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ABSTRACT: The hydrated electron, e−(aq), has often served as a model system to understand the influence of condensed-phase
environments on electronic structure and dynamics. Despite over 50 years of study, however, the basic structure of e−(aq) is still
the subject of controversy. In particular, the structure of e−(aq) was long assumed to be an electron localized within a solvent
cavity, in a manner similar to halide solvation. Recently, however, we suggested that e−(aq) occupies a region of enhanced water
density with little or no discernible cavity. The potential we developed was only subtly different from those that give rise to a
cavity solvation motif, which suggests that the driving forces for noncavity solvation involve subtle electron-water attractive
interactions at close distances. This leads to the question of how dispersion interactions are treated in simulations of the hydrated
electron. Most dispersion potentials are ad hoc or are not designed to account for the type of close-contact electron-water overlap
that might occur in the condensed phase, and where short-range dynamic electron correlation is important. To address this, in
this paper we develop a procedure to calculate the potential energy surface between a single water molecule and an excess
electron with high-level CCSD(T) electronic structure theory. By decomposing the electron-water potential into its constituent
energetic contributions, we find that short-range electron correlation provides an attraction of comparable magnitude to the
mean-field interactions between the electron and water. Furthermore, we find that by reoptimizing a popular cavity-forming one-
electron model potential to better capture these attractive short-range interactions, the enhanced description of correlation
predicts a noncavity e−(aq) with calculated properties in better agreement with experiment. Although much attention has been
placed on the importance of long-range dispersion interactions in water cluster anions, our study reveals that largely unexplored
short-range correlation effects are crucial in dictating the solvation structure of the condensed-phase hydrated electron.

1. INTRODUCTION

The nature of the hydrated electron, which is an excess electron
embedded in liquid water, continues to be a source of much
debate. The consensus view until fairly recently was that the
electron locally expels the water and primarily occupies a cavity;
both one-electron mixed quantum/classical simulations1,2 and
low-temperature electron paramagnetic resonance (EPR)
experiments on alkaline aqueous glasses3 supported a cavity
picture in which the first-shell waters surrounding the hydrated
electron point their OH bonds toward the electron’s center of
mass, in a manner similar to halide solvation.4,5 Recently,
however, our group challenged the cavity picture of the
electron, and based on mixed quantum/classical simulations

with a rigorously derived electron-water interaction potential,
we suggested that the hydrated electron occupies a region of
enhanced water density with little to no appreciable central
cavity.6 This noncavity picture has come to be referred to as the
LGS model,7−9 but we also have labeled it the “inverse plum
pudding” picture of the excess electron since several water
molecules are embedded inside the electron’s wave function.10

All-electron calculations based on QM/MM density functional
theory (DFT) also paint a picture in which there is significant
overlap of the excess electron’s wave function with the
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surrounding water, albeit with a small central cavity.11 More
recently, a zero-Kelvin 4-water cluster continuum solvent
model of the hydrated electron was put forward that largely
supports the QM/MM DFT picture.12 With some exceptions,
such as the vertical binding energy and the molar solvation
volume,8,9,13−15 the predictions of the noncavity model,
however, have been shown to agree with numerous
experimental properties of the hydrated electron, in particular
the behavior of the hydrated electron at the air/water
interface,15 and the resonance Raman spectrum and temper-
ature-dependent red-shift of the electronic absorption spec-
trum,16 none of which are well-described by the more
traditional cavity model.
Despite the fact that a noncavity picture of the hydrated

electron with significant overlap with nearby water molecules
correctly predicts numerous properties, such a picture is still
not well accepted. One reason for this is that our basic physical
intuition suggests that a closed-shell water molecule should
strongly repel an excess electron at close range due to Pauli’s
exclusion principle. This expectation of Pauli repulsion,
combined with a 30-year history of cavity models for describing
the hydrated electron,1,2,17−25 makes a noncavity picture appear
somewhat unpalatable. It is worth noting, however, that when
one builds an electron-water interaction potential based on
Pauli’s principle (i.e., constructs a potential that guarantees
orthogonality between the excess electron’s wave function and
that of the wave functions of the electrons in the occupied
water molecular orbitals),26 the repulsive interactions are
localized only to where the closed-shell water electron density
is appreciable. Moreover, this type of calculation shows clearly
that there are regions close to the water molecule (within 1 Å)
where there is a net attraction of the excess electron to a nearby
water molecule.6 However, such attractions are likely over-
estimated in the LGS model,7 and clearly additional work is
needed to explore how to design one-electron models that
accurately capture electron-water interactions.
Of course, none of the above discussion addresses electron

correlation, which constitutes an additional source of attraction
between an excess electron and a water molecule. At large
electron-water separations, the electron-water correlations
correspond to dispersion interactions, which are expected to
increase with the amount of overlap between the electron and
water molecules,27 and at small electron-water separations, they
are better thought of as dynamic electron correlations.
Although the importance of dispersion in the energetics of
small water anion clusters is well-known,22,27−32 the influence
of dispersion interactions and short-ranged electron correlation
on the structure of the bulk hydrated electron has not yet been
explored in any depth and is the subject of this paper. The goal
of this paper is therefore not to revisit the LGS noncavity
model but rather to explore electron-water correlation
interactions from first-principles quantum chemistry and to
compare these to approximate treatments from one-electron
models.
A major challenge associated with exploring dispersion

interactions for the bulk hydrated electron is that first-principles
quantum chemistry methods that correctly capture this
interaction have a computational cost that scales steeply with
the number of treated atoms. This has limited the application of
second-order Møller−Plesset (MP2)33 and Coupled-Cluster
Singles and Doubles with perturbative triples (CCSD(T))34

calculations to water clusters of at most a few tens of molecules
in size, which is at least an order of magnitude smaller than the

number of water molecules needed to describe the bulk
hydrated electron.6 Furthermore, the electron binding motifs
seen in small water clusters are not necessarily representative of
the solvation of the bulk hydrated electron due to the former’s
smaller binding energies. This is because in small water clusters
(even those where the electron is localized to the cluster
interior), the center of mass of the excess electron is typically
located several angstroms away from the water molecules. This
means that previous studies of dispersion interactions in these
systems explored only long-range electron-water interactions,
rather than short-ranged electron correlation, which should play
a much larger role in the condensed environment of the bulk
hydrated electron.
To allow a high-level quantum chemistry determination of

both short-range and long-range electron correlation, in this
paper we develop a new procedure to restrain an excess
electron at varying desired distances from a single water
molecule. Using calculations at the CCSD(T) level, we find
that, perhaps not surprisingly, attractive correlation interactions
are greatest when an excess electron is restrained to be directly
on top of a water molecule, a motif not seen in clusters but one
that should play an important role in bulk solution. We then
use our calculations to create a pairwise-additive polarization
potential that reproduces the distance-dependent CCSD(T)
calculations. We find that the resulting polarization-correlation
interaction is nearly an order of magnitude larger than assumed
in previous calculations.2 When we then graft this new
polarization potential on to a standard cavity-forming one-
electron core potential,2 we find that our improved treatment of
correlation gives rise to a noncavity hydrated electron when
implemented in a mixed quantum/classical simulation. Overall,
our results show that a better treatment of electron correlation
dramatically increases the attractive interactions between excess
electrons and water molecules over what has been previously
thought and greatly strengthens the case for a noncavity
structure of the hydrated electron.

