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The linear response (LR) approximation forms the cornerstone of nonequilibrium statistical mechanics and
has found special utility in studies of solvation dynamics, in which LR implies that nonequilibrium relaxation
dynamics is governed by the same molecular motions responsible for fluctuations at equilibrium. When the
motions at and away from equilibrium fall in the LR regime, the equilibrium and nonequilibrium response
functions are identical. However, similarity of the equilibrium and nonequilibrium solvent response functions
does not guarantee that LR holds and that the underlying molecular motions are the same. In this paper, we
present computer simulation studies of the removal of charge from an atomic solute in liquid tetrahydrofuran,
a system for which the equilibrium and nonequilibrium solvation responses appear quite similar. We then
introduce a method for projecting nonequilibrium response functions onto specific molecular motions. We
find that the equilibrium relaxation is dominated by solvent rotations, whereas the nonequilibrium relaxation
is much more complex, having translations dominating at early times and a delayed onset of rotations. The
results imply that LR may not hold as often as is widely believed and that care should be taken when using
equilibrium response functions to understand nonequilibrium solvation dynamics.

Solvents are not just spectators during chemical reactions,
nor are they simply a continuum in which a reaction occurs.
Rather, the specific motions of individual solvent molecules
directly affect the rate of electron transfer and other solution-
phase chemical reactions. The study of how solvent motions
couple to electronic changes in reacting solutes is known as
solvation dynamics,1 which is typically monitored via the
solvation energy gap,∆E ) Ess

exc - Ess
gnd, whereEss

exc andEss
gnd

are the solute-solvent interaction energies when the solute is
in the excited and ground states, respectively. The normalized
nonequilibrium solvent response function is

whereR denotes all of the solute and solvent positions and the

overbar represents a nonequilibrium ensemble average in which
the solute is promoted to the excited state att ) 0.

One of the central themes in the study of solvation dynamics
is the idea of linear response (LR), which is based on the
Onsager regression hypothesis.2 In LR, the motions of the solute
and solvent molecules that respond to a small perturbation are
the same as those that follow naturally from a fluctuation away
from equilibrium. In this limit,S(t) is identical to the equilibrium
solvation time correlation function (TCF),2

where the angled brackets denote an equilibrium ensemble
average andδ∆E ) ∆E - 〈∆E〉 is the equilibrium fluctuation
of the energy gap (and theR dependence is repressed). The
nature of LR has been explored in simulations of myriad solute-
solvent systems, and most have found that, even for very large
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S(t) )
∆E(R;t) - ∆E(R;∞)
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C(t) )
〈δ∆E(0)δ∆E(t)〉
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(2)
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perturbations,S(t) agrees fairly well withC(t).3 There have been
a few notable exceptions, including simulations of a solute in
methanol that undergoes a dipole reversal in the excited state,4

simulations in water/methanol5 and water/DMSO5,6 mixtures,
and simulations in water of an atomic solute that changes both
size and charge in the excited state.7 Despite these exceptions,
LR is widely believed to hold, and many studies have elected
to save computational resources by calculating only the equi-
librium solvation TCF via eq 2 instead of computingS(t) from
an ensemble of nonequilibrium trajectories, as in eq 1.8

Figure 1 shows an example of bothC(t) (solid curve)9 and
S(t) (dashed curves) calculated from simulations modeling the
removal of charge from an atomic anion in liquid tetrahydro-
furan (THF), as depicted schematically in the inset to Figure 1;
in addition to the removal of charge, the solute undergoes a
significant decrease in size upon ionization, as described in detail
in the Appendix.S(t) is shown normalized with two different
choices of∆E(∞).10 The similarity of the two response func-
tions in Figure 1 could lead one to believe LR applies to this
system.11 In a previous publication, however, we have shown
that in systems where the solute underwent even small changes
in size, linear response failed to properly describe the nonequi-
librium solvation dynamics.7 Thus, we were surprised to see
the apparent agreement betweenC(t) and S(t) in Figure 1, in
which the solute size decrease was chosen to mimic a physically
realistic system (see Appendix). In this letter, we show that the
similarity between the equilibrium and nonequilibrium solvent
response functions in Figure 1 is coincidental and that LR fails
for this system. This result has important implications for studies
of solvation dynamics because it establishes that the nonequi-
librium solute-solvent motions underlying relaxation can be
different from those at equilibrium, even when similar relaxation
time scales suggest otherwise. To demonstrate how the non-
equilibrium solvation dynamics differ from those at equilibrium,
we will project the relaxation dynamics inherent in bothS(t)
andC(t) onto the dynamics of various coordinates of the system.

