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Mixed quantum/classical (MQC) simulations treat the majority of a system classically and reserve
quantum mechanics only for a few degrees of freedom that actively participate in the chemical pro-
cess(es) of interest. In MQC calculations, the quantum and classical degrees of freedom are cou-
pled together using pseudopotentials. Although most pseudopotentials are developed empirically,
there are methods for deriving pseudopotentials using the results of quantum chemistry calculations,
which guarantee that the explicitly-treated valence electron wave functions remain orthogonal to the
implicitly-treated core electron orbitals. Whether empirical or analytically derived in nature, to date
all such pseudopotentials have been subject to the frozen core approximation (FCA) that ignores
how changes in the nuclear coordinates alter the core orbitals, which in turn affects the wave func-
tion of the valence electrons. In this paper, we present a way to go beyond the FCA by developing
pseudopotentials that respond to these changes. In other words, we show how to derive an analytic
expression for a pseudopotential that is an explicit function of nuclear coordinates, thus accounting
for the polarization effects experienced by atomic cores in different chemical environments. We then
use this formalism to develop a coordinate-dependent pseudopotential for the bonding electron of
the sodium dimer cation molecule and we show how the analytic representation of this potential can
be used in one-electron MQC simulations that provide the accuracy of a fully quantum mechan-
ical Hartree-Fock (HF) calculation at all internuclear separations. We also show that one-electron
MQC simulations of Na+

2 using our coordinate-dependent pseudopotential provide a significant ad-
vantage in accuracy compared to frozen core potentials with no additional computational expense.
This is because use of a frozen core potential produces a charge density for the bonding electron of
Na+

2 that is too localized on the molecule, leading to significant overbinding of the valence electron.
This means that FCA calculations are subject to inaccuracies of order ∼10% in the calculated bond
length and vibrational frequency of the molecule relative to a full HF calculation; these errors are
fully corrected by using our coordinate-dependent pseudopotential. Overall, our findings indicate
that even for molecules like Na+

2 , which have a simple electronic structure that might be expected to
be well-treated within the FCA, the importance of including the effects of the changing core molec-
ular orbitals on the bonding electrons cannot be overlooked. © 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4789425]

I. INTRODUCTION

Computational quantum chemistry presents a major chal-
lenge even for modern high-power processors. This is espe-
cially true when solving the Schrödinger equation for systems
with more than a handful of electronic degrees of freedom,
such as most systems in the condensed phase. As such, it is
imperative to develop methods that increase the tractability
of large quantum calculations without sacrificing quantitative
or even qualitative accuracy. One such way of doing so is to
employ a mixed quantum classical (MQC) approach, where
the majority of the system is treated with classical Newto-
nian mechanics and a few select, important degrees of free-
dom are treated quantum mechanically.1–3 This reduction in
the number of electronic degrees of freedom can be accom-
plished by making a distinction between the core and valence
electrons of a system, where the core electrons are those that
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remain relatively unaffected by a chemical process of interest
and the valence electrons are those that actively participate. In
a molecule, for example, the valence electrons are those that
actively engage in the bonding between the molecule’s con-
stituent atoms, whereas the core electrons are those that are
more deeply bound in localized atomic orbitals and/or those
that reside on nearby solvent molecules.

To integrate out the core electrons in a MQC calculation,
one can take advantage of pseudopotential theory, which al-
lows for the explicit treatment of a system’s valence electrons
while implicitly including the effects of those electrons that
reside in the core.4 In essence, pseudopotential theory pro-
vides an effective potential that replaces the explicit interac-
tions between the core and valence electrons. Although most
pseudopotentials are developed empirically and have parame-
ters that are adjusted to reproduce some experimental observ-
able (such as an ionization energy),4, 5 there are formalisms by
which pseudopotentials can be rigorously derived.6, 7 Phillips
and Kleinman (PK) developed one such formalism that
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allows for the calculation of a pseduopotential using the core
orbital wave functions generated from a Hartree-Fock calcu-
lation on the system of interest; the formalism finds the po-
tential that guarantees orthogonality between the core and
valence wave functions.4, 8 The equations developed by PK,
however, are numerically challenging to solve, so this formal-
ism largely has been used only to develop potentials between
excess electrons and small closed-shell molecules.9–14 A few
years ago, our group found an alternate derivation of the PK
formalism, which provides a numerically and computation-
ally efficient route to the calculation of rigorously derived
PK pseudopotentials,15 even for relatively large and complex
molecules.9, 12

All pseudopotentials, however, whether developed ex-
actly or empirically, are subject to the frozen core approxi-
mation (FCA).16, 17 The FCA is a consequence of the fact that
a pseudopotential describes the behavior of a set of valence
electrons only for a single configuration of the core electrons.
If there are situations where the core electrons dynamically
change their wave functions, the FCA provides no way to ac-
count for this change in the effective interaction with the va-
lence electrons, and some of the undesirable side effects of
making the FCA have been discussed in the literature.18, 19

As a gas-phase example of where the FCA can be problem-
atic, consider a diatomic molecule whose bonding electrons
are described using pseudopotential theory. At the dissocia-
tion limit, the pseudopotential for the valence electrons must
be the sum of individual atomic pseudopotentials since there
is no interaction between the atoms (hereafter, referred to as
a frozen core pseudopotential). As the two atoms approach
their equilibrium bond distance, however, a simple sum of
atomic pseudopotentials does not correctly describe the bond-
ing. This is because the core orbitals of each atom become
distorted from their isolated atomic configurations; the core
electrons on one atom are attracted to/polarized by the other
atom’s nucleus and vice-versa, so the core orbitals start to
look less like atomic orbitals and more like molecular orbitals.
Thus, a potential that was developed to keep the valence elec-
trons orthogonal to isolated atomic core orbitals is simply not
valid for the bound diatomic molecule. This is a breakdown
of the frozen core approximation.

