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The fact that the motion of solvent molecules defines the reaction coordinate for electron-transfer and other
chemical reactions has generated great interest in solvation dynamics, the study of how the solvent responds
to changes in a solute’s electronic state. In the limit of linear response (LR), when the perturbation caused by
the solute is “small”, the relaxation of the excited solute’s energy gap should behave identically to the relaxation
dynamics of the unperturbed solute following a natural fluctuation of the gap away from equilibrium. Despite
the fact that the addition of a fundamental unit of charge to a small solute results in a solvation energy that
is tens or hundreds ofkT, computer simulations of solvation dynamics have found, with only a few exceptions,
that LR is obeyed for changes in solute charge. Essentially none of this work, however, accounts for the fact
that the solutes in real chemical reactions undergo changes in size and shape as well as in charge distribution.
In this paper, we compare the results of molecular simulations of polar and nonpolar solvation dynamics for
a simple Lennard-Jones solute in a flexible-water solution to explore the validity of LR. We find that, when
short-range forces are involved, LR breaks down dramatically: both the inertial and diffusive components of
the relaxation differ from those predicted by LR. For increases in solute size, expansion of the solute drives
the first-shell solvent molecules into the second shell. The resulting nonequilibrium relaxation takes advantage
of translation-rotation coupling that does not occur at equilibrium, resulting in faster solvation than that
predicted by LR. Decreases in solute size, on the other hand, result in inward translational motions of solvent
molecules that affect the solute’s energy gap by destabilizing the energy of the (unoccupied) ground state.
The inward motions involved in the nonequilibrium relaxation are not present at equilibrium because the
destabilization of the ground state is much larger thankT. Because the energetically most important solvent
molecules, those closest to the solute, are just as likely to be moving away from the solute as toward it at the
time of excitation, solvation for decreases in size is much slower than predicted by LR. In the most realistic
cases, when both the size and the charge of the solute change, the solvent translational motions resulting
from the size change and those resulting from electrostriction, the net ion-dipole attraction between the
charged solute and the polar solvent, combine in an additive fashion. When the solute both gains a charge
and expands, the translational motions resulting from electrostriction nearly cancel those from the outward
solute expansion so that rotational motions dominate the solvent response; the small net expansion that remains
results in only a minor breakdown of LR. The additional inward solvent translations beyond those required
by electrostriction, which are necessary when the solute becomes charged and its size decreases, on the other
hand, result in a severe breakdown of LR. All of the results are compared with previous experimental and
theoretical studies of solvation dynamics, and the implications for solvent-driven chemical reactions are
discussed.

I. Introduction

The solvent in a chemical reaction is far from being a mere
spectator that serves only as a medium to support reactants and
products until they can encounter one another by diffusion.
Instead, the motions of solvent molecules and the way they
arrange themselves around reacting species critically affect the
dynamics of chemical reactions in solution. Particularly for
electron-transfer reactions, the polarization of the solventdefines
the reaction coordinate: the local solvent configuration deter-
mines the relative energies of the reactants and products, and
the fluctuations determine the rate at which charge transfer
occurs.1 Thus, there has been an enormous amount of recent
interest in solvation dynamics, the study of the response of the

solvent to changes in the electronic charge distribution of a
solute.2 At the heart of the matter are the specific solvent
motions that lead to relaxation and the ways in which the relative
efficiencies of these motions change in response to a particular
perturbation of the solute. Although new advances in ultrafast
laser technology have allowed great strides to be made in our
ability to measure solvent relaxation dynamics via the time-
dependent Stokes shift or the photon-echo decay of fluorescent
probe molecules, it is still impossible for experiments to
determine precisely which solvent motions are responsible for
relaxation. Thus, most of our insight in identifying specific
solvent motions and analyzing solvation dynamics on a molec-
ular level comes from the realm of computer simulations.

Computer simulations of solvation dynamics can be con-
structed in a straightforward manner.2,3 After equilibrating a* Corresponding author. E-mail: schwartz@chem.ucla.edu.
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simulated ground-state solute with a simulated solvent, the
solute-solvent interaction potential is suddenly altered to reflect
a change in the solute’s electronic state. This excitation occurs
instantaneously on the time scale of solvent nuclear motion,
placing the solvent nuclear coordinates out of equilibrium with
the solute’s excited-state interaction potential. The solvent
molecules respond to this perturbation by rearranging their
nuclear degrees of freedom to decrease the excited-state solute-
solvent potential energy, while at the same time, the solute-
solvent potential energy for the original interaction potential
increases as the solvent molecules move away from their former,
ground-state equilibrium. The net result is that the energy gap
between the (unoccupied) ground state and the (occupied)
excited state of the solute continuously decreases with time as
the solvent responds. The decrease in the solute’s energy gap
with time is typically used to compute a solvent response
function2

whereU(t) ) Eexc(t) - Egnd(t) is the solute’s energy gap at time
t and the overbar denotes a nonequilibrium ensemble average.
The solvent response functionS(t) is normalized to start at unity
at time zero and to decay to 0 as time approaches infinity,
providing a convenient method for comparing solvent responses
for different solute/solvent combinations.

