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Abstract

StochasticGW is a code for computing accurate Quasi-Particle (QP) energies of

molecules and material systems in the GW approximation. StochasticGW utilizes the

stochastic Resolution of the Identity (sROI) technique to enable a massively-parallel

implementation with computational costs that scale semi-linearly with system size, al-

lowing the method to access systems with tens of thousands of electrons. We introduce

a new implementation, StochasticGW− GPU, for which the main bottleneck steps have

been ported to GPUs and which gives substantial performance improvements over pre-

vious versions of the code. We showcase the new code by computing band gaps of

hydrogenated silicon clusters (SixHy) containing up to 10001 atoms and 35144 elec-

trons, and we obtain individual QP energies with a statistical precision of better than

±0.03 eV with times-to-solution on the order of minutes.

Introduction

In recent years, predicting electronic properties of materials from �rst-principles has become a

key step in the materials design process, greatly reducing laboratory time and costs by direct-

ing synthetic e�orts towards the most promising material candidates for a given application.
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Properties of interest, including band gaps, ionization potentials, and optical spectra, can be

computed via electronic structure methods implemented in commercially-available and open

source software. For excited states, post-Hartree-Fock methods, including multi-reference

con�guration interaction1,2 and equation-of-motion coupled-cluster methods3,4, while being

gold standards for accuracy, are only applicable to small molecules since the computational

cost of these methods grows steeply with the number of electrons. Due to their more favor-

able scaling, Density Functional Theory (DFT)-based methods5 have become the industry

standards for predicting ground state energies of large molecules and materials6; however,

their accuracy is poor when used to predict Quasi-Particle (QP) energies corresponding to

excited states7�9. Excited-state methods that can be applied on top of a DFT starting point,

such as Time-Dependent (TD-)DFT10, the GW approximation9,11,12, including its extensions

using perturbation theory13 and the Bethe-Salpeter Equation (BSE) approach14, provide su-

perior accuracy compared to DFT, but they are expensive to apply, limiting excited state

calculations to systems containing ∼10,000 electrons15�20.

The GW method has emerged as a robust and routinely-used tool for computing QP en-

ergies of material systems11,21,22, and GW implementations are now found in many quantum

chemistry/materials software packages23�36. Here, one approximates the self-energy oper-

ator, Σ, which embodies the many-body electron exchange and correlation e�ects, as the

product of the single-particle Green's function, G, and the screened Coulomb interaction,

W , i.e. Σ = iGW . In common practice, one initiates a GW calculation by �rst solving the

Kohn-Sham equation using a DFT method of choice to generate the starting orbitals and

energies,

[
−1

2
∇2 + Vion + VH + V KS

XC

]
φKSk = εKSk φKSk (1)

where Vion, VH , and VXC are the ionic, Hartree, and exchange correlation potential terms,
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respectively, and φKSk and εKSk are the k-th orbital and energy eigenpair. To obtain QP

wavefunctions and energies, one starts by setting φQPk = φKSk and εQPk = εKSk and then solves

the analogous Dyson equation,

[
−1

2
∇2 + Vion + VH + Σ

(
εQPk

)]
φQPk = εQPk φQPk (2)

for φQPk and εQPk to self-consistency37�39. For many practical applications, it is su�cient to

solve the equation in a single pass, possibly from a pre-optimized starting point40. This is

referred to as the G0W0 approximation, and this is what we use throughout the manuscript

with the zero subscript omitted for clarity.

Evaluating the self-energy operator is costly and can be tackled by one of two strategies,

broadly de�ned as �deterministic� and �stochastic�. In deterministic GW, the overall cost is

dominated by computing the inverse dielectric ε−1 and Σ operator matrix elements, requiring

one to evaluate many integrals and summations over valence-conduction orbital pairs; this

formally scales as O (N4
e ) for an Ne-electron molecule or periodic system. Considerable

e�orts have been directed towards improving this scaling: one can achieve O (N3
e logNe)

complexity by employing, for example, the space-time formulation and using the Fast Fourier

Transform (FFT) to transform to-and-from the real space41�44. Interpolative density �tting45

also achieves cubic complexity, potentially with smaller prefactors than the real space-time

methods. The stochastic pseudobands approach46 can be used to reduce the size of the

valence space needed to converge matrix elements of Σ even further, decreasing the overall

scaling to O (N2.4
e ).

