Chlamydomonas Culture Medium (re-typed by Janette Kropat on 27th April 2007)

TAP medium (modified recipe from Togasaki):

Per 1000 mL:	10 mL 5 x Beijerincks or 50 ml 1 x Beijerincks
	8.33 mL phosphate solution
	10 mL Tris-Acetate stock
	1 mL Trace Elements stock

Minimal medium:

10 mL 5 x Beijerincks or 50 ml 1 x Beijerincks
8.33 mL phosphate solution
10 mL 2 M Tris base
1 mL Trace Elements stock solution
About 1.1 mL concentrated HCl to adjust pH to 6.8-7.2

Stock Solutions (molarities indicated are the final concentrations in TAP)

5 x Beijerinck's Solution:

	<u>1000mL</u>	Concentration
NH ₄ Cl	40 g	7.5 mM
$CaCl_2 \bullet 2H_2O$	5 g	0.34 mM
$MgSO_4 \bullet 7H_2O$	10 g	0.4 mM

- Dissolve CaCl₂ in 300 mL H₂O. Dissolve NH₄Cl and MgSO₄ in 500 mL, mix both solutions and add H₂O to 1000 mL.

- If low sulfate medium is desired, replace $MgSO_4 \bullet 7H_2O$ with 8.15 g $MgCl_2 \bullet 6H_2O$.

- For anhydrous MgSO₄ measure 4.82 g.

- Use 10 mL stock per 1000 mL of medium.

Phosphate Solution:

	<u>1000mL</u>	Concentration of phosphate
K ₂ HPO ₄ (anhydrous)	14.34 g	0.68 mM
KH ₂ PO ₄ (anhydrous)	7.26 g	0.45 mM

- If K₂HPO₄ • 3H₂O is used, use 18.6 g of trihydrate instead of anhydrous.

- If metal free phosphate is desired weigh appropriate amount of KH_2PO_4 to get phosphate concentration equal to 0.136 M. Then add metal free KOH to adjust pH to 7.1 (per 1000 mL: 18.5 g KH_2PO_4 and about 28 mL 20% KOH).

- Use 8.33 mL stock per 1000 mL medium.

- original recipe was with 11.62 g Na_2HPO_4 (anhydrous) instead of K_2HPO_4 per liter of solution.

Tris-Acetate Stock Solution:

	<u>1000mL</u>	Concentration
Tris base	242 g	20 mM
Glacial Acetic Acid	100 mL	17 mM

- Use 10 mL per 1000 mL medium.

Trace Elements Solution (Hutner 1946, J. Bact. 52: 213):

	<u>1000mL</u>
EDTA-Na ₂	50.0 g
H ₃ BO ₃ (boric acid)	11.14 g
$ZnSO_4 \bullet 7H_2O$	22.0 g
$MnCl_2 \bullet 4H_2O$	5.1 g
$FeSO_4 \bullet 7H_2O$	5.0 g
$CoCl_2 \bullet 6H_2O$	1.6 g
$CuSO_4 \bullet 5H_2O$	1.6 g
$(NH_4)_6Mo_7O_{24}\bullet 4H_2O$	1.1 g

- Add elements one at a time (except EDTA) to 550 mL milliQ H_2O in a 1L Erlenmeyer flask. Heat up solution to approximately 70 °C.
- In a different beaker, add EDTA to 250 mL milliQ H₂O and heat until dissolved.
- Add EDTA solution to salt solution (not vice versa) and bring the combined solution to a boil.
- Let solution cool down and maintain temperature at 70 75 °C.
- Adjust pH to 6.5 6.8 with 20% KOH. Be careful: do not let the temperature fall below 70 °C or let the pH go over 6.8 otherwise you have to start all over again!
- Dilute to 1000 mL.
- -Use a cotton plug to cover flask (not parafilm!) and let stand for two weeks until the color changes from green to purple. Stir solution to help it along.
- Filter out red-brown precipitate and store in refrigerator. Note if there is a precipitate, then you don't know the real concentrations of elements in your solution.
- Use 1 mL per 1000 mL medium.
- For a trace element solution lacking a specific metal, leave out the appropriate metal. The solution will have a different coloration and only a little or no precipitate. Copper free trace elements solution for example will be reddish instead of purple.