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ABSTRACT
Efficient Boltzmann-sampling using first-principles methods is challenging for extended systems due to the steep scaling of electronic struc-
ture methods with the system size. Stochastic approaches provide a gentler system-size dependency at the cost of introducing “noisy” forces,
which could limit the efficiency of the sampling. When the forces are deterministic, the first-order Langevin dynamics (FOLD) offers efficient
sampling by combining a well-chosen preconditioning matrix S with a time-step-bias-mitigating propagator [G. Mazzola and S. Sorella, Phys.
Rev. Lett. 118, 015703 (2017)]. However, when forces are noisy, S is set equal to the force-covariance matrix, a procedure that severely limits
the efficiency and the stability of the sampling. Here, we develop a new, general, optimal, and stable sampling approach for FOLD under
noisy forces. We apply it for silicon nanocrystals treated with stochastic density functional theory and show efficiency improvements by an
order-of-magnitude.
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Prediction of the equilibrium properties of extended systems
using atomistic models often requires sampling from the Boltzmann
distribution of a series of configurations.1–6 Most common sampling
methods implicitly assume that either the potential energy surface7

or the forces on the nuclei8–12 are accessible, either through deter-
ministic ab initio methods such as density functional theory (DFT)
or other quantum chemistry methods (for small-medium sized sys-
tems)13 or through empirical force-fields. For extended systems,
ab initio methods often rely on stochastic techniques such as Quan-
tum Monte Carlo (QMC)14–17 or stochastic DFT (sDFT).18–23 For
example, in sDFT, the forces are calculated using a relatively small
number of stochastic orbitals instead of using the full set of deter-
ministic Kohn–Sham eigenstates. Therefore, the forces calculated
within sDFT are noisy with fluctuating values. Such noisy forces can
also occur with partially converged self-consistent field approaches
to deterministic DFT.24,25

Langevin dynamics (LD) often serves to generate a series
of thermally distributed nuclear configurations, based on the

calculated forces on the nuclei. The balance between accuracy, which
favors small time steps, and efficiency, which requires large time
steps (to reduce the correlations between consecutive configurations
in the series), determines the overall complexity and accuracy of this
class of approaches. A common form of Langevin dynamics is the
so-called second-order LD (SOLD),15,17,19,26–28 in which the New-
ton equation of motion includes a friction term and a noisy force
obeying the fluctuation–dissipation relation. An alternative is the
first-order Langevin dynamics (FOLD),15,29,30 which is conceptually
simpler than SOLD because it does not have inertia, and there-
fore, only nuclear configurations are Boltzmann-sampled. FOLD is
amenable to the introduction of a preconditioning matrix, which, by
proper choice, dramatically increases the configurational sampling
efficiency without affecting the accuracy.29 Unfortunately, when the
forces are noisy, this preconditioning matrix must be set equal to the
force covariance matrix16 and, thus, cannot be used for obtaining
optimal sampling efficiency. Therefore, it seems that noisy forces,
used in conjunction with FOLD, are inherently less efficient than
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deterministic ones. An additional complication appears as numer-
ical instabilities due to the singular nature of the force covariance
matrix.

In this Communication, we develop an approach that enables
the use of noisy forces within FOLD, lifting the constraints on the
preconditioning matrix. Furthermore, we demonstrate the approach
for silicon nanocrystals within sDFT and show an order of mag-
nitude increase in sampling efficiency compared to state of the art
methods for noisy forces. The solution lies in adding random noise
that combines with the preconditioning matrix to complement the
noise in the force coming from the stochastic electronic structure
method.

In its simplest form, the time-discretized first-order Langevin
dynamics produces a set of M configurations Rτ ≡ (R1

τ , . . . ,R3N
τ )

†
,

τ = 1,. . .,M, for an N nuclei system, through a random walk
described by16

Rτ+1 = Rτ +
√

2kBTΔtζτ + ΔtS−1f (Rτ), (1)

where f (R) ≡ (f 1(R), . . . , f 3N(R))† = −∇V(R) is the force act-
ing on the nuclear degrees of freedom R, Δt is a unit-less time step
parameter, and S is an arbitrary 3N × 3N symmetric positive-definite
matrix. The random vector ζτ = (ζ1

τ , . . . , ζ3N
τ )

†
, with which thermal

fluctuations are introduced, is distributed such that ⟨ζτ⟩ = 0 and

⟨ζτζ
†
τ′⟩ = S

−1δττ′ . (2)

For any choice of the preconditioning matrix S, the generated tra-
jectory samples the Boltzmann distribution at temperature T in the
Δt → 0 and M → ∞ limits.30 For finite values of M and Δt , the
configurations can then be used to produce estimates of the ther-
mal average of quantities A: ⟨A⟩T ≈ ⟨AM⟩ ≡ ⟨ 1

M ∑
M
τ=1 A(Rτ)⟩. One

would expect that the variance of AM is σ2
A,T,M =

σ2
A,T
M , where σ2

A,T is
the thermal variance in A at temperature T. However, since configu-
rations Rτ and Rτ+τ ′ correlate, the actual variance is much larger,

σ2
A,T,M =

σ2
A,T
M τc, where τc is the number of correlated time steps.