Nonequilibrium molecular simulation trajectories contain a
complete record of the motions of each individual solvent
molecule, offering the possibility for a detailed molecular
analysis of the solvent motions involved in relaxation. This type
of detailed information comes at the price, however, of requiring
significant computational resources. A nonequilibrium ensemble
average first requires a long equilibrium molecular dynamics
or Monte Carlo simulation to be run to generate a series of
uncorrelated equilibrium solvent configurations from which the
nonequilibrium trajectories can be launched. From these starting
configurations, tens or usually hundreds of excited-state trajec-
tories must be calculated in order to provide decent statistics
for nonequilibrium ensemble properties, such as the time
variation of the solute’s energy gap following excitation.
Moreover, to make comparisons between the dynamics follow-
ing different perturbations (for example, ionizing the solute
versus changing its dipole moment), an entirely new set of
nonequilibrium trajectories must be computed for each perturba-
tion. These computational requirements can be significantly
reduced, however, by taking advantage of the linear response
(LR) approximation. The LR approximation relies on the
Onsager regression hypothesis, which states that, for a small
enough perturbation, the relaxation of a perturbed solute’s
energy gap back to equilibrium should behave identically to
the relaxation dynamics of the unperturbed solute following a
natural fluctuation of the gap away from equilibrium.4 Thus, in
the limit of LR, the equilibrium solvent response function

should decay identically to the nonequilibrium response function
S(t), eq 1.2 In eq 2,δU(t) ) U(t) - 〈U〉 is the fluctuation of the
energy gap from its equilibrium value, and the angled brackets
denote an equilibrium ensemble average. The use of eq 2 to
compute the solvent response function provides an enormous
computational advantage in that the same equilibrium run can
be used to compute the solvent response for a variety of

perturbations. This is true because the computationally expensive
forces never need to be computed using the excited-state
interaction potential, so the energy gaps for any number of
desired perturbations can be computed simultaneously from a
trajectory propagated using forces only from the ground-state
solute-solvent interaction. Thus, instead of the multiple sets
of hundreds of trajectories needed to compare nonequilibrium
solvation dynamics, use of the LR approximation reduces the
computational requirements for multiple solute perturbations to
a single ground-state trajectory.

Given the computational savings in the use of the LR
approximation, it would seem almost unfair to be able to
accurately predict the dynamics of a variety of solute perturba-
tions from only a single equilibrium trajectory using eq 2. Yet,
in nearly every computer simulation study of solvation dynamics
(but not all5-8), the LR assumption of eq 2 is able to predict,
remarkably well, the majority of the nonequilibrium response,
eq 1, when the solute undergoes a change in charge distri-
bution.9-16 The agreement is good enough that many recent
studies have chosen to forego the computation of nonequilibrium
trajectories and base their conclusions solely on predictions from
the LR approximation.17-25 In a recent paper, we explored the
LR predictions for solvation dynamics in water not just for
changes in charge but also for changes in solute size, shape,
and polarizability.20 We found that the short-range forces
involved in these latter types of perturbations caused the bulk
of the solute-solvent relaxation energy to be carried by only
the one or two closest solvent molecules. This led to a nonlinear
variation of the solute energy gap with solute size and produced
equilibrium solvent response functions (eq 2) for different size
changes that were not identical. Moreover, whereas the relax-
ation dynamics for the appearance of either a positive or a
negative charge on the solute were identical, for combined
changes in both solute size and charge, the resulting relaxation
depended sensitively on both the magnitude and the sign of both
the size and the charge changes.20 All of these results suggest
that, when the perturbation involves short-range forces, the LR
approximation is likely to fail.

In this paper, we explore the nature of the linear response
approximation in detail by comparing the equilibrium and
nonequilibrium solvent dynamics of water following a variety
of solute size and size-and-charge changes. In electron-transfer
and other reactions, the reactant’s size and polarizability can
change as well as the charge. Thus, for this work, we have
chosen perturbations that are designed to mimic those experi-
enced by real solutes undergoing electron-transfer reactions by
combining size and charge changes. Like previous studies,9-16

we find that, when the perturbation involves only a change in
charge, the same solvent motions cause relaxation both at
equilibrium and during nonequilibrium dynamics. For solute size
changes, on the other hand, we identify solvent translations as
the key motions that differ between the equilibrium and
nonequilibrium dynamics, leading to a breakdown of LR. For
combined size-and-charge changes, we find that there is an
interplay between the solvent translations driven by the size
change and those driven by electrostriction, the net ion-dipole
attraction between the newly charged solute and the solvent.
These translational motions can act either cooperatively or
antagonistically; the net result is that either translational or
rotational solvent motions can dominate the overall relaxation
dynamics depending on the specific nature of the perturbation.

Because of the importance of short-range forces in the
breakdown of LR, we make, in this paper, a somewhat artificial
distinction between two classes of solvation: dielectric (or polar)

S(t) )
Uh (t) - Uh (∞)

Uh (0) - Uh (∞)
(1)

C(t) )
〈δU(0)‚δU(t)〉

〈(δU)2〉
(2)
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solvation, primarily composed of solvent rotational motions in
response to reactant charge changes, and mechanical (or
nonpolar) solvation, comprising the translational solvent motions
that couple to reactant changes in size or polarizability. For
dielectric solvation, the time evolution of the relaxation is well
understood and is usually classified into three regimes. First,
an initial Gaussian response results from the inertial rotational
motions of solvent molecules in the first solvation shell;14,26 in
polar solvents such as water9,10,15,16,27or acetonitrile,13,28 this
inertial component can account for 60-80% of the total solvent
relaxation. After the inertial response is complete, a subsequent
librational relaxation occurs, characterized by rapid, damped
oscillatory solvent rotational motions.9,13Finally, the remainder
of the relaxation occurs on a slower, diffusive time scale that
often matches well with the relaxation time(s) predicted by
dielectric continuum theories.2 The same types of librational
solvent motions involved in the nonequilibrium relaxation are
also present in the equilibrium dynamics, so dielectric relaxation
usually falls within the LR regime.

