Chlamydomonas reinhardtii RNA Prep

2x Lysis Buffer

RNase – Free Stock

1 M Tris-Cl, pH 7.5	2 mL
5 M NaCl	1.2 mL
0.5 M EDTA, pH 8	1.2 mL
H_2O	7.2 mL
10% SDS (Fisher)	8.0 mL*
4 mg/mL Proteinase K	<u>0.4 mL**</u>
(Dec 06: from Fisher	20 mL \rightarrow (Adjust volume for >12 samples)
Order #24568-2)	

*Note

• Add in order given, otherwise SDS will precipitate (Put the SDS and Proteinase K in just before use)

**Note

• Make Proteinase K solution (approx. 1 mL) and let stand at room temperature for 30-60 minutes prior to making Lysis Buffer

Procedure

- 1. Use bottles or tubes that are set aside for RNA work. Harvest cells (60-150 mL) by centrifugation for approx. 2 minutes @ 5,000 rpm (chose rotor based on volume of cells). Cells should make a nice pellet.
- 2. Pour off supernatant and aspirate with baked Pasteur pipette to avoid losing cells.
- 3. Resuspend in 1.5 mL H₂O with the Pasteur pipette and transfer cells to baked 30 mL glass beaker OR transfer to 14 mL sarstedt tubes. Use rubber bulb that is set aside for RNA work.
- 4. Add 1.5 mL 2x Lysis Buffer to cell suspension and stir slowly for 20 minutes with baked stir bar. (Rock on rocker if you use tubes).
- 5. Set up 14 mL sarstedt tubes for phenol/CHCl₃ extractions.
- 6. Extract cell suspension with 1.5 mL RNase-free phenol. Shake well for one full minute.

- 7. Add 1.5 mL CHCl₃/Isoamyl Alcohol (24:1) and shake well for 1 minute (see #6 above).
- 8. Centrifuge @ 10,000 rpm for 10 minutes (JA 20 or JA 17) (Use rubber adapters).
- 9. Collect upper, aqueous phase (avoid interface material) and repeat steps 6-8. (Total of 4 Phenol/ CHCl₃ extractions). Do not worry if phase is pink. If you wish, you can add CHCl₃ (step 7) at same time. This makes the prep go much faster.
- 10. Extract twice with CHCl₃/Isoamyl Alcohol (you can reduce centrifuge time to 5 minutes each).
- 11. Remove upper, aqueous phase and precipitate with 2.5 volumes of cold 100% ethanol >= 4 hr @ -20°C.
- 12. Collect pellet by centrifugation at 10,000 rpm for 30 minutes (JA 20, JA 17) at 4°C.
- 13. Wash pellet in 70% cold ethanol and dry in the speed vac.
- 14. Resuspend pellet in 0.2 to 0.5 mL H₂O (volume depends on volume and cell density of harvest).
- 15. Measure OD_{260} and OD_{280} of a 1:50 dilution.
- 16. mg/mL = $OD_{260} \times 2.0$ (1 $OD_{260} = 40 \mu g/mL RNA$)
- 17. Label and store @ -80° C (RNA has been quite stable >= 1 year).

Notes

- Yield is generally approx. 1 mg/100 mL @ 5 X 10⁶ cells/mL. If you wish to harvest more cells than 150 mL, you should increase H₂O and 2x Lysis Buffer to 3 mL each, and adjust phenol and CHCl₃ volumes accordingly.
- This procedure gives excellent RNA, suitable for RNA Blot analysis. A more extensive procedure, utilizing LiCl precipitation of RNA, is given in the lab methods book.