
THE JOURNAL OF CHEMICAL PHYSICS 141, 041102 (2014)
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We develop a method in which the electronic densities of small fragments determined by Kohn-Sham
density functional theory (DFT) are embedded using stochastic DFT to form the exact density of the
full system. The new method preserves the scaling and the simplicity of the stochastic DFT but cures
the slow convergence that occurs when weakly coupled subsystems are treated. It overcomes the
spurious charge fluctuations that impair the applications of the original stochastic DFT approach. We
demonstrate the new approach on a fullerene dimer and on clusters of water molecules and show that
the density of states and the total energy can be accurately described with a relatively small number
of stochastic orbitals. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4890651]

The desire to understand the structure and electronic
properties of complex hybrid materials and biological sys-
tems at the atomistic level is the main motivation for develop-
ing fast large-scale electronic structure approaches. One of the
most successful theoretical frameworks is density functional
theory (DFT) within the Kohn-Sham (KS) formulation,1, 2

routinely used to model structures containing hundreds of
electrons.3–7 Formally, KS-DFT is thought to scale as O(N3),
where N is the size of the system. This scaling prevents rou-
tine application of KS-DFT to very large systems containing
thousands of electrons or more. While linear scaling tech-
niques have been developed for KS-DFT, their practical use
is limited to low dimensional structures.8–18

Recently, we formulated KS-DFT as a statistical theory
in which the electron density is determined from an average
of correlated stochastic densities in a trace formula.19 As a
result of self-averaging, this so called stochastic DFT (sDFT)
scales sub-linearly O(Nε), with ε ≤ 1 for calculating the to-
tal energy per electron. By controlling the stochastic fluctua-
tions, the band structure, forces, and density and its moments
can also be described within sDFT. This was illustrated for a
series of silicon nanocrystals of varying sizes.

Here, we develop an embedded fragment version of
sDFT (labeled efsDFT), combining features from both the
stochastic as well as embedded electronic structure theory
and partition or subsystem density functional theories.20–27

The efsDFT approach reduces the computational effort by
decreasing the number of stochastic orbitals required to con-
verge the results to a desired tolerance and at the same time
circumvents a pathological fault of sDFT associated with sta-
tistical noise caused by charge fluctuations between weakly
coupled fragments. The efsDFT approach is illustrated for
clusters of water molecules and for a fullerene dimer, two
very different test cases for which sDFT fails to provide an
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accurate estimate of the electronic structure with a reasonable
number of stochastic orbitals, and as a result convergence of
the self-consistent iterations becomes sluggish.

We first overview the derivation of sDFT. The starting
point is the expression of the total density of the full system,
n(r), as a trace

n(r) = tr{θ̂β n̂(r)}, (1)

where n̂(r) = |r〉〈r| is the density operator and θ̂β

= erfc(β(μ − ĥKS)) is a smoothed representation of the
density matrix. Here, β is a smoothing inverse energy
parameter chosen such that β−1 � Eg, where Eg is the
HOMO-LUMO gap. Note that limβ → ∞erfc(βx) = 2θ (x),
where θ (x) is the Heaviside function and the factor of “2”
accounts for electron spin. In the above, ĥKS is the KS
Hamiltonian of the full system which depends on the full
density n(r). The chemical potential μ is determined by
requiring that the density integrates to N electrons.

In sDFT, we use the stochastic trace formula to evaluate
Eq. (1). The procedure consists of:

� Generating a set of I stochastic orbitals χ (r) on the
grid.

� For each χ (r), calculating the random-occupied orbital

ζ (r) =
√

θ̂βχ (r) (
√

θ̂β operates on χ (r) using a suit-
able expansion in terms of Chebyshev polynomials28).

� Averaging (symbolized by 〈···〉χ ) over the square of
the random occupied orbital gives an estimate of the
density

n(r) = 〈|ζ (r)|2〉χ . (2)

|ζ (r)|2 is a random variable distributed with mean n(r)
given by the exact non-interacting ground state den-
sity of ĥKS at point r and with variance given by

σ0(r)√
I

,
where σ0(r) is determined by the properties of the un-
derlying physical/chemical system.
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The control of the error is done through the number of
stochastic orbitals I and thus any method to reduce σ 0
will allow a reduction of I and will therefore improve the
efficiency.