The developments described above have spurred increasing interest in performing large-

scale GW calculations16,19,20, and several massively-parallel deterministic GW implementa-

tions have been benchmarked. Zhang et al recently demonstrated a portable GPU imple-

mentation in the BerkeleyGW code capable of scaling e�ciently to entire exascale architec-
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tures, achieving excellent time to solution (on the order of minutes) for the computation of

quasiparticle (QP) energies in semiconductor systems containing up to 17574 atoms in the

simulation cell20. Yu and Govoni computed states of an interface model of Si and Si3N4 with

up to 2376 atoms and 10368 electrons on 10368 V100 GPUs in ∼578 minutes (summed total

of wstat and wfreq steps) using the GPU-enabled WEST code18. Wu et al reported calcu-

lations on 13824-atom, 13824-electron LiH supercells on 449280 SW26010Pro cores in 285

s using a massively-parallel version of PWDFT19. Very recently, Vetsch et al performed non-

equilibrium Green's function calculations on hydrogen-passivated silicon nanoribbons with

up to 42240 atoms on 37600 MI250X GPUs in 42 s per iteration using a novel self-consistent

GW algorithm with domain decomposition, implemented in their QuaTrEx code47.

For systems containing thousands of atoms or more, one can evaluate the self-energy op-

erator using a stochastic GW formulation at greatly reduced cost, as detailed by our previous

works48�51. Here, we brie�y summarize the main features of the method. First, we evaluate

the self-energy operator in the time domain to exploit the direct product computation of

Σ (t) from Green's function G and screened Coulomb potential W ; we Fourier transform

the resulting Σ (t) to Σ (ω) only in the �nal stage of the calculation. Second, we invoke the

stochastic Resolution of Identity (sRoI)52 and de�ne random orbital functions to use as bases

for evaluating the Green's function G and e�ective polarization W . We then compute the

expectation values of these operators using real time propagation and accumulate statistical

averages over products of random samples. This is the main ingredient of stochastic GW

and it has the advantage of allowing one to decouple the spatial- and time- dependence in

the six-dimensional integrals needed to evaluate Σ (t)48. As a result, instead of requiring the

full space of occupied and unoccupied orbitals and energies {φk, εk} (which typically number

in the tens of thousands or for a thousand-atom molecule), we, in e�ect, evaluate G and W

using compact sets of stochastic linear combinations of the occupied or unoccupied orbital

space. An additional bene�t of sROI is that computations in the stochastic bases can be

done independently, enabling the critical path of the calculation to be made embarrassingly
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parallelizable. Third, we incorporate sparse stochastic compression50 in our stochastic Time-

Dependent Hartree propagation algorithm48,53 for evaluating W . This enables computing

components of W over a collection of randomly-chosen short segments without needing a

full spatial grid, reducing storage costs. Finally, instead of projecting each stochastic sample

onto the full set of occupied orbitals
{
φKSk

}
occ

from the preliminary DFT calculation (incur-

ring substantial I/O and computational costs), we �lter these samples to generate occupied

stochastic orbitals. We construct a �lter from a Chebyshev polynomial expansion of the

Kohn-Sham Hamiltonian54. While the �ltering approach has the disadvantage of requiring

many terms to produce a sharp cuto� at the Fermi energy, we recently found that the ex-

pansion length of the �lter can be greatly decreased51 by relaxing the expansion to have zero

weights inside the band gap (where no states are present); this, in turn, reduces the number

of matrix-vector products needed to prepare the occupied stochastic orbitals.

The above framework enables a near-linear O (Ne logNe) scaling stochastic GW algo-

rithm, with costs dominated by performing FFTs on the spatial grid. While development

of stochastic algorithms for computing electronic properties has lagged behind that of de-

terministic ones20, for QP energies stochastic GW is well-suited for handling large systems

at a much reduced computational cost compared to deterministic GW. Some large-scale

stochastic calculations have been performed: Vlcek et al 50 computed HOMO-LUMO gaps

of Γ -point Diamond and Silicon supercells containing up to 2744 atoms and 10976 electrons

in under 2000 core hours on an HPC cluster containing 144 nodes with 1728 Intel Xeon E5-

2680v3@2.5 GHz processors. More recently, Brooks et al 17 used StochasticGW to compute

twist-induced localized Moire states of bi-layer phosphorene sheets containing up to 2708

atoms and 13540 electrons. Both of these calculations were performed with a CPU-only

version of the code without gapped-�ltering. In this paper, we assimilate the ideas described

above in a new GPU-accelerated version of StochasticGW which we showcase by computing

QP energies of clusters containing upwards of 10001 atoms and 35144 electrons on ∼ 1000

GPUs with times-to-solution of minutes.
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Implementation Details

Algorithmic Overview

Our stochastic GW implementation is similar to that described previously50 and with the

inclusion of the gapped �ltering51 technique. Here, we only summarize the key components

of the algorithm; see the earlier works for a more detailed explanation of the methodology.