Mechanical relaxation, on the other hand, has been studied
much less than the more traditional dielectric solvation dynam-
ics. Only recently have viscoelastic continuum theories been
developed as a nonpolar counterpart to dielectric continuum
theories.29 Experiments in this area are also just beginning,30

in large part because it is difficult to find solutes that undergo
large size or shape changes without also undergoing a simul-
taneous change in charge distribution. Moreover, in many
solvents, dielectric and mechanical relaxation theories predict
similar solvent responses, making an experimental distinction
between the two somewhat difficult.31 Perhaps most surprisingly,
practically every computer simulation done to date has explored
the solvent response to changes in solute charge distribution
without an accompanying change in size, shape, or polarizabil-
ity; there have been only a limited number of simulations that
have explored nonpolar solvation dynamics.12,20-25,32 In our
previous paper, we found that, even in a highly polar solvent
like water, the solvation energy accompanying solute size
changes could be comparable to that induced by solute charge
changes, placing polar and nonpolar solvation on an equal
energetic footing.20 The solvent response to solute size changes
consisted primarily of translational motions of the closest one
or two solvent molecules. This produces nonpolar relaxation
dynamics that are much slower than the corresponding libra-
tional response in dielectric solvation and suggests that con-
tinuum theories of nonpolar solvation that ignore the molecular
nature of the solvent are likely to fail. Finally, as mentioned
above, for the most realistic case of a simultaneous change in
both size and charge, the two types of solvent response interact
in a nonlinear fashion so that either translational or rotational
motions can dominate the overall relaxation depending on the
particular size/charge perturbation involved.20

It is important to note that only a few of the simulations that
included nonpolar solvation effects have investigated nonequi-
librium dynamics.12,22 The bulk of the simulation research on
nonpolar solvation,21,23-25 including our own previous work,20

has relied on the LR approximation to calculate the relaxation
dynamics. Given all of the above indications that LR breaks
down for the case of nonpolar solvation, many of the conclusions
drawn from these studies may not be valid. Thus, we spend the
remainder of this paper exploring nonequilibrium, nonpolar
solvation dynamics, with a particular emphasis on identifying
the reasons for the breakdown of LR. In section II, we present
some of the details of the computational algorithms and models
used for our simulations. We then start section III.A with a

detailed exploration of the LR approximation for mechanical
solute perturbations. We find that LR fails for solute size
changes, and we identify solvent translational motions as key
to the disagreement between the equilibrium and nonequilibrium
dynamics. Section III.B goes on to explore the nature of LR
for the class of perturbations expected to be most relevant to
charge-transfer reactions, that of a simultaneous change in both
solute size and charge. Although the response to changes in
charge alone is nearly linear, the interplay between solvent
translational motions resulting from the size change and those
resulting from electrostriction produces a striking nonlinearity
for combined changes in size and charge. We take advantage
of the molecular detail offered by nonequilibrium simulations
in section III.C by exploring the dynamics of the local solvation
structure following solute size-and-charge changes via radial
and angular pair distribution functions. Finally, we conclude in
section IV by pointing out that, even in polar fluids such as
water, the breakdown of LR for nonpolar solvation has important
implications for charge-transfer and other solution-phase reac-
tions.

II. Methods

In addition to the fact that there are few solvents as important
in chemistry as water, the choice of water for our solvation
dynamics simulations has the additional advantage of allowing
us to use spectral density analysis to identify the specific solvent
motions involved in relaxation. The time-dependent (equilibrium
or nonequilibrium) energy gapU(t) underlying the solvent
response functions introduced in eqs 1 and 2 above can be easily
Fourier transformed.

The resulting spectral density,I(ω), serves as a histogram of
the solvent molecular motions that participate in the relaxation,
tabulated by frequency.20 Assigning specific molecular motions
to each frequency that appears in this type of plot, which is
known as the “solvation spectrum” or “influence spectrum”, is
usually quite challenging because many of the observed motions
are intermolecular in nature. Water is unique, however, in that
it has been so well studied by both experiment and theory that
it is possible to assign particular solvent motions to each
frequency that occurs in the influence spectrum.33 The SPC
flexible-water model34 used in our simulations is characterized
by high-frequency intramolecular O-H stretching (3200-4000
cm-1) and bending motions (1800-2000 cm-1), as well as
lower-frequency intermolecular librational (∼400-1000 cm-1)
and hindered translational motions (0 to∼400 cm-1). These
lower-frequency motions can be further distinguished as inter-
molecular H-bond stretching motions (∼300 cm-1) and H-bond
bending motions (e200 cm-1).33 Thus, an examination of the
frequencies that appear in the influence spectrum will allow us
to directly assign the particular solvent motions involved in both
the equilibrium and the nonequilibrium relaxation dynamics.

The computational details of the simulations presented here
are essentially identical to those reported in our previous work
that studied the equilibrium solvation dynamics of water for
nonpolar solute changes.20 Our simulated water uses the flexible
simple point charge model (SPC/F) due to Toukan and Rah-
man.34 In SPC/F, intramolecular flexibility is grafted onto the
well-known SPC intermolecular potential,35 which consists of
Lennard-Jones (L-J) interactions centered on oxygen sites plus
Coulomb interactions between partial charges located at both

I(ω) ) | 1

x2π
∫-∞

∞
dt e-iωt[U(t) - 〈U〉]|2

(3)
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the oxygen and the hydrogen sites. The properties of this model
of water have been explored in detail and compared both to
other models and to experiment.36

