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ABSTRACT: We develop a stochastic formulation of the optimally tuned
range-separated hybrid density functional theory that enables significant
reduction of the computational effort and scaling of the nonlocal exchange
operator at the price of introducing a controllable statistical error. Our
method is based on stochastic representations of the Coulomb convolution
integral and of the generalized Kohn−Sham density matrix. The computa-
tional cost of the approach is similar to that of usual Kohn−Sham density
functional theory, yet it provides a much more accurate description of the
quasiparticle energies for the frontier orbitals. This is illustrated for a series of
silicon nanocrystals up to sizes exceeding 3000 electrons. Comparison with
the stochastic GW many-body perturbation technique indicates excellent
agreement for the fundamental band gap energies, good agreement for the
band edge quasiparticle excitations, and very low statistical errors in the total
energy for large systems. The present approach has a major advantage over one-shot GW by providing a self-consistent
Hamiltonian that is central for additional postprocessing, for example, in the stochastic Bethe−Salpeter approach.

■ INTRODUCTION

First-principles descriptions of quasiparticle excitations in
extended and large confined molecular systems are prerequisite
for understanding, developing, and controlling molecular
electronic, optoelectronic, and light-harvesting devices. In
search of reliable theoretical frameworks, it is tempting to use
Kohn−Sham density functional theory (KS-DFT),1 which
provides accurate predictions of the structure and properties
of molecular, nanocrystal (NC), and solid-state systems.
However, KS-DFT approximations poorly predict quasiparticle
excitation energies in both confined and extended systems,2−4

even for the frontier occupied orbital energy, for which KS-
DFT is expected to be exact.5−7 This has led to the
development of two main first-principles alternative frame-
works for quasiparticle excitations. The first is the GW
approximation,8 providing a self-energy for the single-particle
equations for the Dyson orbitals9 and often applied as a
perturbative correction over KS-DFT (the so-called G0W0

approximation).10 This approach provides estimates of
quasiparticle energies and quasiparticle gaps that are close to
experimental results.11−25

A different route for quasiparticle energies invokes
generalized KS-DFT approaches,26−30 and in the present
paper, we concentrate on the long-range separated hybrid
(RSH) functionals31−37 combined with an optimally tuned
range parameter.38,39 This approach provides quantitative

predictions of quasiparticle band gaps, band edge energies,
and excitation energies for a range of interesting small
molecular systems, matching well both experimental results
and GW predictions.40−43 The key element of the range
parameter tuning is the minimization of the deviation between
the highest occupied orbital energy and the ionization
energy39,40 or the direct minimization of the energy curvature.44

The use of GW and the optimally tuned RSH (OT-RSH)
approaches for describing quasiparticle excitations in extended
systems is hampered by high computational scaling. The
computational bottleneck in GW is in the calculation of the
screened potential within the Random Phase Approximation
(RPA), while in OT-RSH, it is the application of nonlocal
exchange to each of the molecular orbitals. OT-RSH is a self-
consistent method and should therefore be compared to self-
consistent GW calculations; however, the latter are extremely
expensive as the self-energy operator must be applied
repeatedly to all Dyson orbitals.
Recently, we proposed a stochastic formulation limited to the

G0W0 approach, where the computational complexity was
reduced by combining stochastic decomposition techniques
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and real-time propagation to obtain the expectation value of the
self-energy within the GW approximation.45 The stochastic GW
(sGW) was used to describe quasiparticle energies in very large
silicon NCs with Ne > 3000 (Ne is the number of electrons),
with computational complexity scaling nearly linearly with the
system size. Similar stochastic techniques have been developed
by us for DFT,46 for embedded DFT,47 and for other electronic
structure problems.48−52

Here, we develop a stochastic formalism suitable for applying
the OT-RSH functionals for studying quasiparticle excitations
in extended systems. The approach builds on our previous
experience with the exchange operator,53−55 but several new
necessary concepts are developed here for the first time. We
start with a brief review of the OT-RSH approach, then move
on to describe the specific elements of the stochastic approach,
and finally present results.