A block diagram, shown in Figure 1, depicts the major portions of the code.

Figure 1: Block diagram of the main steps of the StochasticGW algorithm. Each MPI rank
performs the same operations on a di�erent set of data (see text for details). Steps enclosed
in shaded boxes have been ported to GPUs.

The StochasticGW code requires as inputs: 1) coordinates of the atoms, 2) a pseudopo-

tential for each atomic type, 3) the ground state density ρ0 (r), 4) estimates of the energies of

the highest occupied and lowest unoccupied molecular orbitals (EKS
HOMO and EKS

LUMO, respec-

tively), and 5) a spatial orbital φk for which the quasiparticle energy ε
QP
k is desired. Items 1)

- 3) are needed to construct the Kohn-Sham Hamiltonian internally in StochasticGW; item

4) de�nes the cuto� region of the gapped �lter. We obtain items 3) - 5) from a preliminary

DFT calculation.

We begin by constructing the spectral �lter to apply the Heaviside operator. The Heavi-

side operator (Θ) expanded in Chebyshev polynomials Tn in the Hamiltonian Ĥ, which can

be written as:
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Θ
(
µ− Ĥ

)
'

Nchb∑
n=0

anTn

(
Ĥ
)

(3)

where µ is the chemical potential, an are expansion coe�cients, and Nchb is the maximum

degree of Chebyshev polynomial needed to build the �lter. One requires the upper and

lower spectral bounds of the Kohn-Sham Hamiltonian ĤKS to shift-and-scale the eigenvalue

spectrum into the interval [−1, 1]; there are various schemes to obtain these bounds but we

�nd that one of the simplest, a shifted power iteration, works well for this purpose. In the

gapped-�ltering method, rather than applying the cuto� of �lter Θ at a speci�c value of µ

we instead apply it over the band gap containing µ, i.e. over EKS
HOMO ≤ µ ≤ EKS

LUMO, so we

must also map the energies EKS
HOMO and EKS

LUMO into [−1, 1]. With these we compute the

Nchb �lter coe�cients an as described previously51.

Next, we generate Nζ random �white-noise� start orbitals,
∣∣ζ̄i (r, t = 0)

〉
, for the stochastic

realization of G; we dub these the Monte Carlo (MC) samples. For each, we also generate

Nη additional white-noise orbitals, |η̄i,` (r, t = 0)〉, needed to calculate the action of the time-

dependent e�ective interaction operator W (t) on a vector related to each
∣∣ζ̄i〉. We apply the

Heaviside �lter to both sets of
{
ζ̄i
}
and {η̄i,`} orbitals in order to project them onto random

linear combinations of the occupied orbital subspace
{
φKSk

}
occ
. We denote these ��ltered�

orbitals as {ζi} and {ηi,`} (without the overhead bar).

Subsequently, we evaluate the diagonal time-dependent self-energy matrix element, 〈φk |Σ (t)|φk〉,

in two phases. In the �rst, we use linear-response time-dependent Hartree48 to compute the

action of the retarded polarization interaction WR on the occupied states. Algorithmically,

we create a perturbed copy of each ηi,` (denoted ηλi,`), and propagate both perturbed and

unperturbed copies in time under the action of the time-dependent Hamiltonian. We accu-

mulate the causal response function, uR (r, t), as the di�erence of the perturbed and unper-

turbed time-dependent potentials, and we time-order55 the accumulated uR (r, t) to produce

the e�ective polarization potential u (r, t). Note that instead of accumulating uR (r, t) in the

basis of {ηi,`} (which requires keeping a copy of uR (r, t) on the full spatial grid for each ηi,`),
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we reduce the storage requirement by projecting uR (r, t) onto a set of Nξ randomly chosen

functions |ξi,m〉 on short, fragmented segments of the spatial grid and accumulate uR (r, t)

in the {ξi,m} basis.

