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ABSTRACT: We develop an alternative formulation in the energy-domain to calculate
the second order Møller−Plesset (MP2) perturbation energies. The approach is based on
repeatedly choosing four random energies using a nonseparable guiding function, filtering
four random orbitals at these energies, and averaging the resulting Coulomb matrix
elements to obtain a statistical estimate of the MP2 correlation energy. In contrast to our
time-domain formulation, the present approach is useful for both quantum chemistry and
real-space/plane wave basis sets. The scaling of the MP2 calculation is roughly linear with
system size, providing a useful tool to study dispersion energies in large systems. This is
demonstrated on a structure of 64 fullerenes within the SZ basis as well as on silicon
nanocrystals using real-space grids.

SECTION: Molecular Structure, Quantum Chemistry, and General Theory

The second order Møller−Plesset (MP2) perturbation
theory is one of the simplest and most fundamental forms

used to introduce correlations in electronic structure
calculations.1 The formal MP2 expression can be manipulated
into the following manifestly negative-definite form:
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where ⟨ab|ij⟩ and ⟨ab|ji⟩ are the Coulomb and exchange matrix
elements, respectively, εs is the orbital energy, and the indices i,j
and a,b refer to occupied and virtual states, respectively. Direct
application of eq 1 involves CPU time scaling as O(N5) with
the size of system (N). Such scaling severely caps the size of
systems which can be studied and serves as a driving force to
develop more efficient computational schemes.2−12 In these
methods, linear scaling emerges once the system is larger than
the one particle density matrix range, typically above a few tens
of thousands of atoms, limiting the efficacy of the methods
considerably.
In a previous paper13 we developed an expeditious stochastic

approach to obtain the MP2 energy, whereby the energy
denominator in eq 1 is replaced by integration over a real-time
correlation function and the exact eigenstates are replaced by
arbitrary combinations of random states filtered to be in the
occupied and virtual space, respectively. Application to
hydrogen passivated silicon nanocrystals with thousands of
electrons represented on a real-space grid provided accurate

estimates of the MP2 energies in systems far beyond the
capabilities of present day MP2 implementations.
Here we present an alternative stochastic approach, akin to

our previous work on multiexciton generation rates,14 more
suitable for quantum chemistry basis-sets and applicable also to
exact exchange in the Hamiltonian. The approach is based on
choosing four random energies using a nonseparable guiding
function and then filtering four random orbitals at these
energies. The MP2 energy is then estimated as an average over
different combinations of random orbitals, where for each
combination we calculate the contribution to the MP2 energy
given by eq 1 with a proper weight.
Other stochastic schemes have been recently proposed to

reduce the computational workload of calculating electron
correlations.15−17 Of particular relevance to the present work
are the graph random walk in the atomic basis set space18 and a
stochastically sampling of the electron-position space19 to
obtain the MP2 correlation energy. Our approach is different in
that we use stochastic orbitals and as such, the resulting MP2
approach can be used to handle huge systems.
The motivation for the development of the present energy-

domain method is to avoid the costly repeated estimates of the
Coulomb matrix elements in the time-domain formulation. In
real-space/plane-wave basis, this is relatively cheap, but when
quantum-chemistry basis sets are used, the estimation of the

Received: October 11, 2013
Accepted: December 7, 2013

Letter

pubs.acs.org/JPCL

© XXXX American Chemical Society 185 dx.doi.org/10.1021/jz402206m | J. Phys. Chem. Lett. 2014, 5, 185−189

pubs.acs.org/JPCL
http://pubs.acs.org/action/showImage?doi=10.1021/jz402206m&iName=master.img-000.jpg&w=139&h=133


Coulomb integral at each time step becomes the most
demanding portion of the calculation, and thus, prohibits
application to large systems. In contrast, the energy-domain
formulation requires the evaluation of a single Coulomb
integral for each set of random orbitals, providing a framework
for a stochastic MP2 approach suitable for quantum chemistry
basis sets.
To start, let us note the following relation, replacing a sum

over states by an average ⟨...⟩χ over random orbitals χi(r):

∫∑ ε ε ε⟨ | ̂| ⟩ = ⟨⟨ | ̂| ⟩⟩ε ε χ
∈

f i A i f i A i( ) ( ) d
i

i
occ (2)

where:

θ μ ε
δ ε

ρ ε
χ≡ = −

−
ε

σi i
H

r r r( ) ( ) ( )
( )

