combination of coefficients, lead to
excellent agreement with the Kohn-Sham Lindhard susceptibilities for an uninteracting system. The
approach is also powerful away from linear response, as demonstrated in a nonperturbative study of
a jellium with a repulsive core, where excellent matching with Kohn-Sham simulations is obtained,
while the Thomas-Fermi and von Weiszacker methods show significant deviations. In addition,
time-dependent linear response studies at the new N=3 level demonstrate the author’s previous
assertion that as the order of the theory is increased new additional transverse sound modes appear
mimicking the random phase approximation transverse dispersion region. © 2007 American

Institute of Physics. [DOI: 10.1063/1.2716667]

I. INTRODUCTION

The development of new methods for quantum dynamics
based upon hydrodynamic representations is very promising.
In hydrodynamics the kinetics of the system is defined by a
lesser number of variables than the number of variables re-
quired to define the complete one-particle density matrix
(which contains all the information on off-diagonal quantum
coherence as in, e.g, the Kohn-Sham approach). For station-
ary studies the hydrodynamics approach is related to orbital-
free density functional theory.l_25 It is the reduced number of
variables depicting the system that makes hydrodynamical
theories applicable for numerical studies of relatively large
systems.

The simplest hydrodynamical approach is similar to the
de Broglie-Bohm formulation of one-particle quantum
mechanics.”*™ In this approximation the complete complex-
valued one-particle density matrix is substituted by two real
valued fields p_and ¢, which are combined in an order
parameter =1 p exp(i¢). The equations of motion are ob-
tained by minimizing a Ginzburg-Landau-type functional on
. In addition the density matrix is assumed to possess long-
range off-diagonal one-particle correlations.

A more rigorous and asymptotically exact approach is an
infinite hierarchy of coupled hydrodynamic moment (CHM)
equations.34_38 The moments come from a Taylor expansion
of the one-particle density matrix with respect to the off-
diagonal variable. To get a tractable system of equations the
infinite hierarchy must be truncated. The most physically
meaningful truncation is a cumulant expansion for the den-
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sity matrix.** Specifically, one decides on an order to termi-
nate the method at; a low order will be less numerically
demanding but less accurate than a higher one. Then, at that
order, labeled N, the (N+1)th order moment is expanded in
terms of the previous set of moments, through the use of the
cumulant expansion.

The CHM theory and the accompanying cumulant trun-
cation have been applied so far to systems where particle
statistics does not play an important role. In Ref. 39 we have
generalized the CHM theory and cumulant expansion to sta-
tistically degenerate fermions. The main point has been the
modification of the unperturbed one-particle density matrix
of a locally homogenous electron gas by using the cumu-
lants. Since the approach uses successive tensors, we labeled
it as hydrodynamic tensor density functional theory (HT-
DFT).

It turns out that the lowest level of truncation, N=1,
HTDFT corresponds to a de Brogilie—Bohm quantum hydro-
dynamics and in addition naturally incorporates the
Thomas-Fermi*® kinetic energy term into the energy func-
tional. At the next level, N=2, HTDFT starts reproducing the
spectrum of a homogenous Fermi liquid, i.e., it gets trans-
verse excitations, rather than just classical plasmonic longi-
tudinal excitations. The transverse sound mode mimics the
elementary excitations’ density of states.

A crucial feature of HTDFT is the value of the cumulant
used at the truncation. In Ref. 39 we assumed that the (N
+1)th order cumulant is zero. It turns out, however, as we
show here that this assumption leads to a wrong susceptibil-
ity for a homogenous electron gas, i.e., to a wrong linear
response to a perturbation, even for a noninteracting system
of electrons. We show here how to remedy this problem. This
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is exemplified below for truncation at the N=3 level, which
is the first level where the method will yield different ground
state results from the Thomas-Fermi approach. Specifically,
the fourth order cumulant is written as a sum of terms in-
volving the gradients of the previous moments. The coeffi-
cients of these terms are obtained by fitting to the exact sus-
ceptibility of a noninteracting set of electrons (the Lindhard
function).