The model system in our simulations consists of a cubic cell
24.66 Å on each side containing 500 classical SPC/F molecules
(solvent density of 0.997 g/mL) and one solute atom, which
has the same mass as an oxygen atom. For the solute ground
state, the water-solute interaction was chosen to be identical
to the water-water L-J potential

with the same values for the Lennard-Jonesσ andε parameters.
Thus, our ground-state solute behaves essentially as an un-
charged oxygen atom, similar to the “small” solute used by
Maroncelli and Fleming in their simulation study of dielectric
solvation in water.9 The various solute excited states in our
simulations were constructed simply: by changingσ (changing
size) in eq 4; by adding a charge to the solute, which interacts
with the solvent charges via the Coulomb potential; or by
combinations of both of these changes. Of course, electronic
excitation of a solute can also change the well depth of the
solute-solvent interaction potential (the L-Jε param-
eter);12,20,22,23,25for the discussion here, however, we will focus
solely on mechanical perturbations in the solute size. The
solute’s energy gap was computed by calculating the difference
in solvation energy (the potential energy of interaction between
the solute and all of the water molecules in the simulation)
between the ground- and excited-state interaction potentials. The
simulations employ standard periodic boundary conditions, and
all interactions were evaluated with a smooth spherical cutoff,37

terminating at a distance of 12 Å. The equations of motion were
integrated using the Verlet algorithm with a 0.5-fs time step in
the microcanonical ensemble.3 Total energy in the simulations
was conserved to better than 0.1%.

The starting point for the equilibrium simulation was obtained
by injecting the L-J solute into an equilibrated configuration
for neat water. The combined solute-solvent system was
equilibrated with velocity rescaling for 10 ps to enforce an
average temperature of 298( 10 K and then equilibrated for
an additional 20 ps without rescaling. All of the equilibrium
ensemble results were averaged over a subsequent 100-ps
ground-state trajectory.20 For this study, to best simulate
experimental conditions in which the solute is excited just when
its energy gap is resonant with a particular laser frequency, we
chose to launch nonequilibrium trajectories only when the
equilibrium gap energy was within 5% of its average value.38

Thus, we broke the ground-state trajectory into 100 equal
intervals and started each of the 100 nonequilibrium trajectories
from the first configuration in each interval that had a gap energy
equal to that of the “excitation laser”. The∼1-ps interval
between starting configurations ensures that the different
nonequilibrium trajectories are uncorrelated. The nonequilibrium
dynamics were followed for 2 ps. At the end of the nonequi-
librium runs, the system showed a temperature rise of∼10 K
for size-only changes and∼25 K for charge-only or combined
charge-and-size changes.

III. Breakdown of Linear Response for Nonpolar
Solvation

When a neutral solute is ionized in aqueous solution, the
solvation energy of the newly formed ion can be 1 or 2 orders
of magnitude larger thankT at room temperature. Given that
the LR approximation should hold only for small perturbations

(so that the relaxation from the perturbation involves the same
solvent motions that are present at equilibrium), why does the
LR approximation work as well as it does for solute charge
changes? One argument is that, because the Coulomb force
responsible for dielectric relaxation is long-range, there are a
wide variety of fluctuations throughout the solvent that couple
to the change in the solute’s charge distribution. If the number
of molecules that couple is large, then the central limit theorem
dictates that the force fluctuations will be Gaussian in nature,
thereby leading to LR. Thus, the fact that the majority of the
relaxation for solute size changes is caused by just the few
closest solvent molecules suggests that the LR approximation
is likely to fail for nonpolar solvation.20

Although nearly every simulation of dielectric relaxation
(changes in charge only) has found that LR is obeyed, Fonseca
and Ladanyi have found that LR breaks down in methanol.5 In
their simulations, Fonseca and Ladanyi modeled a dumbbell-
shaped solute that starts with a dipolar ground state and has the
dipole reversed in the excited state. These authors found that
the LR prediction agreed well with the nonequilibrium dynamics
during the inertial regime, but that the LR approximation failed
during the subsequent relaxation. Fonseca and Ladanyi reasoned
that the good initial agreement reflects the fact that the inertial
motions of the proximal O-H groups at equilibrium are the
same motions that bring about the initial nonequilibrium
relaxation, leading to LR for the inertial dynamics.5 These
inertial motions disrupt the equilibrium solvent H-bond structure
around the solute; buildup of the new solvent structure for the
excited-state solute requires slower solvent motions that are not
present at equilibrium, leading to a breakdown of LR on longer
time scales. Fonseca and Ladanyi also argued that the reason
LR holds well for dielectric solvation in solvents such as
water9,10,16or acetonitrile13 is that these solvents have an inertial
component that accounts for 60-80% of the total solvent
response, so that the LR approximation works well for the
majority of the relaxation.5 Because methanol has only one small
moment of inertia, only a small fraction (∼10%) of the
relaxation is accomplished by the inertial dynamics, leading to
the observed breakdown of LR on longer time scales.

A. Translational Phase and the Breakdown of Linear
Response for Solute Size Changes.In this section, we will
argue that, for nonpolar solvation in water, the reasons for the
breakdown of LR are quite different from those observed by
Fonseca and Ladanyi for polar solvation in methanol. We will
show not only that LR does not describe the dynamics for long-
time relaxation following size changes, but also that LR fails
during the inertial regime. In our previous paper, we found that
the (LR-predicted) amplitude of the inertial component for
nonpolar solvation isg60% of the total relaxation, similar to
that for polar solvation.20 Thus, the reason for the breakdown
of LR is not the lack of effectiveness of inertial translational
motions in causing relaxation, as would be suggested by
previous work.5-8 Rather, the LR approximation fails because
the perturbations in nonpolar solvation are extremely short-
range. What we will argue is that, with only a few molecules
strongly coupled, the inertial solvent translations that are present
at equilibrium are not the motions that cause relaxation during
nonequilibrium dynamics, leading to the failure of LR for
nonpolar solvation dynamics.