2. METHODS

2.1. Using Confining Potentials To Restrain an Excess
Electron. In order to treat an excess electron interacting with a
single water molecule as a bound electronic structure problem,
we followed the work of others2,24 and added a polynomial
confining potential to the electronic Hamiltonian. Previous
work used a confining potential of the form Vconf = 0.5k(x8 + y8

+ z8).2,24 With a suitably chosen confining strength, k, this
potential restricts an electron to the vicinity of the water
molecule, while leaving the occupied water molecular orbitals
(MOs) essentially unchanged. However, in addition to
confining the electron, for the purpose of understanding the
distance dependence of electron correlation interactions, we
want to also control the size and location of the electron
relative to the water molecule. To this end, we constructed a
new confining potential according to

= + + −V k x y k z Cz0.5 ( ) 0.5 z
conf 8 8 8

(1)

where z points along the water dipole vector, the origin is at the
water center of mass, and C is a constant chosen to form a basin
of attraction that localizes the excess electron to one side of the
water molecule. It should be noted that the linear Cz term in
Vconf will alter the occupied MOs of water by polarizing them
along the water dipole vector. This is intentional on our part,
and we make use of this to mimic condensed-phase effects on
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the electronic structure of water by choosing C = 0.015167 au
such that the resulting dipole moment of an isolated water at
the Hartree−Fock level becomes equal to that of the SPC water
model with the same geometry. This makes the application of a
one-electron model with SPC charges more rigorous and avoids
the need for rescaling of charges from the gas-phase to the
condensed-phase, as has been done in previous models.2,6

Perpendicular to the molecular dipole, we set the confining
potential strength to k = 1 × 10−7 au, which is the value used in
previous studies2,24 and which corresponds to the strongest
possible confinement that does not appreciably affect the
occupied water molecular orbitals. Finally, in order to control
the average distance between the excess electron and the water
molecule, the confining potential along the molecular dipole
direction was varied according to kz = 1 × 10−7 × 10−i/3 au with
i = 0...9. Figure 1 shows Vconf (solid black curves) and the spin-
density (dashed red curves) of H2O¯ plotted along the
molecular dipole for several values of kz within the considered
range. For kz = 1 × 10−7 au, the electron is largely confined
directly on the water molecule, while for kz = 1 × 10−10 au, the
electron is localized approximately 10 Bohr away from the
water. For all confinement strengths, the electron has a spatial
extent of fwhm ≈ 5.5 Bohr, comparable to the known fwhm
≈4.9 Bohr of the condensed-phase hydrated electron.35

It should be noted that our choice of biasing potential
localizes the excess electron on the oxygen side of water, as can
be seen clearly from Figure 1. Although this may appear
unphysical from the point of view of normal aqueous anion
solvation (which typically occurs via H-bonding),4,5 it is worth
noting that the hydrated electron does not behave as a typical
anion. Its electron density is diffuse (diameter of ∼5 Å) and
overlaps with a number of nearby water molecules whether it
exists in a cavity or not. Thus, the hydrated electron
experiences the oxygen side of water about as much as the
hydrogen side.10 Moreover, the short-range correlation
interactions we are interested in scale roughly with molecular
polarizability and the polarizability of water is largely
isotropic,36 so it should not matter in which direction the
electron is biased. To verify this, we will show below that the
potential we develop by confining the electron to the oxygen
side of water also reproduces high-level quantum chemistry
calculations in confining potentials without a linear term where
the electron localizes to the hydrogen side of water.
2.2. Basis Set. One challenge associated with performing

quantum chemistry calculations in the presence of the
confining potential of eq 1 is the very slow convergence of
the excess electron’s wave function with basis-set size when
atom-centered basis functions are used exclusively. The origin
of the slow convergence is the presence of a basin of attraction
in Vconf where the excess electron localizes several Bohr away
from the water molecule (see Figure 1) and where coverage
and flexibility from atom-centered basis functions is poor, even
if diffuse functions are used. To overcome the limitations of
atom-centered bases, we used a 7 × 7 × 13 regular rectangular
grid of spherical Gaussians in combination with the standard
aug-cc-pVTZ basis. The Gaussian Grid (GG) functions were
separated by 2.5 bohr, and the grid origin was the water center-
of-mass. Each GG function had an exponent of 0.16 au. We
carefully chose these values to ensure convergence of the
eigenvalue of a single electron in the confining potential to
within 0.01 eV of the numerically exact value across the entire
range of confinement strengths.

The combined basis of aug-cc-pVTZ and the GG functions is
a set of 742 functions, which unfortunately was too large for
CCSD(T) calculations with our available computational
resources. A reduction in the number of GG functions is
possible, however, since roughly half of the GGs are located in
regions of high potential (e.g., at negative values of z) and
therefore do not contribute significantly to the excess electron’s
wave function. We therefore constructed a Pruned Gaussian
Grid (PGG) by discarding basis functions that had MO
coefficients with absolute value less than 0.001 in all of the

Figure 1. Confining potentials (solid black curves, left axis) for four
different dipole axis confinement strengths and the corresponding spin
density (dashed red curves, right axis) of H2O¯ calculated at the UHF/
aug-cc-pVTZ+PGG level (see text for basis set definition). To avoid
sharp features at the oxygen atomic core, we plot the spin density
along the water dipole but displaced 0.5 Bohr above the molecular
plane (indicated by the molecular drawing in the bottom panel).
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UHF occupied orbitals of H2O¯. By doing this, we compressed
the basis to between 337 and 374 functions (depending on the
confining strength) while maintaining an error in the MP2 VBE
of less than 0.01 eV. The aug-cc-pVTZ+PGG basis set is just
small enough to allow CCSD(T) calculations to be performed
on this system.

3. RESULTS AND DISCUSSION

3.1. Correlation and Dispersion Effects between
Excess Electrons and Water: Many-Electron Quantum
Chemistry Calculations. For each confining potential, kz = 1
× 10−7 × 10−i/3 au; i = 0...9, we used Q-Chem 4.3 to perform
unrestricted HF, MP2, and CCSD(T)/aug-cc-pVTZ+PGG
calculations on both H2O and H2O¯,

37 with the neutral
geometries optimized at the CCSD(T)/aug-cc-pVTZ level in
the absence of the confining potential. For the MP2 and
CCSD(T) levels of theory, the Vertical Binding Energy (VBE)
was computed from E(neutral) − E(anion), while the Frozen-
Core Hartree−Fock (FCHF) Binding Energy is equal to the
negative of the LUMO energy of neutral H2O (Koopman’s
theorem).38 To remove the effects of the confining potential,
which dominates the energetics of the electron, we subtracted
the VBE of H2O¯ in the confining potential from the VBE of a
bare electron in the confining potential to give an effective

electron-water interaction energy: Ee−‑water = VBE(e−) −
VBE(H2O

−). Positive values of the electron-water interaction
energy correspond to a net repulsion between the electron and
water molecule.
We start by considering the FCHF result, otherwise known

as the static exchange approximation, since this has formed the
basis for constructing most electron-water pseudopotentials to
date.2,6,18,22−24,29 This level of theory captures mean-field
Coulomb, Exchange, and Pauli interactions between the excess
electron and water molecule but neglects electron correlation
effects and polarization of the occupied water orbitals by the
excess electron. Figure 2(a) shows the FCHF electron-water
interaction energy (× symbols) for the range of confining
potentials discussed in Section 2.1. The interaction energy is
seen to be repulsive and monotonically decreases with
decreasing confining potential strength (i.e., with increasing
electron-water distance). This makes sense given that the
confining potential restrains the excess electron to the oxygen
side of water, and the electron therefore experiences a net
Coulombic repulsion from the water dipole moment.
Next, we consider the electron-water interaction energy at

the UHF level (Figure 2(b), × symbols). Comparing to panel
(a), we see the UHF result is in close agreement with the
FCHF energies, which follows from Koopman’s theorem.38