In this paper, we show that this type of breakdown can
be avoided by calculating the pseudopotential as a function
of the internuclear spacing. In effect, we keep track of the
changes in the core orbitals by finding the appropriate pseu-
dopotential for any given bond length. As a demonstration
that coordinate-dependent pseudopotentials can not only be
calculated but also represented in an analytically compact
fashion for use in both gas- and condensed-phase molec-
ular simulations, we calculate the full bond-length depen-
dent pseudopotential for the bonding electron of the Na+

2
molecule, a system that has been given both considerable
experimental20–24 and theoretical consideration.24–27 We show
that with our coordinate-dependent pseudopotential, a one-
electron calculation of the electronic structure of Na+

2 is as
accurate as a full Hartree-Fock calculation at all internuclear
distances. Moreover, we show that at the equilibrium bond
length, one-electron calculations within the FCA predict the
wrong shape for the valence electron wave function, overbind-

ing the electron at the center of mass of the Na+
2 molecule by

approximately 0.3 Hartree. This, in turn, leads to FCA errors
of roughly 10% in the molecule’s bond length, vibrational
frequency and valence electron eigenenergy, properties that
are all captured accurately when our non-FCA coordinate-
dependent pseudopotential is employed. Overall, our results
show that it is critical to go beyond the FCA if one wishes
to employ MQC techniques to describe chemical systems in
which changing nuclear configurations alter the implicitly-
treated core orbitals and thus affect the chemical dynamics
of interest. And, as we will show in future work, account-
ing for breakdown of the FCA is particularly important for
condensed-phase systems, where fluctuations of nearby sol-
vent molecules can polarize the electrons of a system of inter-
est in a complex, coordinate-dependent fashion.

II. BACKGROUND: MOLECULAR
PSEUDOPOTENTIAL THEORY

In this section, we present our method for develop-
ing coordinate-dependent pseudopotentials to go beyond
the FCA. Our method is based on the PK pseudopoten-
tial formalism,8 so we begin by briefly reviewing the PK
method, followed by providing a summary of our reformu-
lation of this method.15 We then extend this approach to cal-
culate coordinate-dependent pseudopotentials in Sec. III and
we illustrate our new process by developing a coordinate-
dependent potential that can accurately describe the proper-
ties of a gas-phase Na+

2 molecule over distances ranging from
inside the equilibrium bond length to complete dissociation.

A. Philips-Kleinman pseudopotential theory

The PK theory is based on the multi-electron Hartree-
Fock (HF) Hamiltonian Ĥ = T̂ + Û , where T̂ and Û are
the kinetic and potential energy operators, respectively. The
eigenstates of the implicitly-treated ncore electrons, which are
associated with the occupied orbitals or “core,” are given by

Ĥ |ψi〉 = εi |ψi〉 i = 1, . . . , ncore, (1)

while the eigenstate(s) of the explicitly-considered valence
electron(s) is (are) given by

Ĥ |ψv〉 = ε |ψv〉 , (2)

although in Eq. (2) and what follows we will assume only
a single valence electron without loss of generality. A re-
quirement of the HF Hamiltonian is that all of the eigenstates
must be orthogonal: 〈ψi |ψv〉 = 0.28 The PK formalism builds
this orthogonality into the valence wave function without hav-
ing to explicitly consider the core electrons.4 This is accom-
plished by pre-orthogonalizing the wave function of the va-
lence electron to the core orbitals

|ψv〉 = |φ〉 −
ncore∑
i=1

|ψi〉〈ψi |φ〉, (3)

where |φ〉 is known as the pseudoorbital. By construction, the
valence orbital and pseudoorbital have the same eigenenergy4

and are identical outside the region of the occupied core
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orbitals, so that the pseudopotential that will be calculated
from this pseudoorbital will be norm-conserving.4, 6, 7, 29 In-
serting Eq. (3) for the pre-orthogonalized valence electron
wave function back into Eq. (2) yields8

Ĥ |φ〉 +
ncore∑
i=1

|ψi〉〈ψi |(ε − Ĥ )|φ〉 ≡ [Ĥ + V̂p]|φ〉 = ε|φ〉.
(4)

This expression, known as the Phillips-Kleinman equation, is
a one-electron Schrödinger equation for the pseudoorbital in
which the pseudopotential V̂p guarantees that the valence or-
bital will be orthogonal to the now implicitly-treated core or-
bitals. This means that the core orbitals need be calculated
only once to construct V̂p and then the properties of the va-
lence electron can be found at the HF level of theory from a
one-electron calculation.