Perhaps the simplest possible projection is to split the solute-
solvent interaction, which consists of Coulomb plus Lennard-
Jones potentials (as described in the Appendix), into its compo-
nent parts. Such a partitioning of the solute-solvent energy gap
into simple components is hardly novel; Berkowitz and Perera,
for example, showed how the nonequilibrium∆E is modulated
by different solvent shells.12 We choose to write the solvation

energy gap as a sum of Coulomb plus Lennard-Jones gaps,∆E
) ∆ECoul + ∆ELJ. Inserting this separation into eqs 1 and 2
allows us to discern how the Lennard-Jones and Coulomb inter-
actions contribute separately to the behavior of the equilibrium
TCF, C(t), and the nonequilibrium response function,S(t).

Figure 2 shows the projection onto the Coulomb (dashed
curves) and Lennard-Jones (dotted curves) components of the
equilibrium solvation TCF and nonequilibrium solvation energy
gap for the simulations of which the full response functions
are shown in Figure 1. The projections in Figure 2 clearly
demonstrate a hidden breakdown of LR: the relaxation dynam-
ics underlyingC(t) is mostly electrostatic in nature, but the
dynamics ofS(t) is nearly evenly distributed between charge
(Coulomb) and size (Lennard-Jones) interactions, each of which
relaxes at a different rate. Figure 2a also displays a nontrivial,
negative cross-term for the equilibrium TCF (dash-dot curve),
whereas no such energy cross-term is possible in the nonequi-
librium analogue,S(t).

Although the energy projections in Figure 2 reveal a break-
down of LR, they do not provide information about the specific
molecular motions present at equilibrium and during nonequi-
librium solvation dynamics (e.g., how modulation of the
Lennard-Jones interaction may result from molecular translations
or rotations).To see just which motions cause the equilibrium
relaxation, we will use Steele theory,13 which shows how to
analyze the degrees of freedom underlying any time correlation
function by investigating its second time derivative; for example,
the equilibrium solvation velocity TCF is given by

The chain rule for differentiation is applied to write the rate of
change of the energy gap as a sum of contributions from each
degree of freedom present in the system

Figure 1. Comparison of the equilibrium solvation TCF,C(t) (solid
curve, eq 2), with the nonequilibrium solvation response function,S(t)
(eq 1).S(t) is shown using two different values of the equilibrium ener-
gy gap,∆E(∞), one averaged from 7 to 12 ps after excitation (dashed
curve) and the other from 2 to 3 ps after excitation (dotted curve).10

Error bars are two standard deviations.9 The inset shows a schematic
of the reaction studied; the ground state (anion) is instantly changed
into the smaller excited state (neutral) without changing the velocities
or positions of the solute and THF solvent molecules.

Figure 2. Solvation energy projections for (a) the equilibrium dynamics
and (b) the nonequilibrium simulations: Coulomb (dashed curves),
Lennard-Jones (dotted curves), and total (solid curves, same data as in
Figure 1). The cross term (dash-dot curve) is from the correlation of
the Coulomb and Lennard-Jones energy gaps.10

G(t) ) -C̈(t) ) 〈∆Ė(t)‚∆Ė(0)〉 (3)
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where the sum onR runs over all degrees of freedom. By
inserting eq 4 into eq 3, we projectG(t) onto each of the
molecular motions via the velocities, dR/dt, and thus,G(t) may
be written as a sum of correlation functions of the individual
degrees of freedom plus cross-correlation terms. Ladanyi and
co-workers have usedG(t) to show how molecular rotations,
translations, and rotation/translation coupling drive equilibrium
solvation dynamics in both polar and nondipolar solvents.3c,14,15