The small deviations between UHF and FCHF are a result of
orbital relaxations at the UHF level, which are evidently quite
modest in this system. Going beyond UHF, we consider next
the effects of electron correlation at the MP2 (open circles) and
CCSD(T) (+ symbols) levels of theory. Here we see that
electron correlation substantially reduces the overall repulsion
between the excess electron and water molecule at short-range,
by as much as 0.33 eV when the electron is restrained to be
essentially on the water molecule at the largest confinement
strength. The MP2 and CCSD(T) calculations are in close
agreement, indicating that any correlation effects beyond
second order in this system are relatively minor. Most
interesting is the resulting potential energy curve between the
electron and water: when electron correlation is included, the

potential curve is relatively flat in the vicinity of the water
molecule and even exhibits a local minimum when the electron
is directly on the water molecule, suggesting that due to a
balance of correlation-based attractive and static exchange-
based repulsive interactions, there are no net strongly repulsive
forces between the electron and water at short-range.
To better understand the attractive interactions between the

electron and water, the effects of correlation on the interaction
energy can be quantified by the excess-electron correlation
energy30

Δ = −E E(anion) (neutral)corr corr (2)

where Ecorr is the correlation energy, defined at the MP2 level as
Ecorr,MP2(anion) = EMP2(anion) − EUHF(anion). Since the
correlation energy of a single electron system is zero, the
excess-electron correlation energy is equal to the difference
between electron-water interaction energies at the correlated
and UHF levels:

Δ = −‐ ‐− −
E EMP2

e water
UHF
e water

(3)

From Figure 2, we see that Δ is negative for all electron-
water distances, which means that electron correlation
preferentially stabilizes the anion over the neutral species.
Furthermore, if one stops at second order and ignores the
effects of orbital relaxation (approximations that are both

Figure 2. Electron-water interaction energies (see text for definition)
over a range of confining potentials. Panel (a): Frozen-Core Hartree−
Fock (FCHF, × symbols), and one-electron Turi-Borgis Static-
Exchange core potential (TBSE, solid black curve). Panel (b): The
same calculation at the UHF ( × symbols), MP2 (open circles), and
CCSD(T) (+ symbols) levels of theory. Also shown are one-electron
TBSE with the original added TB polarization potential (TB, dashed
red curve) or the TBSE core potential with an added polarization
potential optimized to fit our calculated CCSD(T) interaction energies
(TBSE+OptPol, solid black curve). The dip in the CCSD(T)
interaction energies for the highest confinement strengths indicates
that short-range electron correlation is important in stabilizing an
excess electron confined to the immediate vicinity of a water molecule.
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justified by the results in Figure 2), the excess-electron
correlation energy can be written as a sum of Pair Correlation
Energies (PCEs) between the excess electron SOMO and the
occupied water spin orbitals27

∑Δ ≈
≠

E
i

i
SOMO

,SOMO
PCE

(4)

where each PCE is given by

∑ φφ φφ
ε ε ε ε

=
⟨ ⟩
+ − −<

Ei
a b

i a b

i a b
,SOMO
PCE SOMO

2

SOMO (5)

Eq 5 follows standard notation: φi is an occupied water spin
orbital with corresponding Hartree−Fock eigenvalue εi, and φa
and φb are virtual water orbitals. Eqs 4 and 5 are equivalent to
the definition of electron-molecule dispersion energies for
dipole-bound anions proposed by Gutowski et al.39 In addition,
eq 4 provides a way to separate the correlation interaction into
contributions from each water spin orbital based on PCEs
involving the SOMO.
The PCEs between the occupied water spin orbitals and the

SOMO were computed in a development version of PSI4,40

and their cumulative sums are shown in Figure 3 as a function

of the confining potential strength. The largest PCEs over the
entire range of confining potentials involve the 3a1 spin orbitals
(red filled segments), with the 1b2 (blue segments) and 1b1
(green segments) showing PCEs of comparable magnitude.
The 2a1 PCEs are consistently the smallest in magnitude, and
all PCEs are seen to decrease monotonically in magnitude as
the confining potential strength is weakened.
This behavior of the PCEs can be understood from eq 5: the

largest two-electron repulsion integrals in the numerator occur
when the SOMO overlaps strongly with a given occupied water
orbital. In particular, the 3a1 spin orbitals have large
contributions from the 2pz atomic orbital of oxygen, which

points toward the SOMO and therefore overlaps the most
strongly with it. The 2a1 molecular orbitals, on the other hand,
are comprised of the more compact 2s atomic orbital of
oxygen; this orbital has a more negative HF eigenvalue, leading
to a smaller numerator and larger magnitude denominator than
for the 3a1 PCE. Furthermore, at weaker confining potentials,
corresponding to larger electron-water separations, the overlap
between SOMO and all of the occupied orbitals decreases,
leading to a reduction in magnitude of the PCEs. What is quite
surprising, however, is the large magnitude of the PCEs at high
confining strengths: for kz = 10−7 au, where the excess electron
lies essentially on top of the water molecule, the 3a1 PCE is
around 0.06 eV. This value is an order of magnitude larger than
the PCEs Williams and Herbert calculated for small water anion
clusters,27 which makes sense given that the binding motifs of
water anion clusters sample only weaker long-range dispersion
interactions, not the short-range electron correlation inter-
actions that are more relevant in the condensed phase.

3.2. The Role of Electron Correlation in One-Electron
Pseudopotential Calculations of an Excess Electron
Interacting with a Water Molecule. Having seen that
correlation energies at small electron-water separations are
comparable in magnitude to the mean-field UHF electron-
water interactions (i.e., to the sum of Pauli, Coulomb, and
exchange interactions), we turn next to exploring how such
high-level quantum mechanical effects might be incorporated
into the types of one-electron pseudopotentials that are used in
mixed quantum/classical simulations of the hydrated electron.
To this end, we decided to compare one-electron model
calculations of an excess electron interacting with a single water
molecule in the confining potential of eq 1 to the CCSD(T)
many-electron calculations discussed above. For this purpose,
we have chosen the widely used Turi-Borgis (TB) electron-
water potential.2 Although more advanced electron-water
potentials that incorporate many-body polarization have
recently been developed,24,32 the goal of this work is not to
develop the “ultimate” electron-water pseudopotential but
rather to explore the qualitative effects of a better description
of short-range electron correlation in a one-electron model. In
this regard, the TB model is particularly suitable as it
incorporates electron correlation via a polarization potential
with just two parameters, allowing us to change as few variables
as possible in the model in order to glean physical insight.
For our calculations, we expanded the excess electron’s wave

function in a Fourier-Grid basis of 36 × 36 × 36 plane waves
spanning a cubic cell of 38.1 Bohr in length. The electron’s
ground-state energy (equal to its negative binding energy) was
found by solving the one-electron eigenvalue problem using the
Davidson algorithm.41

We begin our examination of the TB potential by seeing how
well it describes electron-water interactions other than those
arising from electron correlation. Thus, we first performed one-
electron calculations using the static-exchange part of the TB
potential (TBSE), since this accounts for mean-field Coulomb,
Exchange, and Pauli repulsion interactions between the electron
and closed-shell water molecule, assuming fixed water orbitals.2

This level of theory yields an excess electron’s wave function
that corresponds to a pseudo-LUMO of a closed-shell water
molecule18,26,42 and therefore provides a clean way to separate
out polarization of the water orbitals by the excess electron,
which can be treated with an added polarization potential (see
below). Although the TBSE model uses atom-centered partial
charges from the SPC model, the electron in this model does