We now describe a way to achieve such a feat by limit-
ing the stochastic average to a small difference between the
full and some approximate density operator which will thus
exhibit a smaller σ 0 (for a similar notion in Auxiliary Field
Monte Carlo, see Ref. 29). Such an approximate operator can
be obtained from a division of the system into F small frag-
ments, where each fragment f = 1, . . . , F has its own set
of atomic cores and its own KS Hamiltonian, ĥ

(f )
KS . The KS

Hamiltonian of each fragment can be constructed from the
external potential of the atomic cores in each fragment. Each
fragment f is now assigned to have N(f) electrons such that the
total number of electrons is

∑
f N(f) = N. The density n(f )(r)

can be determined separately for each fragment using KS-
DFT. This produces occupied and low-lying unoccupied KS
eigenstates (indexed by j) ϕ

(f )
j (r) and eigenvalues ε

(f )
j . One

can now write an approximation to n(r) in terms of the sum
of fragmented densities as

n(r) ≈ nF (r) =
F∑

f =1

n(f )(r). (3)

As will become clear below, violation of the relation in Eq. (3)
does not affect the formal correctness of the approach, how-
ever, convergence does depend on the choice of nF(r). In the
above, the density n(f )(r) in each fragment can also be ex-
pressed as a trace, n(f )(r) = tr{θ̂ (f )

β n̂(r)} with

θ̂
(f )
β =

∑
j

erfc
(
β
(
μ(f ) − ε

(f )
j

))∣∣ϕ(f )
j

〉〈
ϕ

(f )
j

∣∣. (4)

The stochastic trace in Eq. (2) can therefore be replaced by an
embedding form

n(r) = nF (r) +
〈
|ζ (r)|2 −

F∑
f =1

|ζ (f )(r)|2
〉

χ

, (5)

where ζ (f )(r) =
√

θ̂
(f )
β χ (r). The density obtained from

Eq. (5) is used to construct a new KS Hamiltonian ĥKS and
the procedure is repeated and converged to the final self-
consistent field (SCF) solution. In the applications below, the
KS-DFT treatment of the fragments, producing ϕ

(f )
j (r) and

ε
(f )
j , is carried out before the stochastic algorithm is applied.

The advantage of Eq. (5) is clear: as nF (r) → n(r) the
variance σ0(r) decreases, reducing the number of stochastic
orbitals required for convergence at a desired tolerance. The
use of nF (r) dramatically reduces spurious charge fluctuations
between fragments induced by poor statistical sampling in the
original sDFT approach. Because of such fluctuations sDFT
requires a large number of stochastic orbitals for convergence
while esDFT, which does not suffer from the spurious fluc-
tuations, requires only few tens or hundreds of stochastic or-
bitals. Further, as long as each fragment is not too large there
is very little additional computational overhead and the scal-
ing of the method is unchanged.

We tested two generic cases for efsDFT and compared
the results with sDFT and with a deterministic DFT approach
(free of statistical errors), labeled dDFT below.30, 32–34 The
first test-case involves a fullerene dimer with center-to-center
separation of ≈1 nm (the equilibrium value of bulk fullerene)
as shown in Fig. 1. At this separation, the perturbation in
the charge density of each fullerene caused by the neighbor-
ing monomer is rather small. Results based on sDFT using I
= 320 stochastic orbitals are shown for three different seeds
(dashed curves). We find significant deviations of the density
of states (DOS), caused by fictitious charge transfer between
the monomers, and equally striking is the spread of the results.
The charge sloshing phenomenon appears because of stochas-
tic fluctuations, which in the case of weak coupling between
the fragments leads to a spurious finite density of states inside
the HOMO-LUMO gap. Increasing the number of stochastic
orbitals will eventually fix this problem but at a much higher
numerical cost. In fact, the number of stochastic orbitals re-
quired to converge the results in sDFT increases for weaker
coupling between the fragments.

Using the efsDFT with deterministic KS orbitals taken
from each of the monomers yields a very rapid convergence
of the DOS with the number of stochastic orbitals, as shown
in Fig. 1 (red, green, and blue curves). Importantly, a clear
HOMO-LUMO gap is observed even when we use a very
small number of stochastic orbitals. Furthermore, we do not
observe the aforementioned spurious charge transfer between
the two monomers.

The second test case involves two water clusters, with 41
and 191 molecules. The purpose is (1) to study a system with
short-range order and long-range disorder and (2) to explore
the efsDFT computational scaling with system-size. We used
molecular dynamics (MD) with the flexible SPC forces field
and a smooth cutoff31 to generate the disordered structures.
The last time step configuration of the equilibrated trajectory
was taken as the input structure for the efsDFT, sDFT, and
dDFT calculations.
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FIG. 1. The density of states of a fullerene dimer calculated using a de-
terministic DFT approach (black curve), efsDFT with I = 80 (red curve),
I = 160 (green curve), and I = 320 (blue curve) stochastic orbitals. The
dashed curves are sDFT results with I = 320 stochastic orbitals for three
different initial seeds. Inset: zoom into the energetic region of the gap.
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FIG. 2. The density of states near the highest occupied and lowest unoccu-
pied KS eigenvalues of (H2O)41 (left panel) and (H2O)191 (right panel) using
sDFT with I = 320 (cyan) and efsDFT with I = 80 (red), 160 (green), and
320 (magenta) stochastic orbitals. The solid black curve represents the deter-
ministic DFT calculation.