How badly does LR fail for nonpolar solvation dynamics?
Figure 1 compares the nonequilibrium solvent response function
S(t), computed via eq 1 (dotted curves), to the equilibrium
solvent responseC(t), calculated from the ground-state dynamics
via eq 2 (solid curves; same as those shown in Figure 4 of our

VL-J ) 4ε[(σr )12
- (σr )6] (4)
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previous paper20). The upper and lower panels show the solvent
response functions for a 20% solute size increase and decrease,
respectively. The strong disagreement between the two sets of
curves indicates that LR does not hold for either size increases
or size decreases. To better characterize the data, we fit all of
the solvent response functions presented in this paper to a
Gaussian plus exponential decay, with fit parameters sum-
marized in Table 1. As is clear from both the figure and the
table, not only does the LR prediction fail for the long-time
relaxation, but the inertial relaxation times differ from those
expected from LR by over a factor of 2. Even more surprising
is the fact that, for the size increase, the nonequilibrium solvation
dynamics are considerably faster than those predicted by LR
but, for the size decrease, the nonequilibrium dynamics are
substantially slower than the LR prediction.

How can we account for the large differences between the
equilibrium and nonequilibrium solvent dynamics in Figure 1?
Figure 2 shows the influence spectra underlying the solvent
relaxation for both the equilibrium (solid curves) and nonequi-
librium (dotted curves) solvent relaxation, computed via eq 3;
as with Figure 1, the upper panel is for the+20% size change,
and the lower panel is for the-20% size change. We find that
intramolecular solvent motions do not contribute to nonpolar
relaxation, so the influence spectra presented in Figure 2 are
shown only for frequencies up to 1200 cm-1. We also expect
that solvent librational motions will not be present in the
influence spectrum for solute size changes because there are
no direct interactions between the nonpolar solute and the
solvent H atoms.20

The solid curve in the upper panel of Figure 2 shows the
solvent motions present at equilibrium that strongly affect the
energy gap for the solute whose excited state is 20% larger than
the ground state. As discussed in our previous paper,20 the most
important solvent motion for modulating the solute’s energy
gap at equilibrium is the intermolecular H-bond stretch near
300 cm-1; this is fastest motion available for the translation of
an entire water molecule. Lower-frequency intermolecular
motions also contribute, but as expected, there are essentially

no contributions from solvent librations in the frequency region
above 400 cm-1. The nonequilibrium dynamics shown by the
dotted curve, however, not only have a higher amplitude of the
same low-frequency translational motions seen in the equilib-
rium dynamics but also have a significant contribution from
400-600 cm-1 librational motions. This means that solvent
librational motions, which do not affect the energy gap at
equilibrium, play an important part in the nonequilibrium
relaxation. It is the presence of these higher-frequency motions
that leads to the overall faster nonequilibrium relaxation for the
solute size increase seen in Figure 1.

Given that the solvent H atoms do not directly interact with
the solute, how can solvent librational motions affect relaxation
of the nonpolar excited-state solute? The answer lies in
translation-rotation coupling. At equilibrium, the intermolecular
H-bond stretching motions of the first-shell solvent molecules
strongly modulate the solute’s energy gap, but the amplitude
of these motions away from the solute is restricted by the
presence of the second solvation shell. When the solute is
excited, the closest solvent molecules find themselves on a
highly repulsive part of the solute-solvent interaction potential.
This means that there is a large force driving the closest
molecules outward to reestablish equilibrium. The amplitude
of the outward motions needed to cause relaxation is larger than
the translational fluctuations that are typically present at
equilibrium. The first-shell molecules, however, cannot simply
increase the amplitude of their H-bond stretching motions
because they are hindered by the presence of the second solvent
shell. When driven by the steeply repulsive potential, however,
these first-shell molecules can increase their outward motion
to better accommodate the larger excited-state solute by
reorienting (librating) to better fit between the molecules of the
second shell. Thus, translation-rotation coupling, which is not
present at equilibrium, increases the effectiveness of the
translational motions needed to relax the excited-state solute.
The signatures of this coupling are the presence of librational
motions and the increased amplitude of the low-frequency
translational motions in the nonequilibrium influence spectrum
in the upper panel of Figure 2.

In the lower panel of Figure 2, the solid curve shows the
solvent motions present at equilibrium that strongly affect the
energy gap for the solute whose excited state is 20% smaller

Figure 1. Semilog plot of solvent response functions for a Lennard-
Jones solute in SPC/F water for two different nonpolar solute
perturbations: a 20% increase in solute size (upper panel) and a 20%
decrease in solute size (lower panel). The magnitude of the size
perturbation refers to the percentage change in the Lennard-Jonesσ
parameter (eq 4). The solid curves show the LR prediction,C(t), from
eq 2; the dotted curves are the nonequilibrium relaxation,S(t), from
eq 1.

Figure 2. Influence spectra (eq 3) for both equilibrium (solid curves)
and nonequilibrium (dotted curves) solvation dynamics for a 20% solute
size increase (upper panel) and a 20% solute size decrease (lower panel).
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than the ground state, while the dotted curve shows the motions
that cause the nonequilibrium relaxation. The solid curve
indicates that the same solvent H-bond stretching motions that
modulate the equilibrium energy gap for the size increase are
also effective at equilibrium for the size decrease. The influence
spectrum for the nonequilibrium dynamics, however, shows no
sign of the 300 cm-1 H-bond stretching motion; the relaxation
is caused solely by low-frequency motions below 200 cm-1.
This means that the inertial translational motions of the closest
molecules that modulate the energy gap at equilibrium are not
able to lower the energy of the excited-state solute following
the size decrease. It is the absence of these relatively high-
frequency H-bond stretching motions that leads to nonequilib-
rium relaxation dynamics that are much slower than those
predicted by LR, as seen in Figure 1.