Figure 3. MP2 electron-water Pair Correlation Energies (PCEs)
between the SOMO and each occupied water spin orbital (eq 5) over
a range of confining potentials, displayed cumulatively from the largest
contribution (SOMO:3a1β pair) to the smallest (SOMO:2a1α pair).
Since correlation effects beyond second order are negligible for this
system (cf. Figure 2), the sum of the PCEs gives the net electron-water
correlation interaction (eq 4). Note: the SOMO:1a1 pair correlation
energies are zero since the 1a1 orbital is treated as a frozen core in the
MP2 calculations.
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not see point charges; instead, the partial charges are modeled
as Gaussian charge distributions, which therefore include
higher-order multipole interactions implicitly.
The electron-water interaction energies with the TBSE

pseudopotential are plotted as the solid black curve in Figure
2(a), and these compare very favorably with the many-electron
FCHF results, further justifying our use of the TB one-electron
model. This agreement is perhaps not surprising since the
TBSE potential was constructed to reproduce a FCHF
calculation in the standard confining potential.2 The agreement
at short-range is not perfect, however, and this can be traced to
our inclusion of the linear Cz term in the confining potential
that serves to polarize the occupied water orbitals and increase
the molecular dipole moment to match the condensed-phase
SPC water model. The TBSE potential was constructed
without a linear term in the confining potential, i.e., with
unperturbed gas-phase water orbitals,2 resulting in an under-
estimation of the Pauli repulsion of an electron confined to the
oxygen side of the water molecule compared to FCHF results.
This reveals that one-electron potentials constructed for gas-
phase water molecules are not strictly transferable to the
condensed phase, although the nontransferability error seen
here is relatively small (≤0.03 eV). We note that the
transferability error of our LGS core potential,6 which was
tuned to match the dipole of an SPC water and which has been
discussed extensively in the literature, is of a comparable
magnitude.7−10

Given that the TBSE potential adequately describes electron-
water interactions at the frozen-core mean-field level, we next
consider the inclusion of polarization and electron correlation
effects. Although these interactions are many-electron phenom-
ena, their effects, within one-electron model frameworks, are
typically incorporated by adding a pairwise polarization
potential to the static-exchange core potential that has an
asymptotic form of − α/2r4, where r is the radial distance from
the water, and α is the isotropic molecular polarizabil-
ity.2,18,22,32,43,44 TB chose to use a potential of the form

α= −
+

V r
r R

( )
2( )

pol
2

c
2 2

(6)

where r is the radial distance from the oxygen site of water, α =
9.7446 Bohr3 is the isotropic molecular polarizability of water,
and Rc is a radial cutoff that prevents a polarization catastrophe
at the molecular origin. TB empirically adjusted Rc to 4.4 Bohr
to reproduce the experimental VBE of the bulk hydrated
electron.2 We performed one-electron calculations using the
sum of the TBSE and eq 6 polarization potentials, hereafter
donated TB, the results of which are shown as the dashed red
curve in Figure 2(b). It is apparent that the TB electron-water
interaction energies significantly overestimate both MP2 and
CCSD(T) values by as much as ∼0.3 eV for small electron-
water separations. This means that the polarization potential of
eq 6 potential is insufficiently attractive (the fact that there are
∼4 first-shell waters in the TB model, 4 quasi-interior waters in
more recent multielectron models,11,13 and over a dozen
interior waters in the LGS model6 could potentially make this
per water error comparable to the overall hydrated electron
binding energy) and thus a target for improvement.
Having seen that the TB model of polarization inadequately

describes electron correlation, we next turn to the question of
whether the problem lies with the functional form of eq 6 or
TB’s choice of parameters. Although one-electron polarization
potentials like eq 6 are often described as ad hoc,2,24 it has been

shown previously that the large-distance asymptote of the MP2
correlation potential for an excess electron interacting with a
closed-shell species does indeed vary as −α/2r4, assuming the
polarizability is isotropic.44 The correct functional form of the
polarization potential at short distances is unfortunately
unknown; however, it clearly must be modified from the
asymptotic −α/2r4 to avoid a polarization catastrophe at the
molecular origin.
To explore the short-range nature of the polarization

potential, we assumed isotropic polarizability and kept the
functional form of eq 6 while optimizing the parameters α and
Rc to fit the one-electron model electron-water interaction
energies to our reference CCSD(T) energies.45 We achieved
this using the Levenberg−Marquardt algorithm46 to minimize
the square of the deviations between the calculated TBSE plus
modified eq 6 electron-water interactions energies and the
CCSD(T) values across the range of electron confining
potentials. The resulting potential, which we refer to as TBSE
+OptPol, has the optimal parameters, α = 9.25 Bohr3 and Rc =
2.07 Bohr, and gives electron-water interaction energies (solid
black curve in Figure 2(b)) that are in excellent agreement with
our CCSD(T) calculations. We also explored whether the
Schnitker-Rossky polarization potential,18 shown as the dot-
dashed blue curve in Figure 4, could be optimized to fit the

CCSD(T) calculations, but we found that the resulting fit was
poorer than TBSE+OptPol. Comparing the functional forms of
TB and SR polarization potentials suggests that the TB
functional form performs better due to its attractive nature at
short-range, consistent with the distance dependence of
electron correlation demonstrated in Figure 3.
To explore how the polarization potential changes upon

optimizing its parameters, in Figure 4 we plot both the original
TB polarization potential (TBPol, dashed red curve) and our
OptPol potential (solid black curve) along the water molecular
dipole with the oxygen atom at the origin. From this figure it is
apparent that our new OptPol potential is significantly more
attractive than TBPol in the vicinity of the water molecule.

Figure 4. Electron-water polarization potentials. The potential
optimized to CCSD(T) energetics (OptPol, solid black curve) is
significantly more attractive at short-range than either the original TB
polarization potential (TBPol, dashed red curve),2 the Schnitker-
Rossky polarization potential (SR, dot-dashed blue curve),18 or the
POL1-SC polarization potential of Jordan and co-workers (dotted
green curve).32
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Although the optimized polarizability parameter, α, changed
only slightly from TB’s original polarization potential to our
OptPol, the main difference between the potentials is a result of
the much smaller Rc value in OptPol that gives rise to a
significant increase in the strength of the potential near the
molecular origin.
The extra attraction with our OptPol arises because TB

originally chose a value of Rc = 4.4 Bohr empirically to
reproduce the experimental VBE of the bulk hydrated electron
in a mixed quantum/classical simulation.2 Since VBEs are very
sensitive to long-range polarization, which may have been
overestimated in TB’s model, it thus appears that by
constraining the long-range part of the polarization potential
and instead varying Rc to fit the experimental VBE, TB
overestimated the damping of the potential at short-range.
Indeed, the original TB polarization potential is also
significantly weaker than other commonly used electron-water
polarization potentials, such as the Schnitker-Rossky model18

(SR, dot-dashed blue curve in Figure 4) and the POL1-SC
polarization potential from the Jordan group32 (dotted green
curve). We note that care should be taken in comparing
polarization potentials between different models, however,
since the short-range parts of the polarization potential may
provide a degree of compensation for deficiencies in the mean-
field potential.
Before we apply our TBSE+OptPol potential to the

condensed-phase hydrated electron, we return to the question
of our assumption of isotropic polarizability: how transferable is
our potential beyond that of an electron confined to the oxygen
side of a single water molecule’s dipole? We explore this by
comparing the predictions of our TBSE+OptPol model to
CCSD(T) calculations of a single water molecule in a modified
confining potential without a linear term:

= + +V k x y k z0.5 ( ) 0.5 z
conf 8 8 8

(7)

