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In this paper, we explore in detail the way in which quantum decoherence is treated in different
mixed quantum-classical molecular dynamics algorithms. The quantum decoherence time proves to
be a key ingredient in the production of accurate nonadiabatic dynamics from computer simulations.
Based on a short time expansion to a semiclassical golden rule expression due to Neria and Nitzan
@J. Chem. Phys.99, 1109~1993!#, we develop a new computationally efficient method for estimating
the decay of quantum coherence in condensed phase molecular simulations. Using the hydrated
electron as an example, application of this method finds that quantum decoherence times are on the
order of a few femtoseconds for condensed phase chemical systems and that they play a direct role
in determining nonadiabatic transition rates. The decay of quantum coherence for the solvated
electron is found to take'50% longer in D2O than in H2O, providing a rationalization for a long
standing puzzle concerning the lack of experimentally observed isotope effect on the nonadiabatic
transition rate: Although the nonadiabatic coupling is smaller in D2O due to smaller nuclear
velocities, the smaller coupling in D2O adds coherently for a longer time than in H2O, leading to
nearly identical nonadiabatic transition rates. The implications of this isotope dependence of the
nonadiabatic transition rate on changes in the quantum decoherence time for electron transfer and
other important chemical reactions are discussed. ©1996 American Institute of Physics.
@S0021-9606~96!51514-5#

I. INTRODUCTION

In many condensed phase chemical systems, it is pos-
sible to simulate the physics and chemistry of interest by
treating a few select degrees of freedom quantum mechani-
cally while treating the remainder classically.1 This is desir-
able since it is not yet computationally practical to treat a
condensed system entirely quantum mechanically, and a
purely classical treatment misses much of the relevant physi-
cal phenomena. In such a mixed quantum-classical simula-
tion, the positions of the classical degrees of freedom define
a potential energy surface for the quantum subsystem of in-
terest, while changes of the quantum subsystem in turn affect
the classical dynamics. Whenever the energy of the classical
motions coupled to the quantum system is comparable to the
quantum energy gap, energy transfer can take place between
the quantum and classical degrees of freedom.2 This type of
radiationless or nonadiabatic transition of the quantum sub-
system, corresponding to a breakdown of the Born–
Oppenheimer approximation for a quantum subsystem, plays
an important role in many fundamental chemical processes
including internal conversion, electron, proton, and other
charge transfer reactions, electronic energy transfer, and in-
tramolecular energy redistribution.

One of the key issues in describing nonadiabatic transi-
tions in the condensed phase is the proper treatment of the
short-lived phase coherence between the quantum wave
function and the classical~bath! degrees of freedom.3 In the
following discussion, we will assume without loss of gener-

ality that we are considering a quantum electronic system
and a classical nuclear bath. In such mixed quantum-classical
systems, the nuclear dynamics follows according to a given
adiabatic potential surface associated with one of the eigen-
states of the electronic Hamiltonian. Thus the potential felt
by the nuclear degrees of freedom will depend strongly upon
the quantum state of the electronic degrees of freedom. The
fundamental distinction between quantum mechanics and
classical mechanics is that a quantum system can evolve into
a coherent linear superposition of states. Quantum mechani-
cally, the effects of all alternative histories associated with
this coherent superposition, including those of the~classical!
bath, must be considered. As the electronic wave function
evolves from an initially pure eigenstate to a coherent super-
position of eigenstates, alternative paths for the nuclei
emerge: Each path is associated with dynamics arising from
starting in an initial nuclear configuration and electronic state
and ending in a different final nuclear configuration and final
electronic state. The nuclear dynamics for the different quan-
tum paths diverge in both position and phase, leading to
destructive interference between the nuclear wave functions
associated with these paths. This effect is known as quantum
decoherence.4

Since quantum decoherence acts to dissipate long lived
superpositions of states, it profoundly diminishes the transi-
tion probability between quantum states which are coupled
by the nuclear dynamics.3,5 Correspondingly, when the loss
of quantum phase coherence between the electronic and
nuclear degrees of freedom is neglected, which is a typical
approximation made in many mixed quantum-classical
treatments,6 the expected result will be an incorrect estimate
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of the transition probabilities and other associated physical
observables. Because of the tremendous utility of mixed
quantum-classical treatments in simulating condensed phase
phenomena, it is thus of paramount importance to be able to
properly incorporate the effects of quantum decoherence in
such simulations.

The purpose of this paper is to explore the approxima-
tions inherent in the treatment of quantum decoherence in
mixed quantum-classical computer simulations to better un-
derstand the role of decoherence in fundamental nonadia-
batic chemical processes. In the following section, several
methods for estimating nonadiabatic transition rates using
molecular dynamics are discussed, and the assumptions in
each for dealing with the issue of quantum decoherence are
made explicit. Central to all the methods is the issue of the
decoherence time scale: that is, over which time scale must
one consider the quantum phase evolution of the bath in
computing transition probabilities? Section III presents a
new, computationally efficient method for estimating the de-
coherence time based on extension of a golden rule formal-
ism originally developed by Neria and Nitzan.7–9 This new
method is illustrated in Sec. IV utilizing the paradigm of
nonadiabatic condensed phase systems, the hydrated elec-
tron. Section V demonstrates the role of the isotope effect in
altering both the decoherence time and the magnitude of the
nonadiabatic coupling in the hydrated electron system, a re-
sult which provides an explanation for the observed lack of
an isotope effect on the nonadiabatic transition rate in recent
femtosecond experiments. Finally, Sec. VI discusses the po-
tentially profound implications of this effect for many chemi-
cal systems, especially electron transfer reactions, and sum-
marizes the importance of correctly treating quantum
decoherence in nonadiabatic computer simulations.

II. MOLECULAR DYNAMICS AND NONADIABATIC
TRANSITIONS

Due to the fundamental role of radiationless processes in
chemical reactivity, there is a large literature devoted to ex-
tracting nonadiabatic dynamical information from computer
simulations.2,5–15 The approaches considered in this section
fall into two general categories: nonadiabatic rate estimates
based on perturbation theory,7–10 and dynamical algorithms
which incorporate electronic transitions.5,6,11–15

The first methods summarized utilize perturbation theory
to provide an expression for the radiationless transition rate
in terms of nonadiabatic coupling matrix elements, which are
in turn evaluated by computer simulations on individual
adiabatic surfaces.7–10Although this class of methods do not
provide nonadiabatic molecular dynamicsper se, they offer
utility in a semiclassical determination of electronic transi-
tion rates, especially for systems where the magnitude of the
nonadiabatic coupling is small. Many of the concepts under-
lying quantum decoherence as well as the basis for our new
method for estimating decoherence times are readily illus-
trated in the perturbative golden rule formalism, so we de-
vote particular attention to it below.

The second class of methods provide access to dynami-

cal quantities by providing an algorithm for mixed quantum-
classical molecular simulations with the inclusion of nona-
diabatic transitions.5,6,11–15Due to the divergence of classical
trajectories propagated under the influence of different elec-
tronic states of the quantum system, running classical trajec-
tories on a single weighted adiabatic potential is usually in-
adequate to describe the physics of interest.12 To account for
this, the techniques discussed below incorporate stochastic
surface hopping, where the probability of dynamically hop-
ping to a different electronic surface depends on nonadia-
batic coupling coefficients computed during the course of the
trajectory. Both the classical dynamics and the nonadiabatic
transition probabilities depend directly on how these algo-
rithms treat quantum coherence. Thus the decoherence time
plays a direct role in determining physical properties calcu-
lated from ensemble averages of nonadiabatic computer tra-
jectories.