The PK equation, however, does not furnish a unique
pseudoorbital from which the valence wave function can be
obtained via Eq. (3). Cohen and Heine found that extremiz-
ing the expectation value of a given operator constrained the
system sufficiently to allow for the calculation of a unique
pseudoorbital.30 Upon adding this type of constraint, they
showed that the PK pseudopotential equation (Eq. (4)) is
transformed into

Ĥ |φ〉 +
ncore∑
i=1

|ψi〉〈ψi |(ε − Ĥ + F̂ − F̄ )|φ〉 = ε|φ〉, (5)

where F̂ is the operator whose expectation value
F̄ = 〈φ|F̂ |φ〉/〈φ|φ〉 is to be extremized. In most
applications,9, 12, 15, 30 the operator F̂ is chosen to be the
kinetic energy operator T̂ so that the resulting pseudoorbital
has the minimum possible kinetic energy and thus is nodeless.
Therefore, as long as the core orbitals of a molecule remain
fixed (the frozen core approximation), Eq. (5) provides a
route to calculating the properties of the valence electron(s) of
interest without having to explicitly treat the core electrons.

B. A reformulation of the PK pseudopotential theory

Even with modern computational resources, solving
Eq. (5) is still challenging even for modest-sized molecules;
examples of the use of this formalism in the literature have
typically been restricted to calculating pseudopotentials for
excess electrons interacting with small molecules such as
water9, 10 or methanol.11 Previously, however, we showed that
when F̂ is chosen to be the kinetic energy operator, Eq. (5) is
equivalent to15

|φ〉 =
[
Î −

(
ncore∑
i=1

|ψi〉〈ψi |T̂
)/

T̄

]−1

|ψv〉 ≡ M̂−1|ψv〉,
(6)

which replaces the eigenvalue problem with a numeri-
cally simple, self-consistent equation for determining |φ〉.
Equation (6) provides an additional computational advantage
in that it does not require evaluation of the potential energy
operator and its multi-electron integrals, which is typically the
bottleneck in solving equations of this type.

Once |φ〉 is calculated from either Eq. (5) or Eq. (6) for a
particular system, it is straightforward to calculate the appro-
priate effective potential Ueff (the sum of the pseudopotential
and the HF potential energy operator) that is needed in the
one-electron Schrödinger equation for the valence electron.
We do this by rewriting the effective Hamiltonian in Eq. (4)
as (Ĥ + V̂p)|φ〉 = (T̂ + Ûeff)|φ〉 = ε|φ〉. Then, the nodeless
nature of the kinetic-energy minimized |φ〉 allows for the oth-
erwise non-local Ûeff to be localized15

U local
eff (r) = 〈r|(ε − T̂ )|φ〉

〈r|φ〉 . (7)

We have used this formalism in previous work to develop po-
tentials for excess electrons interacting with Na+,15 water,9

and tetrahydrofuran.12

Overall, our reformulation of the PK theory provides for
a computationally efficient determination of a unique, node-
less pseudoorbital (Eq. (6)) and, once |φ〉 is determined, rigor-
ously prescribes a local effective, norm-conserving potential
(Eq. (7)) that can be used in a one-electron Schrödinger equa-
tion that guarantees that the valence electron wave function is
orthogonal to the implicitly-included core orbitals. In Sec. III,
we build on this formalism as the basis for the principal aim of
this work, which is the development of coordinate-dependent
pseudopotentials. We note that for the rest of this paper, we
use the term pseudopotential to describe what is actually the
total effective potential given by Eq. (7).

III. COORDINATE-DEPENDENT PSEUDOPOTENTIALS

The formalism presented in Sec. II is computationally
efficient, so it is straightforward to apply it not only to
molecules of a fixed geometry, as has been done in the
past,9–13 but also to molecules as a function of geometry. As
we demonstrate in this section, this provides a way to go be-
yond the FCA by allowing the pseudopotential to incorporate
geometry-dependent polarization effects on the core orbitals.
As described above, however, the development of PK pseu-
dopotentials is based on the LUMO of the system of interest
without the valence electron, rather than the HOMO of the
system including the valence electron, so that the relaxation
of the core orbitals in the presence of the valence electron
is neglected. Since our development of coordinate-dependent
pseudopotentials is built on the PK formalism, we also are ig-
noring this relaxation; instead, the key feature of this work is
the development of what is essentially a geometry-dependent
frozen core pseudopotential. Because we completely take
into account the non-negligible polarization effects of chang-
ing nuclear coordinates on the system’s core orbitals, our
coordinate-dependent pseudopotential allows us to go beyond
the fixed geometry that is inherent to the FCA.

To illustrate this, consider the case of using pseudopo-
tential theory to describe the bonding electrons of a diatomic
molecule. One can calculate the pseudopotential for this di-
atomic as a function of the internuclear spacing by keep-
ing track of the changes in the core orbitals and finding the
appropriate pseudopotential for any given bond length. The
computational efficiency of evaluating Eqs. (6) and (7) makes
doing this quite practical. As a demonstration that
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coordinate-dependent pseudopotentials can not only be cal-
culated but also represented analytically for use in gas- and
condensed-phase molecular simulations, in this section we
show how to calculate the full bond-length dependent pseu-
dopotential for the Na+

2 molecule. As discussed further below,
ab initio calculated energies of the HOMO of Na+

2 and the
LUMO of Na2+

2 exhibit negligible quantitative differences,
so that the PK formalism should work quite well for this
molecule. What we will show next is that accounting for
coordinate-dependent polarization effects is important in de-
scribing both the electronic and vibrational structure of this
deceptively simple molecule.