The modified confining potential along the water dipole is
plotted as the solid black curve in Figure 5, and its influence on
an excess electron is shown through the spin density of H2O¯
(solid red curves) for a variety of confining strengths kz.
Comparing to Figure 1, it is clear the absence of a basin of
attraction in the confining potential causes the electron to
localize mainly on the water molecule and particularly toward
the hydrogen side. Without the linear term, decreasing kz, does
not significantly displace the center of the excess electron’s
charge density away from the water molecule but rather
increases the electron’s diffuseness. Thus, the confining
potential of eq 7 is not as effective as that of eq 1 in biasing
an excess electron at varying distances from a water molecule in
order to separate short-range interactions from long-range
interactions. Nevertheless, quantum chemistry calculations in
the confining potential of eq 7 serve as an excellent test of our
TBSE+OptPol potential for a type of electron binding that the
potential was not explicitly optimized to reproduce. So, we
proceed by considering HF, MP2, and CCSD(T) electron-
water interaction energies of H2O¯ in the confining potential of
eq 7.
The FCHF electron-water interaction energies of H2O¯ in

the confining potential of eq 7 are plotted as × symbols in
Figure 6(a). It is clear that at the static-exchange level, the water
repels the electron, and this repulsion is diminished as the
confining potential is weakened and the electron becomes more
diffuse. The TBSE potential (dashed blue curve) was designed
to reproduce the FCHF result for the kz = 10−7 confining

potential;2 however, in this confining potential, the electro-
statics of the water molecule correspond to a gas-phase
molecule rather than the SPC water model that was used in
Figure 2. Therefore, TBSE only agrees with FCHF after scaling
the partial charges of the model (which we refer to as TBSE
ScQ, solid black curve) to reproduce the gas-phase HF water
dipole moment, as was also done in the original construction of
the TBSE potential.20 We thus use scaled partial charges for the

Figure 5. Same as Figure 1, but for confining potentials without a
linear term, i.e. eq 7 (solid black curves, left axis). The corresponding
spin density (dashed red curves, right axis) of H2O¯ calculated at the
UHF/aug-cc-pVTZ+PGG shows that this potential confines the excess
electron mainly on the hydrogen side, rather than the oxygen side of
the molecule. Unlike confining potentials with a linear term (eq 1),
decreasing the degree of confinement only increases the diffuseness of
the electron, rather than localizing it significantly away from the water
molecule.
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subsequent TB and TBSE+OptPol calculations in this
confining potential.
In panel (b), we consider the effects of going beyond the

static exchange approximation. Similar to what is seen in Figure
2(b), the UHF level of theory (× symbols) gives only a modest
stabilization over FCHF, indicating that polarization of the
water by the excess electron has a small energetic effect. On the
other hand, electron correlation at the MP2 and CCSD(T)
levels has a much larger effect energetically and actually makes
the electron-water interaction attractive at all confining
potential strengths. The TB model (dashed red curve) neglects
this electron-correlation stabilization and instead captures only
UHF-level energetics. The TBSE+OptPol model, however,
reproduces the CCSD(T) results quite well: although it
overestimates the CCSD(T) energies by ∼0.05 eV, the two
potential energy surfaces are largely parallel, and the agreement
with MP2 is excellent. We reiterate that TBSE+OptPol was not
explicitly fit to reproduce the CCSD(T) energies in this binding
motif; however, the good agreement we see verifies that the use
of an isotropic polarization potential and the lack of explicit
hyperpolarizability in eq 6 is physically reasonable, although it is
possible that these two approximations (and lack of many-body
polarization) lead to a cancellation of errors. Nevertheless, the
good performance of TBSE+OptPol for two very different
electron-binding motifs gives us confidence in the trans-

ferability of TBSE+OptPol to model the condensed-phase
hydrated electron, which we explore in the next section.

3.3. The Effects of Electron Correlation on the
Properties of the Bulk Hydrated Electron. To explore
the predictions of our more physically consistent one-electron
TBSE+OptPol potential on the properties of the bulk hydrated
electron, we performed two Mixed Quantum/Classical (MQC)
simulations of a single excess electron and 499 classical SPC/
Flex47 water molecules under periodic boundary conditions. In
our first simulation, the electron-water interactions corre-
sponded to the sum of the TB Static Exchange and polarization
potentials (i.e., the original TB model) described above, while
in our second simulation, we replaced the original TB
polarization potential with our optimized version described
above in Section 3.2 (TBSE+OptPol). For both simulations, we
sampled the Canonical ensemble with Bussi’s thermostat48 at a
density of 0.9970479 g cm−3 and a temperature of 298 K. The
electron was represented in a Fourier-Grid basis of 14 × 14 ×
14 plane waves spanning a cubic cell of 29.6 Bohr in length,
which was recentered on the electron every 20 fs. At each time
step, the lowest electronic eigenvalue was found using
Davidson’s algorithm.41 Forces on the water molecules due to
the electron were evaluated using the Hellman-Feynman
theorem,49,50 and Born−Oppenheimer Molecular Dynamics
was propagated using the velocity Verlet algorithm51 with a 1 fs
time step. Data was sampled from production runs of 4 ns in
length after an appropriate equilibration period. We also
extended the LGS simulations from ref 6 to a duration of 400
ps in order to have a point of comparison with the results from
the TB and TBSE+OptPol simulations summarized in Table 1.
Finally, statistical uncertainties in computed expectation values
are indicated by 95% confidence limits from the standard error
of the sample mean, after subsampling to remove temporal
correlations.52

3.3.1. Solvation Structure. Figure 7 plots the electron-water
Radial Distribution Functions (RDF) for the TB and TBSE
+OptPol models. The RDFs for the original TB model (panel
a) have been analyzed in detail previously.2 Briefly, both the
electron-hydrogen (solid red curve) and electron-oxygen
(dashed red curve) RDFs are zero at the origin and turn on
at around 1 and 2 Å, respectively, clearly indicating a solvation
motif with a substantial central cavity for the TB model (panel
a). Quite remarkably, however, the TBSE+OptPol RDFs (panel
b) display noncavity6 solvation: the electron-hydrogen RDF
(dotted black curve) is clearly nonzero at the origin, and the
electron-oxygen RDF (dashed blue curve) turns on just inside
of 0.5 Å, which is well within the van der Waals radius of water
(1.6 Å). A further indication of noncavity solvation is that water
molecules are able to penetrate into the center of the excess
electron density, and the Table of Contents Graphic shows one
such snapshot. This picture is in stark contrast to previous
cavity models2,18,24 and even hybrid models,11,12 which all have
electron-oxygen RDFs that turn on beyond 1.6 Å and do not
exhibit water molecules at the center of the excess electron
density. Although the solvation shell structure in the TBSE
+OptPol model is less well-defined than the original TB model,
an inner solvation shell of water is apparent in Figure 7(b), with
the first electron-hydrogen peak at a distance of 1.5 Å and an
electron-oxygen peak at 2.5 Å. This indicates a slight preference
for hydrogen bonds to point in toward the electron’s center of
mass, despite little or no cavity being present, as is also the case
for the LGS noncavity model.6

Figure 6. Electron-water interaction energies as in Figure 2 but for
confining potentials without a linear term, i.e., eq 7. In panel (a) we
see that the one-electron Turi-Borgis Static-Exchange core potential
(TBSE, solid black curve) results do not reproduce the Frozen-Core
Hartree−Fock (FCHF, × symbols) energies, unless we scale the
partial charges on the water molecule to reproduce the HF gas-phase
dipole moment of water (TBSE ScQ, dashed blue curve). In panel (b),
both the TB (dashed red curve) and TBSE+OptPol (solid black curve)
calculations use the scaled partial charges, and we find that TBSE
+OptPol performs significantly better than TB at reproducing
CCSD(T) energetics (+ symbols). Note: the CCSD(T) data point
for kz = 10−10 au is omitted as this calculation was beyond our
computational resources because it required a very large PGG basis set.
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We can further analyze the orientations of the first solvation
shell molecules by computing the angular distribution function
of water O−H bonds relative to the O···e− displacement vector

θ
δ θ

π θ
=

⟨ ̂ · ̂ − ⟩−
··· −

P
r r

( )
(cos ( ) )

4 sin( )