A. Semiclassical transition rates from Fermi’s golden
rule

For a generalized mixed quantum-classical system, the
quantum mechanical coordinates of interest will be specified
by r , while the remaining classical degrees of freedom will
be labeledR. The language we use throughout this paper
refers to the quantum coordinates as ‘‘electronic’’~although
any quantized coordinate, such as a high frequency vibration,
could also be used! and the classical coordinates as the
nuclear, or ‘‘bath.’’ The Hamiltonian for this mixed system is
given by

H5H0~r ;R!1T~R!, ~1!

whereH0~r ;R! is the electronic Hamiltonian for a given set
of nuclear positionsR, andT~R! is the nuclear kinetic energy
operator. In the adiabatic approximation, the coupling of dif-
ferent electronic states through the nuclear kinetic energy
operator,T~R!, is neglected. Under this approximation, the
adiabatic states are defined asuai&

H0~r ;R!ua i&5Ei ua i&, ~2!

where i labels a particular electronic state and the explicit
dependence on the electronic coordinate,r , has been dropped
for notational convenience. Within the adiabatic basis,
$ai~R!%, the nonadiabatic coupling matrix elementsTi j are
defined as

Ti j5^a i~R!uT~R!ua j~R!&

52(
n

\2

2Mn
^a i~R!u

]2

]R2 ua j~R!&, ~3!

where theTi j are operators on the nuclear subspace and the
sum runs over all the nuclei which have massesMn .

Using first order time dependent perturbation theory,16

the nonadiabatic transition rate,ki j , between an initial elec-
tronic surfaceuai& and another electronic surfaceuaj & can be
described by the golden rule
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ki j5
2p

\ (
F

^a i~R!I ~R!uT~R!ua j~R!F~R!&u2d~Ei2Ef !,

~4!

where uI ~R!& and uF~R!& are the nuclear states associated
with the initial and final electronic states which have ener-
giesEi andEj , respectively.@Note that a thermal rate con-
stant would also involve a Boltzmann average over the initial
electronic state which has not been included in Eq.~4!.# By
using the Fourier representation of the delta function and the
first equality of Eq.~3! in Eq. ~4!, and then performing the
sum over final states, the golden rule expression becomes

ki j5E
2`

`

dt^I ~R!uTi j ~R!eiH j t/\Tji ~R!e2 iH i t/\uI ~R!&,

~5!

whereHi and Hj are the nuclear Hamiltonians associated
with the two electronic states and are assumed to be defined
from a common energy origin. We note that the nuclear co-
ordinatesR5R~t! are parametrized by time. Equation~5!,
which is the starting point for many nonadiabatic calcula-
tions in the literature,1,7,8,10 can be converted into a more
useful form for our purposes by using the second equality of
Eq. ~3!, employing the chain rule for differentiation and ne-
glecting the higher order terms involving second
derivatives7,8

ki j5E
2`

`

dtK (
n

(
m

Fn~R
~ j !~ t !!–vn

~ j !~ t !

3Fm~R~ i !~0!!–vm
~ i !~0!J~ t !L , ~6!

where

Fn~R
~ i !~ t !!5 i ^a i u

]H0

]Rn
~ i ! ua j&. ~7!

In the above expression, the angled brackets indicate an en-
semble average over initial conditions, the sums run over the
different nuclei,vn

( i )(t) is the velocity of nucleusn evaluated
after propagation along electronic surfacei for time t,
Fn~R

( i )(t)! is the matrix element of the ‘‘force’’ on nucleusn
~which has been propagated for timet along surfacei ! evalu-
ated between the two adiabatic states, and

J~ t !5^I ~R~0!!ueiH j t/\e2 iH i t/\uI ~R~0!!&. ~8!

Equation ~8! for J(t), the time-dependent overlap of the
nuclear wave function propagated on the two different sur-
faces, makes use of the fact that the nuclear positions on both
statesi and j are identical at time zero.

The physical interpretation underlying Eq.~6! is rela-
tively straightforward. The system is initially in electronic
statei at time zero, and the classical coordinates have posi-
tionsR( i )~0! and velocitiesv( i )~0!. The nonadiabatic coupling
is given by a complex number,F–v, which is proportional to
the projection of the nuclear velocities along the force matrix
element between the two states. In general, the two surfaces
are more strongly mixed whenF is large, leading to a larger
integrand for the transition rate between the adiabatic states.

Increasing the nuclear velocities also increases the integrand,
as expected~the rate should be higher in the presence of
faster nuclear motions due to breakdown of the adiabatic
approximation!, but only the component of the velocity
along the nonadiabatic force matrix element contributes. The
overall rate is proportional to the time integral of the auto-
correlation of the coupling: The rate depends on the decay of
the correlation ofF–v evaluated at time zero on surfacei and
F–v evaluated at timet on surfacej . Thus not only is the
magnitude of the coupling term important to the rate, but so
is the time over which the two surfaces remain strongly
coupled. Propagation on the two different electronic surfaces
will lead to divergent nuclear velocities and nonadiabatic
force matrix elements, so theF–v coupling terms evaluated
on the two surfaces eventually become uncorrelated. It is
also important to note that there generally is interference
between successive regions of nonadiabatic coupling: Con-
tributions to the integrand at later times could add either
constructively or destructively to those from earlier times,
potentially producing a large effect on the overall transition
rate.

Inspection of Eq.~6! also reveals that the overall nona-
diabatic transition rate is also modulated by theJ(t) term.
Starting with a given set of nuclear positionsR at time zero
and noting that by definitionJ~0!51, it is evident thatJ(t)
provides a measure of how the overlap of the nuclear wave
functions on the two surfaces decays as the nuclear positions
and phases diverge due to propagation with the two different
electronic Hamiltonians. Of particular importance, because
J(t) enters multiplicatively into the integrand in Eq.~6!, the
decay ofJ(t) presents an upper limit for the time over which
coupling between the surfaces affects the transition rate. We
will show below that, for the example of the hydrated elec-
tron, J(t) does indeed decay on a time scale faster than the
autocorrelation of the nonadiabatic coupling matrix elements
and hence plays an important role in determining the nona-
diabatic transition rate. We define the time scale set by the
decay ofJ(t) as the quantum decoherence time. In most
nonadiabatic molecular dynamics simulations, however,
there are no nuclear wave functions with which to evaluate
this decoherence term. Thus mixed quantum-classical com-
puter simulations have relied on assumptions to incorporate
the effects of decoherence into nonadiabatic dynamics and
the estimation of radiationless transition rates.2,6,12–15

B. Nonadiabatic molecular dynamics simulations

In a mixed quantum-classical simulation, the positions of
the classical nuclei define an instantaneous classical potential
energy surface for the quantum degrees of freedom. As the
bath particles move, the energies associated with the instan-
taneous adiabatic electronic eigenstates will change. If the
quantum system is prepared in an adiabatic eigenstate, the
coupling between the electronic states due to nuclear motion
of the bath particles generally produces a mixed quantum
state in the adiabatic basis at later times. Because the classi-
cal particles are constrained to evolve only on the individual
adiabatic potential energy surfaces, a mixed quantum super-
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position provides many alternative instantaneous classical
pathways or histories. The divergence of these alternative
classical histories and the associated loss of phase coherence
between them causes quantum decoherence.5 By decoher-
ence we mean there is a dissipation of contributions due to
quantum mechanical phase interference between the alterna-
tive histories. Sets of histories which have lost coherence are
termed ‘‘coarse grained’’ and their associated weights are
summed together as ordinary probabilities as opposed to
quantum mechanical amplitudes.17 The effect of this coarse
graining is the projection of the quantum system into an
adiabatic eigenstate~since outside of regions of strong cou-
pling, the system must eventually be described by probabili-
ties for occupation of alternative electronic eigenstates!.
Thus, the coupling to the bath serves both to destroy adiaba-
ticity by producing quantum superposition states from an
initial adiabatic eigenstate, and to restore adiabaticity by
eliminating the coherences in the superposition via coarse
graining, which resolves the quantum system back into in-
stantaneous adiabatic eigenstates.5,17 If the mixed quantum
state is comprised of a fraction of the initial adiabatic state
with components of other adiabatic states, there will be some
probability that the collapsed wave function corresponds to a
different final adiabatic state. This view of mixed quantum-
classical dynamics, where adiabatic states evolve into quan-
tum mixed states and are subsequently projected back into a
new adiabatic basis, forms the essence underlying surface
hopping molecular dynamics algorithms. The important role
of quantum coherence can be demonstrated in two such al-
gorithms: the ‘‘fewest switches’’ or MDET~molecular dy-
namics with electronic transitions! algorithm,5,6,12 and the
stationary phase surface hopping approach.13–15

In the fewest switches algorithm, pioneered by Tully12

and further developed by Coker and co-workers,6 complex
coefficients are used to describe the~generally! mixed state
quantum system for a given position of the classical coordi-
nates. Thus, the mixed quantum state at a given time can be
described in terms of the adiabatic basis,

uc i~ t !&5(
i
ci~ t !ua i&. ~9!