A. A coordinate-dependent pseudopotential for Na+
2

To generate a pseudopotential for the interaction between
an excess electron and the Na2+

2 molecule (as needed to obtain
a one-electron description of Na+

2 ), the first step is to gener-
ate the appropriate kinetic-energy minimized pseudoorbitals.
This involves calculating the core electron wave functions of
Na2+

2 (that is, solving Eq. (1)) at a series of fixed internuclear
distances and using these core orbitals in Eq. (6) to gener-
ate the set of corresponding pseudoorbitals. Since Na2+

2 is a
closed-shell molecule, we did this via a restricted Hartree-
Fock (RHF) calculation using the GAUSSIAN 03 software
package with an atom-centered quadruple-zeta Gaussian-type
orbital (GTO) basis set.31 This is the same basis set we em-
ployed in our previous work when constructing a pseudopo-
tential for atomic Na,15 a level of theory that furnished to-
tal and LUMO energies of Na+ that were within 10−5% and
10−3% of the numerically exact answers, respectively. Once
the {|ψ i〉} were calculated for Na2+

2 , we iteratively solved
Eq. (6) using LAPACK routines with a starting guess of the
LUMO of Na2+

2 (|ψv〉, Eq. (2)). On a 2 GHz Intel Core i7 pro-
cessor, convergence occurred in less than 1 s of CPU time for
each internuclear spacing R.

Once we had the pseudoorbital for each internuclear dis-
tance, we then calculated the corresponding localized pseu-
dopotential using Eq. (7). It is important to note that the ap-
plication of the kinetic energy operator onto the the pseudoor-
bital in Eq. (7) involves taking the second derivative of |φ〉.
As we12, 15 and others10 have discussed previously, the fact
that our pseudoorbital is represented in the GTO basis set
used in the RHF calculation leads to unphysical asymptotic
behavior of this derivative at long range; the e−r2

asymptotic
decay of GTOs produces a harmonic binding pseudopoten-
tial at long distances. To circumvent this issue, we tapered the
pseudopotential we calculated at each internuclear distance
to exhibit the correct asymptotic r−1 behavior, as described
previously.15

With the above prescription, we obtained a different set
of core orbitals at a variety of internuclear separations, in turn
leading to a different pseudopotential for the Na+

2 molecule
at each internuclear distance. To focus on how the pseudopo-
tential changes as a function of this distance (i.e., how the
FCA breaks down), we examined how the difference between
the calculated molecular pseudopotential and the sum of the
atomic pseudopotentials, which is correct in the dissociation

limit, varies with internuclear spacing. Thus, for the case of
the Na2+

2 − e− interaction, we define the following:

(Ĥ + V̂p)|φ〉 = ε|φ〉, (8)

(
T̂ + U

Na2+
2

eff (r1, r2; R)
)|φ〉 = ε|φ〉, (9)

(
T̂ + UNa+

eff (r1) + UNa+
eff (r2) + ξ (r1, r2; R)

)|φ〉 = ε|φ〉,
(10)

where ri is the distance of the electron from Na nucleus i
and ξ (r1, r2; R) is a correction function that takes into ac-
count the changes of the core molecular orbitals of Na2+

2
as the relative positions of the nuclei change. Defined this
way, ξ (r1, r2; R) is a direct measure of the breakdown of the
frozen core approximation; it clearly tends toward zero as
the internuclear spacing becomes larger than the equilibrium
bond length and becomes substantive as the internuclear spac-
ing approaches the equilibrium bond distance. Moreover, the
shape of ξ (r1, r2; R) shows exactly how the pseudopotential
must change in order to guarantee orthogonality of the va-
lence electron(s) to the now-distorted atomic core orbitals as
the molecular bond is formed.

By combining Eqs. (9) and (10), we can calculate
ξ (r1, r2; R) in a straightforward fashion as

ξ (r1, r2; R) = U
Na2+

2
eff (r1, r2; R) − UNa+

eff (r1) − UNa+
eff (r2).

(11)

Since the last two terms in Eq. (11) are simply the atomic
pseudopotentials of the two sodium atoms (which combine to
form the fixed-distance frozen core pseudopotential), they are
independent of the internuclear spacing and so only need to
be calculated once, which we did in Ref. 15. The first term,
however, is the pseudopotential for the Na2+

2 molecule, which
clearly changes as the internuclear distance is varied. We cal-
culated each of these terms (the first one at a variety of inter-
nuclear spacings) and then used them to evaluate our correc-
tion function ξ (r1, r2; R). With this correction function and
the sum of the atomic pseudopotentials, we now have a rigor-
ously correct pseudopotential at all internuclear spacings for
the Na2+

2 –e− interaction that takes into account the formation
of (and thus any dynamic changes that might occur in) the
core molecular orbitals.