1
OH O e

(8)

where rÔH and rÔ···e− are the O−H bond and O···e− unit
vectors, respectively, and the numerator in eq 8 is the unit

vector volume element, such that ∫ θ π θ θ =
π

P( )4 sin( )d 1
0

,

per O−H bond. The angular distribution of water O−H bonds
for the TB model is shown in Figure 8(a) for water oxygens at
varying distances r from the electron. Each curve is normalized
to be a distribution per water molecule by dividing Eq. 8 by the
average number of water molecules at each distance, r. For the
water molecules at r = 3.0 ± 0.2 Å and r = 2.5 ± 0.2 Å (dotted
black and dashed blue curves, respectively), which correspond
to the first-solvation-shell peak of Figure 7(a), the orientation
of O−H bonds resembles that seen in halide solvation:4 one
O−H bond is preferentially orientated toward the electron (θ
∼ 0°), with the other O−H bond of the same water molecule
making an angle of ∼110° with the O···e− vector, as dictated by
the H−O−H bond angle of water.
In contrast, Figure 8(b) shows that in the TBSE+OptPol

model, the O−H bonds of the first-solvation shell waters take
on a much wider range of orientations compared to the TB

model. This makes physical sense: as the first-solvation shell of
the TBSE+OptPol model is compressed inward by ∼0.5 Å
relative to the TB model, the increased mutual electrostatic
repulsion of the partially positive H atoms of water prevents an
ideal O−H-bond aligned solvation motif. Indeed, at the
shortest O···e− bond distances in the TB model (r = 2.0 ±
0.2 Å), a similarly increased distribution of O−H bond
orientations is seen (Figure 8(a) solid red curve), suggesting
that one can think about the structure of TBSE+OptPol as
similar to TB but with the closest solvation shell compressed
inward by a full 0.5 Å or half an O−H bond length.
We can better understand how the solvation structure of the

hydrated electron in the optimized TBSE+OptPol model
relates to that of the original TB model by considering the
number of waters in the first solvation shell around the
electron, n, which we take to be the number of water oxygens
between the electron’s center of mass and the first minimum of
the electron-oxygen radial distribution function (3.3 and 3.7 Å
for TBSE+OptPol and original TB, respectively). With this
definition, the TBSE+OptPol and original TB hydrated
electrons have similar coordination numbers of n = 4.89 ±
0.02 and n = 4.59 ± 0.03, respectively. Thus, reinforcing our
conclusions from Figure 8, the effect of the extra attraction in
the optimized polarization potential is, on average, to compress
inward the four-to-five first-solvation-shell waters of the original
TB model by roughly half the O−H bond length, resulting in a

Figure 7. Electron-water radial distribution functions of the bulk
hydrated electron computed with the original TB model (panel a) and
optimized TBSE+OptPol model (panel b). Also plotted are the
averaged radial densities of the electron wave function. Compared to
the clear cavity seen with the original TB model, the TBSE+OptPol
results show striking noncavity behavior, with a nonzero probability to
have a water H atom at the electron’s center of mass and significantly
more overlap of the electron’s charge density with the first-shell waters
(cf. Table 1).

Figure 8. Angular distribution of water O−H bonds relative to the O···
e− displacement vector computed for the original TB model (panel a)
and optimized TBSE+OptPol model (panel b) at varying electron-
oxygen distances. Compared to the strong preference for the O−H
bond alignment seen with the original TB model, the TBSE+OptPol
model’s closest waters have a wider range of O−H orientations,
consistent with a much less-structured first solvation shell.
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negligible or at least vanishingly small cavity at the center of the
hydrated electron’s charge distribution. Indeed, the TBSE
+OptPol electron has a nonzero probability to find a water H
atom at the electron’s center of mass, as illustrated in the TOC
graphic.
Since the spatial extent of a hydrated electron is several

Angstroms across, as indicated by a cross-section of the
electron density in Figure 7 (solid red curves), the negligibly
small cavity seen in the TBSE+OptPol model means that, on
average, a substantial number of water molecules are within the
charge density of the electron. If we define the radial extent of
the electron as 3.25 Å, then the average number of water
molecules inside the excess electron’s charge density is 4.68 ±
0.04, corresponding to an average interior water density of DINT
= 0.973 ± 0.009 g cm−3, which is just 3% lower than pure
water. This can be compared to the values for the original TB
model and the LGS noncavity model of DINT = 0.541 ± 0.009 g
cm−3 and 1.42 ± 0.01 g cm−3, respectively. Clearly, the new
TBSE+OptPol potential has a substantial increase in the overall
attraction between the electron and water at short-range
compared to the TB model. However, the TBSE+OptPol
potential is not as attractive as the (known to be overly
attractive) LGS model, which exhibits an interior water density
above the bulk value.
All of this suggests that, unlike the large negative molar

solvation volume of LGS,15 the solvation volume of the TBSE
+OptPol electron will be modest in magnitude.53 Indeed, from
the interfacial calculations described below in Section 3.3.4, we
find that the change in volume (calculated following the
procedure of ref 15) on adding an electron is consistent with a
TBSE+OptPol molar solvation volume of −14 ± 12 cm3 mol−1.
This value is in reasonable agreement with early experimental
work that inferred a solvation volume of −1.7−2.7 cm3 mol−1

from the variation of the rate constant of the electron’s
reactions with other species of known solvation volumes.
However, a more recent time-resolved photoacoustic study
yielded a solvation volume of +26 cm3 mol−1, consistent with
the TB value of +31 ± 12 cm3 mol−1.15 Based on this single
observable, it thus appears that TBSE+OptPol may slightly
overestimate the amount of electrostriction caused by the
electron; however, given the fairly wide range in experimental
values for the solvation volume of the electron, we believe that
additional experiments would be useful in determining this
quantity with higher accuracy.
Although it is clear that there is a greater degree of electron-

water overlap in the TBSE+OptPol model compared to the TB
model, the above discussion considers only the radial overlap. A
better measure of electron-water overlap is found in the direct
overlap10
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where ρ(r) is the electron density, f(r;RN) takes the value of 1
within 1 Å of any water molecule’s center of mass, and RCOM,i
and the angled brackets represent an ensemble average. This
distance was chosen to correspond roughly with the radial
extent of the oxygen core atomic orbitals. With this measure of
electron-water overlap, we computed the TBSE+OptPol value
of Θ to be 7.20 ± 0.04%, which is roughly midway between the

original TB value, 2.66 ± 0.02%, and the LGS value, 14.8 ±
0.2%.54 Thus, consistent with the radial overlap, the new TBSE
+OptPol model appears to have a structure that is intermediate
between the cavity-forming TB model and the noncavity LGS
model.

3.3.2. Vertical Binding Energy. Having explored the physical
structure of the TBSE+OptPol hydrated electron, we consider
now its electronic structure. Of direct relevance to experiment
is the vertical binding energy, defined in Section 3.1. From our
MQC MD simulations we computed a mean VBE of 3.62 ±
0.01 eV for the TBSE+OptPol model. This compares very
favorably to experimental values, which range from 3.3 to 3.6
eV.55−57 With our chosen simulation parameters, we find that
the original TB model has a VBE of 2.69 ± 0.01 eV, which is
somewhat lower than the value reported originally by TB, likely
the result of our smaller simulation cell and the sensitivity of
the VBE to truncation of the electron-water interaction. Thus, it
is likely our predicted VBE for the TBSE+OptPol model is
somewhat underestimated due to finite-size effects, and the
converged value would thus be slightly higher in energy than
the experimental value; but, as we have argued before,7 we do
not believe that a disagreement in the VBE necessarily
invalidates the model, since the absolute value of the VBE is
very sensitive to subtle details of the electron-water interaction
at long-range.
Given this sensitivity of the VBE to the details of the