Representing the complex coefficients in density matrix no-
tation, r i j5cici j* and substituting Eq.~9! into the time-
dependent Schro¨dinger equation provides equations of mo-
tion for coherent propagation of the complex coefficients
under the influence of the bath

]

]t
r i j5(

k
~r i jR–dik2r ikR–dk j!2 i ~Ei2Ej !r i j , ~10!

where the nonadiabatic coupling vector between statesi and
k is given by

dik5^a i u“Ruak&, ~11!

where the gradient is taken with respect to the classical co-
ordinates. Propagation of the classical particles is performed
adiabatically using the Hellmann–Feynman force

FQ
~ i !~R!52^a i u“RHua i&, ~12!

whereFQ
~i! ~R! is the force on the classical coordinatesR due

to the quantum system in adiabatic statei , and the system
HamiltonianH5H~r ;R! is as defined in Eq.~1!. The algo-
rithm then incorporates surface hopping, where the prob-
abilities to hop between adiabatic surfaces,gi j , are chosen to
produce the correct distribution of ensemble members con-
sistent with the coherently propagated mixed wave function,

gi j5
2

\

Dt

r i i
Re@r j i*R–di j #U~2Re@r j i*R–di j !#), ~13!

whereDt is the time step, andU(x) is the Heaviside step
function which ensures the system undergoes the fewest
number of transitions between adiabatic states.

To produce nonadiabatic dynamics with the fewest
switches algorithm, the system generally begins in an adia-
batic eigenstate, and then the classical nuclear and quantum
dynamics are propagated for one time step using Eq.~12!
and Eq.~10!.12 This produces a mixed quantum state at the
end of the step, so surface hopping is used to select an adia-
batic state for propagating the next step by comparing the
quantitygi j from Eq. ~13! to a random number. If no switch
between states is made, propagation simply continues to the
next step. If a switch between statesi and j occurs, the
energy excess or deficit in the quantum coordinates is dis-
tributed among the classical coordinates along the nonadia-
batic coupling vectordi j , defined in Eq.~11!,18,19 and then
propagation continues using the new quantum state. The val-
ues of the complex coefficients,r i j , are retained throughout
the propagation, so that memory of the coupling between
states at different times is preserved: The entire trajectory is
propagated completely coherently. To account for decoher-
ence then, it would be necessary to evaluate an entire swarm
of trajectories from the same~classical! initial condition. Dif-
ferent random number sequences would produce different
transition points in the different trajectories of the swarm.
Since the classical dynamics between trajectories with tran-
sitions in different places will generally diverge, the interfer-
ence between all the trajectories in the swarm, when summed
together, would provide a natural description of quantum de-
coherence for the initial time step.6,12

This natural description of quantum decoherence, how-
ever, comes at a computational price. To obtain ensemble
properties of a mixed quantum-classical system, a thermal
distribution of initial configurations must be chosen, and then
a swarm of trajectories run for each initial condition. The
properties of the system as a whole consist of ensemble av-
erages of the sums of the swarm of trajectories associated
with each initial condition. Especially for cases where the
coupling is weak or the decoherence time is short, one ex-
pects that a very large swarm of trajectories would be re-
quired from each initial condition to correctly damp out
memory of the nonadiabatic transition amplitudes between
different times. Moreover, it is not cleara priori how many
trajectories would be required for a given initial condition to
ensure that coherence has been properly damped. A new
nonadiabatic method recently developed by two of us recasts
the fewest switches algorithm in a formalism where a single
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trajectory can be propagated with smooth damping of quan-
tum coherence as long as the decoherence time is known in
advance.5

In the stationary phase surface hopping approach, pio-
neered by Websteret al.13,14 and generalized recently to in-
clude approximate eigenstates by Murphrey and Rossky,15

the classical dynamics are propagated under the influence of
the mixed quantum state rather than adiabatically. The algo-
rithm utilizes an expression for the quantum force developed
by Pechukas20 using the stationary phase approximation in a
path integral representation of the quantum propagator
U(t,t0),

FQ~ t8!5
2Re@^a j~R~ t !!uU~ t,t8!“RH0@R~ t !#U~ t8,t0!ua i~R~ t0!!&#

^a j~R~ t !!uU~ t,t0!ua i~R~ t0!!!&
. ~14!

This expression for the force is then combined with the sur-
face hopping algorithm of Tully and Preston,11 where the
hopping probabilities are computed from the magnitudes of
the overlap of the initial adiabatic state projected onto the
possible final adiabatic states

Ti j5^a j~R~ t !!uU~ t,t0!ua i~R,t0!!&. ~15!

The Pechukas force expression, Eq.~14!, also conserves en-
ergy and angular momentum during an electronic transition
~iÞ j !; the force on the classical particles reflects the smooth
evolution of the initial adiabatic state into a quantum mixed
state which is eventually resolved into a new adiabatic state
at the end of the time step.

To produce nonadiabatic dynamics with the stationary
phase surface hopping algorithm, it must be noted that Eq.
~14! is nonlocal in time: The force acting on the classical
nuclei over the step timeDt5t2to depends on the adiabatic
wave functions~which in turn depend on the nuclear coordi-
nates! at both the initial timeto and the final timet. The
system generally begins in an adiabatic eigenstate, and the
classical dynamics are propagated under a linearized Hamil-
tonian to determine the approximate final adiabatic eigen-
states. The final adiabatic statej is chosen by computingTi j
from Eq.~15! and comparing to a random number. The value
of j thus determined is then used in Eq.~14!, which is solved
self-consistently for the classical and quantum dynamics.
This algorithm provides for complete quantum coherence
during the time step, with the selection of the final adiabatic
eigenstate at the end of each step. The transition probabilities
computed over a given time step with the stationary phase
surface hopping method are equivalent to those produced by
the swarm of trajectories necessary in the fewest switches
approach. Like the fewest switches algorithm, the complex
amplitudes for the transition probabilities from Eq.~15!
could then be retained and added over an arbitrary number of
subsequent time steps, preserving coherence. The typical use
of the stationary phase surface hopping algorithm, however,
includes dropping the complex phases at the end of each
time step to provide for natural decoherence with a single
nonadiabatic trajectory.13–15

The chief concern when employing the stationary phase
surface hopping algorithm lies in the choice of the quantum
decoherence time. As will be demonstrated in the next sec-
tion, complex interferences between the transition ampli-

tudes along consecutive time steps can lead to an overall
electronic transition probability which depends directly on
the coherence time. Thus nonadiabatic transition rates and
dynamical quantities computed with this algorithm will in
general be a function of the chosen decoherence time.
Clearly, for both the stationary phase surface hopping and
fewest switches algorithms, an independent method for esti-
mating the quantum decoherence time is required. We pro-
pose such a method in the following section.

