Managing your lab notebook

Vessela Ensberg Data curation analyst vensberg@library.ucla.edu

0

Why is your notebook important?

- Reproducibility
- Legal document
- NSF data management plan
 - Sharing
 - Preservation

Table of contents

- First two pages
- Date, project page
- Electronic copy
- Print-out

Entry

- Date
 - recollections
- Project title or number
- Purpose (may be integrated in the title)

24 Sep 2016 Experiment 288 PCR of GFP-ANIA00457 construct

Purpose: Transformation of Arabidopsis for localization studies

2 Oct 2034 Experiment 605 Results: Testing inhibitor strength on eIF2

Continued from 1 Oct 2034, p. 35

Continued on 4 Oct 2034, p. 42 MI

New protocol

- Buffers, strains, chemicals, solvents
- Lot numbers (very important for enzymes or high-purity compounds)
- Strain location
- Equipment calibrations
- Step-by-step procedure

Cataloging and referencing

- You may only have two strains now, but...
- Find out your lab standards
- Create a database now
 - Consistent naming and numbering
 - Details
 - Location (alpha-numeric grid)

Examples of personal database entries

Strain/plasmid database

Вох	Slot	Strain name	Parent strain	Genotype	Notes	Date	Source
				pET24, AN003653,		05 June	
1	32	MI5748	E. coli, BL21	T7 pro, ampR, lacl	overexpression	2016	Invitrogen

Examples of personal database entries

Primer database

Вох	Slot	Primer name	Sequence	Tm [C]	Purpose	Date
			AT <mark>CTCGAG</mark> ATCGATGCT		clone <i>yBAB</i> into	
5	C6	yBABXhoIR	AGCT	58	pET28	12 Nov 2134

Examples of personal database entries

Article database

Year		Author	Title	Relevance to my work
				MadE82 binds
			The sequencing of the red kangaroo	Rad52 on GC-rich
	2016	Isek Bases	genome reveals a role for junk DNA	DNA

Old protocol

- Option I—the printout
 - Check lot numbers
 - Date in the upper margin
 - Mark each step and any deviations with a pen
 - Paste into the notebook, sign and date along the edge
- Option II—repeating an easy task for the nth time

EtOH precipitation as on 23 June 2190, p.90

Results

- Experiment name/date
- Observations
- Graphs, images and other output of digital data processing

Sample results

Data!

- Excel files
 - =CELL("filename")

C:\Users\Vessela\Desktop\[sample graph.xlsx]Sheet1

- Write the formula used to process the raw data
- c=A/e*l, processed data [mM]=1000*raw data/6220 (NADH extinction coef. at 340 nm)=raw data/6.22
- Digital images
 - Print thumbnails
 - List folder/names—either make the names self explanatory, or add description in the notebook

Data!

- Hard copy images, chromatographs, microscope slides
 - Binder
 - Date each
 - Label with the experiment name and extend to give a unique ID
 - Reference in notebook with description

Exp. 349 Results (continued from 12/29/2104, p. 10) Binder5/20140904/exp.349 image 1/HeLa stained with DAPI 350nm/461nm FV1000 Olympus 200xlens

Sequencing data

- Gene name
- Folder containing sequence file
- What was the purpose of sequencing
- Any differences with publicly available sequence?

ANID004376 in Sequences/20450405; sequenced after cloning to ensure PCR didn't introduce errors; no mutations found

Data mining

- Databases
- Key parameters in search
- Outcome

NCBI/biosystems

tyrosine biosynthesis/conserved domains

Hits: AAT_like ID: 99734,

CM_2: Chorismate_mutase type II ID: 201989,

CM_pl-yst:_monofunctional_chorismate_mutase, eukaryotic type ID: I30861,

PheA ID: 31793

Sequence alignments

- Sequence ID
- Software
- Folder containing saved alignments
- Conclusions

Conclusions

- Did the experiment succeed, fail or was it inconclusive
- Will you repeat it? Will you change anything?
- Any new thoughts about the process and its implications?

Notebook activity

Read the narrative of a day in the lab and construct a notebook entry based on the information contained in it. If the details given are incomplete (they are), supply the missing piece.