■ OPTIMALLY TUNED RANGE-SEPARATED HYBRID
FUNCTIONALS

For a systems of Ne electrons in an external one-electron
potential νext(r) having a total spin magnetization sz in the z
direction, the OT-RSH energy is a functional of the spin-
dependent density matrix (DM) ρ↑,↓(r,r′) given in atomic units
as
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where γ is the range parameter, discussed below, while
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is the Hartree energy functional of the density n(r) = ρ(r,r) =
∑σ=↑↓ ρσ(r,r) and uC(r) = r−1 is the Coulomb potential energy.
EXC
γ [n] is the unknown γ-dependent exchange−correlation

energy functional, which in practical applications is approxi-
mated. The nonlocal exchange energy functional is given by
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where uC
γ (r) = r−1 erf(γr). This choice of uC

γ (r) accounts for
long-range contributions to the nonlocal exchange energy and
thus dictates a complementary cutoff in the approximate local
exchange−correlation energy, EXC

γ [n], to avoid overcounting
the exchange energy.32,39,56

When the exact EXC
γ [n] functional is used, minimizing

ERSH
γ [ρ↑,ρ↓] with respect to ρσ(r,r′) under the constraints

specified below leads to the exact ground-state energy and
electron density n(r). For approximate EXC

γ [n], approximate
estimates of these quantities are obtained. To express the
constraints, we first require the spin-dependent DM to be
Hermitian and thus expressible as

∑ρ ϕ ϕ′ = * ′σ σ σ σfr r r r( , ) ( ) ( ),
j

j j j, , ,
(4)

where f j,σ and ϕj,σ(r) are its eigenvalues and orthonormal
eigenfunctions. The constraints are then given in terms of the
eigenvalues f jσ as
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The necessary conditions for a minimum of ERSH
γ [ρ↑,ρ↓] is that

ϕj,σ(r) obey the generalized KS equations
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where εj,σ
γ are the spin-dependent eigenvalues of the generalized

KS Hamiltonian (j = 1, 2, ... and σ = ↑↓) given by
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Note that the DM and its eigenstates minimizing the energy
functional ERSH

γ [ρ↑,ρ↓] are themselves γ-dependent and are thus
denoted by ρσ

γ(r,r′), ϕj,σ
γ (r); the DM eigenvalues are not γ-

dependent, as shown below. The one-electron Hamiltonian hσ̂
γ

contains the kinetic energy, a local potential in r space νσ
γ(r)̂

and a nonlocal exchange operator kσ̂
γ. The local r space potential

is further decomposed into three contributions
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function ψσ(r) of the same spin as
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In this work, we consider closed-shell systems where sz = 0
and Ne = 2NH, where NH is the number of electron pairs, that
is, the level number of the highest occupied molecular orbital
(HOMO). In this case, as in Hartree−Fock theory and DFT,
the DM eigenvalues f jσ that minimize ERSH

γ [ρ↑,ρ↓] are f j,σ = 1 if j
≤ NH and 0 otherwise.57 Hence, these conditions are used a
priori as constraints during the minimization of ERSH

γ [ρ↑,ρ↓].
However, for the tuning process the ensemble partial ionization
of an up-spin (or down-spin) electron needs to be considered.
Thus, these values for f j,σ are still used except for j = NH and σ =
↑, where f H↑ is fixed to be a positive fraction (i.e., the negative
of the overall charge of the system, −c) during the
minimization of the GKS ensemble energy ERSH

γ [ρ↑,ρ↓] (for
clarity, we abbreviate NH ≡ H for the frontier orbital energy (ε)
and occupation ( f)). We note in passing that tuning is often
done by combining a linearity condition from the N + 1
electron system.58 We leave this for future work and state that it
can be done along the same lines as those described here for
the N-electron system.
The optimally tuned range parameter γ is determined from

the requirement that the highest occupied generalized KS
orbital energy εH,σ

γ is independent of its occupancy f H,σ

ε∂
∂

=
γ

↑

↑f
0.H,

H, (12)
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Through Janak’s theorem,59 this equation implies that the

energy curvature ∂
∂

γ

↑

E
f

2
RHS

H,
2 is zero. In practical terms, eq 12 is

solved by a graphical root search, as shown in Figure 1 and
discussed below.

■ STOCHASTIC FORMULATION OF THE NONLOCAL
EXCHANGE OPERATOR

In real-space or plane-waves implementations, the application
of the Hamiltonian ĥKS on a single-particle wave function
involves a pair of fast Fourier transforms (FFTs) to switch the
wave function between k−space where the kinetic energy is
applied and r−space for applying the potential energy.61

Therefore, for a grid of Ng grid points, the operational cost is
10Ng log2Ng. The KS Hamiltonian operation scales quasili-
nearly with system size. The scaling is much steeper for the
RSH Hamiltonian because the nonlocal exchange operator kσ̂