III. ESTIMATING QUANTUM DECOHERENCE TIMES

In order to estimate the quantum decoherence time for
either the stationary phase surface hopping or fewest
switches molecular dynamics simulations, it is necessary to
make some type of semiclassical approximation for the
nuclear degrees of freedom. The approach we will take, fol-
lowing that of Neria and Nitzan,7–9 relies on a semiclassical
approximation for calculating the nuclear wave function of
the bath. Since the bath wave function enters directly into the
golden rule expression for the nonadiabatic transition rate,
Eq. ~6!, the quantum coherence time can be determined sim-
ply from the decay of the nuclear functionJ(t).

At the heart of the method is the estimation of the
nuclear wave function of the solvent based on Heller’s fro-
zen Gaussian approximation~FGA!.21 Heller showed that
Gaussian wave packets, centered on the positions of simu-
lated classical particles and propagated classically, can be
used successfully to calculate many quantum properties of
complex systems. This approximation works well for short
times when there is negligible spreading of the nuclear wave
packets. Since decoherence times in condensed phase sys-
tems are on the order of a few femtoseconds~as will be
demonstrated for the case of the hydrated electron in the next
section!, we expect this will be an excellent approximation.
The nuclear wave function of the bath, then, is given by the
superposition of the frozen Gaussians,Gn

( i )~x,p;t!, centered
on the individual nuclei and propagated on electronic surface
i ,7–9

^RuI ~R~ i !~ t !!&5)
n

Gn
~ i !~x,p;t !expF i\ S~ i !@R~ i !~ t !#G ,

~16!

where
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Gn
~ i !~x,p;t !5S anp D 3/4 expF2

an
2

~xn2xn
~ i !~ t !!2

1
i

\
pn

~ i !~ t !–~xn2xn
~ i !~ t !!G , ~17!

R( i )(t)5$x1
( i )(t),x2

( i )(t),•••%, andxn
( i )(t) is the position of the

nth nuclei,pn
( i )(t) is the momentum of thenth nuclei andan

is the Gaussian width of thenth nuclei ~discussed further
below!. The phase evolution of the total wave function is
given by the classical action,S( i )(t), of the system during
propagation along statei which is given explicitly by

S~ i !@R~ i !~ t !#5E
0

t

dt(
n

~pn
~ i !~ t !!2

2Mn

2^I ~R~ i !~ t !!uHi~ t !uI ~R~ i !~ t !!&. ~18!

The second term in Eq.~18! is simply the potential energy of
the system on surfacei evaluated for the position of the
classical coordinates at timet. Since the frozen Gaussians
are propagated classically, the quantum wave function of the
bath is directly available from the semiclassical description
of the entire system. Armed with Eq.~16! and Eq.~18!, the
nonadiabatic transition rate can be calculated using Eq.~6!.
This was the approach used by Neria and Nitzan, who cal-
culated the nuclear overlap integral from Eq.~8! as7,8

J~ t !'K)
m

Gm
~ j !~xm

~ j ! ,pm
~ j ! ;t !U)

n
Gn

~ i !~xn
~ i ! ,pn

~ j ! ;t !L
3expF i\ ~S~ i !@R~ i !~ t !#2S~ j !@R~ j !~ t !# !G ~19!

by running two quantum adiabatic simulations from the same
initial condition, one starting on the initial electronic surface
and one starting on the final electronic surface. The draw-
back to this technique is that it requires running many costly
adiabatic quantum molecular dynamics trajectories~two tra-
jectories per configuration in the ensemble! simply to esti-
mate the overall rate at the level of first order perturbation
theory @Eq. ~6!#. This effort is spent on trajectories which
provide no dynamical information about the system. Instead,
we can use Eq.~19! as a starting point to provide an estimate
of the decoherence time that can then be used in either the
stationary phase surface hopping or fewest switches molecu-
lar dynamics algorithms. Both algorithms furnish the dy-
namical information of interest, and further, the stationary
phase surface hopping approach utilizes the full quantum
propagator~within the stationary phase approximation! so
that the assumption of linear coupling inherent in first order
perturbation theory is not an issue.

The computational effort involved in Eq.~19!, however,
is formidable for the sole purpose of providing a single de-
coherence time for use in another algorithm. Since the FGA
is an inherently short time approximation, a reasonable ap-
proach to reducing the computational effort in estimating the
decoherence time is to expand the classical nuclear positions
and momenta to second order in time. This is equivalent to
making a local harmonic approximation for the classical mo-

tion, in accord with the original use of frozen Gaussians.
This type of approximation can describe condensed phase
dynamical properties for a surprisingly long period of time
~certainly longer than the decoherence time of interest, dis-
cussed below!, as demonstrated in the rapidly growing litera-
ture devoted to instantaneous normal mode~INM ! analysis
of classical liquids.22 In general, the Gaussian overlap inte-
gral in Eq.~19! can be done analytically21

K)
m

Gm
~ j !~xm

~ j ! ,pm
~ j ! ;t !U)

n
Gn

~ i !~xn
~ i ! ,pn

~ i ! ;t !L
5)

n
expF2

an
4

~xn
~ j !~ t !2xn

~ i !~ t !!2G
3expF2

1

4an\
2 ~pn
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where we have neglected the overlap of Gaussians represent-
ing different nuclei~nÞm! between the two surfaces. The
short time expansion for the nuclear degrees of freedom is
given by
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In Eq. ~21!, Fn
( i )(0)5FQ,n

( i ) (0)1FCl,n(0), the sum of the
quantum and the classical forces acting on thenth nucleus at
time zero, whereFQ,n

( i ) ~0! is the adiabatic ~Hellmann–
Feynman! quantum force acting on nucleusn when the quan-
tum state is on surfacei as given by Eq.~12!. Also needed is
a short time expansion for the potential energy term in the
classical action, Eq.~18!, which enters into phase of the total
nuclear wave function

V~ i !~R~ t !!5^I ~R~ i !~ t !!uHi~ t !uI ~R~ i !~ t !!&

'V~ i !~R~0!!1t(
n

pn
~ i !~0!)

Mn
–Fn

~ i !~0!1••• ,

~22!

where we have used the chain rule for differentiation to get
the second term in the expansion.

In general,J(t) is a complex-valued function of time.
Utilizing the Condon approximation, where we assume that
the value ofJ(t) is uncorrelated with the instantaneous value
of the nonadiabatic coupling vector, we can separate the con-
tribution of J(t) from the overall golden rule expression, Eq.
~6!. Since the imaginary part ofJ(t) is odd with respect to
time, we need only consider the real part ofJ(t) in our
estimate of the quantum decoherence time and its effect on
the non-adiabatic transition rate. We also note that the golden
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rule expression requires that the trajectories used to deter-
mine the classical coordinates propagated on the two elec-
tronic surfaces start from the same set of initial conditions8

xn
( i )~0!5xn

( j )~0!, pn
( i )~0!5pn

( j )~0!, which also means that the
initial classical forces acting on nucleusn are the same on
the two surfaces. Using this information, substituting Eqs.
~20!–~22! into Eq. ~19!, and dropping terms ofO ~t3! and
higher, we have the desired short-time approximation for the
decay of quantum coherence

Re@J~ t !#5expF2(
n

1

4an\
2 ~FQ,n

~ i ! ~0!2FQ,n
~ j ! ~0!!2t2G

3cos@~V~ i !~R~0!!2V~ j !~R~0!!!t/\#. ~23!