Similar projections also have been used to analyze the force
autocorrelation function, which determines vibrational relax-
ation.15

Here, we extend Steele theory to nonequilibrium solvation
dynamics to uncover the reasons for the breakdown of LR
evident in Figures 1 and 2. By decomposing the unnormalized
Stokes shift into its single-molecule components,∆E(t) )
∑i)1

nmol∆Ei(t) and taking the first time derivative, we obtain the
single-molecule velocity nonequilibrium response function,
Ji(t),

where the sum overµ runs over the sites on theith solvent
molecule and we have defined∆Ei(Ri;t) ) ∑µ)1

sites∆uµ(rµ0;t),
whererµ0 is the distance from theµth site to the solute,uµ(r)
represents a pairwise site-site interaction,∆uµ(r) is the differ-
ence between the ground- and excited-state pair interactions,
r̂µ0 is rµ0/rµ0, and∆uµ′(rµ0) ) (d/drµ0)∆uµ(rµ0). We account for
all degrees of freedom in eq 5 by explicitly including both solute
and solvent velocities.

Although eq 5 projects changes in the energy gap onto
molecular velocities, taking only one time derivative does not
extract information about cross-terms between the different
molecular motions. Thus, we take the second time derivative
of ∆Ei(t) to make the closest nonequilibrium analogy toG(t),
eq 3. We define the solvation acceleration response function,
B(t), as

where we have simplified the notation by introducingr3 µ0 ) r3 µ
- r3 0, andr1µ0 ) r1µ - r10. Equation 6 shows how changes in the
energy gap are projected onto both molecular velocities and
accelerations; the last term in square brackets in eq 6 is a dyadic
matrix that explicitly contains cross-coordinate terms. Neither
the projections onto accelerations nor the cross-coordinate terms
are features present in the equilibrium analysis based on eq 3
(because the cross terms inG(t) come from the nature of the
correlation function and not directly from the derivatives). We
have found that the acceleration term dominates in eq 6.

As written, each component of eq 6 projects the solvation
energy gap onto the individual atomic coordinates in the
simulation. We, however, wish to examine the relative molecular
motions (e.g., translations or rotations) between the solute and
solvent molecules that affect the energy gap. In the case of

relative translations between the solute and solvent center-of-
mass,Btrans(t), for example, there is one longitudinal translation
along the line connecting each solvent molecule’s center of mass
to the solute and two indistinguishable (and arbitrary) lateral
translations perpendicular to the longitudinal direction.16 Thus,
armed with eqs 3 and 6, we can directly compare the projections
of different solute and solvent motions onto the energy gap at
equilibrium and during nonequilibrium dynamics.

Although projections onto molecular motions result in deriva-
tives of solvation response functions, differentiated functions
such asG(t) or B(t) do not provide an intuitive means for
visualizing solvation dynamics. For example, a projected
solvation velocity TCF provides information only about the
curvature and not about the underlying relaxation time scales
of the projected motions to the full response. Furthermore, upon
differentiation, information about the relative magnitude of the
projected energy change is lost. The magnitude information is
important because it quantifies how strongly a particular degree
of freedom contributes to the full solvation response function.
Therefore, we analyze our response functions by doubly time
integrating the projectedG(t) and either doubly integrating the
projectedB(t) or singly integrating the projectedJ(t).

Unfortunately, the 200 nonequilibrium trajectories that we
ran for our system did not provide sufficient convergence for
accurate double integration ofBtrans(t). Thus, in Figure 3, we
compare the single time integration of the center of mass
translational projection fromB(t) (dashed curve) to the center-
of-mass translational projection ofJ(t) (solid curve). We expect
the two curves not to be identical because the velocity projection
Jtrans(t) implicitly contains rotation/translation cross terms, while
the integral ofBtrans(t) does not. Nevertheless, it is clear from
Figure 3 that for this system (especially at early times when
LR appears to hold)11 the rotation/translation cross terms are
negligible. Therefore,Strans(t), the projection ofS(t) onto the
center-of-mass translational coordinate, can be accurately
calculated by a single time integral ofJtrans(t) with much less
numerical error than by double integration ofBtrans(t).