The smaller the τc, the more efficient the Langevin dynamics for
sampling.

Consider now the efficiency of the method in theT→ 0 limit for
the 3N-dimensional harmonic oscillator V(R) = 1

2R
†HR, where H

is the Hessian matrix [Hij = ∂2V(R)
∂Ri∂Rj ]. In this limit, the trajectory gen-

erated by Eq. (1) with f (R) = −HR is given by Rτ = (1 − ΔtU)τR0,
where U = S−1H and τ = 0, 1, 2, . . . enumerate the time steps.
The correlation between displacements after many time steps decays
as e−Δtuminτ , where umin > 0 is the smallest eigenvalue of U, so τc
≈ (Δtumin)−1. Furthermore, the trajectory Rτ remains stable as long
as umaxΔt < 2, where umax is the largest eigenvalue of U. Thus, τc is
limited from below by

τc >
1
2
umax

umin
≡ 1

2
cond(U). (3)

It is now evident how preconditioning is important. Without it (say S
= I3N , where I3N is the 3N × 3N unit matrix), we find τc > 1

2 cond(U),
which in typical problems can easily exceed 103, making the ran-
dom walk very inefficient. Optimal preconditioning involves taking

S = H, enabling τc to be as low as 1. However, in this case, one would
have τc ≈ Δ−1

t , and since Δt has to be kept small to avoid bias, τc is
often quite large even under preconditioning. This is where a method
that reduces the time step bias, thus allowing Δt to grow, is required.
Such a random walk was proposed in Ref. 30, based on the exact
solution for a harmonic potential. It involves the following process

Rτ+1 = Rτ +
√

2kBTΔ2ζτ + Δ1S−1f (Rτ), (4)

employing two time steps

Δn =
1
n
(1 − e−nΔt), n = 1, 2, (5)

and it was shown to lead to significantly lower time step biases.
We refer to this type of random walk as “reduced-bias FOLD”
(RB-FOLD).

What happens when the forces are random? Can we still
use RB-FOLD and have efficient sampling? The random forces
ϕ(Rτ) = f (Rτ) + ητ coming from sDFT or QMC will give the deter-
ministic force f (Rτ) = ⟨ϕ(Rτ)⟩ on the average but will also involve
random inseparable fluctuations ητ = (η

1
τ , . . . ,η3N

τ )
†
. Simply plug-

ging the random force ϕ(R) into the FOLD equation will give the
wrong effective dynamics Rτ+1 = Rτ +

√
2kBTΔt(ζτ +

√
Δt

2kBT
S−1ητ)

+ΔtS−1f (Rτ) since the noise fluctuations ητ clearly cause additional
heating, violating the fluctuation–dissipation relation. Hence, when-
ever one replaces f (R) by ϕ(R) in Eq. (1), one also needs to replace
ζ of Eq. (2) by a “smaller” fluctuation ζ̃, so the FOLD is now

Rτ+1 = Rτ +
√

2kBTΔt ζ̃τ + ΔtS−1ϕ(Rτ), (6)

where

⟨ζ̃τ ζ̃
†
τ′⟩ = [S

−1 − Δt

2kBT
S−1covϕ(Rτ)S−1]δτ,τ′ . (7)

The present formulation is similar to the approach previously devel-
oped in Ref. 26 for using random forces in second-order Langevin
dynamics. Here, covϕ(Rτ) = ⟨ητη

†
τ⟩ is the force covariance matrix,

and it is proportional to 1
I , where I is the number of stochastic

iterations in the electronic structure calculation. Note, however,
that the term on the right-hand side must be positive-definite, a
condition that can be achieved by a sufficient reduction in either
the time step Δt or the random force covariance. In both cases,
this requires additional computational work. In Ref. 16, the spe-
cific choice S = α × covϕ(Rτ) (where α is a properly chosen con-
stant) was made, which had the appeal that ⟨ζ̃τ ζ̃