The exponential term in Eq.~23! arises from the divergence
in nuclear overlap for propagation on the two different sur-
faces. The time derivative of the quantum force in the short
time expansion for the momentum@Eq. ~21!# and thex–p
terms from Eq.~20! both come in at higher order thant2, and
hence do not appear in Eq.~23!. Further, because the initial
positions and momenta are the same on the two surfaces, the
leading term in the divergence of the overlap comes in only
as the difference in the quantum forces evaluated on the two
adiabatic surfaces. The cosine term in Eq.~23! arises from
the classical action; the term which survives depends only on
the potential difference between the two states since the ini-
tial classical kinetic energy is the same on both surfaces.
Finally, although the nuclear masses do not appear explicitly
in Eq. ~23!, they will play an implicit role in decoherence
through the choice of the Gaussian widths,an . Thus the
decoherence time as given by the decay ofJ(t) in Eq. ~23!
depends upon the initial width of the Gaussians. As is clear
from Eq. ~23!, the solvent nuclear dynamics enters only
through the force difference. It is also interesting to note that
it is the dispersion of themomentumcomponents of the
nuclear wave function which governs the initial decay of
J(t) rather than the spatial components.

Our short time approximation forJ(t) in Eq. ~23!, de-
pends solely on zero time quantities, a substantial advantage
over a time dependent expression. For a given nuclear con-
figuration, only the potential energy difference of the quan-
tum system and the difference in the adiabatic quantum force
on the two surfaces play a role in determining the decoher-
ence time. SinceJ(t) is defined for a single configuration, it
can be computed on the fly during nonadiabatic dynamics to
monitor the non-equilibrium evolution of quantum
decoherence.23 For the equilibrium ensemble case, initial
nuclear configurations can be generated from a single adia-
batic mixed quantum-classical trajectory on the initial sur-
face or by Monte Carlo, with no need to run multiple trajec-
tories for each member of the ensemble. In the common
situation where the initial configurations are generated by
molecular dynamics, the potential energy difference is typi-
cally known and the Hellmann–Feynman force has already
been computed on the occupied surface, so the only addi-
tional computation necessary is determination of the quan-
tum force on the final electronic surface. Although the for-
malism presented here considers decoherence between only

two quantum states, generalization to an arbitrary number of
pairs of states is completely straightforward. We offer an
example of the utility of this new method for estimating the
decoherence time in the following section.

IV. QUANTUM DECOHERENCE AND THE HYDRATED
ELECTRON

The prototypical system for studying condensed phase
nonadiabatic dynamics has been the hydrated electron. Be-
cause it has only one quantum~electronic! degree of freedom
which is strongly coupled with the nuclear motions of the
surrounding bath, the hydrated electron provides an excellent
testing ground for theoretical models.7,8,10,13,23–29The large
optical cross section of the hydrated electron also makes it
amenable to spectroscopic investigation.30–36 With the ad-
vent of new femtosecond laser techniques and the develop-
ment of nonadiabatic dynamical algorithms such as those
described above, the hydrated electron has provided the first
condensed system where nonadiabatic theory and experiment
have successfully converged.37

Interest in the nonadiabatic dynamics of the hydrated
electron was originally spurred by femtosecond experiments
studying the formation of equilibrium hydrated electrons fol-
lowing multiphoton ionization of neat water.32,33 While the
mechanism of electron production in these experiments is
not fully understood,35,36 it is clear that the formation of the
equilibrium species takes place by an essentially two-state
process. The kinetic picture28 that emerged from the combi-
nation of these experiments,32,33adiabatic simulations,29 and
nonadiabatic calculations13,26 points to trapping of the elec-
tron in the lowest excited state~sometimes referred to as the
‘‘wet’’ electron! followed by nonadiabatic relaxation to the
ground state~the equilibrium ‘‘solvated’’ electron!. Forma-
tion of the excited state electron from the initially produced
species was found to take 110–240 fs.32,33The nonadiabatic
relaxation time for the electron determined in these experi-
ments is 250–500 fs.32,33 Investigations of this process in
deuterated water have shown that the isotope effect on the
nonadiabatic transition rate is at most a few percent.34

More recent experiments30,31 and quantum simu-
lations10,24,25,27have investigated the nonadiabatic dynamics
of the hydrated electron by photoexciting the equilibrium
ground state species and monitoring the subsequent solvation
of the excited state and its internal conversion back to the
ground state. Upon photoexcitation, the quantum energy gap
of the hydrated electron starts at its equilibrium ground state
value and continuously decreases with time as the excited
state charge distribution is solvated. The nonadiabatic cou-
pling between the two states increases as the gap becomes
smaller, leading to an increasing nonadiabatic transition rate
with time.24 The excited state solvation time for the photo-
excited electron is 250–300 fs, and the nonadiabatic transi-
tion rate from the equilibrated excited state is on the order of
1 ps21.24,30 Experiments in D2O show identical spectral dy-
namics, indicating little isotope effect on either the solvation
dynamics or the nonadiabatic transition rate.30 Here, we uti-
lize nonadiabatic mixed quantum-classical molecular dynam-
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ics simulations to investigate the origins of quantum deco-
herence in this prototypical condensed phase system.

The simulation techniques we employ are identical to
our earlier work studying both the relaxation of electrons
photoinjected into neat water13,26 as well as the present case
of photoexcitation of equilibrium hydrated electrons.24,25

Briefly, the model consists of 200 classical SPC water mol-
ecules with the addition of internal flexibility38 and one
quantum electron in a cubic cell of side 18.17 Å~correspond-
ing to a solvent density of 0.997 g/ml! with standard periodic
boundary conditions at room temperature. The electron–
water interactions were described with a pseudopotential,39

and the equations of motion integrated using the Verlet algo-
rithm with a 1 fstime step in the microcanonical ensemble.40

The adiabatic eigenstates at each time step were computed
via an efficient iterative and block Lanczos scheme utilizing
a 163 plane wave basis;13 the lowest six eigenstates were
computed during nonadiabatic molecular dynamics. Twenty
configurations in which the energy gap was resonant with the
experimental laser frequency24,30 were chosen from a 35 ps
equilibrated ground state run as the starting points for non-
equilibrium excited state trajectories. The solvation of the
newly formed excited state, nonadiabatic transition times for
the 20 trajectories, and a comparison of ultrafast spectros-
copy computed from these simulations to experiment are all
available in the literature.24,25A detailed microscopic analy-
sis of the nonadiabatic coupling and energy disposal follow-
ing the internal conversion for these simulations is
forthcoming.41

Quantum coherence in these simulations was maintained
utilizing the stationary phase surface hopping nonadiabatic
dynamics algorithm of Websteret al., described above.13,14

In these earlier studies of the hydrated electron, we chose to
drop coherence at the end of each 1 fs time step„ in other
words, we do not utilize the complex phases of the transition
amplitudes,Ti j @Eq. ~15!#, over more than one time step….
This choice, though arbitrary, was based on expectations that
the decoherence time for this system should be on the order
of 1 fs. This choice is equivalent to having a rectangular
decay of the nuclear functionJ(t) @Eq. ~23!#: J(t) for this
algorithm starts at 1 and stays there for 1 fs, and then in-
stantly drops to zero for times greater than 1 fs. A modified
version of this algorithm which chooses coherence intervals
based on instantaneous values for the quantum decoherence
time will allow for dynamics with a more realistic decay of
quantum coherence.23 The rapid divergence of the nuclear
positions on the two different surfaces~and hence, choice of
a short coherence time! is illustrated conceptually by Fig. 1.
This figure shows the quantum energy gap for the hydrated
electron starting from a configuration equilibrated on the
electronic excited state. The solid curve follows the energy
gap for continued propagation on the equilibrium excited
surface, while the dashed curve shows the gap starting from
the same initial configuration but propagating along the
ground state surface. Clearly the nuclear configurations giv-
ing rise to the quantum energy gap on the different surfaces
must diverge rapidly. Thus the nonadiabatic coupling for this
system must be tempered by a short coherence time.