Figure 4a shows the doubly integrated projections of the
equilibrium solvation velocity response,G(t), normalized to the
total, while Figure 4b shows a similar comparison for the singly
integrated projections of the nonequilibrium solvation velocity
response,J(t). The rotational projections (dashed curves) were
calculated by subtracting the translational projection (dotted
curves) from the total (solid curves), so thatCrot(t) in Figure 4a
also includes rotation/translation cross terms. Even at the earliest
times, it is clear that the fundamental solvation dynamics
responsible for relaxation are entirely different. Thus, Figures
2 and 4 show that there is a hidden breakdown of linear response

Ji(t) ) ∆Ėi(t) ) ∑
µ

∆ŭµ(rµ0;t)

) ∑
µ

[r3 µ‚r̂µ0 - r3 0‚r̂µ0]∆uµ′(rµ0) (5)

-Bi(t) ) ∆Ëi(t) )
d

dt
Ji(t) )

d

dt
[∑

µ

r3 µ0‚r̂µ0∆uµ′(rµ0)] )

∑
µ

[ r̂µ0∆uµ′(rµ0)]‚r1µ0 + ∑
µ [∆uµ′(rµ0)

rµ0
] × |r3 µ0|2 -

∑
µ

r3 µ0‚[r̂µ0(∆uµ′(rµ0)

rµ0

- ∆uµ′′(rµ0))r̂µ0]‚r3 µ0 (6)

Figure 3. Comparison of∆Ėtrans(t), calculated both analytically as
Jtrans(t) (solid curve, eq 5) and as one time integral ofBtrans(t) (dashed
curve, integral of eq 6), showing that the nonequilibrium rotation/trans-
lation cross term is negligible. Error bars are one standard deviation.
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in this system and that, as expected on the basis of our previous
study,7 linear response does fail when solutes undergo significant
changes in size upon excitation.

Figures 2a and 4a show that the equilibrium TCF,C(t), is
dominated by rotations and Coulomb-like interactions at all
times. In contrast, Figures 2b and 4b show that the nonequi-
librium solvation response appears to have three different
relaxation regimes. Immediately upon excitation, Figure 4b
shows that the primary relaxation dynamics come from transla-
tions. This is because the decreased size of the neutral excited
state creates space near the solute. Solvent molecules near the
solute translate into this space and fall into the Lennard-Jones
well, thereby stabilizing the neutral solute and greatly destabiliz-
ing the anionic ground state. Figure 4b also shows that the
second relaxation regime, from∼400 to 1500 fs, is characterized
by the onset of rotational relaxation, which does not become
effective until after the initial translational motions are complete.
This type of delayed onset for rotational motions has been
observed in previous simulation studies involving solute size
changes7 or significant electrostriction.17 This rotational delay
is attributed to the randomization of dipole orientations of the
first or second solvent shell or both, as time-dependent orienta-
tion distributions have shown.18 The third, long time, regime,
which consists mainly of translations and Lennard-Jones
interactions, can be seen clearly in the Lennard-Jones projection
in Figure 2b after∼450 fs. This long-time relaxation dynamics
seen inSLJ(t), Strans(t), and Stot(t) is what would be expected
from whole-system repacking on diffusional time scales. A
detailed analysis of the motions present at equilibrium and
during nonequilibrium dynamics will be presented in forthcom-
ing work.18