In the second phase, we evaluate the action of the Green's function iG on each ζ̄i. Nu-

merically, we compute ζi (t) by propagating the �ltered ζi (representing a random linear

combination of occupied states) backwards in time while simultaneously propagating its

orthogonal complement (representing a random linear combination of unoccupied states)

forwards in time. This represents the stochastic realization of Green's function as a time

correlation function,

iG (r, r′, t) =
1

Nζ

∑
ζ

ζ (r, t) ζ̄ (r′) . (4)

Having obtained u (r, t) and ζ (r, t) from the �rst and second phases, respectively, the diag-

onal self-energy matrix element for orbital φk becomes

〈φk |Σ (t)|φk〉 =

∫ ∫
φk (r) iG (r, r′, t)W (r, r′, t)φk (r′) drdr′ (5)

=
1

Nζ

∑
ζ

∫ ∫
φk (r) ζ (r, t)W (r, r′, t) ζ̄ (r′) drdr′

=
1

Nζ

∑
ζ

∫
φk (r) ζ (r, t)u (r, t) dr.

We then compute the the frequency-resolved self-energy matrix element 〈φk |Σ (ω)|φk〉 from

the time-dependent form via discrete Fourier transform, and we obtain quasi-particle energy,

εQPk , by solving

εQPk = εKSk +
〈
φk

∣∣∣X + Σ
(
ω = εQPk

)
− VXC

∣∣∣φk〉 (6)

8



where X is the sROI realization of the Fock exchange operator in the basis of {ηi,`} and all

other quantities have been previously de�ned.

Scaling of the method

A key aim of our stochastic GW formulation is to achieve computational scaling that grows

slowly, ideally linearly, with respect to system size. The most numerically intensive portions

of the algorithm apply matrix-vector products repeatedly to the set of {ηi,`} during the

�ltering and propagation phases. Here, one applies either the Kohn-Sham Hamiltonian, ĤKS,

or the evolution operator, e−iĤ(t)∆t, to a set of vectors with each having lengthNg = NxNyNz.

We apply matrix-vector products in a Fourier grid representation whereby FFT pairs switch

between position and momentum representations where the potential energy and kinetic

energy operators are diagonal, respectively. Applying the individual kinetic and potential

energy operators scales as O (Ng), but the cost of each Hamiltonian/evolution operation

is dominated by the O (Ng log2Ng) FFT cost. Thus, to �lter the NζNη starting orbitals,

one applies a length Nchb �lter at a cost of O (NζNηNchbNg log2Ng) operations. Likewise,

propagating the full set of {ηi,`} forNτ time steps has a cost scaling asO (NζNηNτNg log2Ng).

Accumulating uR (r, t) costs O (NζNξNτNgfg), where fg is the fractional length of each of

the fragmented stochastic functions {ξi,m} relative to the full spatial grid length, Ng.

For tackling quasi-particle energies of large molecules it is important to consider the

dependence of each parameter on system size. The number of MC samples, Nζ , and the

number of occupied stochastic orbitals, Nη determine the statistical accuracy of the QP

energies and do not increase with system size (Nη actually decreases with increasing system

size due to self-averaging). The number of time steps, Nτ , determines the energy resolution

of Σ (ω) and is also independent of system size. The number of grid points, Ng, while cubic in

dimension (Ng = NxNyNz), grows linearly overall with system size due to spatial packing of

atoms in 3-dimensional space. For accumulating uR (r, t), the statistical error does increase

with the ratio Ng
Nξ
. This means that one must simultaneously increase the number of stochastic
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segments Nξ as the grid size Ng increases to prevent growth of errors. However, in the sparse

stochastic basis, the cost increase from requiring larger Nξ can be o�set by decreasing the

fractional length fg of each segment {ξi,m} (i.e. by using more ξ vectors but making them

�sparser�)50. Finally, the number of Chebyshev coe�cients, Nchb, needed to �t the gapped

�lter, depends on the width of the band gap relative to the spectral width of the Kohn-Sham

Hamiltonian. The value of Nchb needed to accurately �t the �lter does increase with system

size due to larger spectral width of ĤKS, but this can be mitigated by applying a kinetic

energy cuto�. In summary, as long as care is taken to manage the growth of the Nξ and Nchb

parameters accordingly, one can achieve near-linear scaling with system size in stochastic

GW calculations.

