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DNA microarray experiments have become a widely
used tool for studying gene expression. An important,
but difficult, part of these experiments is deciding on the
appropriate number of biological replicates to use.
Often, researchers will want a number of replicates that
give sufficient power to recognize regulated genes while
controlling the false discovery rate (FDR) at an accepta-
ble level. Recent advances in statistical methodology can
now help to resolve this issue. Before using such
methods it is helpful to understand the reasoning behind
them. In this Research Focus article we explain, in an
intuitive way, the effect sample size has on the FDR and
power, and then briefly survey some recently proposed
methods in this field of research and provide an example
of use.
b A standard t-statistic can roughly be written as d/s, where d is a sample statistic
Replication in microarray experiments
The results of a DNA microarray experiment are
influenced by biological and technical sources of variation.
To handle this variation, researchers often replicate the
measurements, using different biological cases, and then
use statistical tests to identify genes of interest. An essen-
tial step in the design of an experiment is, therefore,
choosing the number of biological replicatesa to be used
– the sample size. In general, a larger sample size should
produce more reliable results. However, the cost of a
microarray experiment calls for moderation. Con-
sequently, one should aim to find the smallest sample size
that still provides results that are of a ‘good enough’
quality.

Recently, several statistical approaches have been
proposed that could be used to help estimate the optimal
sample size. To make the best use of this new methodology
it is helpful to first understand its theoretical basis. How
does sample size affect the outcome of an experiment? How
are quality measures, such as the false discovery rate
(FDR) [1,2] and power, used to determine if the results
are ‘good enough’? Below we examine a much-used setup
that compares samples from two conditions. From this
example we will try to answer the above questions in an
intuitive way. We then discuss some new developments in
the field of sample-size estimation.

Comparing two conditions
Assume that we want to compare gene expression in an
Arabidopsis thaliana wild type with that in a mutant. We
make n = 3 biological replicates for both groups and run a
microarray experiment. After collecting the data we face a
challenging task. For each gene we must now decide
whether we think it is differentially regulated.

When trying to find regulated genes, statisticians often
calculate a t-statisticb. Based onmicroarraymeasurements,
one t-statistic canbe calculated for eachgene. The t-statistic,
in essence, quantifies the evidence of a genebeing regulated.
The further away from zero a t-statistic is, the greater the
that quantifies group differences in gene expression, and s is the estimated standard
deviation of d. We use this statistic here because of its analytically tractable proper-
ties. In microarray data analysis, other statistics are now often preferred. However,
many of these are closely related to the standard t-statistic. This is the case for popular
analysis tools such as the regularized t test [3], the limma-package [4] and the SAM-
package [5].

http://dx.doi.org/10.1016/j.tplants.2006.12.005
mailto:atle.bones@bio.ntnu.no


Figure 1. (a) The distribution of t-statistics for an experiment with 10 000 genes, where three biological replicates were made for each group. 5000 genes are unregulated;

their t-statistics follow a central t-distribution (black). 2000 are up- and 3000 are down-regulated, both with a twofold change; these t-statistics follow non-central

t-distributions, depicted in red and green, respectively. (b) The distribution of t-statistics for the same experiment as that described in (a), but now using 20 biological

replicates for each plant type. (c) Distributions from (a) with a cut-off for the t-statistics. t-statistics for unregulated genes erroneously believed to be regulated at this cut-off

are depicted in orange. Unregulated genes recognized as such are depicted in grey. (d) Same curves as (c). t-statistics for regulated genes recognized as such are depicted in

green. Regulated genes not recognized at this cut-off are depicted in grey. (e,f) Same curves and colouring as in (c) and (d) but now using 20 biological replicates for each

plant type.
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Box 1. Power and the false discovery rate

Two important statistical measures are power and false discovery rate

(FDR). We illustrate these concepts using the following example.

Consider an experiment using mutant and wild-type plants. The only

changed phenotype of the mutants is their height: mutants are

somewhat taller than the wild type. Also assume we have a mixed set

of plants and that we do not know their true state (wild type or

mutant). If we wanted to find the mutants in the set, then a good

strategy would be choosing the tallest ones. However, there are

problems with this strategy. First, because of natural variation, all

mutants will not be taller than all wild-type plants. Second, setting a

cut-off height is difficult. How tall must a plant be before we are sure

that it is a mutant?

In Figure I there is a set of 11 plants: six mutant (m) and five wild

type (wt). To find the mutants we set a cut-off height (indicated by a

line). The five tallest plants we then believe to be mutants. The

outcome of this experimental procedure can, in a sense, be

summarized by looking at two key numbers:

(i) The proportion of true mutants that we recognize. In our example

this is 4/6 = 0.67.

(ii) The proportion of mistakes among the plants that we believe are

mutants. In our example this is 1/5 = 0.2.

Note that if we change the cut-off, the two proportions also change. If

we shift the cut-off to the left we recognize more mutants but make

more mistakes. If we shift it to the right we make fewer mistakes but

recognize fewer true mutants.