Using the method outlined in the previous section, we
can estimate the decay of quantum coherence for the hy-
drated electron from Eq.~23! with information available
from the excited state simulations. For the present example,
the initial statei is the equilibrium excited state of the hy-
drated electron, and the final statej is the ground state of the
electron. For the widths of the frozen Gaussians, we chose

an5
6MnkT

\2 ~24!

which results from rigorous analysis of the nonadiabatic
transition rate between displaced harmonic oscillators in the
high temperature limit,7,8 and also allows for direct compari-
son to the earlier calculations of Neria and Nitzan.7,8To com-
pute the equilibrium quantum decoherence which modulates
the nonadiabatic transition from the excited state, we take an
ensemble average of Eq.~23!. Assuming that the excited
state was equilibrated at times past 1 ps, we chose 20 con-
figurations at 25–50 fs intervals from each of our 5 longest
trajectories for a total of 100 configurations. Since we had
already computed the eigenenergies and the excited state
Hellmann–Feynman forces on the classical particles for all
these configurations, we need only use the eigenfunctions
computed previously to determine the Hellmann–Feynman
forces along the ground state@Eq. ~12!# to obtain an estimate
of J(t) from Eq. ~23!.

The results of this calculation are shown as the solid
curve in Fig. 2. For the hydrated electron in the short time
approximation, the coherence decays in a roughly Gaussian
manner, and a Gaussian fit to the decay has a variance of 3.1
fs. Another estimate of the decoherence time is found in the
area under the curve, which for this example is 2.8 fs. This
result is in good agreement with previous calculations using
a different model for the hydrated electron,7,8 and demon-
stratesa posteriorijustification for the hypothesis of a'1 fs
coherence time in the earlier nonequilibrium simulations. We
also note that the rapid decoherence of this system provides
a posteriori justification for the short time approximations

FIG. 1. Divergence of the ground state-excited state energy gap of the
hydrated electron for trajectories propagating on the ground versus excited
state potential surfaces, starting from the same initial configuration in the
equilibrated excited state. The solid curve indicates that continued propaga-
tion along the excited state produces little change in the quantum energy gap
~Ref. 43!. The dashed line shows the rapid increase in the quantum energy
gap as the electron propagates on the ground state surface, establishing its
new equilibrium.
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@Eqs.~21! and~22!# inherent in Eq.~23!. Since the computed
decoherence time is on the order of a few femtoseconds, Eq.
~23! should prove to be an excellent approximation. The im-
portance of the coherence decay in the overall rate is evident
from Eq. ~6!: J(t) decays much more quickly than the auto-
correlation of the nonadiabatic coupling.41 The origins of the
coherence decay presented in Fig. 2 can be found in a de-
tailed examination of Eq.~23!. The dashed curve in Fig. 2
shows the ensemble average of only the Gaussian term in Eq.
~23!, namely,

Joverlap~ t !5K expF2(
n

~FQ,n
~ i ! ~0!2FQ,n

~ j ! ~0!!2

4an\
2 t2G L .

~25!

This portion of the decoherence, due to the decay in overlap
of the nuclear wave function on the different surfaces, decays
more slowly than the total coherence indicating the impor-
tance also of the phase of the nuclear wave function~see
below!. We find that the sum in the exponential is typically
dominated by only 5 to 10 nuclei which are the closest to the
bulk of the electronic charge density.42 This makes sense
from the definition of the Hellmann–Feynman force, Eq.
~12!: The largest difference in quantum force between the
two surfaces will be for nuclei in positions where the charge
density, is large on one surface and small on the other. We
find that despite the appearance of the nuclear mass in the
Gaussian width@Eq. ~24!#, not only hydrogen~deuterium!
but also occasionally oxygen nuclei contribute significantly
to the sum representing the decay of the nuclear overlap@Eq.
~25!#. This is due to the fact that the force difference between
adiabatic energy surfaces for O nuclei can sometimes be
larger than that for H nuclei. This larger force difference
relative to the H nuclei results from the larger charge on the
O atoms which increases the difference in Coulomb forces,
and from the larger O atom electron density which increases

the difference in Pauli repulsion forces. These contributions,
taken together, can be large enough to overcome the mass
weighting which favors contributions from H atoms.

The dotted curve in Fig. 2 shows the portion of the co-
herence decay due to the ensemble average of the cosine
term in Eq.~23!

Jphase~ t !'^cos@~V~ i !~R~0!!2V~ j !~R~0!!!t/\#&. ~26!

This portion of the total coherence, due to phase interfer-
ences in the nuclear part of the total wave function associated
with the two electronic surfaces, accounts for a significant
portion of the total decoherence of the system. For the hy-
drated electron, the distribution of initial potential energy
differences is large43 leading to cosine terms from the
nuclear phases of a wide variety of frequencies which de-
structively interfere. We also note that the product of the
individually averaged overlap and phase terms, Eqs.~25! and
~26!, does not exactly yield the total coherence decay calcu-
lated from Eq.~23!. This indicates a definite correlation be-
tween the overlap and phase portions of the nuclear wave
function. Such correlation is perhaps not that surprising:
Configurations with larger potential energy differences are
also more likely to have larger differences in quantum forces
between the two surfaces.

Finally, we note that the decay of quantum coherence
presented in Fig. 2 is calculated for the hydrated electron at
equilibrium in its excited state. Since the quantum energy
gap evolves with time following photoexcitation due to sol-
vation, the decay of quantum coherence will likely also
evolve during the course of a nonequilibrium trajectory. Thus
dynamical changes in both the nonadiabatic coupling and the
quantum decoherence time will affect the nonadiabatic tran-
sition rate during solvation of the newly created excited
state. For now, we will concentrate solely on the nonadia-
batic transition rate from the equilibrated excited state; the
effects of evolving decoherence on condensed phase nona-
diabatic dynamics will be explored elsewhere.23

V. DECOHERENCE AND THE ISOTOPE EFFECT ON
NONADIABATIC TRANSITION RATES

One of the largest puzzles concerning the nonadiabatic
dynamics of the hydrated electron has been the surprising
lack of a sizable isotope effect on the radiationless transition
rate.30,34 A quick glance at Eq.~6! shows that the nuclear
velocities play a direct role in determination of the nonadia-
batic transition rate. Since the fastest nuclear velocities in
D2O are classically& times slower than those in H2O while
the other factors~the electron–water interaction potential,
the quantum force on the nuclei, etc.! remain the same be-
tween the two solvents, the expectation is that radiationless
transition rates should be roughly half as large in D2O com-
pared to H2O. Indeed, mixed quantum-classical simulations
have suggested isotope effects of factors of 2–4 for the elec-
tronic transition rate in this system.7,8,44 Experiments, how-
ever, have found at most a modest difference in the nonadia-
batic transition rate for electrons photoinjected into H2O vs
D2O,

34 and no isotopic differences have been observed in the

FIG. 2. The decay of quantum coherence for the hydrated electron in the
short time approximation. The solid curve shows the full decay of coherence
due to divergent nuclear overlap and phases on the two different surfaces
@Eq. ~23!#. The dotted curve shows the portion of the coherence decay due
solely to the difference in nuclear phases@Eq. ~24!#. The dashed curve
presents the contribution of the decaying overlap of the diverging nuclear
positions to the decay of quantum coherence@Eq. ~25!#. The product of the
phase and overlap terms does not exactly reproduce the full coherence decay
due to correlation between them.
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spectroscopic dynamics for photoexcited equilibrium
electrons.30 In this section, we explore the possible role of
quantum coherence in determining the magnitude of the
nonadiabatic transition rate for equilibrium excited state
electrons. We find that even though the nonadiabatic cou-
pling is smaller in D2O than H2O, a slower decay of quantum
decoherence in D2O allows this smaller coupling to add co-
herently for a longer time than in H2O, leading to estimated
net electronic transition rates which are comparable in the
two solvents.

The simulation techniques we have employed to study
the solvated electron in D2O are essentially identical to those
in H2O, and are described in more detail elsewhere.