In Fig. 2, we compare the efsDFT and dDFT calculations
for the two water clusters. The sDFT calculations, which are
shown only for the smaller cluster with I = 320, preserve a
gap in the density of states near the Fermi energy. However,
due to unrealistic charge fluctuations there is a pronounced
shift in the Fermi energy and a significant deformation of the
DOS. In contrast, the efsDFT calculations, which used indi-
vidual water molecules as the fragments, displays quantitative
DOS already for I = 160.

In Table I, we summarize the results for the HOMO and
LUMO orbital energies, and the total energy and total energy
per electron. For the fullerene dimer, at I = 320, sDFT de-
viates from the deterministic approach by ≈400 meV and
≈150 meV for the HOMO and LUMO orbital energies, re-
spectively, while efsDFT is accurate to within a few meVs.
Moreover, the total energy per electron in sDFT deviates sig-
nificantly from the deterministic value while efsDFT provides
an accurate estimate to within a fraction of a meV.

A similar picture emerges for the water clusters. For ex-
ample, the statistical error and the deviation from the deter-
ministic approach in the HOMO and LUMO orbital energies
are 50–100 meV using I = 320 for the larger water cluster.
Further, the statistical error and deviation from deterministic
values of the orbital and per-electron energies decrease with
cluster size for a fixed number of stochastic orbitals, indicat-
ing self-averaging.19 Since the scaling of the approach with
system size is linear for a fixed number of stochastic orbitals,
this self-averaging suggests that for a given statistical error
the stochastic portion of the calculation (which is the domi-
nant portion) scales sub-linearly, similar to sDFT for homo-
geneous covalent systems.

In summary, we presented a new DFT method which
combines features from both embedded and sDFT. The den-
sities of small fragments of the system were calculated by
a deterministic DFT approach and were used to reconstruct
the total density of the system deploying stochastic orbitals in
a trace formula. The resulting method, efsDFT, is formally
equivalent to sDFT in the infinite sampling limit and pre-
serves the scaling including the concept of self-averaging.
However, efsDFT will require much less sampling to con-
verge the results to within a desired statistical error and thus,
can be viewed as a numerical improvement of sDFT. More-
over, it overcomes some of the limitations of sDFT, specif-
ically for weakly coupled systems, achieving much faster
convergence with the number of stochastic orbitals for both
the density of states as well as for the total energy of the
system. This was shown for two generic models, a weakly
bound fullerene dimer and disordered clusters of water
molecules.

efsDFT could be improved by a more sophisticated
choice of the fragments, i.e., one that minimizes the den-
sity difference |n(r) − nF (r)|. For example, one could self-
consistently improve the fragment Hamiltonians during the
SCF iterations or “carve” them out of the total potential if
easier. Even overlapping fragments could be used. This is be-
cause Eq. (5) is exact regardless of the choice of nF (r). Work
along these lines and others is currently in progress.

TABLE I. efsDFT (and in one case sDFT) based results and corresponding deterministic values (dDFT) for the three systems studied for different number of
random orbitals I. The following energies (in eV) are considered: HOMO (εHOMO) and LUMO (εLUMO) , total energy Etot and total energy per electron Etot/Ne.
The numbers in parenthesis are the standard deviation in the last given digit(s) estimated from 5 independent runs.

System Method I εHOMO εLUMO Etot Etot/Ne

(H2O)41 efsDFT 80 −5.8 (3) − 2.5 (2) −19 129 (1) − 58.320 (4)
160 −6.1 (1) − 2.3 (1) −19 128 (1) − 58.317 (4)
320 −6.1 (1) − 2.3 (1) −19 126.9 (7) − 58.314 (2)

dDFT −5.9 − 2.4 −19 127.0 − 58.314

(H2O)191 efsDFT 80 −5.0 (3) − 2.60 (5) −89 212 (3) − 58.385 (2)
160 −5.5 (2) − 2.66 (7) −89 210 (1) − 58.384 (1)
320 −5.7 (1) − 2.55 (6) −89 209 (1) − 58.383 (1)

dDFT −5.6 − 2.48 −89 208 − 58.382

C60–C60 sDFT 320 −5.559 (130) − 4.889 (122) −18 701.0 (30) − 38.9610 (60)
efsDFT 80 −5.925 (25) − 4.823 (29) −18 713.3 (5) − 38.9861 (10)