The considerations made in the above example are similar to those

of a microarray experiment, where, instead of trying to recognize

mutant plants based on height, one tries to recognize regulated genes

based on test statistics. Because of variability, test statistics for

regulated genes are not always larger than those of unregulated

genes, and statisticians here also set a cut-off. After doing so, the

outcome can be summarized by two numbers, power and FDR:

� Powerl is the proportion of regulated genes that one recognizes.

Researchers will want the power to be close to 1.

� The FDRm is the proportion of mistakes among the genes that are

believed to be regulated. Researchers will want an FDR close to 0.

Note how power and FDR correspond to the proportions discussed

above. As in the mutant plant example, setting a cut-off involves

compromise. If the cut-off is changed to improve the FDR, then the

power to recognize regulated genes is reduced, and vice versa.

Figure I.

l Rigorously, when testing multiple hypotheses, average power (here simply
termed power) is usually defined as E(S)/m1, where E(S) is the expected value of
S, S = ‘number of rejected hypotheses for which the alternative hypothesis holds’ and
m1 = ‘total number of hypotheses for which the alternative hypothesis holds’.
m Rigorously, when testing multiple hypotheses, the FDR is usually defined as

E(V/R) (i.e. the expected value of the ratio V/R, where V = ‘number of rejected
hypotheses for which the null hypothesis holds, and R = ‘total number of rejected
hypotheses’). By definition, FDR = 0 when R = 0.
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evidence that the expression level of the gene has changed.
Unregulatedgenes should thereforehave t-statistics close to
zero.The t-statistics ofup-anddown-regulatedgenes should
be positive and negative, respectively.

The t-statistics for unregulated genes will never be
exactly zero owing to measurement variability. Likewise,
the t-statistics of, for example, up-regulated genes with a
twofold changec, will also vary. Figure 1a shows an example
of the distributions of t-statistics one could observe for an
experiment with 10 000 genes, where n = 3 biological repli-
cates were used for each group. The distribution of t-stat-
istics for 5000 unregulated genes is shown in black. It
centres on zero but there is variability. The red curve is
the distribution of t-statistics for 2000 genes up-regulated
with a twofold change, and the green curve is for 3000 genes
down-regulated with a twofold change.

Now consider a larger sample size such as n = 20
biological replicates for each group. How would the distri-
bution of t-statistics be affected? For unregulated genes, we
expect the distribution to still centre on zero. For regulated
genes, we expect the evidence of a change to be greater, and
the distribution of t-statistics to move away from zero. This
is indeed what happens (Figure 1b).

Sample size effects on FDR and power
An introduction to FDR and power is given in Box 1. To
see the effect of sample size we continue with the above
example of a microarray experiment testing 10 000
genes (5000 unregulated, 2000 up-regulated and 3000
c A ‘twofold change’ means the expression level of a gene is twice as high under one
condition compared with the other.
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down-regulated). The true state of a gene, regulated or
not, is not known to us.

The goal of our microarray experiment is to identify
regulated genes. A t-statistic measures evidence of a
change in the expression level of a gene. A good strategy
for finding the regulated genes is, therefore, calculating the
t-statistic of each gene and then picking those with t-
statistics that are extreme (i.e. far away from zero).

For a sample size choice of n = 3 we could have
distributions of t-statistics like the ones in Figure 1a.
In Figure 1c, we see the same graph but now with two
vertical lines. These lines represent the cut-offs that need
to be set. All genes with t-statistics more extreme than the
cut-offs are believed to be regulated, whereas those within
the lines are believed to be unregulated. The plot in
Figure 1c reveals a problem. Because of measurement
variability, the t-statistic for unregulated genes will not
always be smaller than those of regulated ones. For our
chosen cut-off we find that 400 + 400 = 800 unregulated
genes will mistakenly be considered regulated. In
Figure 1d we see another problem. We are not able to
recognize all the regulated genes. Indeed, at this cut-off
only 1300 + 900 = 2200 out of the 5000 regulated genes
are recognized.

So what is the FDR and power at this cut-off? The total
number of genes believed to be regulated is 800 + 2200 =
3000. Of these, 800 are mistakes (unregulated genes) and
2200 are truly regulated. The FDR (i.e. the proportion of
mistakes among those believed to be regulated) is, there-
fore, 800/3000 = 0.27. The power (i.e. the proportion of
truly regulated genes recognized) is 2200/5000 = 0.44,
which is not satisfactory. 27% of the genes we believe to



Box 2. Sample size estimation: an example case

To illustrate the use of sample-size estimation methods, we

downloaded an example dataset from The Arabidopsis Information

Resource (TAIR) (http://www.Arabidopsis.org). The chosen dataset

(TAIR accession number: ExpressionSet: 1008031444) compares

wild type to ARR21-overexpressing seedlings using n = 3 Affymetrix

slides for each plant type. The data are discussed in Ref. [13]. The

example dataset was then treated as pilot data and used to explore

the effects of different sample sizes.