The balance of the paper is as follows. The general
methodology is first developed in Sec. II. In Sec. III the
derivation of a correct susceptibility is done. Section IV ap-
plies the methodology to a static nonperturbative numerical
study of a jellium with a deep spherically symmetric hole,
where we show that the agreement with Kohn-Sham results
is excellent while the Thomas-Fermi and the von Weiszacker
methods have significant errors. Section V is a linear re-
sponse time-dependent study of the approach for N=3 as a
function of frequency and wave vector. This latter part is a
direct continuation of our work in Ref. 39 for N=2, and
proves that there is an additional sound mode with respect to
the N=2 case, just as suggested in Ref. 39. Conclusions fol-
low in Sec. VL.

Il. THE SYSTEM AND TENSOR-DFT FORMULATION
A. Coupled hydrodynamic moment hierarchy

For completeness, we rederive the basic aspects of the
theory (see Ref. 39). We assume that the many electron sys-
tem can be described by the one-particle density matrix p'!).
The one-electron Hamiltonian governing this system # is, as
usual, composed of kinetic terms and local potential terms.

The one-particle density matrix is then expressed in
terms of average and difference coordinates as

pD(R,s) = (J (R - s/2) AR +5/2)). (1)

The time evolution of the one-particle density matrix is gov-
erned by the Heisenberg equation, ip=[#, p], which in those
coordinates takes the following form:

] . - _
lEp(”(R,s) =P p.p"+ (V(R +5/2) — V(R —5/2))p'".

2)

Here f’a and p,, stand for the derivatives over the coordinates
R, and s,,

Poy=—idldR,, Po=—idlds,, 3)

and V(R) is the effective potential, which also takes into
account the two-body interactions,

V(R) = f el oo )d3R' -, VeuB),  (4)

R-R'| Sp(R)

where p(R)=p"(R,0) is the spatial electron density, py(R) is
the positive nuclear charge density, V,,, is any external po-
tential, E,. is the exchange-correlation energy, and p is the
nuclei density. There are a variety of functions V.
= OF,./ 8p in the literature (see, e.g, Refs. 2—4). For us, how-
ever, the specific form of V. is not important. [In future
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works we will aim to derive a form of V,. which depends
also on other moments in addition to p(R).]

The particle kinetics in the system can be exactly de-
scribed by the complete infinite set of hydrodynamic mo-
ments (dynamic tensors),34_39 which are the derivatives of
the one-particle density matrix with respect to the off-
diagonal distance s at s=0,

(I’gf.])..zN(R) =p, - Prp" (R$)|ico- (5)

The particle and the current spatial densities are merely the

first two tensors in the family,
OOR) = p(R), DR =J,(R). (6)

By using Eq. (2) one derives an infinite set of equations
which connects the moments at different orders,

d

—p=-V_J,, 7
P ol (7a)
=Vl - VY, (7b)

J
Ecp;,? =-V, 0 —

ika

JinV—JkViV, (7C)

9 3 4 Do S ade S mQe S
Eq)gkl) =-V, 0, - PPV,V - df WA (D§k>viv

+1pVV, VY, (7d)

This generic set of equations is correct for both fermions and
bosons. For this set to be useful one should terminate it at
some level. As usual, this termination is actually a method
for factorizing a moment ®M*D at some N into moments
®* k<N. In addition, this truncation reflects the Fermi sta-
tistics of the particles. The order N at which one terminates
controls the precision with which we treat the system.

B. Fermi factorization of higher order dynamic tensors

In Ref. 39 we proposed a factorization procedure for the
lowest order dynamic tensors (N=2,3). Here we describe in
detail how the factorization of the higher order dynamic ten-
sors works in the Fermi case. The method proposed is based
on the following general parametrization of the one-particle
density matrix:

PV (R.s) = p exp{B(R,5)}fo(p.s), (8a)

H(R,s)= 2 ¢,l ) (R)s; )(isy) . (is; ), (8b)
a=1 &

Folps)=3 sin(kps) — (kps)cos(kgs) (80)

(kFS)3 ’
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kp=(3p)"3. (8d)

Here, f;, is the normalized one-particle density matrix of a
free fermion liquid with density p(R) and kg is the local
(density-dependent) Fermi wave vector. All the cumulants
@'Y, are symmetric in all the indices because they are con-
volved with the symmetric tensors Siy---Si, and all the @@
are real as the one-particle density matrix is hermitian. The
same is true for the tensors ®(®).