†
τ⟩, like ⟨ζτζ†τ⟩ of

Eq. (2), was proportional to S−1. However, this choice has the follow-
ing shortcomings: (a) S is now time-dependent and requires special
treatment in the equation of motion;16 (b) it straddles S, leaving no
room for using it as a preconditioning matrix for optimizing the
efficiency; and (c) it assumes implicitly that the covariance matrix
is invertible, which is not always the case. In light of these limi-
tations, we advocate leaving S in its original form as an optimal
preconditioning matrix (e.g., S ≈ H) and using Eq. (1) with ϕ(Rτ)
replacing f (Rτ) and with ζ̃ of Eq. (7) replacing ζ of Eq. (2). We
refer to this method as “noisy-FOLD” since it is an extension of
the FOLD method to noisy forces. A similar treatment in the case
of the random force counterpart of RB-FOLD [Eq. (4)], to which
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we henceforth refer to as “noisy-RB-FOLD,” leads to the following
FOLD:

Rτ+1 = Rτ +
√

2kBTΔ2ζ̂τ + Δ1S−1ϕ(Rτ), (8)

where

⟨ζ̂τ ζ̂
†
τ′⟩ = [(1 − Δ2

1

2kBTΔ2
S−1covϕ(Rτ))S−1]δττ′ . (9)

These two equations form the main result of this Communication
since this noisy-RB-FOLD preserves much of the flexibility in choos-
ing the matrix S as in the RB-FOLD solution while allowing for
stochastic forces. As noted above for noisy FOLD, here too, the right-
hand side of Eq. (9) must be positive-definite. To enforce this condi-
tion, additional numerical work is required, either by decreasing the
time step or the force covariance. The first measure, decreasing the
time step, increases the sample correlations, so additional time steps
are needed as a compensation. The second measure, reducing covϕ,
calls for a step-up in the number of stochastic electronic-structure
iterations.

We use the Harmonic potential discussed above to demon-
strate the theory in Fig. 1. We plot the fluctuation σV and the
bias ΔV for various sampling procedures within FOLD, com-
paring the non-optimal preconditioning choice, S = αcovϕ (with
α = 1 in the units of the Harmonic oscillator, triangles), dis-
cussed in Ref. 16 and the optimal preconditioning S = H (squares)
advocated here. It is evident from Fig. 1 that whether one uses
noisy-FOLD [blue symbols, Eqs. (6) and (7)] or noisy-RB-FOLD
[red symbols, Eqs. (8) and (9)], the bias ΔV can be reduced only
by decreasing the time steps Δt . However, the abovementioned

FIG. 1. The bias (ΔV = ⟨V⟩ − 3
2 kBT, where kBT = 0.1) and the fluctuation σV in

the average potential energy estimate ⟨V⟩ (determined using binning analysis30)
for noisy-RB-FOLD and RB-FOLD calculations on a 3D harmonic oscillator with a
random force ϕ, ⟨ϕ⟩ = HR, and covϕ = 0.02I3N , where the Hessian H is diagonal
with values of 0.1, 1, and 10. We show results for S = αcovϕ (with α = 1, triangles)
and S = H (squares). The blue symbols correspond to noisy-FOLD [Eqs. (6) and
(7)], while the red symbols correspond to noisy-RB-FOLD [Eqs. (8) and (9)]. The
points are differentiated by a time step parameter Δt (not specified). The results
are calculated using trajectories of 5 × 107 steps.

analysis of τc showed that as Δt decreases, the fluctuation σV grows.
Under optimal preconditioning S = H (squares), we see that noisy-
FOLD [blue symbols, Eqs. (6) and (7)] biases are reduced, yet the
error control is still unsatisfactory since any attempt to reduce the
bias further (by decreasing Δt) increases once again the fluctua-
tion σV . This problem does not arise for noisy-RB-FOLD results
[red squares, Eqs. (8) and (9)], where Δt can grow to lower σV
without a bias penalty. Note that to within small fluctuations, the
same results shown here for noisy forces also appear for determin-
istic ones (obtained by taking ϕ = f and covϕ = 0), not shown
here.

We expect the noisy-RB-FOLD calculations to be highly effi-
cient not only for the Harmonic model but also for more realistic
systems. To demonstrate this, we apply the method to the problem
of determining the structural properties of a realistic atomistic sys-
tem such as the Si35H36 nanocrystal at T = 300 K, described with
DFT at the local density approximation level.31 Our purpose is to
validate the noisy-RB-FOLD sampling approaches based on sDFT
forces using calculations based on sampling methods that employ
dDFT forces (RB-FOLD, FOLD, and SOLD19) and to compare the
efficiencies of these methods. Note that all the FOLD methods in
Fig. 2 are based on optimal sampling, with S = H, where a finite-
difference approximation for estimating the Hessian was used within
deterministic DFT (see the supplementary material for additional
details). We could not show results for the choice S = αcovϕ of
Ref. 16 because of numerical problems stemming from the fact that
the sDFT forces have a force-covariance matrix that is nearly singu-
lar (see the supplementary material). In Fig. 2, (left panel) we show
that, indeed, our new noisy-RB-FOLD method as well as the other
methods predicts the same first peak of the pair distribution func-
tion g(r) (to within statistical fluctuations).32 In order to study the
efficiency, we plot in the right panel the pair-distance correlation
function in terms of the distance rij between a pair of silicon atoms,
numbered i and j,