potential, it is perhaps more instructive to analyze the relative
magnitude of contributions to the VBE. Decomposing the VBE
into contributions from the mean-field and polarization
potentials, we find that the polarization-correlation energy
(i.e., the expectation value of the polarization potential) of
TBSE+OptPol is −2.356 ± 0.009 eV, which makes up more
than half of the total binding energy. In contrast, the
polarization-correlation energy of the original TB model is
−0.930 ± 0.003 eV. Therefore, the ∼0.9 eV increase in the
electron binding energy in the TBSE+OptPol model from the
original TB model comes largely from a ∼1.4 eV increase in the
polarization-correlation energy that is partially compensated by
a ∼0.5 eV reduction in the mean-field binding energy because
of the larger Pauli repulsion between the electron and water
molecules. Encouragingly, the mean polarization-correlation
energy of the closest water molecule in the TBSE+OptPol
model is −0.2877 ± 0.0009 eV, consistent with the magnitude
of the correlation energy for the closest electron-water
distances from the quantum chemistry calculations of Section
3.1. Furthermore, the closest 10 water molecules to the electron
contribute, in total, a polarization-correlation energy of −1.378
± 0.001 eV and −0.331 ± 0.001 eV in the TBSE+OptPol and
TB models, respectively, meaning that the majority of the
increased correlation energy in the TBSE+OptPol model is
very short ranged and arises almost entirely from the first and
second solvation-shell waters.

3.3.3. Optical Absorption Spectrum. The absorption
spectrum is another observable of the hydrated electron’s
electronic structure that can be compared directly to experi-
ment. We calculated the absorption spectrum of the hydrated
electron for both the TB and TB+OptPol hydrated electrons in
the inhomogeneous broadening limit
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where μ0,i is the transition dipole moment between the ground
state, 0, and state i, and ΔE0,i is the excitation energy for state i,
and we included Nst = 19 excited states.
For a finite-length simulation run, eq 10 gives a set of stick

spectra, so in order to generate a continuous spectrum with
which to compare to experiment we convolved eq 10 with a
Gaussian kernel with exponent α = 50 eV−2. The resulting
spectra for the TB and TBSE+OptPol models are shown in
Figure 9(a) as the dashed red and solid black curves,
respectively.

The figure shows that both models are in generally good
agreement with the experimental spectrum (dotted black
curve) but that the noncavity TBSE+OptPol model is in better
agreement with experiment than TB based on the peak
absorption energy. Both models underestimate the magnitude
of the blue absorption tail, which is likely the result of
neglecting self-consistent polarization.60,61

That the absorption spectrum in the noncavity TBSE
+OptPol model is largely consistent with experiment is
encouraging; however, our experience suggests that all this
really indicates is that the model correctly predicts the size
(radius of gyration) of the hydrated electron. Indeed, the radius
of gyration of the electron can be found directly from the
absorption spectrum by moment analysis, so the absorption
spectrum is not all that sensitive a probe of the electronic or
solvation structure. The TB and TBSE+OptPol models give
radii of gyration of ⟨r2⟩1/2 = 2.388 ± 0.003 Å and 2.480 ± 0.002
Å, respectively, both in excellent agreement with the
experimental moment analysis value of 2.48 Å.58

Because of the relative insensitivity of the absorption
spectrum to the underlying structure, we have proposed
previously that a better experimental indicator of the hydrated
electron’s structure is the temperature dependence of the
absorption spectrum.13 Previous simulations of cavity models of
the hydrated electron predicted that there is little noticeable
dependence of the absorption spectrum with temperature. This
result is in disagreement with experiment, which shows a
substantial red-shift of the absorption with increasing temper-
ature. The noncavity LGS hydrated electron model also shows
a substantial red-shift of the absorption spectrum with
increasing temperature, although the slope of the T dependence
is about twice that seen experimentally.16 Following the
arguments of WCA theory,62 the noncavity TBSE+OptPol
model, with its more attractive electron-water interactions due
to electron correlation, might be expected to show larger
variations of its properties with temperature, particularly
compared to the cavity TB model that, at short-range, is
dominated almost exclusively by repulsive interactions.7

To test the temperature dependence of the TBSE+OptPol
model, we simulated the hydrated electron at two additional
temperatures, T = 370 and 523 K, and computed the
absorption maximum energy, EMAX, at each. Previous
approaches to extracting the absorption maximum energy
involved first histogramming eq 10 then fitting to an analytical
form.16 We found that such an approach was too sensitive to
the choice of histogram bin width and fitting function to extract
small temperature dependences of the absorption spectra.
Instead, as described in the Appendix, we developed an
approach to compute directly the absorption maximum energy
from the MQC simulations, the temperature dependence of
which is shown in Figure 9(b).
From weighted-least-squares fitting of the data in Figure 9(b)

to a straight line, we find that the rate of change of the TBSE
+OptPol model’s absorption maximum is −(4.4 ± 0.5) × 10−4

eV/K while that of the TB model is −(1.9 ± 0.6) × 10−4 eV/K.
Thus, we find that both models show only a slight redshift of
the absorption spectrum with increasing temperature, with the
TBSE+OptPol model shifting at roughly twice the rate as TB.
These values can be compared to the experimental temper-
ature-dependent shift of −2.2 × 10−3 eV/K. Thus, although
both models substantially underestimate the temperature
dependence of the absorption spectrum, it is encouraging
that the TBSE+OptPol model has a more than 2-fold
improvement over the original TB model.

3.3.4. Surface Activity of the Hydrated Electron. Although
the noncavity TBSE+OptPol model shows improved agree-
ment with experiment for the optical absorption spectrum and
its temperature dependence compared to the cavity TB model,
the improvements are fairly modest, and it could be argued that
for the observables considered thus far, both models do about

Figure 9. Optical absorption spectrum of the hydrated electron. Panel
(a) shows the absorption spectra computed from the TBSE+OptPol
(solid black curve) and TB models (dashed red curve), normalized to
their absorption maxima. Both spectra are similar in shape, but
compared to TB, the TBSE+OptPol model has an absorption
maximum energy in better agreement with experiment (dotted black
curve, which is a Gaussian−Lorentzian fit from ref 58). Panel (b)
shows the temperature dependence of the maximum absorption
energy: experiment (dotted black curve, from ref 59) shows a
temperature dependence that is larger than either model, but the
TBSE+OptPol model is again in better agreement with experiment
compared to the TB model.
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as well as each other at predicting the experimental properties
of the hydrated electron. We thus seek an experimental
observable to better distinguish the cavity TB and noncavity
TBSE+OptPol model. As we have argued recently,15 the surface
activity of the hydrated electron might be one such observable,
with the TB cavity model predicting that the electron is
(quasi)-stable at the air/water interface while the LGS
noncavity electron is strongly repelled from the interface,
favoring bulk solvation.
To understand the surface activity of the TBSE+OptPol

model, we generated the Potential of Mean Force (PMF) for
the electron relative to the instantaneous air/water interface,
using the Quantum Biased Molecular Dynamics method and
other simulation details as described in ref 15. The results are
shown in Figure 10(a), where we see that, similar to the

noncavity LGS model,15 the TBSE+OptPol electron (solid
black curve) is repelled by the air/water interface, whereas the
TB electron (dashed red curve) has a local minimum at the
interface. This behavior can be understood from the variation
of the mean polarization energy (expectation value of the
polarization potential of eq 6) with distance from the interface,
plotted in Figure 10(b): in both models, the polarization
potential (which captures electron-water polarization and

correlation) favors solvation in the bulk, which makes sense
as this interaction scales with increasing water density.
However, the polarization potential is significantly larger in
magnitude in TBSE+OptPol compared to TB. This is why the
TBSE+OptPol model is more strongly stabilized by bulk water
compared to interfacial solvation.
Several experiments have been carried out to address