The physical meaning of this parametrization is as fol-
lows. If ¢=0, then we end up with the Thomas-Fermi ap-
proximation of a locally homogeneous Fermi liquid. The ¢
function perturbs this steady liquid picture, and the tensors
¢®s and/or ®@’s determine different dynamic characteris-
tics of the flowing electron liquid. The function f, assures the
Fermi statistics of the particles at the one-particle level.

For brevity we introduce below the tensors

Fo = p, 9)
instead of @@, The tensors 7 and ¢ are interrelated.

The relations between F@’s and ¢'®’s for the lowest order
tensors are given below for the first four relations:

FD= g, (10a)
FO = 6@ 1 gD gD 4 @) (10b)
F =99 +3¢M¢? +3¢0e? + ¢MpM M (10c)

FO= 444180 + 3806 + 640 g0 g

+ 6¢(2)e(2) + 6¢(1)¢(1)e(2) + ¢(1)¢(1)¢(1)¢(1) + 6(4)’
(10d)

etc. Here all terms are absolutely symmetric tensors of their
indices so that there is no need to write down the indices
explicitly; a bar denotes here a complete symmetrization,
e.g., for a product of a; iy and bi1-~-i

]

M

— 1
abil"'iK+M = (K+ M)[E aP(i1)<-~P(iK)bP(iK+|)~-»P(iK+M)’
p

where summation is assumed over all (K+M)! permutations
of the indices and p denotes a permutation. The symmetrized
multiplication is associative and it can be considered a mul-
tiplication on a ring of symmetric tensors (note that in Ref.
39 a somewhat different symmetrization was used). Here is
an explicit example of the symmetrized multiplication as
follws:

HVGGD = (A D+ A +
+ A0 o) + 4V oY
+ o). (11)
In Egs. (10) the tensors ¢ and e come from differentiat-
ing the function f;, so that they have the physical meaning of

averaging the particle momenta products over the unper-
turbed Fermi sea (ufs):

esz) = p_l<pipj>ufs = C25ij’ (12)
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6‘5;}/3[ = P_1<pipjpkpl>ufs
= 36‘45_5[ij
= 4(8,0u + Oy + Sy 0j) (13

where the kinetic coefficients are defined as
1,2 1,4
Cy=35kp,  cy= 755k, (14)

All the odd order e’s vanish.

The general recipe for how to express F) in terms of
&' @s is as follows. F™ is the sum of all the different sym-
metrized (in the sense discussed above) products of ¢* and
e a@<N. An additional rule is that each term may include
one (and only one) e tensor.

The relations inverse to Egs. (10) are

F_ ¢(l)=0’ (15a)
FO_ 4@ = FOFD 4 @) (15b)
FO)_ g 2 SFTFT _ o FUETAT, (150)

F_ @ = gFTFO _ |y FO A
+ 6FTFTFTED 4, 37070 _ 37,0
(15d)

+e.

The inversion of the infinite set of relations [Eq. (10)] is
possible since an expression for any V) in terms of ¢'®’s
contains only qﬁ(“),asN. This means that if one knows the
expressions for the first N ¢'@ tensors [e.g, Eqs. (15a)—(15¢)
for N=3] then by substituting all the lower order ¢'®’s, a
<N, in the relation for 7V*1 [Eq. (10d)] with corresponding
expressions in terms of F(“’s one gets the inverse relation
for ¢V (Eq. (15)).

The factorization for the tensor ®™*! is then simply
given by the (N+1)th equation in Egs. (15) The expression
for the @™+ tensor contains only kinetic tensors of order
n<N, as well as the (N+1)th order cumulant. Once this
cumulant is known the system of Egs. (8) closes and one
arrives at the Nth order tensor DFT theory.