GPU implementation

The original StochasticGW code (through v.2.0) is written in Fortran 90 and parallelized

using Message Passing Interface (MPI). A key feature of StochasticGW is that the Nζ Monte

Carlo samples can be processed independently of one another, resulting in embarrassing

parallelism over large portions of the algorithm. Additionally, the code contains an option to

extend the MPI-level parallelism over the Nη occupied stochastic functions at the cost of an

additional call to mpi_allreduce() at each time step (needed to compute the time-dependent

density ρ (r, t)). In the original implementation, operations over grid points are performed

in serial. For systems containing thousands of atoms or more, the grids are large enough

that these operations become signi�cant serial bottlenecks, motivating us to develop a GPU

port to handle them in parallel.

In the GPU implementation, we retain the idea of processing each of the Nζ MC samples

with a separate MPI rank, but the Nη occupied stochastic functions per sample reside on

the same MPI rank so that MPI calls are not needed at each time step to evaluate the time-

dependent density ρ (r, t). The GPU code utilizes kernels written using OpenACC directives

and calls to specialized libraries (cuRAND and cuFFT) when needed. To maximize e�cency,
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attention must be given to minimize the amount of data transferred between the host CPU

and each GPU and to organize the computational workload to expose as much parallelism

to the GPU as possible. To this end, we performed several optimizations.

First, we structured the arrays containing the stochastic orbitals with multi-indices so

that each kernel can process the orbitals in single-instruction-multiple-data (SIMD) fashion.

Many of the operations in the �ltering and propagation cycles, such as applying the kinetic

and potential energy operators, are simple element-wise array multiplications which are

highly vectorizable on GPU hardware. In each case which follows, we construct the multi-

index arrays and then o�oad them once onto a single GPU, retrieving the result only after

the full set of �ltering or propagation iterations. For the �ltering cycle, this means that on

each MPI rank we pack the ζ̄i associated with rank i along with its set of {η̄i,`} ; ` = 1 . . . Nη

orbitals into an array of size (Ng ×Nη + 1). For the propagation cycle involving the set of

{ηi,`}, the perturbed and unperturbed copies can be processed in parallel, so we pack both

copies into an array of size (Ng ×Nη × 2). The MC sample ζi cannot be propagated in

parallel with the {ηi,`} here since the former depends on the e�ective polarization potential

u (r, t) resulting from the {ηi,`} propagation cycle. However, since reverse-time propagation

of ζi and forward-time propagation of its orthogonal complement are operationally identical

(other than a di�erence in sign), we can pack these functions into an array of size (Ng × 2)

and achieve a parallel performance boost for propagation of ζi as well.

Not all operations in the �ltering and propagation steps are trivial to vectorize. Nor-

malizations appear periodically in each of the �ltering, propagation, and spectral estimation

stages; each requires summing over values de�ned over Ng grid points. For instance, for

normalizations performed in the {ηi,`} propagation cycle, at most only 2Nη operations can

be performed in parallel instead of 2NηNg. For the largest systems in this work, Nη ∼ 8

while Ng ∼ 1.6× 108, meaning that the bene�ts of having many parallel threads are largely

lost in each normalization kernel call. To solve this, we divided the Ng grid points into short

segments of length L. This allows us to parallelize sums over grid points over Ng
L

threads at
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the cost of having to perform an atomic add by each thread after the sum over each segment

has been accumulated. The optimal value of L is hardware dependent; on NVIDIA A100

GPUs we achieved the best performance with L ∼ 256. In this manner, we achieve an overall

parallelism of up to 2Nη
Ng
L

threads in normalization calls.

Second, the main computations needed to accumulate u (r, t) have also been ported to

the GPU. We generate the {ξi,m} basis via calls to the cuRAND library, and we compute the

overlaps
〈
ξ | uR (t)

〉
on-the-�y during the {ηi,`} propagation phase in a segmented fashion

similar to the one described above for normalization. Here, we multiply two arrays of sizes

(Nξ ×Ngfg) and (Ngfg × 2) parallelized over 2Nξ
Ngfg
L

threads, where each ξ function is

processed in segments of length L = 32, and the factor of 2 again arises from performing

the unperturbed-η and perturbed-η propagations in parallel. Finally, we perform the time-

ordering operation to convert the resulting uR (r, t) to u (r, t) by calling the cuFFT library

before and after an OpenACC kernel used for performing the complex conjugation step.

Utilities

The newest (3.0) version of StochasticGW is freely available56 on GitHub and includes several

utilities to aid researchers in preparing inputs for the code:

The dft2sgw utility reads and preprocesses results from a preliminary DFT calculation.