Figure 1 shows two-dimensional cross-sections of

U
Na2+

2
eff (r1, r2; R), UNa+

eff (r1) + UNa+
eff (r2) and ξ (r1, r2; R),

where the cross-sections shown are taken through the internu-
clear bonding axis at R = 3.7 Å, the Hartree-Fock calculated
equilibrium bond distance of Na+

2 . Panel (c) of the figure
shows clearly that if we were to employ the FCA and describe
the molecular bonding using the sum of atomic pseudopo-
tentials, we would overestimate the binding of the electron
at the center of mass of the molecule by approximately 0.3
Hartree or an error in the value of the potential at this point
of almost 8 eV. The fact that the true attraction of the electron
to the space between the nuclei is much less than what would
be predicted in the frozen core limit makes physical sense:
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FIG. 1. Cross-sections of (a) U
Na2+

2
eff (r1, r2; R), (b) UNa+

eff (r1) + UNa+
eff (r2),

and (c) ξ (r1, r2; R) (right panel) taken through the bonding axis at an in-
ternuclear distance of 3.7 Å. The white dots show the location of the Na+
nuclei.

the sum of the atomic pseudopotentials does not account for
the formation of molecular orbitals, whose electrons would
preferentially occupy the region between the two nuclei. This
means that the valence (bonding) electron(s) is (are) repelled
from this region relative to how they would behave if no core
molecular orbitals were formed. This same rationale explains
the increased electron attraction in the region near the sodium
nuclei, on the outside of the internuclear region: as molecular
orbitals form, core electrons are pulled from this area towards
the center of the molecule, creating an electron void that is
readily occupied by the valence electron(s).

B. Analytic representation of coordinate-dependent
pseudopotentials

To determine the full coordinate-dependent pseudopoten-
tial for the Na+

2 molecule, we calculated the R-dependence of
ξ (r1, r2; R) from well inside the equilibrium bond length to
the dissociation limit using Eq. (11). The left panels of Fig. 2
show cross-sections of ξ (r1, r2; R) calculated for several val-
ues of R; clearly the magnitude of ξ (r1, r2; R) decreases as R
increases from the equilibrium bond length, as expected for a
system that can be adequately described by the sum of atomic
pseudopotentials in the dissociation limit.

To analytically describe the behavior of ξ (r1, r2; R) as the
internuclear separation R is varied, we found a single func-
tional form that would capture the important features of ξ and
used this function to fit ξ (r1, r2; R) at over a dozen different
values for the internuclear distance R. The functional form we

-0.05

0.0

0.1

0.15

0.2

0.05

-0.15

-0.05

0.15

0.25

0.35

0.05

) e
er

t r
a

H(
 y

gr
e

n
E

-0.15

-0.05

0.15

0.0

Distance (Bohr)

5

5

-5

0

420-2-4

5

-5

0

555

420-2-4

0

-5

5

)r
h

o
B( ec

nat si
D

420-2-4

420-2-4

0.05

(a)

(c)

(b)

ξ(r
1
,r

2
;R) ξ

fit
(r

1
,r

2
;R)

R = 2.50 Å

R = 3.70 Å

R = 5.00 Å

R = 2.50 Å

R = 3.70 Å

R = 5.00 Å

FIG. 2. Slices of the numerically calculated ξ (r1, r2; R) for Na+
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and fits of these slices (right panels) to Eq. (12). Slices were taken through
the bonding axis with internuclear spacings of (a) 2.5 Å, (b) 3.7 Å, and
(c) 5.0 Å, and all axis labels are in atomic units. The white dots show the
location of the Na+ nuclei.

chose was

ξfit(r1, r2; R) = b
[
e−cr2

1 + e−cr2
2
] + f

[
e−g2r4

1 + e−g2r4
2
]

+ ie−jr2
com + le−mr2

com , (12)

which consists of two identical atom-centered Gaussian and
e−r4

functions, in addition to two Gaussian functions located
at the center of mass (COM) of the sodium dimer cation
molecule. This function contains only eight fitting parameters,
b(R), c(R), f (R), g(R), i(R), j (R), l(R), and m(R), and we
were able to fit ξ (r1, r2; R) with this function with negligible
residual contours at all values of R using the non-linear least
squares fitting routine in Mathematica 7. The right panels of
Fig. 2 show the fits of ξ (r1, r2; R) to Eq. (12) at a few se-
lected internuclear distances; clearly, the functional form we
have chosen does an excellent job of representing the correc-
tive term at every internuclear separation.

Now that we have represented the coordinate-dependent
pseudopotential at a set of discrete internuclear distances, the
next step is to find an analytic way to interpolate the pseu-
dopotential for internuclear separations R between the points
that we calculated directly and fit to Eq. (12). To do this, we fit
the eight fitting parameters used to represent the pseudopoten-
tial in Eq. (12) to polynomials of various degrees in R. This
effectively produces a nested function that provides a con-
tinuous analytic expression for how the pseudopotential be-
haves at any internuclear separation. Figure 3 shows that the
fitting parameters behave smoothly as R is varied and that the



054110-6 A. Kahros and B. J. Schwartz J. Chem. Phys. 138, 054110 (2013)

b(
R

) eertr a
H( )

-0.2

-0.5

-0.4

-0.3

94 8765

R (Bohr)

j(R
 r ho

B( )
-2
)

R (Bohr)

4 5 6 7 8 9

0.040

0.035

0.020

0.025

0.030

(a)

(b)

FIG. 3. Bond length (R) coordinate dependence (points) of the fitting pa-
rameters (a) b(R) and (b) j (R) from Eq. (12), which themselves are fit to
(a) twelfth-order and (b) thirteenth-order polynomials, respectively (solid
curves), plotted in atomic units.