C. N=3 hydrodynamic tensor DFT

At the N=3 level the factorization of ®® is given by Eq.
(15d) with ¢™ set to zero, or

W =4p71JdO — 12972710 + 6p7JJIT
1307 DPDD — 356D 1 pe® 4 pp®. (16)

In order to complete the theory we need to obtain ¢*). For
this, we study the static linear response of a homogeneous
electron gas. In the ground state all the odd order ®@ ten-
sors vanish (a ground state has no currents as its wave func-
tion is real when there is no magnetic field and no degen-
eracy), so that the first three terms in Eq. (16) would give
only nonlinear contributions and can be neglected. As a
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result, the required factorization for static studies simplifies
as (here we restore the indices)

D), =3p7 DPDF + 3p(cy(p) - 3(p) 8,8

O+ ¢§?/31-
(17)

lll. STATIC LINEAR RESPONSE OF HOMOGENEOUS
FERMIONS AND ADJUSTMENT TO THE
LINDHARD STRUCTURE FACTOR

The static properties of a homogeneous electron liquid
are determined by the structure factor y(g). The structure
factor is actually the static limit of the density-density corre-
lation function x(q)= {p(-q,—w)p(q,®))|,_0- The physical
meaning of x(q) is the ratio between the amplitude of the
infinitesimal harmonic change in electron density p(q) and
that of the external potential v..(g), which induces the
change in the electron density,

OV ext(R) = veyr €xpligq - R) + c.C., (18a)
Ip(R) = pexplig - R) +c.c., (18b)
p= X(q) ext + Cvext (18¢)
- Po

In the ground state of a homogeneous liquid the nonzero
values at the N=3 level are the densuy po and the second and
the fourth order dynamic tensors <I>, —pocz(po)ﬁ and q)fjkl
=poc4(po) 8- 6 ;jki- I a static linear response problem all the
odd order kinetic tensors remain zero. Therefore, to study the
static linear response of the system we let the values of p,
®®? and ®@ vary harmonically in space around their sta-

tionary values,

Vext = Vet 4R + c.C., (19a)
p=po+ (/_)ei"'R +c.c.), (19b)
CIDE?) = copod;j + (@E?e"q'R +c.c.), (19¢)
D) =3cupo 0+ (PRt +c.c) + podtl,  (19d)
ViV =4i(i(0(g)p+ve)e ™ +cc), (19%)

where the underlined variables are the linear response coef-
ficients, while

477 _ WVilp)

ap ——(po)- (20)

o(q) =

With the use of Eq. (16) the infinitesimal deviation of ®®
has the following form:

CP[(‘;‘k)F 3DP5 O + 60,0 (Dkl + Po¢§;‘k)z’ (21)

where
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3([’(04 - C%)) 2 Lk4
_— - - ’

D= =
ap p=py 15
Next we consider what terms can be in ¢*). Our purpose is
to make sure that the static response in the noninteracting
case would resemble the Lindhard function (static density
response of free electrons). The terms added should include
the derivative of the available quantities, i.e., the density and
the stress tensor, so that they will be vanishing for uniform
densities. Further, since ¢(4) is a fourth order tensor, it needs
to be constructed from available tensors; the only ones avail-
able in the static limit are V;, p, ®y;, and &;. It is easy to see
by inspection that only the following local terms are avail-
able to first order in the perturbation and to lowest orders
needed in V;:

Podi(R) = AV Y,V p - 6V 07 — 6,15,V p,
(22)

where A, f, and h are dimensionless parameters. Even in
linear response these terms can be augmented by terms in-
volving further derivatives, e.g., terms involving a Laplacian
of the components in Eq. (22), (i.e., ¢* in Fourier space), but
as orbital-free methods should be primarily geared towards
the long-wavelength limit we do not consider here such
higher order terms in q.