In summary, we have shown that the equilibrium and non-
equilibrium dynamics of this system are unrelated, despite the
fact that the total response functions in Figure 1 show similar

relaxation time scales. Even thoughS(t) andC(t) are not rig-
orously identical,11 they are similar enough that one would not
ordinarily anticipate such vast differences in the solute and
solvent motions underlying the relaxation dynamics. However,
the results in Figures 2 and 4 clearly demonstrate that any
similarity between the equilibrium solvation TCF,C(t), and the
nonequilibrium solvation response function,S(t), is purely
coincidental. This has important implications for both experi-
mental and theoretical studies of solvation dynamics. Equi-
librium solvation dynamics are measured in experiments such
as transient hole burning,19 while nonequilibrium solvation
dynamics are probed by time-dependent Stokes shift or pho-
ton echo spectroscopies.1 The results presented above show
that even if the two experiments give identical results, the
underlying molecular motions are not necessarily the same. For
simulation studies, it is clear that the mere agreement of
C(t) andS(t) is not sufficient to guarantee LR. Instead, a de-
tailed analysis of the molecular motions both at and away from
equilibrium must be made to justify the linear response
approximation.

Acknowledgment. This work was support by the National
Science Foundation through Grant CHE-0240776. B.J.S. is a
Cottrell Scholar of Research Corporation and a Camille Dreyfus
Teacher-Scholar. We also thank Erik R. Barthel for his
assistance in creating the figures.

Appendix

The results presented in Figures 1-4 were obtained from
constantE, V, N molecular dynamics simulations of a charged
atomic (Lennard-Jones) solute and 255 THF solvent molecules.
The simulations used a 1 fstime step and a modified SHAKE
algorithm20 to keep the molecules rigid and planar and employed
periodic boundary conditions. The site-site interaction potential
was a pairwise sum of Coulomb and Lennard-Jones interactions,
using the five-site solvent molecule geometry and potential
parameters previously developed by Jorgensen.21 We chose the
interaction potential parameters for the solute to model the
conversion of a solvated sodium anion into a solvated neutral
sodium atom to imitate femtosecond experiments studying
charge-transfer-to-solvent reactions performed in our lab.22 The
excited-state solute (sodium atom) had a Lennard-Jones well
depth (ε ) 1.47× 10-20 J) and size (σ ) 3.14 Å) parameter,
which were taken from DFT calculations of Rice and co-
workers.23 The ground-state (sodium anion) size parameter (σ
) 5.21 Å) was estimated from the crystal structures obtained
by Dye and co-workers,24 and we used polarizability measure-
ments of Edwards and co-workers25 to estimate an energy
parameter (ε ) 3.11× 10-21 J). For the solute-solvent Lennard-
Jones interactions, we used the standard Lorentz-Berthelot
combining rules.26 The ground-state solute contained a charge
of -e that interacted by the Coulomb interaction with the partial
charges on the oxygen andR-methyls on each THF solvent
molecule.

Starting from an fcc-lattice, we equilibrated the systems for
5 ps using a velocity rescaling technique followed by at least
10 ps of additional equilibration. We did not start collecting
statistics until we ensured that the solute-solvent system was
fully equilibrated by checking that memory of the initial fcc
order had fully decayed and that there was no further drift in
the average temperature. Once fully equilibrated, we then ran
the ground-state equilibrium simulation for 200 ps. We also ran
200 nonequilibrium trajectories by choosing uncorrelated con-
figurations27 from the ground-state equilibrium (sodium anion)

Figure 4. Translational projection of (a) the equilibrium solvation TCF,
C(t), shown as two time integrals of the projectedGtrans(t) (dotted curve,
eq 3). The rotation and rotation/translation term (dashed curve) is
calculated by subtractingCtrans(t) from Ctot(t) (solid line, same as solid
curve in Figure 1); see text. Panel b shows similar projections of the
nonequilibrium solvation response function,S(t), shown as one time
integral ofJtrans(t) (dotted curve).Srot(t) (dashed curve) is calculated by
subtractingStrans(t) from Stot(t) (solid curve, same as dashed curve in
Figure 1).10
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run and instantly removing the charge and changing the
Lennard-Jones parameters to those of the excited state (sodium
atom) while keeping the velocities unchanged. To mimic a
resonant absorption, starting configurations for the nonequilib-
rium simulations were chosen by requiring the solute-solvent
potential energy gap,∆E, to be within 0.75% of the equilibrium
average. Each nonequilibrium trajectory ran for 12 ps. Further
details of the equilibrium and nonequilibrium simulations are
to be presented in a forthcoming paper.18
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