Why is the intermolecular solvent H-bond stretching motion,
which so effectively modulates the solute’s energy gap at
equilibrium, unable to participate in the nonequilibrium relax-
ation? The reason is that the phase of the inertial translational
solvent motions becomes important when the steeply repulsive
interaction with the solute is removed upon excitation. At
equilibrium, the first-shell solvent molecules translate back and
forth between the repulsive potentials of the solute and the
second solvent shell. When the solute contracts, however, there
is no driving force pushing the closest solvent molecules inward
to reestablish equilibrium. If the closest solvent molecules
happen to be moving away from the solute at the time of
excitation, they will continue their outward inertial motion until
they encounter the repulsion of the second-shell molecules,
delaying the inward motion necessary for relaxation for an entire
period of the H-bond stretch. This concept is illustrated in Figure
3, which shows the early-time solvation dynamics for two
individual nonequilibrium trajectories. The dot-dashed curve
showsS(t) for a trajectory for which the closest solvent molecule
happened to be moving toward the solute (v‚r < 0) at time
zero. The inward motion of this molecule continues after
excitation of the solute, leading to a Gaussian inertial relaxation
on the H-bond stretching time scale. This motion is also present
at equilibrium, and indeed, the inertial portion of this nonequi-
librium solvent response function resembles that of the equi-
librium response function presented in the lower panel of Figure
1.

The dashed curve in Figure 3, on the other hand, shows the
nonequilibrium solvent response for a trajectory for which the
closest solvent molecule happened to be moving away from
the solute (v‚r > 0) at the time of excitation. The inertial motion
continues in the outward direction, so no relaxation occurs until
either an entire cycle of the translational motion is complete or
a lower-frequency motion takes place to allow a different solvent
molecule to become the closest to the solute (Figure 3, inset).
Statistically, half the trajectories will have the closest molecule

moving toward the solute, and half will have the closest
molecule moving away from the solute at the time of excitation.
Thus, the full nonequilibrium averageS(t) presented in Figure
1 shows relaxation dynamics roughly halfway between the two
curves presented in Figure 3. Overall, because the few solvent
molecules that can cause relaxation start their inertial motions
with a random phase, the H-bond stretching motion,on aVerage,
is ineffective for promoting relaxation following the solute size
decrease. This leads to the disappearance of the H-bond
stretching feature in the influence spectrum in Figure 2, resulting
in the dominance of much lower-frequency motions in the slow
nonequilibrium solvation dynamics in Figure 1.

B. Interaction of Translational Motions from Size Changes
and Electrostriction. Although the data in Figures 1-3 provide
a great deal of insight into the molecular motions accompanying
mechanical solvation, the underlying premise of a solute that
changes only its size and not its charge distribution is not very
realistic. The change in the electronic wave function of most
solutes upon excitation usually results in a combination of a
change in dipole moment (or at least a change in quadrupole
moment32) and a change in size, the latter because of the
alteration in Pauli repulsion forces and/or molecular polariz-
ability. For aromatic solutes, the effective change in size upon
excitation can be on the order of∼10%.39 For the solutes
involved in charge-transfer reactions that undergo a change in
oxidation state, the addition or removal of electrons can make
the effective change in size even larger.40 Thus, the most realistic
case to consider is that of a solute that undergoes a simultaneous
change in both size and charge; modeling only the change in
charge or size misses a great deal of the essential physics. In

TABLE 1: Gaussian Plus Exponential Fit Parameters to Solvent Response Functions

solute perturbation C(t) or S(t)a
Gaussian

frequency(ps-1)
Gaussian
amplitude

exponential
decay time (ps)

relevant
figure

+20% size change C(t) 19 0.65 575 1
+20% size change S(t) 43 0.68 148 1
-20% size change C(t) 23 0.79 680 1
-20% size change S(t) 10 0.69 870 1
+1 charge change C(t) 104 0.62 128 4
+1 charge change S(t) 99 0.57 270 4
+1 charge/-20% size change C(t) 104 0.62 132 4
+1 charge/-20% size change S(t) 15 0.32 170 4
-1 charge/+20% size change C(t) 70 0.53 140 4
-1 charge/+20% size change S(t) 95 0.61 213 4

a Equilibrium responses,C(t), calculated from eq 2; nonequilibrium responses,S(t), calculated from eq 1.

Figure 3. Nonequilibrium solvent response functions, eq 1, computed
for two individual trajectories following a 20% decrease in solute size.
The dashed curve shows the solvent relaxation for a trajectory in which
the closest solvent molecule was moving away from the solute at the
time of excitation (W‚r > 0). The dot-dashed curve shows the solvent
response for a trajectory in which the closest solvent molecule was
moving toward the solute at the time of excitation (W‚r < 0). Inset:
S(t) for the sameW‚r > 0 trajectory as in the main figure but on a
longer time scale.
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our previous paper, we explored the equilibrium solvent
dynamics for coupled size-and-charge changes and found that
the nature of the solvent response depends on both the
magnitude and the sign of the size and charge changes
involved.20 Given that we have just shown that there is a strong
nonlinearity associated with solute size changes, the nonequi-
librium solvent response to combined size-and-charge changes
is likely to be quite different from that predicted in our previous
paper using LR.20 Thus, in this section, we explore the way in
which the nonequilibrium solvation dynamics for solute size
and charge changes couple together.