The additional terms yield the following relation be-
tween the linear response coefficients p, ®?, and ®@:

DL(q) =6(cy8; + fq:g) P +3Dpd,0 + Apa,q;aid

+6¢2hpqq ;55 (23)

Finally, the linearized equations read

3aP\2 + qipoTp + qipovex =0, (24a)
and
3(c20;+9:4)(q. D) +3(c2 + fg7) g, B
(3(D +Copg0 + herq?) 8y, ik
+ (307 + Ag® + 3h62)qiqjqk)/_3
+ (3025,-,-61k + iqiqjqk)pol_)ext =0, (24b)

where the index « is summed over. The only preferential
direction in the problem is the momentum vector ¢ so that
the dynamic tensor ®? can be decomposed into the follow-
ing two form factors:

(I)(Z) 5(1)0) 5q'q)(l)
¢

Upon substituting this resolution into the initial equations
and equating independent spatial tensor components we ar-
rive at three equations for P @(0), and @(')
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(P(O) + (1)(1) + p017_ == PoUext»

(= PoUext — PODP) + (1 + iqz)@“’)
p o

ke,
+ —§+pov+h61 P == Polext>

_ c f
3f(= polex — PoUP) + 3q—§<1 + C—qz)@(‘”
2

1 1
+ (Zpoﬁ"' Ag* + 3}102)[_3 == Zpoyext'

Upon solving these linear equations one gets

P == XPUexi> (25a)
-xX ==X+ 0, (25b)
where
772 1+2002f - 1/12) 7
-7 Xo= 5 (ZSC)
kg 1 —24h7* - 80A 7

and we introduced the following dimensionless momentum:

2k

Equation (25b) is the definition of the structure factor renor-
malized with respect to two-body interactions. Therefore y,
should be the structure factor of noninteracting electrons. In
order to adjust our theory to the realistic description of elec-
trons one should compare x, to the following Lindhard func-
tion:

7# 1 1-7
-7 Xuind= 5t

kF 2 47]

1+7
1-7 '

In (26)

The freedom in choosing the parameters A, f, and & allows
us to fit our structure factor to the Lindhard function. The
Lindhard function has the following properties:

7 e
- Xuna=)1- %772 7—0 (27)
kg )
7 n=1.

In order for our function y, to possess these properties we
should choose

A=-g, f=3, andh=-x (28)

36"

A comparison between the resulting structure factor of the
proposed theory with the Lindhard function and the structure
factor provided by the 1/9 von Weiszacker theory is given in
Fig. 1.

IV. APPLICATION TO THE GROUND STATE PROBLEM

We applied the @ theory to a ground state study of a
nonperturbative nonhomogenous jellium. We chose a spheri-
cally symmetric infinite electron system in the following
positive jellium background density profile:

J. Chem. Phys. 126, 134101 (2007)
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-0.25 S 8‘@4/

2 050
T %)
kf" ] &) AP
)
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FIG. 1. The bare structure factors x, on a scaled momentum scale g/2k; for
the 1/9 von Weiszacker approach, bare and adjusted ®O) HTDFT theories,
and the Lindhard function (free-electron gas static density-density cor-
relator). The ®® HTDFT is fitted to have the three properties of the
Lindhard function given in Eq. (27).

po(r) = poo + Ap(r),

r2 20 2
Ap(r) == Lp.| 1= = |0, (29)
3ry

where we took p,,=0.01, {=0.9, and ry=3 and 2 (all in a.u.).
The additional nonhomogeneous part of jellium density Ap
integrates to zero so we avoid complications connected with
an overall non-neutral system. Alternatively this system can
be viewed as having constant jellium background density p..
but with an external Gaussian potential,

47 5.2
Vy(r) = rézpqe-’ ry, (30)

which is related to Ap(r) by the Poisson equation,

19,0
25,75 V() = 4mhp(r). (31)

The Dirac exchange is used here,

(3 7_1,2)1/3

Vi(R) = p(R)'". (32)

No correlation energy was employed (its contribution is very
small; it will be included in future studies). The simulations
were performed by adiabatical turning on the nonhomoge-
neous part of the jellium positive background density Ap.
Initially the electron and the jellium densities are homoge-
neous, p... The odd order kinetic tensors J; and (ijk) are zero
and the even order tensors are those of a homogeneous elec-
tron liquid qbf.?: poceg) and @fj,?,: pxegjk)l with the e tensors
given in Eq. (13).