( )
( )i

(3)

is a “projected” random occupied orbital at energy ε, δσ(ε) =
(2/π){σ3 /[π(ε2 + σ2)]2} is a squared Lorentzian filter function,
ρ(ε) = tr(ε − H) is the density of states (DOS), θ(x) is the
Heaviside step function, and μ is the chemical potential.
Similarly, for a virtual orbital we have an analogous expression
with the following random orbitals:
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With this notation, the MP2 energy can be written as
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where {ε} is shorthand notation for {εi,εj,εa,εb} and {χ} for
{χi,χj,χa,χb}, p({ε}) = ρ(εi)ρ(εj)ρ(εa)ρ(εb), and the manifestly
positive definite coupling V2({ε}) = ⟨⟨ab|ij⟩2 + ⟨ab|ji⟩2 − ⟨ab|
ij⟩⟨ij|ab⟩⟩{χ}. The integrand in eq 5 has contributions from the
Coulomb matrix elements, which depend on the ε’s and the
density of states, and the denominator, which also depends on
the ε’s in an obvious way. To perform the integral, we need to

evaluate it using a Monte Carlo procedure with importance
sampling based on a guiding function w({ε}):
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Note that all contributions to the integral are positive definite;
this is guaranteed by the form used in eq 1 instead of the typical
form involving 2⟨ab|ij⟩2 − ⟨ab|ij⟩⟨ij|ab⟩, which is not positive
definite.
We find that a guiding weight of the form
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works quite well and the numerical fluctuations are fairly
insensitive to the values of β (chosen here as β2 = 1/100 and α
= 3). This function accounts for the fact that the coupling
matrix elements tend to be large whenever the particle-hole
pairs are close in energy, i.e., whenever εb − εi ≈ εa − εj or εb −
εj ≈ εa − εi.
We applied the energy-domain formalism using an atomic

basis set, where the M × M overlap and Hamiltonian matrices,
S and H (M is the size of the basis) are transformed to an
orthogonal basis, H̃ = S−1/2HS−1/2 and then we diagonalize H̃ =
UεUT. The density of states is constructed explicitly from the
eigenvalues of H̃, e.g.:

∑ρ ε δ ε ε= −σ
=

( ) ( )
S

M

s
1 (8)

Then, in each iteration we randomly sample four energies
from the weight function w({ε}) and also choose four sets of
random coefficients (with respect to the basis set), χs, that yield

Table 1. MP2 Energies (Per Electron, in eV) Using Siesta Basis Sets with the Stochastic Energy-Domain Approach for a Range
of Molecules, up to Clusters of 36 and 64 Fullerenes (with Center-to-Center Distances of 10 Angstrom)a

EMP2/Ne

molecule Ne basis set M I deterministic stochastic SE/|EMP2| SE1/|EMP2| guiding function?

water 8 SZ 6 1048576 −0.197 −0.196 1.02% 7.65 N
8 DZVP 23 1048576 −1.015 −1.029 1.17% 12.24 N

ethylene 12 SZ 12 4194304 −0.447 −0.454 1.32% 27.97 N
benzene 30 SZ 30 4194304 −0.521 −0.523 0.96% 21.22 N

30 SZ 30 1048576 −0.521 −0.522 0.96% 10.73 Y
naphthalene 48 SZ 48 1048576 −0.558 −0.557 0.72% 8.08 Y
Pentacene 102 SZ 102 1048576 −0.560 0.71% 6.61 Y
catechol−fullerene 290 SZ 286 524288 −0.709 0.56% 3.81 Y

290 DZ 572 524288 −0.995 0.50% 3.62 Y
290 DZVP 940 524288 −1.442 0.62% 4.71 Y

fullerene 240 SZ 240 1048576 −0.678 0.44% 3.98 Y
240 DZ 480 1048576 −0.981 0.51% 5.20 Y
240 DZVP 780 1048576 −1.434 0.49% 4.95 Y

fullerene 3 × 3 × 4 8640 SZ 8640 131072 −0.704 0.85% 3.12 Y
fullerene 4 × 4 × 4 15360 SZ 15360 65536 −0.696 1.15% 2.87 Y

aFor small molecules we compare the stochastic results with the traditional explicit summation results. We plot the error relative to the total energy,
as well as the relative per-iteration error. Catechol−fullerene refers to a fullerene derivative with a catechol molecule fused to an open fullerene cage
through a 2-carbon linker.
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the four random orbitals. The coefficients are uniformly
generated in the range −√3 < χs < √3 where s = 1,...,M.
This choice ensures that the components of the random vectors
are mutually orthonormal on average, i.e., ⟨χsχt⟩χ = δst. The four
random orbitals are then filtered, e.g., when the energy is
smaller than μ one obtains an occupied random orbital:

ι
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ρ ε
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−
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σ( )
( )

( )s
s

s
(9)

Similarly, for a virtual random orbital one obtains
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The four orbital are then rotated to the original atomic basis,
iε = S−(1)/(2)Uι(̅ε) and aε = S−(1)/(2)Ua(̅ε). Finally, the two-
electron integrals ⟨ij|ab⟩ involving the four random orbitals are
performed on a 3D real-space grid, applying Fast Fourier
techniques for the convolution operation.
There are several sources for numerical errors in estimation

of the MP2 energy in a given basis. The systematic errors result
from the parameter σ in the squared-Lorentzian, but this can be
controlled to a desired predefined accuracy; we found by
studying a host of molecules (up to and including fullerene)
that as long as σ ≤ 0.5 eV (the value used), the results are
independent of σ to better than 0.2% (i.e., within the stochastic
errors in our simulations). Stochastic errors (SE) are due to
random fluctuations and can be controlled by repeated
sampling. After I samplings (iterations) the SE is equal to
SE1/√I, where SE1 is the standard deviation of the results,
which we also label below as the “SE per iteration”. Finally,
there are numerical errors associated with the evaluation of the
two-electron integrals. Here, the basis set integrals are evaluated
by representing the wave functions on a real-space grid and
using a convolution to obtain V2({ε}). This can be controlled
by increasing the grid size or, alternatively, to obtain the two-
electron integrals by a more accurate approach based on the
tensor hypercontraction.12

We now describe applications of the method for small and
medium sized molecules, and for huge fullerene clusters (with
36 and 64 fullerenes) with over 15 000 basis functions. We used
the Siesta package20 within the SZ, DZ, and DZVP Siesta
numerical atomic basis sets. The results of these MP2 energy
calculations are summarized in Table 1. For small molecules,
we compare the results of the stochastic calculations with the
explicit summation results of eq 1, referred to as “determin-
istic”. We provide details about the basis set used, the total
number of basis function, the number of stochastic sets of
orbitals used (iterations), the relative statistical error in the
MP2 energy per electron (SE/EMP2), the standard error per
iteration SE1/EMP2 (related to the error as SE = SE1/√I and
whether a guiding weight function was used or not.
We find that the MP2 correlation energy per electron is

roughly independent of the system size for systems with similar
electronic character. This is certainly the case for benzene,
naphthalene, and pentacene series (|EMP2| /Ne ≈ 0.56 eV) and
also for varying sizes of fullerene clusters (|EMP2| /Ne ≈ 0.68 −
0.70 eV).
The SE per iteration decreases somewhat with the size of the

system. For example, the SE per iteration decreases from 2.7 to
2.0 eV when a fullerene is replaced by a fullerene cluster.
Similarly, the SE per iteration decreases from 5.6 to 3.7 eV

when going from benzene to pentacene. This is in contrast to
the time-domain algorithm, where the SE decreased and then
leveled off for a linear chain model and increased and leveled
off for a 3D silicon nanocrystal (see more below). The
reduction of the SE per iteration indicates that the energy
formulation of MP2 benefits from self-averaging, again in
contrast to the time-domain approach. Furthermore, as the
basis increases, the SE per iteration increases from 2.7 eV to 7.1
eV, which is natural since the MP2 energy also increases by a
similar factor.
In Table 2 we show in more detail the effect of the guiding

function on the SE for a set of molecules. It reduces the SE per

iteration by approximately 2 for the smallest molecule and
nearly a factor of 4 for the largest, implying reduction of the
number of stochastic orbitals required to achieve a given SE by
a factor of 4 for smaller molecules and 16 for larger ones.
The overall computational time in hours (Tcomp) of the MP2

step on a single 2.5 GHz CPU is well approximated by the
following combination of the overlap integrals and vector
preparation:

∼ × + ×− −T IM M IM2 10 log 4 10comp
8

2
13 2

In practice, the first quasi-linear term (overlap-integrals)
dominates the calculation time for M < 106. For the 36- and 64-
fullerene clusters with 131 000 and 65 000 iterations,
respectively, Tcomp = 300 h.
The principles of our energy-domain stochastic approach can

also be applied to a real-space-grid or plane-waves representa-
tion. Here, the underlying basis is orthogonal, so there is no
overlap matrix to consider; on the other hand, the Hamiltonian
matrix is too large to be diagonalized, and so iterative sparse
matrix techniques must be applied. The random orbitals (cf.
eqs 3 and 4 can be obtained similarly to ref 13 by representing
[δσ(ε − H)]1/2 as a Gaussian (instead of a Lorentzian) and
expanding in a Chebyshev series of length Nc.