way the fitting parameters change with internuclear separation
can be well captured by a simple polynomial fit. The quality
of these fits is equally good for both the linear (e.g., b(R),
Fig. 3(a)) and the non-linear (e.g., j (R), Fig. 3(b)) fitting pa-
rameters in Eq. (12). Table I summarizes the fitting parame-
ters and polynomial functions used to describe their internu-
clear distance dependence that completely describes our cor-
rective term ξ (r1, r2; R). The net result is that one can simply
add ξfit(r1, r2; R) to the sum of the atomic pseudopotentials in
a one-electron calculation and obtain the equivalent of a rig-
orous Hartree-Fock calculation of the exact molecular pseu-
dopotential at any possible internuclear separation. In other
words, the fit parameters in Table I contain all of the infor-
mation of a full distance-dependent Hartree-Fock calculation,
boiled down to a single nested function that can be employed
in molecular simulation.

In Sec. IV, we apply the analytic coordinate-dependent
pseudopotential outlined above to a gas-phase MQC molecu-
lar dynamics simulation of the sodium dimer cation. We also
compare the results with an identical simulation without the
coordinate dependence. In an upcoming paper, we will make
this same comparison for the Na+

2 molecule in solution, and
show that the errors associated with making the FCA are even
greater, further highlighting the importance of going beyond
the frozen core approximation.

IV. DEMONSTRATION OF GOING BEYOND
THE FROZEN CORE APPROXIMATION
FOR THE SODIUM DIMER CATION

With our newly-developed coordinate-dependent pseu-
dopotential for Na+

2 in hand (Table I), we are now able to
perform mixed quantum classical molecular dynamics simu-

lations of the Na+
2 molecule. This single-electron MD calcu-

lation is fully equivalent to doing ab initio molecular dynam-
ics at the HF level. To understand the nature of our formal-
ism and how well it corrects for the breakdown of the FCA,
we began this process by calculating the Born-Oppenheimer
potential energy surface (PES) for the molecule using our
newly-developed coordinate-dependent pseudopotential, and
by comparing the results at selected distances to a restricted
Hartree-Fock calculation of the LUMO of Na2+

2 , upon which
our formulation was built.

For our single-electron calculations, we elected to solve
the Schrödinger equation in a cubic grid basis, rather than
the GTO basis used above. This is because in our upcom-
ing work, we showcase the robustness of our pseudopoten-
tial and examine the effects of correcting for the FCA on the
dynamics of this molecule in condensed environments, where
a grid basis is more appropriate than a traditional quantum
chemistry basis.32, 33 Our cubic simulation cell had sides of
length 43.8332 Å and included two classical Na+ nuclei and
one fully quantum mechanical electron. The interaction be-
tween the two sodium cation nuclei was taken into account
via point charge Coulombic repulsion and our coordinate-
dependent pseudopotential (Eq. (10) with ξfit given as in
Table I) described the interaction between these classi-
cal nuclei and the quantum mechanical electron. The one-
electron ground-state wave function for Na+

2 was calculated
every time step (1 fs) on a 243 grid with sides of 14 Å
centered in the middle of the simulation cell. The forces
on the classical Na+ nuclei from the quantum mechani-
cal electron were evaluated using the Hellmann-Feynman
theorem and the nuclear dynamics were propagated us-
ing the Verlet algorithm in a manner identical to previ-
ous work.13, 33 After employing an initial velocity to the vi-
brational motion of two classical nuclei, we generated the
PES by simply recording the total potential energy (clas-
sical + quantum) of the system as the internuclear spac-
ing varied dynamically. Figure 4 displays the dynamically-
generated Born-Oppenheimer PES from our one-electron
calculations using the coordinate-dependent pseudopotential
(orange squares) as well as the LUMO of Na2+

2 , gener-
ated directly by the RHF calculation (green circles) and
the HOMO of Na+

2 , generated via an unrestricted Hartree-
Fock (UHF) calculation (black stars); the figure shows that
there is excellent agreement between the PES generated from
our coordinate-dependent pseudopotential and the LUMO of
Na2+

2 on which it is based, indicating that our PK formal-
ism and subsequent fitting procedure is robust. Moreover, our
single-electron PES not only precisely determines the experi-
mental equilibrium bond length of Na+

2 (3.7 Å),21 but also cor-
rectly captures both the depth and width of the harmonic well
compared to the full RHF calculation. Figure 4 also shows
that there are only small energetic differences between the
HOMO of the cation and the LUMO of the dication, thus
demonstrating that Koopmans’ theorem34 holds nicely for the
sodium dimer cation molecule so that the use of the PK for-
malism is justified.

In addition, the blue hexagons in Figure 4 show an equiv-
alent potential energy surface generated from a one-electron
MQC calculation using a frozen core pseudopotential for
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TABLE I. Fitting function ξfit and corresponding parameter functions x (where x represents the general functional form for each of the eight fitting parameters
for ξfit) for the coordinate-dependent pseudopotential for the bonding electron of Na+

2 . R is the internuclear distance in atomic units.