We then propagate the set of Egs. (7) while the jellium
density gradually changes from homogenous to the final
po(r); this ensures that the system remains at the ground state
for all times. We implemented the adiabatic density by set-
ting
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po(R,1) = (1 = g(1))po(R) + g(1) p,

where g(7) is a smooth function rising from 0 to 1; we chose
here, quite arbitrarily,

1
1 +exp((ty— /7))’

g(t)=

and used
t() = 37'.

The width parameter 7 was typically taken as 50 a.u.; this
value was more than sufficient for adiabatic convergence.
po(R, 1) is then used for the definition of the time-dependent
potential [Eq. (4)].

The evolution of the system is then determined from the
four first equations in Eq. (7), with the ®® tensor given by
Egs. (16) and (22). The three dimensional equations were
discretized and the derivative were evaluated by Fourier
transforms, as was the Coulomb integral. Grid spacings of
1.6—2 a.u. were sufficient to converge when the hole width
parameter r, was set at 2.0 or 3.0 a.u., respectively. A simple
fixed step Runge-Kutta algorithm with df=0.2 a.u. was used
to evolve the equations in time.

We compared the results to Thomas-Fermi, von Weisza-
cker, and plane wave Kohn-Sham simulations. The latter
were done by a standard plane wave code; interestingly, we
found that the grid spacing needed to converge the Kohn-
Sham plane wave simulations had to be smaller by about
20% than those needed in the HFDFT code, so that they were
about 1.3 and 1.6 a.u. for ry=2.0 and 3.0, respectively. The
grids contained typically (20)® points.

Figure 2 shows that HTDFT gives essentially the
same density as the Kohn-Sham approach, while the
von Weiszacker and Thomas-Fermi results deviate signifi-
cantly. Since the two-body interaction is treated the same in
all four simulations, this proves that the hydrodynamic ap-
proach yields, even for this system which is shifted strongly
away from uniformity, the same densities as the essentially
exact description of the kinetic energy in the Kohn-Sham
approach.

V. TIME-DEPENDENT LINEAR RESPONSE AND THE
COLLECTIVE MODES

In our previous paper39 we studied the ground state of a
homogenous electron gas at the N=2 level, with the assump-
tion that ¢+ is zero. Here we extend the studies to N=3,
with ¢, as given by Eqs. (22) and (28). We derive the
governing formulas in general, and arrive at analytical limits
in the long-wavelength limit (where ¢* is not contributing),
showing new kinds of excitations.

In the ground state of a homogeneous liquid the nonzero
values at the N=3 level are the density p, and the second and
the fourth order dynamic tensors CI)( )—pocz(po)é and ®

ijkl
=poc4(po) ;

0> Tespectively. To study the linear response of
the system we let all the values in the problem vary harmoni-
cally around their stationary values,

p=po+(pe” o) 4 ¢ e, (33a)
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Kohn-Sham

0.006 - - -HTDFT 0®
—-— 1/9 von Wieszacker

0.0041 - - Thomas-Fermi
0.002- Jellium density

a
0.000(.)..,,[,,,|

1 2 3 4 g 6 7 8 9 10
0.0124

o]

0.010+
0.008+
0.006- Kohn-Sham

- - -HTDFT o®

—-— 1/9 von Wieszacker
- Thomas-Fermi

Jellium density

0.004 77"
0.0021

(b)
012345678910

0.000

FIG. 2. The electron density profiles for a jellium model with background
positive density (lower solid line) given by Eq. (29) with ¢=0.9 and r,
=2,3 [(a) and (b) graphs, respectively] for Thomas-Fermi, 1/9 von Weisza-
cker, ®® HTDFT, and the Kohn-Sham orbital based approaches. All quan-
tities are in a.u.