44 Briefly,
the only differences in simulating the electron in heavy ver-
sus light water come in changing the mass of the proton from
1 to 2 amu, and the slight change in solvent density to accu-
rately reflect the experimental density of D2O at room tem-
perature. In performing these D2O simulations, carried out
prior to the remainder of the present study, we made the
choice of a quantum coherence time in the stationary phase
surface hopping algorithm of 1 fs, the same as for H2O. As
we will see below, the estimated coherence time in D2O is
roughly 50% longer than that in H2O. One of the conse-
quences of the hypothesis of equal coherence times is that
nonadiabatic trajectories remain on the excited state signifi-
cantly longer in D2O, bringing to light a slower component
of the solvation response on the'1.2 ps time scale that was
not evident in our earlier work24,25on H2O due to its shorter
excited state lifetime.44 For consistency in estimating the co-
herence decay by use of Eq.~23!, we chose 100 excited state
configurations from the D2O trajectories at the same times
~>1 ps! that we used for the H2O trajectories in the produc-
tion of Fig. 2.

Figure 3 shows a comparison of the nuclear decay func-
tion J(t) for the solvated electron in H2O ~solid curve, same
as the solid curve in Fig. 2! and in D2O ~dashed curve!,
calculated from Eqs.~23! and ~24!. The coherence decay in
D2O is qualitatively similar to that in H2O, only for D2O the
approximate Gaussian decay time is'4.6 fs~versus'3.1 fs
for H2O! and the area under the curve is 4.1 fs~vs 2.8 fs for

H2O!. We note that the results in this figure are not in good
agreement with the previous work of Neria and Nitzan,7,8

who found almost identical coherence decays for the electron
in H2O and D2O.

45 Although we cannot be sure, the differ-
ence may reflect the result of statistical fluctuations in Neria
and Nitzan’s data. To evaluate the nonadiabatic transition
rate, Neria and Nitzan utilized Eq.~6! which requires run-
ning trajectories on both electronic surfaces. Since such tra-
jectories are costly, they limited their ensemble to only 15
examples.7,8 With our short time approximation, we were
able to easily include 100 examples in the determination of
the coherence decay. When we mimicked their calculation by
selecting different subsets of only 15 examples for the en-
semble average, we found coherence decays that varied by
nearly a factor of 3. This suggests that insufficient statistics
may have played a role in Neria and Nitzan’s result of iden-
tical coherence decays for the two fluids. We note that, cor-
respondingly, Ref. 8 reports a substantially different isotope
effect than we report below.

The longer coherence time in heavy water compared to
light water arises predominantly from the difference in mass
in the choice of the Gaussian width@Eq. ~24!#. For classical
H2O and D2O, the probability of a given nuclear configura-
tion is the same. Static ensemble properties for the two fluids
should be identical since the ensembles contain identical
nuclear configurations with equal statistical weights.46 Since
the electronic Hamiltonian for the solvated electron is iden-
tical for both heavy and light water, the static ensemble av-
eraged potential energy difference and the difference in
Hellmann–Feynman forces on the two surfaces will also be
identical for the two fluids. Thus the only differences in the
evaluation of the coherence decay for the two fluids via Eq.
~23! is in the mass term that enters through the Gaussian
width in Eq. ~24!. Since the nuclear overlap part of the co-
herence decay depends on the sum over nuclei, the mass
change leads to the net slower decay of coherence in D2O vs
H2O. In fact, for the purposes of evaluatingJ(t) for the
solvated electron in D2O, the H2O simulations would suffice.

The different coherence decay times in the two solvents
play a direct role in determining the isotope effect on the
overall nonadiabatic transition rate. In simplified terms, to
determine the nonadiabatic transition rate before quantum
coherence has decayed, nonadiabatic transitionamplitudes
should be added; after the decoherence interval, memory of
the complex phases is lost and nonadiabatic transitionprob-
abilities should be added. This view can be used to estimate
nonradiative transition rates in limiting cases. During the
course of the nonadiabatic simulations described above, the
probability of making an electronic transition at a given time
step was strictly determined by the square of the appropriate
nonadiabatic transition amplitude, a direct consequence of
the choice to keep coherence for only one time step. Thus the
nonadiabatic transition rate, or probability of making the
transition per unit time in this ‘‘incoherent’’ limit, is given by
the sum of the squares of the nonadiabatic transition ampli-
tudes

FIG. 3. The isotope effect on quantum decoherence. The solid line shows
the full decay of quantum coherence for the hydrated electron@Eq. ~23!#,
same as the solid line in Fig. 2. The dashed line shows the full decay of
quantum coherence for the solvated electron in D2O. The isotope effect
slows the coherence decay in heavy water by'50%; see the text for details.
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In Eq. ~27!, Pi j (Dt) is the probability per unit time of mak-
ing a nonadiabatic transition between statesi and j averaged
over t time steps along a trajectory in the limit of keeping
coherence for only one time step (Dt). The t consecutive
transition amplitudes,Ti j (Dt), are given by Eq.~15!, and the
angled brackets indicate an ensemble average over starting
times and trajectories. If coherence were maintained over
several consecutive time steps~t5nDt!, the complex transi-
tion amplitudes would first be summed over those time steps,
allowing for interference, and then the square would be taken
to determine the nonadiabatic transition probability

Pi j ~t!5
1

t K U(
n51

t

Ti j ~nDt !U2L . ~28!

In Eq. ~28!, Pi j ~t! is the probability of making a nonadia-
batic transition between statesi and j per unit time where
coherence is completely maintained fort consecutive time
steps@Ti j (nDt) is the nonadiabatic transition amplitude at
the nth time step#. Thus the complex transition amplitudes
from the simulation can be used after the fact to determine
what the nonadiabatic transition rate would have been if
quantum coherence were retained over an arbitrary number
of time steps. Comparison of nonadiabatic transition prob-
abilities determined from Eqs.~27! and~28! as a function of
t provides a direct measure of the influence of coherence on
nonadiabatic transition rates.

Figure 4 displays the nonadiabatic transition probability
for remaining in the equilibrium excited state,P22, computed

as a function of the coherence time for the solvated electron
in both H2O and D2O. The dotted and dot–dashed lines show
the average probability per unit time for the electron to re-
main on the excited state in light and heavy water, respec-
tively, as computed during the simulations with a 1 fsquan-
tum coherence time@P22(Dt), Eq. ~27!#. These probabilities
are averaged over 3000 starting configurations drawn from
the 5 longest trajectories at times past 1 ps. The average
probability per unit time of leaving the excited state for the
electron in D2O is approximately 1.2 parts per thousand
while that for the hydrated electron is roughly half again as
large. For a 1 fstime step, these average probabilities corre-
spond to lifetimes of'550 fs in H2O and'850 fs in D2O.
The magnitudes of these rates agree reasonably with the rates
obtained from fits to the actual population decays in the
simulations,47 and the'2:1 simulated isotope effect between
D2O and H2O

44 is adequately reproduced. As discussed else-
where, non-adiabatic transitions usually occur from those
configurations with somewhat higher than average transition
probabilities or lower than average survival probabilities.41

These special configurations, however, occur with a low
enough frequency that the average transition probability pro-
vides a reasonable estimate of the nonequilibrium population
dynamics.

The solid and dashed curves in Fig. 4 show the average
probability per unit time for remaining in the excited state
for the solvated electron in heavy and light water, respec-
tively, computed as a function of the coherence timet
@P22~t!, Eq. ~28!#. For a coherence timet51 fs, these curves
coincide exactly with those computed from Eq.~27!, as ex-
pected. For coherence times longer than 1 fs, constructive
interference between the transition amplitudes at consecutive
time steps leads to a significant lowering of the survival
probability per unit time—in other words, increasing the
quantum coherence time increases the likelihood for making
a nonadiabatic transition. The magnitude and phase of the
nonadiabatic coupling in this system do not vary much on
the time scale of a few femtoseconds, so that changes in the
coherence time result directly in changes in the electronic
transition rate as per Eq.~6!.