ξfit(r1, r2; R) = b[e−cr2
1 + e−cr2

2 ] + f [e−g2r4
1 + e−g2r4

2 ] + ie−jr2
com + le−mr2

com

x = ∑n
k=0 xkRk

x n xk

b 12 b0 = 6814.2929 b1 = −13767.4654 b2 = 12616.3000 b3 = −6932.0367
b4 = 2542.9192 b5 = −656.0690 b6 = 122.0744 b7 = −16.5084
b8 = 1.6107 b9 = −0.1106 b10 = 5.0760 × 10−3 b11 = −1.3983 × 10−4

b12 = 1.7492 × 10−6

c 13 c0 = −9473.8160 c1 = 19630.3735 c2 = −18602.2444 c3 = 10674.4553
c4 = −4138.3551 c5 = 1144.7165 c6 = −232.4476 c7 = 35.0874
c8 = −3.9376 c9 = 0.3245 c10 = −0.0191 c11 = 7.5980 × 10−4

c12 = −1.8327 × 10−5 c13 = 2.0243 × 10−7

f 13 f0 = −42508.0663 f1 = 88172.7385 f2 = −83628.2563 f3 = 48017.9751
f4 = −18621.7284 f5 = 5150.7410 f6 = −1045.4650 f7 = 157.6790
f8 = −17.6733 f9 = 1.4542 f10 = −8.5388 × 10−2 f11 = 3.3892 × 10−3

f12 = −8.1515 × 10−5 f13 = 8.9746 × 10−7

g 13 g0 = −39537.1850 g1 = 81783.5968 g2 = −77319.7751 g3 = 44239.0469
g4 = −17091.8621 g5 = 4709.2183 g6 = −952.0817 g7 = 143.0304
g8 = −15.9694 g9 = 1.3090 g10 = −7.6587 × 10−2 g11 = 3.0294 × 10−3

g12 = −7.2624 × 10−5 g13 = 7.9712 × 10−7

i 13 i0 = −524718.6533 i1 = 1.0733 × 106 i2 = −1.0065 × 106 i3 = 572936.8471
i4 = −220870.9215 i5 = 60896.7238 i6 = −12354.5253 i7 = 1867.4806
i8 = −210.3373 i9 = 17.4361 i10 = −1.0341 i11 = 4.1557 × 10−2

i12 = −1.0143 × 10−3 i13 = 1.1359 × 10−5

j 13 j0 = −17926.9747 j1 = 37110.7130 j2 = −35169.4293 j3 = 20202.7712
j4 = −7848.5341 j5 = 2177.5968 j6 = −443.9543 j7 = 67.3448
j8 = −7.6019 j9 = 0.6307 j10 = −3.7397 × 10−2 j11 = 1.5006 × 10−3

j12 = −3.6533 × 10−5 j13 = 4.0762 × 10−7

l 14 l0 = 363621.2011 l1 = −701255.3115 l2 = 611226.3598 l3 = −316872.3104
l4 = 107873.2552 l5 = −24959.9957 l6 = 3859.5651 l7 = −351.0423
l8 = 4.8911 l9 = 3.5884 l10 = −0.5660 l11 = 4.6272 × 10−2

l12 = −2.2732 × 10−3 l13 = 6.3772 × 10−5 l14 = −7.9100 × 10−7

m 14 m0 = −194399.8990 m1 = 392619.3124 m2 = −358117.5278 m3 = 194194.1173
m4 = −69157.4963 m5 = 16762.9627 m6 = −2729.2175 m7 = 267.0537
m8 = −6.2871 m9 = −2.4297 m10 = 0.4204 m11 = −3.6109 × 10−2

m12 = 1.8447 × 10−3 m13 = −5.3563 × 10−5 m14 = 6.8568 × 10−7

E
 (

eV
)

R (Å)

0.55.2 4.54.03.53.0

-5.8

-5.7

-5.6

-5.5

-5.4

-5.3 FCA Potential

LUMO Na2
2+

Coord-Dep Potential

HOMO Na2
+

FIG. 4. Gas-phase potential energy surfaces of the Na+
2 system calcu-

lated from MQC MD simulations with a frozen core pseudopotential (blue
hexagons), our coordinate-dependent pseudopotential (orange squares) and
from fixed-point RHF calculations of the LUMO of Na2+

2 (green circles) and
UHF calculations of the HOMO of Na+

2 (black stars) using GAUSSIAN 03.

Na+
2 (i.e., the sum of the atomic pseudopotentials without

the ξ (r1, r2; R) term). The results show that the frozen core
picture overestimates the equilibrium bond length by more
than 8%. In addition, the bonding well exhibits both a shal-
lower depth and a narrower width than the full RHF result,
so that the FCA potential gives a molecular bond that is al-
most 10% too stiff: the vibrational frequency of the molecule
comes in at 113 cm−1 and 104 cm−1 for the frozen core and
coordinate-dependent pseudopotentials, respectively. These
errors in the FCA calculation are expected given that the
FCA overestimates the attraction of electrons to the center
of the molecular bond because the formation of core molec-
ular orbitals is not properly accounted for, as demonstrated
above in Fig. 1. Since the only difference between the frozen
core potential and our coordinate-dependent pseudopotential
is evaluation of the ξ (r1, r2; R) term, this means that the er-
rors associated with the FCA can be avoided in a one-electron
calculation with essentially no additional computational
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FIG. 5. Charge densities for Na+
2 calculated from MQC simulations em-

ploying (a) a frozen core approximation pseudopotential, (b) our coordinate-
dependent pseudopotential (CDP), and (c) one generated from an unrestricted
Hartree-Fock calculation using GAUSSIAN 03. The electron density increases
from the blue to the red contours, and the purple contour marks zero effective
charge density. Calculations were performed at a bond distance of 3.50 Å and
slices were taken through the bonding axis. The white dots show the location
of the Na+ nuclei.

expense (beyond that needed to construct the coordinate-
dependent potential in the first place).