γ

applies Ne Coulomb convolution integrals, each of which is
done using a FFT of its own, thus involving 10Ng log2Ng × Ne
operations. Therefore, the GKS Hamiltonian operation, which
scales quasiquadratically, is much more time-consuming than
the KS Hamiltonian. Our approach, described next, reduces
significantly the operation cost and even lowers the scaling due
to the reduction of the optimal value of the range parameter, γ*,
as the system size grows.62,63

We first express the occupations in the DM in eq 4 as a
combination of a occupations of a closed-shell DM and a
remnant due to the overall charge of the molecule, c (assuming
−1 ≤ c ≤ 1). This separation reduces the stochastic error later
when the charge of the system is continuously varied, as needed
for the optimal tuning. Thus
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∑
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where ϕF↑ is the frontier orbital being charged (F = H or L)
and c is the amount of charge. When tuning the neutral system
F = H is the HOMO, and it is being positively charged
(electrons removed from HOMO); therefore, c > 0. When
tuning for the anion, F = H + 1 is the lowest occupied
molecular orbital (LUMO), and the system is negatively
charged (electrons are added to the LUMO); therefore, c < 0.

We assume that without loss of generality, the spin of the
charge frontier orbital is up. Next, we evaluate the first term on
the right-hand side of eq 13 using stochastic orbitals, which are
functions on the grid assigning a random sign at each grid point

ξ ξ= = ±
h

r r( )
1

.
3 (14)

Stochastic orbitals offer a stochastic representation of the
identity operator64

ξ ξ = ̂ξ 1. (15)

Using this identity, just about any computation on the grid can
be converted into a stochastic process.45−50,55,65−68 For our
purpose here, we define the following occupied-projected
random functions on the grid (r is a grid point)
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where ϕj,σ(r) are the occupied (orthonormal) eigenstates of hσ̂.
Then, the average of the product
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can be evaluated using ⟨⟨ϕj,σ|ξ⟩ ⟨ξ|ϕk,σ⟩⟩ξ = δjk (from eq 15 and
the orthonormality of ϕj,σ(r)), thus leading to the elegant
stochastic representation of the DM

ρ η η′ = ⟨ * ′ ⟩σ σ σ ξr r r r( , ) ( ) ( ) . (18)

With this, eq 11 is rewritten as
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Next, we address the convolution in the random part of the
above expression by rewriting the range-separated Coulomb
potential as

ζ ζ| − ′| = ⟨ * ′ ⟩γ
φu r r r r( ) ( ) ( ) ,C (20)

where ζ(r) = ∫π ̃ γ φ− ·uk k(2 ) d ( ) e ek k r3
C

i ( ) i , u ̃Cγ (k) is the
Fourier transform of uC

γ (r), and φ(k) is a random phase

Figure 1. (Left panels) The curvature as a function of γ for the HOMO energy, ∂εH,↑/∂f H,↑ for different silicon NCs and for a different number of
stochastic orbitals used to evaluate the nonlocal exchange. (Right panel) The optimal value of γ determined by eq 12 for the selected silicon NCs.
The results are best-fitted to −0.013 + 0.53NSi

−1/3. The square is the reverse-engineered value of γ that yields the experimental band gap of bulk
silicon (ref 60).
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between 0 and 2π at each k space grid point. This can be seen
by inserting the definition of ζ(r) into eq 20 and using the
identity ⟨e−i[φ(k)−φ(k′)]⟩φ = (2π)3δ(k − k′) (see the Appendix
for the treatment of the k = 0 term). The nonlocal exchange
operation is finally written as

∫
∫
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In actual applications, we use a finite number Nχ of pairs of
stochastic orbitals χσ(r) = ζ(r)ησ (r), and thus

∫
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The ζ(r)’s are calculated once and stored in memory, while the
ησ(r)’s are generated on the fly. The computational scaling of
the nonlocal exchange operation on ψσ(r) is thus NχNg (versus
10Ng log2Ng × Ne for the deterministic case). Typically, Nχ =
200 and Ng = 106, and thus, the operation of the stochastic
nonlocal exchange becomes comparable in terms of computa-
tional effort to that of operating with the kinetic energy;
therefore, the computational cost of applying the GKS
Hamiltonian is similar to that of the KS Hamiltonian.