Armed with the coherence decay times for both H2O and
D2O from Fig. 3, we can make use of the coherence time
dependence of the nonadiabatic transition probabilities per
unit time displayed in Fig. 4 to provide a revised estimate of
the isotope effect on the nonadiabatic transition rate. For
equal coherence decay times, as per the original ansatz in the
simulations, the survival probabilities in Fig. 4 predict a
roughly 2:1 isotope effect in the nonadiabatic transition rate
between D2O and H2O. This is a direct reflection of smaller
nonadiabatic coupling in D2O due to smaller nuclear veloci-
ties. However, for a decoherence time in D2O which is
roughly 50% longer than that in H2O ~we could chose either
the'4.6 fs vs'3.1 fs Gaussian decay times or the 4.1 fs vs
2.8 fs areas under the curves in Fig. 3!, the present method of
estimation yields nonadiabatic transition rates in the two sol-
vents which are identical to within 10%. For example, choos-
ing the areas under theJ(t) curves as estimates of the deco-
herence times, we obtain predicted lifetimes for the

FIG. 4. Effect of quantum decoherence on the survival probability per unit
time of the hydrated electron. The dashed and dot–dashed lines show the
incoherent limit@Eq. ~27!# to remain in the excited state for the solvated
electron in light and heavy water, respectively. Since the average probability
for making a transition is constant, these incoherent sums do not change
with time. The dashed and solid curves show the corresponding coherent
products of the nonadiabatic transition amplitudes@Eq. ~28!# in light and
heavy water, respectively. The coherent and incoherent transition probabili-
ties are identical for 1 fs coherence time due to the simulation algorithm.
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equilibrium excited state of the solvated electron of 310 and
345 fs in H2O and D2O, respectively~cf. Fig. 4!. This result
provides a microscopic explanation for the lack of isotope
effect observed in the femtosecond experiments: The smaller
nonadiabatic coupling in D2O adds coherently for a longer
time than that in H2O; the two opposing effects nearly cancel
for this system, leading to a nonintuitively small isotopic
dependence of the nonadiabatic transition rate.48 Although
the absolute transition rate constants are difficult to predict
from simulation,49 Fig. 4 provides a clear demonstration that
quantum decoherence plays a direct role in the electronic
dynamics of this very important condensed phase chemical
system.

VI. CONCLUSIONS

In summary, we have investigated the role of quantum
decoherence in condensed phase nonadiabatic chemical reac-
tions. In mixed quantum-classical computer simulations, ba-
sic assumptions about the decoherence time produce direct
manifestations on the calculated nonadiabatic dynamics, and
hence play an important role in understanding a wide variety
of chemical systems. The treatment of quantum coherence
can be formulated somewhat differently in the two types of
nonadiabatic algorithms we explored. In Tully’s fewest
switches method,6,12 the complex phases of the nonadiabatic
transition amplitudes are retained at all time steps, so that the
dynamics of individual trajectories are completely coherent.
Decoherence can then treated by running a swarm of trajec-
tories from the same initial condition, so that the amplitudes
added between trajectories which underwent switches at dif-
ferent times can destructively interfere. In the stationary
phase surface hopping method of Websteret al.,13–15mixed
quantum classical dynamics are performed coherently for a
single time step using a semiclassical expression based on
the stationary phase approximation for the quantum force.
The complex transition amplitudes can then be added coher-
ently over any number of time steps, providing an arbitrary
decoherence time in a single trajectory. A recently developed
extension of the fewest switches algorithm5 will provide for
a smooth decay of quantum coherence, with the coherence
decay time used as an input parameter. Alternatively, modi-
fication of the stationary phase surface hopping method us-
ing the formalism outlined here will allow for computation
of the decoherence time on the fly during the course of a
nonadiabatic trajectory.23

In the formalism of time-dependent perturbation theory,
the nonadiabatic transition rate for a condensed phase system
can be written as the integral of the autocorrelation of the
nonadiabatic coupling vector modulated by the decay of
quantum coherence@Eq. ~6!#.7,8 By building a short time ap-
proximation into a semiclassical golden rule method devel-
oped by Neria and Nitzan which utilizes frozen Gaussians21

to approximate the nuclear wavefunction of the bath,7,8 we
developed a readily computable way to evaluate the desired
value for the rate of the decay of quantum coherence in the
condensed phase@Eq. ~23!#. The method has the advantage
that the decoherence time can be estimated simply from

knowledge of the difference in quantum forces and the dif-
ference in potential energy between the two states involved
in the nonadiabatic transition, requiring only a single quan-
tum trajectory or a set of configurations generated by Monte
Carlo. Application of this new method to the hydrated elec-
tron reveals that the decay of quantum coherence takes place
because of destructive interference in the phases of the total
bath wave functions as well as in the decay of the nuclear
overlaps in the bath wave functions as the nuclear dynamics
diverge on alternative surfaces.

An important test of the effects of quantum decoherence
on nonadiabatic dynamics is found in an examination of the
isotope effect on the internal conversion rate of the hydrated
electron. Ultrafast spectroscopic experiments studying both
the formation of ground state electrons following multipho-
ton ionization and the internal conversion dynamics of pho-
toexcited equilibrium ground state electrons find little or no
evidence for an isotope effect in the nonadiabatic dynamics
of this system.30,34 The decay of quantum coherence for the
solvated electron evaluated by the expression developed here
is found to be 50% longer in D2O than in H2O, predomi-
nantly due to effects of the nuclear mass on the total wave
function of the bath. This difference in the decoherence time
has been shown to provide an explanation for the observed
lack of isotope effect. Since the autocorrelation of the nona-
diabatic coupling decays relatively slowly for this system,
increasing the decoherence time allows the coupling to add
coherently for longer times, leading to an increase in the
nonadiabatic transition rate. The longer decoherence time in
D2O compared to H2O balances the effect of the smaller
nonadiabatic coupling due to the smaller nuclear velocities.
As a result, the net nonadiabatic transition rate in the two
solvents is nearly identical.

This dependence of the nonadiabatic transition rate on
the quantum decoherence time has important implications for
a variety of chemical reactions. There are many chemical
systems in which a bath is coupled to a quantum coordinate
of interest: internal conversion and internal vibrational en-
ergy redistribution in isolated molecules~here, the bath is
comprised of all the modes of the molecule but the one of
interest!; electronic energy transfer between molecules or
different parts of the same molecule; and charge transfer re-
actions including proton and electron transfer. In these latter
examples, both the condensed environment and other modes
in the molecules can act as the bath which couples the states
together. The decay of quantum coherence, which depends
on the frequencies and populations of the bath modes
coupled to any of the above systems, will determine the ex-
tent to which the nonadiabatic coupling can act to allow the
chemical reaction to proceed. Changes in the decoherence
time due to variations in temperature or isotopic substitution
can thus have a substantial impact in nonadiabatic chemical
dynamics; the decay of quantum coherence can determine
the degree of adiabaticity for a chemical reaction.3

Nowhere is the sensitivity of chemical reactions to the
degree of adiabaticity more evident than in electron transfer
reactions.50,51 Since many important electron transfer reac-
tions are highly nonadiabatic, small changes in the degree of
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adiabaticity due to variations in the decoherence time will
lead to large changes in the electron transfer rate. Using a
modified version of the fewest switches algorithm, the role
of decoherence was recently explored using a simple model
of coupled displaced harmonic oscillators which represents
an electron transfer reaction.5 Indeed, changing the decoher-
ence time in this type of system leads to dramatic differences
in nonadiabatic rate constants and the overall population dy-
namics for the system.5 Given that the effects of quantum
decoherence can also lead to surprising results, exemplified
by the lack of and isotope effect on the relaxation of the
hydrated electron, the role of decoherence in chemical dy-
namics should not be underestimated. The methods outlined
in this paper provide a practical starting point for explicitly
incorporating decoherence in mixed quantum-classical de-
scriptions of nonadiabatic chemical systems.
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