How well does LR work for combined size-and-charge
changes? Figure 4 compares the equilibrium solvent response
functionC(t) (solid curves; same as in Figure 6 of our previous
paper20) to the nonequilibrium solvent responseS(t) (dotted
curves) for two realistic cases: that of a neutral solute that is
ionized, resulting in a 20% size decrease (upper panel), and
that of a neutral solute that gains an electron, resulting in a
20% size increase (center panel). The lower panel shows the
equilibrium (solid curve) and nonequilibrium (dotted curve)
solvent response functions for the case explored by most
previous simulation studies:5-11,13-15 that of a change in solute
charge without an accompanying change in size. For this latter
case, other than slightly overestimating the magnitude of the
inertial component, LR does an excellent job of predicting the
nonequilibrium solvent response (Table 1), in agreement with
the previous work of Maroncelli and Fleming.9 When the same
+1 charge change is combined with a-20% size change,
however, the upper panel makes clear that LR fails dramatically.
For the nonequilibrium relaxation of the combined charge/size
decrease, the inertial amplitude, inertial frequency, and subse-
quent relaxation decay rate all decrease significantly relative
to the LR prediction (Table 1). The breakdown of LR is more
subtle for the complementary case of a-1 charge change
combined with a 20% size increase, as shown in the center panel.
For this case, the two solvent response curves appear to be in

roughly good agreement and to have similar inertial amplitudes,
but the inertial frequency of the nonequilibrium solvent response
increases by 35% and the diffusive relaxation time increases
by a factor of 2 relative to the LR prediction (Table 1).

The data in Figure 4 present some interesting challenges in
terms of understanding the breakdown of LR. First, why do
the inertial frequency and amplitude decrease relative to the
LR prediction for size decreases but increase relative to the LR
prediction for size increases? Part of this effect is that the
nonlinearity observed above for size-only changes carries
through to the case of combined size-and-charge changes. The
differences betweenS(t) andC(t) in Figure 4, however, are not
the same as those seen for the size-only changes in Figure 1,
indicating that the mechanical and dielectric solvent responses
must be coupled together. Second, given the energetics involved,
why is the LR prediction for solute size decreases so much
poorer than that for size increases? Our expectation would have
been that the nonlinearity associated with the size decrease
would play only a minor role in the combined size-and-charge
change, because the solvation energy associated with a-20%
size change is much smaller than that associated with a+1
charge change.20 We also would have expected the nonlinearity
to be more important when the size increases, because the
solvation energies associated with each of the+20% size and
-1 charge changes are comparable.20 Instead, Figure 4 shows
the reverse to be true, again indicative of a coupling between
the solvent motions responsible for polar and nonpolar solvation.

Insight into the nature of the coupling between the dielectric
and mechanical solvation responses can be found by investigat-
ing the dynamics of the individual energy levels (not the gap)
of the solute following excitation, shown in Figure 5, and their
corresponding influence spectra, shown in Figure 6. The solid
curves in each panel of Figures 5 and 6 display the evolution
of the solvation energy of the (occupied) excited-state solute
for the same three perturbations shown in Figure 4. The dotted

Figure 4. Solvent response functions for a variety of solute perturba-
tions: positive change in charge with a simultaneous 20% size decrease
(upper panel); negative change in charge with a simultaneous 20% size
increase (center panel); and positive change in charge with no change
in size (lower panel). The solid curves show the LR prediction,C(t),
from eq 2; the dotted curves are the nonequilibrium relaxation,S(t),
from eq 1.

Figure 5. Nonequilibrium dynamical history of the individual unoc-
cupied ground (dashed curves) and occupied excited (solid curves)
energy levels for a variety of solute perturbations: positive change in
charge with a simultaneous 20% size decrease (upper panel); negative
change in charge with a simultaneous 20% size increase (center panel);
change in charge with no change in size (lower panel). The difference
between the two curves in each panel is the energy gap used to compute
the nonequilibrium solvent response functions shown in Figure 4.
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curves in each panel show the evolution of the energy of the
(unoccupied) neutral ground state as the solvent responds to
the excitation of the solute; the difference between the two
curves in each panel is the energy gap used to compute the
correspondingS(t) values in Figure 4. All three panels in Figure
5 are shown on the same absolute scale, so the magnitudes of
the energy level changes for the different perturbations can be
directly compared. They axes in the three panels in Figure 6,
however, have been scaled relative to one another to emphasize
the shapes of the spectra in each panel and thus are not
comparable on an absolute scale. The most striking feature of
Figures 5 and 6 is that the relaxation of the occupied state for
each of the three perturbations is remarkably similar. This means
that the impetus for solvating the excited state comes from the
newly appeared charge on the solute; combining the charge
change with either a positive or negative size change makes
little difference in the driving force for relaxation of the new
charge distribution. Thus, the differences in the overall solvent
response associated with solute size changes, including the
reasons for the breakdown of LR, lie primarily in the dynamics
of the unoccupied ground state.

In contrast to the relaxation of the occupied state, the
unoccupied ground-state dynamics differ markedly depending
on the size change of the solute. The reason for this variation
involves a competition between different types of solvent
translational motions: those responding to the solute’s size
change and those resulting from electrostriction. For the solute
that is 20% smaller than the ground state and whose excited state
has a+1 charge (Figures 5 and 6, upper panel), these motions
must work cooperatively because the decreased size and the
attractive ion-dipole forces work together to pull the first
solvent shell in toward the solute. The net result is that the
closest first-shell solvent molecules must translate inward by
more than 20% of a solute radius to reestablish equilibrium
around the charged excited-state solute, as discussed in more