This utility requires a DFT output �le and a set of .cube �les as input; dft2sgw prepares an

input �le, sgwinp.txt, containing atomic coordinates, HOMO and LUMO energies (for gapped

�ltering), the spatial charge density, and a requested set of orbitals for the system of interest.

dft2sgw also has a functionality, enabled via the FFTW57 library, to up- or down-sample the

orbital/density spatial grid from the preliminary DFT calculation in case a di�erent grid for

the stochastic GW step is desired. The utility currently supports Quantum ESPRESSO25,58,

the Real-Space Multigrid (RMG)-59,60 DFT code, and CP2K35 (but note that StochasticGW

does not yet include pseudopotential support for CP2K).

StochasticGW also includes two utilities, plotfilter.py and plotorbital.py, which use
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the MatPlotLib61 python package to generate plots related to stochastic GW calculations:

The plotfilter.py utility plots the �lter and depicts the log of the magnitudes of the

�lter coe�cients and is useful for checking the quality of the Chebyshev expansion of the

�lter.

The plotorbital.py utility visualizes the atomic coordinates, spatial orbitals, and charge

density contained in the �le sgwinp.txt; this feature allows one to quickly select orbitals of

interest for a subsequent StochasticGW calculation.

Numerical Experiments

We now test our implementation of StochasticGW by computing QP energies of a series of

non-periodic nanoclusters, Si293H172, Si705H300, Si5031H1172, Si7745H1572, Si8381H1620. We con-

structed each cluster from a uniformly expanded silicon superlattice of size 15×15×15 using

the experimental unit cell parameter for silicon (a = b = c = 10.26 Bohr) corresponding to

the diamond cubic structure with an eight-atom unit cell62. We then shifted the coordi-

nate origin to the geometric center of the superlattice and applied a spherical truncation,

retaining only Si atoms within 20-70 Bohr of the origin. The truncated cluster is passivated

with hydrogen atoms to saturate dangling bonds, and the resulting structure is relaxed to

its equilibrium geometry using the MMFF94 force �eld63 as implemented in Open Babel

software64. Figure 2 depicts the largest cluster, Si8381H1620.

We performed the initial periodic DFT calculations to generate the orbitals and charge

densities using the RMG59,60 DFT code. The DFT Hamiltonian uses the GGA PBE exchange-

correlation functional with Troullier-Martins65 norm-conserving pseudo-potentials. For each

system, we performed the calculation on the Gamma k-point in a primitive cubic cell with

isotropic sampling. Each cluster is separated from its periodic image by a vacuum layer of

11-17 bohr. The initial DFT step provides the energy estimates EKS
HOMO and EKS

LUMO used

to de�ne the gapped �lter for the GW step. Cell and grid parameters, along with HOMO
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Figure 2: Si8381H1620 cluster. Silicon and hydrogen atoms shown as brown and white spheres,
respectively.

and LUMO energies, are listed in Table 1.

Table 1: Details of preliminary DFT calculations on each cluster, including numbers of
electrons (Ne), points in the spatial grid (Ng), grid spacing (∆g, bohr), along with resulting
HOMO and LUMO energies and band gaps (eV).

System Ne Ng ∆g EKS
HOMO EKS

LUMO KS Band Gap
Si293H172 1344 1283 0.4429 -3.259 -1.526 1.733
Si705H300 3120 1283 0.5167 -1.928 -0.457 1.471
Si5031H1172 21296 2563 0.5000 -1.705 -0.776 0.928
Si7745H1572 32552 2563 0.5400 -0.986 -0.121 0.865
Si8381H1620 35144 2563 0.5600 -1.095 -0.245 0.851

We then used StochasticGW to compute εQP for the HOMO and LUMO orbitals of each

system. The Kohn-Sham Hamiltonian in StochasticGW uses the same pseudopotentials and

grids as the previous DFT step; here, we employ the PBE functional66 as implemented in the

LibXC67 library and apply an energy cuto� of 28 Hartrees to the kinetic energy operator.