Using the sample size estimation methods discussed in Refs [8]

and [10] we estimated the per-group sample sizes needed to achieve

particular combinations of powern and FDR. Table I shows that for

moderate power cut-offs the two methods agree. For example, we

find that to have power = 0.7 with FDR = 0.05 one needs n = 5 slides,

whereas power = 0.8 with FDR = 0.05 requires n = 8 or n = 9 slides

per group. The sample size used in the experiment, n = 3, is

estimated to give power = 0.5 with FDR = 0.05.

For high power the estimates do not fully agree; this is probably

related to the difficult task of recognizing regulated genes that have

only small changes in expression level. New approaches to

recognizing such genes are being developed. However, the

estimates do agree that to get high power with low FDR one needs

sample sizes considerably larger than those commonly used in

studies today.

Table I. Estimated sample size requirements for example
data set*

FDR = 0.10 FDR = 0.05 FDR = 0.01

Power = 0.5 3 / 3 3 / 3 5 / 5

Power = 0.6 3 / 3 3 / 4 7 / 6

Power = 0.7 3 / 4 5 / 5 10 / 9

Power = 0.8 4 / 6 9 / 8 20 / 14

Power = 0.9 13 / 11 30 / 16 75 / 27
*The numbers either side of the solidus indicate sample-size estimates made

using the sample-size estimation methods described in Ref. [8] and Ref. [10],

respectively.

n In the methods of Hu et al. [8], one specifies FDR and the expected number of
genes taken as regulated, E(R), instead of FDR and power. Each power cut-off was
converted to a corresponding E(R) to produce the estimates.
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be regulated are mistakes, and out of the truly regulated
genes we find only 44%. Using different cut-offs will not
necessarily help. More extreme cut-offs, will decrease the
FDR, but also decrease the powerd. Less extreme cut-offs
give increased power but also increase FDR.

The way to improve both FDR and power is to increase
the sample size. In Figure 1e and f we again consider the
case of n = 20, and use the same cut-offs as before. Now,
because the distributions are shifted we can get
FDR = 0.04 and power = 0.96e. We recognize 96% of the
truly regulated genes, and at only a 4% error rate.

New statistical methodology
The FDR has become a much used error measure in the
microarray setting. In spite of this, little attention has been
given to sample size estimation methods that allow direct
control of the FDR. However, recently, progress has been
made. Approaches have been suggested that enable
researchers to specify the desired FDR and powerf, and
that calculate the sample size needed to achieve this goal.
Sample size estimation methods that control error
measures other than the FDR do exist but these will not
be discussed here.

Sample size estimates can be made for two types of
experiments. (i) In hypothetical experiments, the
researcher can specify all parameters to be used. An
example is the one above, where we specified several up-
and down-regulated genes, all with a twofold change. For
hypothetical experiments exact sample size requirements
can be calculated. (ii) In real-life experiments, unlike the
hypothetical ones, the true state of the genes is not known.
The sample size estimates must then be based on a pilot
dataset. Pilot data are data where the distribution of
regulated genes is believed to be similar to the experiment
at hand, and could, for example, be a small-scale version of
the experiment of interest.

For hypothetical experiments that compare two
groups, the SAM packageg [5,6], the OCplus packageh

[7] and the methods of Jianhua Hu et al.i [8] and Sin-Ho
Jung [9]j can be used to explore sample-size effects. For
hypothetical experiments that compare k groups (where
k � 2), the methods of Stan Pounds and Cheng
Chengk [10] can be used. Approaches that can be used
for sample-size estimation based on real experimental
datasets exist but are still being improved upon. Several
of the above-mentioned implementations, such as those
described in Refs [6,8,10], offer an option to base the
estimates on experimental data, but their strategy for
doing so, and the input they need, varies. Currently,
there is no consensus on which method is better. An
d In microarray data analysis, the cut-off is often set so that the FDR is below 0.05,
or sometimes 0.01. The motivation for this is keeping the error rate among the genes
that are claimed to be regulated below 5%.

e Calculations: 90 + 90 + 1900 + 2900 = 4980 are believed to be regulated.
90 + 90 = 180 are errors and 1900 + 2900 = 4800 are truly regulated. FDR = 180/
4980, power = 4800/5000.

f Other measures than power can be used together with the FDR. Examples are the
false negative rate (FNR) and the number of genes that are labelled as ‘regulated’.

g Implemented as the package samr for the R environment [11].
h Implemented for the R environment, downloadable from Bioconductor [12].
i R source code available from the authors.
j Implementation available from the author.
k R source code available from the authors.
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example case, where two of the above-mentioned
methods are used, is described in Box 2.

Although new and improved sample-size estimation
methods will be developed, the theoretical foundation
presented here will not change. While designing an exper-
iment one should therefore set a goal in terms of FDR and
power (or some other measure), and try estimating the
required sample size. However, keep in mind that the goal
will depend on the experiment being conducted. For some
studies, detecting only the 10%most-regulated genes (i.e. a
power as low as 0.1), at an FDR of 0.05, could be sufficient.
Other experiments will have more ambitious goals.
Regardless of the experimental goal, the sample size issue
should be given careful thought.
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