The magnitude of the bonding error with the FCA
approximation is further explored in Figure 5, which com-
pares the calculated electron density from a MQC simula-
tion using the frozen core pseudopotential (panel (a)) to one
using our coordinate-dependent pseudopotential (panel (b))
at an internuclear separation of 3.5 Å, slightly inside the
equilibrium bond length. The FCA calculation leads to a
bonding MO with nearly spherical electron density, whereas
the MO computed with the coordinate-dependent pseudopo-
tential shows two distinct lobes of charge density. This is rem-
iniscent of previous theoretical work done on Li+2 , which also
shows two distinct lobes for the valence orbital.35 Panel (c)
in Fig. 5 shows the bonding MO calculated from a UHF cal-
culation using GAUSSIAN 03; clearly, the MQC calculation
using our coordinate-dependent pseudopotential does an ex-
cellent job of reproducing the full quantum mechanically de-
rived charge density. Thus, the incorrect shape of the MO
computed within the FCA leads to an error in the calcu-
lated energy of the Na+

2 system. At an internuclear spac-
ing of 3.7 Å, the total energy (eigenenergy of the valence
electron wave function plus the nuclear Coulombic repul-
sion) from an MQC calculation was found to be −5.78 eV

and −5.86 eV using our coordinate-dependent pseudopoten-
tial and the frozen core pseudopotential, respectively.

Overall, Figures 4 and 5 clearly indicate that the frozen
core approximation cannot properly describe the bonding
electron distribution in a molecule, which in turn leads to er-
rors in the calculated bond strength, length, and vibrational
frequency. Our newly developed coordinate-dependent pseu-
dopotential, on the other hand, produces not only an accurate
qualitative picture of the bonding electron associated with the
Na+

2 molecule, but also allows a single-electron calculation to
provide quantitative results that compare well to calculations
using a fully quantum mechanical approach at the HF level. In
this sense, our coordinate-dependent potential fully accounts
for the polarization of the core orbitals, so no additional po-
larization terms are required to correctly describe the behavior
of the valence electrons and thus the bonding of the molecule.
We note, however, that the polarization effects accounted for
in our potential are only those arising from the presence of the
Na–Na bond; many-body polarization effects from external
sources are not treated within our formalism. For example, the
presence of solvent molecules provides a potential field that
can distort the core orbitals in ways not accounted for with
our coordinated-dependent pseudopotential. Fortunately, for
many applications, solvent molecules affect the valence elec-
trons much more strongly than the core electrons, so that the
core electrons could still be implicitly treated with our formal-
ism and a solvent-electron pseudopotential could be used to
account for the effects of a condensed environment on the va-
lence electrons. We will show in an upcoming paper that this
assumption of pair-wise additivity for coordinate-dependent
pseudopotentials internal to the solute of interest and external
solvent pseudopotentials works remarkably well for describ-
ing molecules like Na+

2 in solution environments.

V. CONCLUSIONS

We have presented a method for developing coordinate-
dependent pseudopotentials and have calculated a coordinate-
dependent potential that is valid from bonding to the dissocia-
tion limit for the valence electron of the sodium dimer cation
molecule. Our method completely takes into account polar-
ization effects on the core molecular orbitals and how these
effects change with a change in the nuclear coordinates. Our
method is built using a reformulation of the Phillips-Kleinman
formalism and is exact in the Hartree-Fock framework, on
which the PK method is based. We have shown that for the
case of the sodium dimer cation, a molecule for which Koop-
mans’ theorem holds and thus the frozen core approximation
might have been expected to work reasonably well, the im-
plementation of a coordinate-dependent pseudopotential that
goes beyond the frozen core approximation leads to signifi-
cant quantitative improvements in calculated molecular prop-
erties, including the bond energy, length, and vibrational fre-
quency. Our new method also allows for the calculation of
rigorously correct pseudopotentials under conditions where
the core molecular orbitals of a system change dynamically
during the course of a molecular dynamics simulation. The
entire coordinate dependence of the potential can be repre-
sented analytically, so that all of the information contained in
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a coordinate-dependent Hartree-Fock calculation can be re-
produced at the single-electron level with a potential that is a
single nested function.

In an upcoming paper, we will justify the use of our
potential in a more complex environment, as well as show
that the coordinate-dependence of the pseudopotential makes
an even larger difference for the properties of the sodium
dimer cation in the condensed phase, allowing us to gain
a much better understanding of the physics involved in the
solvent’s influence on the electronic structure of a solute’s
chemical bond.13 We also expect that going beyond the FCA
will make a large impact on other problems, such as the
nature of solvated electrons,9, 36–38 for which subtle changes
in the functional form of the pseudopotential can cause
significant differences in physical interpretation, and we will
explore this in future work.
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