In the �ltering step, for the largest system we studied, Si8381H1620, the energy di�erence

EKS
LUMO − EKS

HOMO is ∼ 0.11% the full spectral range of ĤKS. Even though the cuto� is

14



spread over the full band gap, it is still sharp enough to require 8192 Chebyshev terms to

reduce the Gibbs oscillations to negligible levels outside of the band gap (Figure 3). While

this �lter length is an order of magntude larger than that used in our recent calculation

on the napthalene molecule (Nchb = 450)51, it is still less than lengths required in earlier

calculations performed on much smaller systems without gapped �ltering (Nchb ∼ 18000)49.
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Figure 3: (Top) plot of the log of the absolute magnitudes of Chebyshev coe�cients used to
construct the gapped �lter for the Si8381H1620 cluster. (Bottom) Reconstructed �lter, where
the inset shows an expansion of the region of the band gap. The purple vertical lines in the
inset indicate the positions of EKS

HOMO and EKS
LUMO.

For each calculation we averaged 1024 Monte Carlo samples which is su�cient to achieve

a statistical error better than 0.03 eV for all QP energies. The number of time steps, Nτ , are

controlled internally by the energy-broadening parameter, γ, which we apply when Fourier

transforming the self-energy element from the time domain to the frequency domain,
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〈φk |Σ (ω)|φk〉 =

∫
〈φk |Σ (t)|φk〉 e−

γ2t2

2 eiωtdt. (7)

We use a time step size of ∆t = 0.05E−1
h ~ in the split-operator propagation of the orbitals.

The number of time steps to obtain a desired energy resolution is Nτ ≈ 3
γ·∆t ; for all calcu-

lations in this work, we set γ = 0.06Eh~−1 which yields a propagation length of Nτ = 1000

time steps over 50 atomic time units. Numbers of occupied stochastic orbitals (Nη) and seg-

mented stochastic functions (Nξ) along with the fractional grid lengths (fg) for the latter are

chosen at values similar to those in previous works17,49,50. Input parameters are summarized

in Table 2. All calculations were run on 256 GPU nodes of NERSC-Perlmutter; each node

contains one AMD EPYC 7763 processor running at 2.5 GHz and 4 NVIDIA A100 GPUs.

Table 2: Parameters used in stochastic GW calculations.

Description Parameter Value
Number of Monte Carlo samples Nζ 1024

Number of occupied stochastic orbitals Nη 8
Number of segmented stochastic functions Nξ 10000
Grid fraction of each segmented function fg 0.003
Number of Chebyshev polynomials in �lter Nchb 8192

Damping parameter (Hartrees) γ 0.06
Kinetic energy cuto� (Hartrees) Ek

cut 28.0

Figure 4 plots the QP energies of the HOMO and LUMO and their di�erence for each

system; these values are also listed in Table 3. The statistical errors in the MC energies

are shown as error bars in the HOMO and LUMO traces and are small compared to the

magnitudes of the energies. Moreover, comparing the bandgaps across the �ve clusters, the

bandgaps show convergent behavior towards ∼ 1.36 eV, suggesting that the largest clusters

are approaching the bulk limit for our choice of density functional and pseudopotential.

Table 3 also lists wall times for all calculations. The two smaller clusters have comparable

times of 800±40 s and the larger three clusters have timings of 2700±120 s, where the main

factor behind the di�erence is the size of the spatial grid (1283 vs 2563 for the smaller and

larger clusters, respectively). For a given spatial grid, one expects an increase in runtime
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Figure 4: QP orbital energies and band gaps for each cluster.

for the larger systems for two reasons: �rst, the potential energy terms containing the

pseudopotential contribution must be applied via atomic operations on grid points where

pseudopotentials for neighboring atoms overlap. Second, the higher density of states in

larger systems causes the spectral range estimation to converge more slowly. However, these

di�erences are smaller than the variation in performancein MPI and I/O operations that

occur over the large scale of these runs.

Table 3: Results of stochastic GW calculations on each cluster including quasiparticle ener-
gies and band gaps (eV) and calculation wall times (s).

System EQP
HOMO EQP

LUMO QP Band Gap twallHOMO twallLUMO

Si293H172 −3.077± 0.027 −0.764± 0.022 2.313 836 770
Si705H300 −1.650± 0.023 0.302± 0.022 1.953 835 788
Si5031H1172 −1.732± 0.021 −0.271± 0.020 1.462 2609 2617
Si7745H1572 −0.916± 0.022 0.449± 0.021 1.365 2702 2688
Si8381H1620 −1.052± 0.023 0.310± 0.029 1.362 2669 2812

We also performed a set of tests to measure the e�ciency of parallelizing over Monte
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Carlo samples for the HOMO calculation of the largest Si8381H1620 system (Figure 5). Here,

the number of samples, Nζ , is set equal to both the number of MPI ranks and the number of

GPUs, so this test is a measure of the weak scaling of the code. Note that the total runtimes

are all ∼2500 s, similar to the full 1024-sample run, demonstrating nearly ideal scaling with

number of samples.