Cτ =
⟨∑Nτ−τ

t=1 rtijr
t+τ
ij ⟩{i,j}

⟨∑Nτ−τ
t=1 rtijr

t
ij⟩{i,j}

, (10)

where ⟨⟩{i,j} represents an average over these pairs and Nτ is the
total number of steps in the Langevin trajectory. Cτ has the initial
value of one at τ = 0, and then, it decays non-monotonically until
it settles upon a steady fluctuation around zero. We define the time
scale τc for this decay as the earliest time for which Cτc = 0.1. Con-
sider first the correlation functions for the FOLD and the SOLD
trajectories; both are seen to have a concave structure at small val-
ues of τ, which delays decay and turns convex only at much longer
times, and both trajectories exhibit a slow decay with τc ≈ 100. Next,
consider the correlation functions for RB-FOLD: the deterministic
RB-FOLD with Δ1 = 1 (Δt = 10, Δ2 = 0.5) and the noisy-RB-FOLD
with Δ1 = 0.5 (Δ2 = 0.375) with (Δt = 0.7, Δ2 = 0.375). In Fig. 2,
τc is twice as large when Δ1 = 0.5 than when Δ1 = 1, in agree-
ment with our analysis above, and both functions have a similar
convex form. We have verified that the correlations of the noisy-
and deterministic RB-FOLD trajectories for Δ1 = 0.5 are identi-
cal (not shown here), and we see that they represent an order of
magnitude improvement on the previously used SOLD approach
for sDFT.
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FIG. 2. Comparison of four sampling methods applied to Si35H36 at T = 300 K. The left panel shows the average of the Si–Si pair-distance distribution function g(r), while
the right panel displays the pair-distance correlation functions Cτ . The methods are noisy-RB-FOLD, based on sDFT, and FOLD, RB-FOLD, and SOLD, based on dDFT. All
FOLD-based methods use optimal preconditioning S = H (see the supplementary material concerning calculation of the Hessian H). For each of the methods, we produced
a 3000-step trajectory starting from the same configuration, and the shown results are based on them.

Summarizing, in previous work,19 we used SOLD to address the
problem of noisy forces in sDFT calculations but found that thou-
sands of time steps were required to shake off the correlations. Here,
we developed a radically more efficient method for sampling system
configurations under stochastic forces. It capitalizes on a recently
proposed method16 but makes critical changes in the Langevin force
sampling, which restore optimal preconditioning. The final proce-
dure is to perform a random walk following Eq. (8) while sampling
the Langevin forces from Eq. (9).

Using a purely Harmonic model system, we compared noisy-
FOLD and noisy-RB-FOLD and showed that the latter is much more
efficient and insensitive to the time step. We further showed that
the noisy-RB-FOLD has similar characteristics also when applied
to the real atomistic system using sDFT forces. One notable dif-
ference between RB-DFT and noisy-RB-DFT concerns with the
increase in the time step. One must assure that the left-hand side
of Eq. (9) is positive-definite; hence, at some point, any increase
in Δ2

1/Δ2 will necessitate a reduction in covϕ. This is especially
important at low temperatures. The results of this work provide a
general recipe for efficient and stable Boltzmann sampling under
the presence of stochastic forces. Our approach is efficient for sys-
tems in which the Hessian and covϕ do not change much over
time, as is typical of calculations in solids and nanocrystals. In
high temperatures, when treating gases and liquids or when bond
breaking situations occur, these assumptions do not hold and an
occasional update of the matrices is required. In this case, fur-
ther considerations along the lines depicted in Ref. 16 may be
necessary.

As explained, any positive-definite matrix S can be used with-
out bias (in the vanishing time step limit); however, there is a great
advantage in choosing S = H, where H is the Hessian, because
this allows for large time steps and small correlation times. To
demonstrate this principle, we used a finite-difference approxima-
tion for estimating the Hessian within deterministic DFT. Clearly,
such an approach is not scalable for large systems. In Refs. 15
and 16, it was found that the QMC force-covariance, covϕ, is approx-
imately proportional to the Hessian. Unfortunately, this is not the

case for sDFT. Still, sufficiently good Hessian approximations can
probably be obtained from empirical force-fields or the embedded-
fragment sDFT procedure.19,22,23,33 Further work researching this
topic is required.

The supplementary material is given concerning the calculation
of the Hessian matrix and the properties of the covariance matrix of
the Si35H36 system.
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