Ji=Je @R e (33b)
QDI(. =Py S + ((I>(2) —ilo=qR) o), (33¢)
P =D 1R 1 e, (33d)
V,V= q,-ﬁ(q)(i;_)e_i(“’"q'm +c.c.), (33e)
After linearizing Eqgs. (7) one gets
(1)’_) = qg‘_]av (343.)
wli= 4P} + podid(q)p. (34b)
w<I>(2) = qa(bfja, (34c¢)
@) =3(c28,+ £0,9)(q@2) +3(cs + f) .27
+ (3(1) + Copg0 + herq?) Sy ik
+ (5000 + Ag® + 3he3)qiq,91) p (34d)

where the linearized variation of ®® is taken from Eq. (23),
and « is again summed over. This is a system of linear ho-
mogeneous equations, and to find its solutions we have to
diagonalize it.

All the varlables in Egs. (34) could be expressed in
terms of p and (D i . Therefore, we can consider the equations
on ®? and p only without losing any solutions. In matrix
form these equations read

Downloaded 22 Nov 2008 to 169.232.128.66. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



134101-7 Hydrodynamic tensor density functional theory
w2
;gﬂr@(”@ +po0(@)p, (35a)
w2
227 =@ )@+ 200
+(cod + [’ Q) TH(@PQ)
+UZ(q) + QZ' (q))p. (35b)

where

Z(q) = D + c,pg0 + heaq?,

Z'(q)=2Z+ }Tpoﬁ(q)qz + Ag* +3he,q?,

and Tr means a matrix trace, 1= 5,, is the 3 X 3 unity matrix,
0Qii=q4;! g, curly brackets denote an anticommutator, and
capital bold face letters refer here to matrices. Without loss
of generality we can always assume that the wave vector ¢ is
directed along the x axis (g=(g,0,0)7), so that

1
0=|0 0 0 (36)
000
There are several solutions for these equations. The first
three solutions are decoupled from the density fluctuations so
that p=0 for all of them. They are

(37a)

which corresponds to the following dispersion relation:

o =3/5kkxq, (37b)
and
000
d@=10 0 1], (38a)
010
with a dispersion of
o = 1/5kkq>. (38b)

The first two solutions [Eq. (37a)] correspond to trans-
verse sound as the current is given as

0 0
w(g);=q®=q ], [0]. (39)
0 q

Note, however, that the velocity of this transverse sound
mode is different from the one found for the same mode
within the N=2 theory.3 ? The third solution in Eq. (38) is a
new sound mode. This mode involves neither density nor
current fluctuations and corresponds to transverse quadru-
pole fluctuations of the Fermi sea.

The next three solutions are found by representing
the tensor ®? in terms of the remaining diagonal tensors (I

and Q),

J. Chem. Phys. 126, 134101 (2007)

PV =0aQ+pI-0), (40)

which leads, upon insertion into Egs. (35), to the following
equations for a, 3, and p:
2

%a=6(62+f612)a+ Zg)+ Z'(@)p. (41a)
(1)2
?B=62a+ (cr+ fg*) B+ Z(q)p, (41b)
w2
2PTer pov(q)p- (41c)

This set of equations has complicated solutions, which, how-
ever, could be simplified in low-wavelength limit. In this
limit, we can leave only the leading terms in g; in the effec-
tive potential it is the divergent Fourier components of the
Coulomb potential. In the long-wavelength limit the system
of equations has the following form:

6 0 3 16 o
11 1 B l=w? B, (42)
alg) 0 alg)/\p' o’

where a(q)=4mp/ (¢*c,), o'*=w?/(g*c,), p=47pop/¢*, and
a(gq)> 1. Dropping the terms of order a(g)~! and smaller, the
three eigenvalues and corresponding eigenvectors are

o’ =1kiq%  (aB.p)=(1,2/3,~ 1); (43a)
o’ =3k’ (aB.p")=(1,0,-1); (43b)
o= 0p+3kq%  (aBp’)=(0,0.1), (43¢)

where w%,=477p0 is the plasmon frequency. Note that the first
two of the three modes [Eq. (43a) and (43b)] have the same
eigenvalues as the transverse modes in Egs. (37b) and (38b).

The total spectrum given by N=3 HTDFT for elemen-
tary excitations in the homogeneous electron gas is given in
Fig. 3. The spectrum found differs from that of the N=2
approach by an additional sound mode with velocity V3/5k
and by shifting the previous sound modes from y3/5kg to
V1/ Skp. This result confirms the conjecture made in Ref. 39,
that with increasing N new sound modes should appear, and
that they will gradually cover the entire continuous random
phase approximation (RPA) density of states in the Fermi
liquid.