Figure 5: Wall times spent in each portion of the code for calculations on the HOMO state
of Si8381H1620, with di�erent numbers of Monte Carlo samples.

From Figure 5, one can see that the portions of the code that have been ported to GPUs

collectively account for ∼38 % of the total runtime. The remaining, unported portion of

the code includes I/O operations, preparation of the grid representation of the Hamiltonian,

constructing the {ζ} and {ξ} orbitals prior to �ltering, solving the linear system to generate

the �lter coe�cients51, and collecting and post-processing the samples to produce the �nal

QP energies.

We also measured the speedup factors for the individual GPU-ported sections of the

code relative to their CPU counterparts. A full-scale run of the original CPU code is not
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possible for the larger clusters due to the wall time limit on NERSC-Perlmutter, so we instead

performed several comparative tests focusing on individual portions of the code (Table 4).

We ran each test for the HOMO state of Si8381H1620 on a single MC sample with other

parameters same as in Table 2 except that here we decreased the �lter length by a factor of

16 (to Nchb = 512) to reduce the CPU time needed for this step. As Table 4 shows, the GPU

�ltering step achieves a ∼ 50× speedup over its CPU counterpart. The propagation and

spectral estimation steps achieve even higher speedups of 150− 250×. This is due not only

to porting the routines to GPUs but also to optimizations that were not present in the CPU

code, such as premultiplying potential energy factors before o�oading them to the GPU.

The step to generate the {ξ} segments, while requiring much less time than the propagation

and �ltering steps, exhibited the largest performance improvement resulting from replacing

the serial calls to the KISS random number generator with calls to the cuRAND library.

Finally, the last two rows of Table 4 list the timings of the unported code and the sum of

all timings, including unported portions of the code, showing that the overall speedup of the

GPU implementation of StochasticGW is ∼ 45× that of the CPU code.

Table 4: Timings and speedups of GPU portions of StochasticGW relative to the CPU
portions, for calculation on the HOMO state of Si8381H1620.

Portion tCPU (s) tGPU (s) tCPU/tGPU
Propagate {ζ} 4947 31 160
Propagate {η} 37711 153 246
Generate {ξ} 662 0.08 8764
Filter {ζ},{η} 9796 199 49

Estimate [Emin, Emax] 26364 191 138
Unported code 1237 1

Total (incl. unported) 81292 1811 45

Conclusion

In this work, we describe a new implementation of the StochasticGW code. Our code

utilizes the stochastic Resolution of the Identity (sROI) technique, which allows one to
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decouple the main steps of the GW method into independent, statistical operations that can

be performed massively in parallel. In deterministic GW methods, the cost is dominated by

computing matrix elements over indices representing the occupied and unoccupied orbitals.

In contrast, in the stochastic method the cost depends on operations over the full spatial grid

and accumulating a su�cient number of Monte Carlo samples to achieve a desired statistical

accuracy. Therefore, compared to deterministic GW, the cost of stochastic GW grows much

more slowly with respect to the size of the molecule or material system of interest.

Motivated by the large-scale parallelism available in modern GPU hardware, we have

ported the major computational motifs of the algorithm to GPUs. These include estimating

the spectral width of the Kohn-Sham Hamiltonian, �ltering the initial orbitals by projecting

onto an occupied subspace, and propagating the orbitals under the in�uence of a time-

dependent Hamiltonian. Each of these steps is applied via a sequence of vectorized OpenACC

kernels and calls to GPU-optimized FFT libraries.

We showcased the GPU implementation by computing the quasi-particle energies of the

HOMO and LUMO orbitals of �ve hydrogen-passivated silicon clusters. The band gaps show

convergent behavior towards a bulk-like limit at ca. 1.36 eV. QP calculations on the largest

system, Si8381H1620, with 10001 atoms and 35144 electrons, can be completed in only ∼ 45

minutes with the workload partitioned with one MC sample per GPU. For this system, the

GPU version of StochasticGW achieves roughly 45× speedup in time-to-solution relative

to the CPU version over the entire execution of the code. This work opens the way for

computing QP energies of even larger systems.
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