160 −5.964 (9) − 4.755 (21) −18 713.1 (3) − 38.9857 (6)
320 −5.969 (2) − 4.752 (4) −18 713.3 (2) − 38.9861 (4)

dDFT −5.973 − 4.746 −18 713.1 − 38.9857

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:  46.117.38.8

On: Wed, 20 Aug 2014 11:16:42



041102-4 Neuhauser, Baer, and Rabani J. Chem. Phys. 141, 041102 (2014)

R.B. and E.R. gratefully thank the Israel Science Foun-
dation (ISF), Grant Nos. 1020/10 and 611/11, respectively.
R.B. and D.N. acknowledge the support of the US-Israel Bi-
National Science Foundation. D.N. gratefully acknowledges
support by the National Science Foundation (NSF), Grant No.
CHE-1112500.

1P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
2W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
3B. Kolb and T. Thonhauser, Nano LIFE 02, 1230006 (2012).
4J. R. Chelikowsky, M. Alemany, T. Chan, and G. Dalpian, Rep. Prog. Phys.
74, 046501 (2011).

5T. Frauenheim, G. Seifert, M. Elstner, T. Niehaus, C. Kohler, M. Amkreutz,
M. Sternberg, Z. Hajnal, A. Di Carlo, and S. Suhai, J. Phys.: Condens.
Matter 14, 3015 (2002).

6S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev. Mod. Phys.
73, 515 (2001).

7P. E. Siegbahn and F. Himo, J. Biol. Inorg. Chem. 14, 643 (2009).
8E. Schwegler and M. Challacombe, J. Chem. Phys. 105, 2726 (1996).
9R. Baer and M. Head-Gordon, Phys. Rev. Lett. 79, 3962 (1997).

10S. Goedecker, Rev. Mod. Phys. 71, 1085 (1999).
11G. E. Scuseria, J. Phys. Chem. A 103, 4782 (1999).
12J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon, and

D. Sanchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002).
13C. K. Skylaris, P. D. Haynes, A. A. Mostofi, and M. C. Payne, J. Phys.:

Condens. Matter 17, 5757 (2005).
14M. J. Gillan, D. R. Bowler, A. S. Torralba, and T. Miyazaki, Comput. Phys.

Commun. 177, 14 (2007).

15R. Zeller, J. Phys.: Condens. Matter 20, 294215 (2008).
16L.-W. Wang, Z. Zhao, and J. Meza, Phys. Rev. B 77, 165113 (2008).
17T. Ozaki, Phys. Rev. B 82, 075131 (2010).
18E. Rudberg, E. H. Rubensson, and P. Salek, J. Chem. Theor. Comput. 7,

340 (2011).
19R. Baer, D. Neuhauser, and E. Rabani, Phys. Rev. Lett. 111, 106402 (2013).
20M. S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984).
21T. A. Wesolowski and A. Warshel, J. Phys. Chem. 97, 8050 (1993).
22M. Svensson, S. Humbel, R. D. Froese, T. Matsubara, S. Sieber, and K.

Morokuma, J. Phys. Chem. 100, 19357 (1996).
23N. Govind, Y. A. Wang, and E. A. Carter, J. Chem. Phys. 110, 7677 (1999).
24H. Lin and D. G. Truhlar, Theor. Chem. Acc. 117, 185 (2007).
25P. Elliott, K. Burke, M. H. Cohen, and A. Wasserman, Phys. Rev. A 82,

024501 (2010).
26J. D. Goodpaster, N. Ananth, F. R. Manby, and T. F. Miller III, J. Chem.

Phys. 133, 084103 (2010).
27C. R. Jacob and J. Neugebauer, WIREs: Comput. Mol. Sci. 4, 325 (2014).
28R. Kosloff, J. Phys. Chem. 92, 2087 (1988).
29N. Rom, D. Charutz, and D. Neuhauser, Chem. Phys. Lett. 270, 382

(1997).
30The calculations were performed within the local density approximation

(LDA) and using the plane-waves basis with kinetic energy cutoff of 20Eh.
Troullier-Martins norm-conserving pseudopotentials were employed for
the electron-nuclear interactions32 and the Martyna-Tuckerman technique
was used to treat long range interactions in the finite cluster systems.33

Self-consistency was achieved using Pulay’s DIIS method.34

31C. J. Fennell and J. D. Gezelter, J. Chem. Phys. 124, 234104 (2006).
32N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).
33G. J. Martyna and M. E. Tuckerman, J. Chem. Phys. 110, 2810 (1999).
34P. Pulay, Chem. Phys. Lett. 73, 393 (1980).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:  46.117.38.8

On: Wed, 20 Aug 2014 11:16:42