whether or not the hydrated electron prefers to localize at
the air/water interface, but as of yet there does not appear to be
a consensus. For example, one time-resolved photoelectron
spectroscopy experiment in liquid microjet found a stable peak
for the hydrated electron at ∼1.6 eV binding energy, suggestive
of a stable surface-localized electron,55 but this result has not
been reproduced by a number of other groups.57,63−65 Second
harmonic generation (SHG) experiments by Verlet and co-
workers strongly suggest that the electron can reside within ∼1
nm of the interface;66 however, we have argued previously that
electrons as close as 0.6 nm to the interface are effectively bulk
electrons and not interfacial electrons.15 A more recent sum-
frequency generation (SFG) study by Tahara and co-workers,
in contrast, provides indirect evidence based on changes in
water’s vibrational spectrum that electrons generated near the
interface may in fact remain there for ∼10 ps.67 It is clear that
further theoretical and experimental work is needed to
understand the surface activity of the hydrated electron. The
results presented in Figure 10 motivate this by showing that the
surface activity of the hydrated electron is a useful experimental
observable that should distinguish cavity from noncavity
solvation and that proper treatment of short-range correlation
can change the electron’s interfacial behavior.
To summarize, in Table 1 we collect the range of computed

observables for both the original TB model and the TBSE
model with our optimized polarization term. We find that the
TBSE+OptPol model of the hydrated electron shows noncavity
behavior, with a structure and properties that are intermediate
between the cavity TB model and the noncavity LGS model.
The observables of TBSE+OptPol are all in better agreement
with experiment compared to TB although the improvements
are fairly modest in magnitude, suggesting there is still room for
additional progress. Indeed, in the Supporting Information, we
also present the calculated resonance Raman spectrum of the
TBSE+OptPol hydrated electron; we find that the Raman
spectrum is largely unchanged from that of the TB model,
which is substantially blue-shifted and narrowed compared to
experiment.

4. CONCLUSIONS
Overall, our results suggest that electron correlation may be
one of the most important factors in determining the structure
of the hydrated electron. Although it may seem surprising that
the importance of electron correlation interactions to the bulk
hydrated electron’s structure has been overlooked up to this
point, previous quantum chemical explorations of electron-
water dispersion interactions have been confined to either 1)
small-to-moderate-sized water anion clusters, where the
electron’s diffuseness and large average distance from the
water molecules is not representative of the condensed phase or
2) to model cavity structures that also presuppose a separation
of the electron and water by several angstroms. Indeed, we find
that when an excess electron is confined to be directly on a
water molecule, the per water electron correlation interactions
are an order of magnitude larger than those typically found in
small cluster anions. As a result, electron-water models

Figure 10. Panel (a): the PMF (i.e., Gibbs free energy) for noncavity
TBSE+OptPol (black solid curve) and cavity TB (dashed red curve)
hydrated electrons as a function of vertical distance from the
instantaneous air/water interface. Negative distances indicate displace-
ments below the interface. Panel (b): the mean electron-water
polarization energy as a function of distance from the instantaneous
air/water interface for the TBSE+OptPol (black solid curve, left axis)
and cavity TB (dashed red curve, right axis) models. The TBSE
+OptPol electron is repelled from the interface more than the TB
electron due to the stronger electron-water polarization potential in
the former that favors bulk solvation.
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parametrized to fit cluster energetics22−24,29,31,69 may not be
transferable to the condensed phase since the short-range part
of the electron correlation interaction is poorly sampled.
To remedy this poor treatment of electron correlation

interactions at short distances, we developed a confining-
potential approach to allow a high-level quantum chemical
determination of electron-water interactions over a range of
electron-water displacements. We found that at short-range,
electron correlation interactions are surprisingly large, being
comparable in magnitude to the mean-field Hartree−Fock
electron-water interactions. Furthermore, our results show that
Hartree−Fock theory provides an inadequate description of
electron-water interactions and that a fully ab initio description
of the hydrated electron requires at least the MP2 level of
theory and preferably CCSD(T). Although DFT might provide
a computationally cheaper alternative, the ability of modern
functionals to correctly describe both short-range and long-
range (dispersion) electron-water correlation interactions
remains to be determined.
By analyzing Pair Correlation Energies between the electron

and water, we found that the strength of the electron
correlation interaction results from the large overlap of the
excess electron’s SOMO and occupied water orbitals. When we
then fit a model one-electron potential to the distance-
dependent CCSD(T) electron-water interactions, we showed
that the short-range correlation interactions are sufficiently
attractive to stabilize noncavity solvation motifs of the hydrated
electron, where water molecules are able to penetrate to the
center of the excess electron’s charge density, even when a
strongly cavity-forming static exchange core potential is used.
The properties of the hydrated electron computed with our
new potential show better agreement with experiment
compared to the original cavity TB model, although there is
still clearly room for improvement. Nevertheless, our results
strongly suggest that no matter what the details of the core
potential,7−9 a proper treatment of electron correlation
interactions is sufficient to drive a noncavity solvation structure
for the hydrated electron.

■ APPENDIX

Here we present our method for computing an absorption
spectrum maximum directly from mixed quantum/classical
simulations. As described in Section 3.3.3, the starting point is
the expression for the absorption spectrum in the inhomoge-
neous broadening limit, eq 10. After convolving with a Gaussian
kernel, this expression becomes

∑ μ α π α= | | Δ − − Δ
=
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We found that a smoothing parameter of α = 50 eV−2 gave a
faithful representation of the hydrated electron’s spectrum
while sufficiently smoothing out statistical noise. The
absorption spectrum maximum was then found from the
extremum condition
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where the second equality results from rewriting the ensemble
average as a sum over Nsnap simulation snapshots, and μ0,i

J and
ΔE0,i

J are respectively the transition dipole and transition energy
of state i for snapshot J. Given its analytical form, eq 12 was
readily solved with the Newton−Raphson method. Finally, the
standard error in the absorption maximum energy was
determined by linearizing eq 12 around Emax:
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The advantage of this approach, compared to first generating
a spectrum by histogramming eq 10 and then fitting to an
analytical form,16 is that the computed absorption spectrum
maximum in our approach does not depend on the choice of
histogram bin width or fitting function, both of which we found
to be quite sensitive in determining the position of the spectral
maximum.
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Table 1. Properties of the Hydrated Electron from Cavity and Noncavity Models

propertya TB (cavity) LGS (noncavity) TBSE+OptPol (noncavity) experiment

DINT (g/cm3)b 0.541 ± 0.009 1.42 ± 0.01 0.973 ± 0.009
Θc 2.66 ± 0.02% 14.8 ± 0.2% 7.20 ± 0.04%
VBE (eV)d 2.69 ± 0.01 5.19 ± 0.07 3.62 ± 0.01 3.3−3.6j

⟨r2⟩1/2 (Å) 2.388 ± 0.003 2.46 ± 0.04 2.480 ± 0.002 2.48k

EMAX (eV)e 1.940 ± 0.007 1.71 ± 0.06 1.799 ± 0.006 1.728k

dEMAX/dT (eV/K)f −(1.9 ± 0.6) × 10−4 −5.2 × 10−3i −(4.4 ± 0.5) × 10−4 −2.2 × 10−3l

V (cm3/mol)g +31 ± 12h −116 ± 27h −14 ± 12 −1.7−2.7m, +26n
aEvaluated at 298 K and density 0.9970479 g cm−3. bInterior water density, corresponding to the average water density within 3.25 Å of the electron
center of mass. cElectron-water direct overlap (see eq 9). dVertical Binding Energy. eOptical absorption spectrum peak position. fLinear temperature
dependence of spectral peak position. gPartial Molar Volume. hTaken from ref 15. iReference 16. jReferences 55−57. kReference 58. lReference 59.
mReference 68. nReference 53.
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