■ RESULTS FOR SILICON NCS

The new method has been implemented using the BNL
functional34,35 for a series of hydrogen-passivated silicon NCs
of varying sizes, Si35H36, Si87H76, Si147H100, Si353H196, and
Si705H300, with real-space grids of 603, 643, 703, 903, and 1083

grid points, respectively. We solve the generalized KS equations
fully self-consistently using the Chebyshev-filtered subspace
acceleration69,70 to obtain the occupied and low-lying
unoccupied eigenfunctions and eigenvalues.
The energy curvature for the different NCs is estimated from

the forward difference formula concerning the HOMO energy

− ≈ε ε ε δ
δ

∂
∂

−↑ ↑ ↑c

c

( ) (0) ( )H, H, H, , with δ = 0.125, is plotted as a

function of γ in Figure 1. The curvature is a decreasing function
of γ and has a node at the optimal value of the range parameter
γ*. When γ < γ* (γ > γ*), the curvature is positive (negative),
and we have delocalization (localization) errors.71 For each NC,
the curvature results are shown for several values of the number
of stochastic orbitals Nχ. We find that the statistical fluctuations
near γ* become smaller as the system grows and can be reduced
with proper choice of Nχ. For example, for the larger system,
the results near γ* can be converged with only Nχ ≈ 200
compared to the total number of occupied states for this
system, which is 1560. The reduction of these fluctuations is
partially due to the decrease of γ* itself as the NC size increases
(this decrease is shown in the right panel of Figure 1), leading
to a smaller contribution of the nonlocal exchange to the orbital
energies.
The results in the right panel of the figure also show that γ*

closely follows a linear function of NSi
−1/3. We expect that for

larger NCs with NSi > 2500, this linear relation will break down,

Figure 2. (Left panels) Convergence of the HOMO (H) energy (upper left panel) and the LUMO (L = H + 1) energy (lower left panel) with the
number of stochastic orbitals Nχ for silicon NCs using the BNL range-separated functional. (Right panels) Convergence of the total exchange energy
(upper right panel) and the total energy (lower right panel) with the number of stochastic orbitals Nχ for the corresponding silicon NCs. (Insets) A
zoom of the results for the largest silicon NC, Si705H300. Dashed lines are the corresponding deterministic results where the exchange operator is
calculated with all occupied orbitals using FFT for the Coulomb convolutions.
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and the optimal range parameter will converge to the bulk
value, which through reverse engineering60 can be estimated as
γ*
∞ = 0.02a0

−1 (shown as a horizontal dotted line). Such a
localization induced by the exchange has been seen for 1D
conjugated polymers72 but not for bulk solids like silicon, likely
due to the enormity of the calculation.
In Figure 2, we plot the HOMO (upper left panel) and the

LUMO (lower left panel) energies, the total exchange energy
per electron (upper right panel), and the total energy per
electron (lower right panel). The HOMO and LUMO orbital
energies were obtained from the relations59

ε
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respectively, as a function of Nχ at γ*. We find that determining
the HOMO and LUMO energies using the above first
derivative relations reduces the noise compared to obtaining
their values directly from the eigenvalues. Clearly εH,↑, εL,↑ and
the total exchange and total energies per electron converge as
Nχ increases. As the system size increases, the fluctuations in
εH,↑ and εL,↑ decrease for a given value of Nχ, consistent with
the discussion above. This is evident from the plot of the
differences between the frontier orbital energies at adjacent
values of Nχ. A similar conclusion can be drawn for the total
exchange energy and total energy per electron. The insets in the
right panels show that for the largest systems studied, the
fluctuations in these quantities are a few meV’s. This is
sufficient to converge the quasiparticle energies of the frontier
orbitals to within an experimental relevant accuracy; however,
note that the statistical fluctuation in the total energy itself is
still rather large (≈1 eV).
Turning to compare the current results with the stochastic

GW approach,45 in the lower panel of Figure 3, we plot the
converged (with respect to Nχ) HOMO and LUMO energies at
γ* for the series of silicon NCs. For the two smallest systems
(Si35H36 and Si87H76), we compare the stochastic approach

developed here with a deterministic RSH calculation using all
occupied orbitals for the range-separated exchange and obtain
the Coulomb convolution integrals with FFTs, thereby
eliminating any source of statistical error. The purpose is to
show that when the stochastic results are converged, the
agreement with a deterministic calculations is perfect on a
relevant magnitude of energy. We find that the HOMO energy
increases and the LUMO energy decreases with the size of the
NC. This is consistent with our recent calculations on silicon
NCs using the stochastic GW approach, albeit with the fact that
there is a small shift in the quasiparticle energies obtained from
the stochastic RSH approach compared to the sGW. Indeed, a
similar shift has been reported previously for much smaller
silicon NCs.40 However, the source of this discrepancy is not
clear, particularly because the GW calculations were done
within the so-called G0W0 limit, and the OT-RSH often
provides better quasiparticle energies in comparison to
experiments.41 In the upper panel of Figure 3, we plot the
fundamental (quasiparticle) gaps. Here, the agreement with the
sGW approach is rather remarkable, especially compared to the
LDA results, which significantly underestimate the quasiparticle
gap across all sizes studied.
In Table 1, we provide numerical details of the calculations