VI. CONCLUSIONS

In conclusion, we have shown that HTDFT can also be
used for time-independent studies. We have supplanted our
previous conjecture where we assumed that the terms in the
equation of motion hierarchy should be terminated with the
next relevant cumulant [i.e., ¢(N+1)] being zero; instead, we
now derived ¢™*! from fitting the linear response to a HEG.
The resulting set of equations [given at the N=3 level by
Egs. (22), (7), and (16)] is closed and can be propagated
forward in time.
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A

Q)

FIG. 3. The elementary excitation spectrum provided by quantum hydrody-
namics, HTDFT ®®, and HTDFT ®® theories. QH gives only a plasmon
mode. HTDFT also gives transverse sound modes which mimic the RPA
elementary excitations in Fermi liquid. ®®) HTDFT gives additional sound
modes with respect to ®? HTDFT confirming the conjecture made in Ref.
39 that when increasing the order of HTDFT new sound modes should
appear, and they will gradually cover the entire continuous RPA density of
states of Fermi liquid.

The linear response in the static limit is fitted to the
Lindhard function homogeneous electron gas (HEG) for both
short, intermediate, and long wavelengths (for comparison,
the 1/9 in the von Weiszacker approach is obtained to fit
long wavelengths, while a fit to long wavelengths would
have required replacing the 1/9 by 1 in the von Weiszacker
theory). We have then applied HTDFT away from equilib-
rium, for a case of a jellium density with a deep hole in the
middle, and have shown excellent agreement with the Kohn-
Sham results, in a case where more approximate theories
such as Thomas-Fermi and von Weiszacker fail; this is di-
rectly due to the fact that their structure factor do not follow
the Lindhard function except at low wavelengths.

The last part of the paper dealt with time-dependent lin-
ear response studies at the present level N=3. The analytical
studies have confirmed our previous assertion that as the
level of the theory increases more and more transverse exci-
tations are found. A new excitation at the N=3 level couples
neither to the current nor to the density. All excitations, in-
cluding the new ones, lie within the RPA density of stats of
elementary excitations in a Fermi liquid.

Future works will study the applicability of the approach
to covalent chemical systems, where the directionality of the
tensors should enable a correct description even at a low N,
possibly as low as N=3. Further, dynamic susceptibilities
will be studied so that further terms, depending on J, dO),
etc., will be included in the terminating cumulant [(;‘)4 here,
@™+ in general] so that the theory will be valid over a wide
range of frequencies and wave vectors. Of course, it will be
very interesting and challenging for the theory to get the
correct material-specific band gaps, since in many covalent
systems the band gap is extremely material dependent.
Therefore, the earliest efforts in the theory will be towards
quasifree metallic systems, such as metallic dots and their
interaction. The basic formalism developed here and in forth-
coming work will be useful in developing applications to

J. Chem. Phys. 126, 134101 (2007)

dynamical problems which straddle the transition between
molecular system and nanostructures, at least for metallic
systems.

Another direction is the application to magnetic phe-
nomena. We have separately shown that the HTDFT ap-
proach is naturally appropriate to describe magnetic vortices
and the transition between different ferromagnetic phases.
This will be presented in a separate publication.

We note that other applications to fermionic systems can
also be envisioned. For example, by replacing the zeroth
order HEG density matrix with a temperature-dependent
density matrix and fitting the coefficients of the derivative
terms in the cumulant to a temperature dependent Lindhard
expression, we will get a temperature-dependent HTDFT
theory which can be applied to plasmas and to studies of
narrow conduction bands. Similarly, applications to nuclear
systems can also be envisioned.

Other future improvements will include better methods
to solve the time-dependent HTDFT equations. One ap-
proach will be to include external electric fields that will
have dipole and quadruple (or higher) components that will
be time dependent. The electric fields will be chosen, at each
time instant, to remove energy from the system [i.e., to re-
duce the trace of ®@ plus the total potential].
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