21 From the
structure of the Chebyshev series, it is possible to obtain several
stochastic orbitals of different ε from a single expansion, and we
use this property to obtain 4 unoccupied and 16 occupied
orbitals. In addition, the density of states ρ(ε) is calculated
separately using a stochastic trace formula as in ref 14. Finally,
the two electron integrals for the orbitals on the grid are
obtained here also using fast Fourier convolution techniques.

Table 2. The Effects of the Guiding Function on the Per
Iteration Error (i.e., the Standard Deviation), Measured
Relative to the Overall MP2 Energya

molecule basis set guiding function? EMP2/Ne SE1/|EMP2|

benzene SZ N −0.518 19.3
Y −0.522 9.6

naphthalene SZ N −0.548 16.0
Y −0.557 7.2

pentacene SZ N −0.583 25.7
Y −0.560 7.1

fullerene SZ N −0.700 11.4
Y −0.678 4.4

DZ N −0.972 13.4
Y −0.980 5.1

DZVP N −1.448 15.9
Y −1.433 4.9

aThe guiding function reduces the statistical error by a factor of 2−4.
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We apply the energy-domain stochastic method to hydrogen
passivated spherical silicon nanocrystals (NCs) of several sizes.
We use a semiempirical pseudopotential model to construct the
single particle Hamiltonian22 and a real-space grid to represent
the single particle orbitals.23 In Table 3 we summarize the

results for three systems sizes: Si35H36, Si87H76, and Si353H196.
The total number of electrons varies from 176 to 1608, and the
size of the Hamiltonian matrix varies from 323 to 643. Since a
direct calculation of the MP2 correlation energy is prohibited
for these NCs, we compare the current approach to our
previous time-domain stochastic approach.13

The agreement between the energy- and time-domain
stochastic approaches is excellent for the smaller NCs
(differences are well within the SE). For the largest NC, we
find small deviations between the two approaches, which may
result from systematic errors introduced by the finite width
used to represent the filtering function, [δσ(ε − H)]1/2 = [1/

(2πσ2)1/2]e−(ε‑H)
2/2σ2. σ needs to be adjusted according to the

density of states. If σ is too large, then the filtered states will
contain contributions from occupied and virtual orbitals, which
will lead to a large systematic error. If σ is too small, then each
filter will generate a single eigenstate of the Hamiltonian, and
the SE will be large. Table 4 shows the results for different

Chebyshev expansion lengths corresponding to different values
of σ ≈ (2.5/√2)(ΔE/Nc), where ΔE is the energy range of the
Hamiltonian H. For the set of σ chosen, all results converge to
the same MP2 correlation energy with a similar SE. Larger NC,
however, may require a longer Chebyshev expansion since the
quasi-particle gap is smaller by nearly a factor of 2 compared to
the smaller NC.
It is interesting to note that the SE per iteration in the

energy-domain calculations, which does not incorporate the
guiding function, are much larger in comparison to the time-
domain approach. However, since the time-domain approach

requires in addition to the filtering step, a propagation step, the
overall ratio of computational work is between 1.4 and 4.8
depending on the size of the NC. For the larger NC, this ratio
should be multiplied by 2 if an appropriate length of the
Chebyshev expansion is used. On the other hand, we did not
use a guiding function in these calculations, and that would
have allowed us to reduce the energy-domain computational
effort by a factor of 2−4 based on the results reported in Table
2.
To summarize, we developed an energy-domain stochastic

method for estimating the MP2 energy which gives converged
per-electron properties. For a basis of localized atomic orbitals,
e.g., contracted Gaussian functions (CGF), the energy-domain
approach is more suitable than our previous time-domain
approach. A key element is the introduction of a guiding
function which we find to reduce the computational effort by a
factor of 4−16. The approach is also suitable for a real-space-
grid or plane-waves representation where the time-domain
approach seems more suitable, but the energy-domain approach
seems to work nearly as fast when the system size increases.
Our results show that it is feasible to perform MP2

correlation energy calculations even for very large systems.
For atomic basis sets, assuming that the Hartree−Fock orbitals
and orbital energies are available, our MP2 approach scales as
O(N log N). In the real-space-grid or plane-waves application
the unoccupied orbitals and energies are not known and we rely
on application of filters to random wave functions (applied
using Chebyshev expansions), and the scaling is also O(N log
N). Finally, we note that the calculations reported here are for
the total energy per electron and not for energy differences.
Future directions will involve the development of a scheme to
obtain the correlation energy differences using the adiabatic
approach similar to the stochastic random phase approximation
of ref 15.
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