for the smallest and largest NC studied. We report the results

for the HOMO and LUMO orbital energies for two different
choices of Nχ. Comparing these two values, we can conclude
that the statistical errors for the LUMO are very small (≈0.01
eV) for the largest NC, and even the HOMO has small errors
of around ∼0.05 eV. Moreover, similar or even larger statistical
errors are observed for the smaller NC for much larger values of
Nχ, indicating that for a given accuracy, the number of
stochastic orbitals decreases with the system size. This is
partially correlated with the reduction of γ* with the system
size, as discussed above.

■ SUMMARY
We have developed a stochastic representation for the nonlocal
exchange operator in order to combine real-space/plane-waves
methods with OT-RSH functionals within the generalized
Kohn−Sham scheme. Our formalism uses two principles: one is
a stochastic decomposition of the Coulomb convolution
integrals, and the other is the representation of the DM using
stochastic orbitals. Combining these two ideas leads to a

Figure 3. (Lower panel) Comparison of the HOMO and LUMO
energies obtained using the sGW approach (black triangles) and the
stochastic RSH within the BNL functional (red asterisk) for a series of
silicon NCs. The cyan diamond represents the deterministic RSH
within the BNL functional. (Upper panel) The corresponding
quasiparticle band gaps. Also shown is the DFT result within the
LDA (blue circles).

Table 1. Optimally Tuned BNL Frontier Orbital Energies
and Computational Times TCPU versus the Number of
Stochastic Orbitals Nχ for Two (Medium and Large) Silicon
Clusters. Values for LDA Are Also Given for Comparison as
the System Size Grows, TCPU for the Optimally Tuned BNL
Decreases Relative to the LDA Timings Due to a Decrease of
γ*
a

system functional Nχ εH (eV) εL (eV) εg (eV) TCPU
d

Si35H36 LDA −6.13 −2.73 3.40 1.6
BNLb 800 −7.72 −1.09 6.63 16

1600 −7.75 −1.05 6.70 30
Si705H300 LDA −5.13 −3.85 1.28 132

BNLc 200 −5.59 −3.18 2.41 234
400 −5.63 −3.17 2.46 310

aAs the system size grows, TCPU for the optimally tuned BNL
decreases relative to the LDA timings due to a decrease of γ*.

bγ* =
0.148 a0

−1. cγ* = 0.047 a0
−1. dIn CPU hours.
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significant reduction of the computational effort and, for the
systems studied in this work, to a reduction of the
computational scaling of the nonlocal exchange operator, at
the price of introducing a statistical error. The statistical error is
controlled by increasing the number of stochastic orbitals and is
also found to reduce as system size grows. Applications to
silicon NCs of varying sizes show relatively good agreement for
the band edge quasiparticle excitations in comparison to a
many-body perturbation approach within the sGW approx-
imation and excellent agreement for the fundamental band gap.
The stochastic approach has a major advantage over the sGW
by providing a self-consistent Hamiltonian that is central for
postprocessing, for example, in conjunction with a real-time
Bethe−Salpeter approach.55 The results shown here for Ne >
3000 and Ng > 106 are the largest reported so far for the
optimally tuned range-separated generalized Kohn−Sham
approach.

■ APPENDIX: TREATMENT OF THE K = 0 TERM
For accelerating convergence, it turns out to be better to
remove the u ̃Cγ (k=0) term from the random vector expression
representing the interaction, that is

∑ζ π= ̃ γ φ−

≠

·d ur k k( ) (2 ) ( ) e e .
k 0

k k r3
C

i ( ) i

This is because in practice, the uC̃
γ (k=0) term is very large.

Analytically, this term is easily shown to commute with the
Fock Hamiltonian and simply contribute a constant (times the
occupation) to the eigenvalues and to the total energy;
therefore, it can be added a posteriori

ϕ ϕ ν ϕ̂ → ̂ −σ
γ

σ σ
γ

σ σ σk k fr r r( ) ( ) ( )j j j j, , , 0X ,

ε ε ν→ −σ
γ

σ
γ

σfj j j, , , 0X

∑ρ ρ ρ ρ ν→ − σ↑ ↓ ↑ ↓K K f[ , ] [ , ]
1
2

,j0X
2

where

ν π≡ ̃ =γ− d uk k 0(2 ) ( ).0X
3
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