detail in the next section. This inward motion places these
molecules far up the 1/r12 repulsive core of the original ground
state interaction potential, leading to a rise in the energy of the
unoccupied state that is comparable to the magnitude of the
relaxation of the excited state. It takes some time, however, for
the first of these molecules to translate inward far enough to
significantly affect the energy of the unoccupied state. Thus,
the energy of the unoccupied state remains flat for∼50 fs before
becoming destabilized by the presence of additional molecules
inside the ground-state repulsive core (dotted curve, upper panel
of Figure 5). The fact that different types of solvent motions
are involved in the relaxation of the occupied and unoccupied
states is emphasized in the upper panel of Figure 6. The solid
curve makes clear that the relaxation of the occupied state is
dominated by fast (∼800 cm-1) rotational motions as if only
the charge had changed (cf. lower panel). The dotted curve
shows that the destabilization of the unoccupied state is driven
by slower (∼300 cm-1) solvent translational motions. In terms
of the validity of LR, it is easy to see that this type of
destabilization of the ground state is not represented by any of
the solvent motions at equilibrium;kT at room temperature is
far too small for there to be any inward translational fluctuations
of this magnitude. Thus, the breakdown of LR results from the
fact that the solvent translational motions necessary to complete
the nonequilibrium relaxation are simply not present at equi-
librium.

The lower panels in Figures 5 and 6 show why LR works
reasonably well for the case of purely dielectric solvation. As
expected for the solvent response to a change in charge, the
rapid inertial decay and subsequent oscillations in Figure 5 show
that relaxation of the occupied state involves solvent librational
motions, which also can be seen in the frequency domain in
Figure 6 (solid curves). This reorientation of solvent molecules,
however, has no effect on the energy of the uncharged ground
state. Thus, the energy of the unoccupied ground state remains
flat, except for the small “glitch” that occurs just after 200 fs
(Figure 5, dotted curve). As documented previously by Rao and
Berne41 and also explored in the next section, this glitch results
from the electrostriction associated with the charge change; it
takes∼200 fs for the closest molecules to translate inward to
establish the new local solvent structure, leading to a (relatively
small) destabilization of the ground state. This delayed rise in
the unoccupied state energy is manifested in the influence
spectrum as a small peak at very low frequencies (dotted curve,
Figure 6). Again, because of the steepness of the ground-state
solute-solvent interaction potential, these types of inward
translational fluctuations are not accessible at equilibrium. Thus,
for the nonequilibrium dynamics, the destabilization of the
unoccupied state results in an “extra” component in the
relaxation of the energy gap that is not described by the
fluctuations at equilibrium. This means that LR overestimates
(albeit only slightly) the magnitude of the initial relaxation for
the charge-only change. The overestimate arises because the
LR prediction assumes that the motions available at equilibrium
are all that are necessary for complete relaxation of the energy
gap, but for the nonequilibrium dynamics, these motions provide
only part of the total relaxation. The amount of the overestimate
is the extra fraction of the final, nonequilibrium energy gap
caused by the solvent translational motions that are not present
at equilibrium. This idea that both solvent reorientation and
electrostriction are important in ionic solvation is also consistent
with theory.42

The center panels of Figures 5 and 6 show what happens for
the case of a solute that gains an electron and undergoes a 20%

Figure 6. Influence spectra for the nonequilibrium dynamics of the
individual unoccupied ground (dashed curves) and occupied excited
(solid curves) energy levels for a variety of solute perturbations:
positive change in charge with a simultaneous 20% size decrease (upper
panel); negative change in charge with a simultaneous 20% size increase
(center panel); and positive change in charge with no change in size
(lower panel). These curves are Fourier transforms of the corresponding
time-domain energy level curves presented in Figure 5.
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increase in size. Here, the outward translational solvent motions
that accompany the solute size increase are partially offset by
the inward solvent motions associated with electrostriction. As
a result, very little translational motion of the first solvent shell
is needed to cause relaxation, as documented in more detail in
the next section. Indeed, the dashed line in Figure 5 is flat (and
the corresponding spectral amplitude in Figure 6 is extremely
small), indicating that excitation has not changed the distance
between the solute and the first solvent shell enough to
significantly affect the energy of the unoccupied state. Thus,
unlike the previous two cases, the slight nonlinearity in the
solvent response for the-1 charge/+20% size change does not
result from the presence of nonequilibrium translational motions
that affect the energy of the unoccupied state. Instead, the
breakdown of LR arises for the same reason as that for the
+20% size-only increase discussed above: the outward motions
necessary to accommodate the size change are assisted by
translation-rotation coupling not present at equilibrium, as
evident in the enhanced amplitude between 400 and 600 cm-1

in the excited-state influence spectrum in the center panel of
Figure 6. A comparison of Figures 4 and 1, however, shows
that the nonlinearity for the combined size-and-charge change
is smaller than that for the size-only change. We identify two
reasons for why the breakdown of LR is less severe for the
combined size-and-charge change. First, for the combined
change, the amount of outward translational motion needed to
cause relaxation is partially balanced by electrostriction. This
reduces the need for solvent translation relative to the size-only
change, requiring less translation-rotation coupling. Second, a
significant fraction of the solvation energy for the combined
size-and-charge change results from the appearance of the
charge.20 This means that solvent rotations, which, as discussed
in the preceding paragraph, produce an essentially linear
response, play an enhanced role in the relaxation for the
combined change relative to the size-only change. In combina-
tion, the decreased emphasis of translational motions and the
increased relative importance of solvent rotations result in a
LR prediction that only slightly underestimates the rate of the
inertial nonequilibrium relaxation, as observed in Figure 4.

Finally, it is worth emphasizing that the breakdown of LR
described here for combined size-and-charge perturbations
results directly from the steepness of the solute-solvent
interaction potentials involved in mechanical solvation. Many
authors have noted that response functions based on the
equilibrium fluctuations of the excited-state solute energy level,
rather than on the energy gap, often provide good predictions
for nonequilibrium dynamics.2,5,9 The reasoning is that, unlike
the equilibrium fluctuations that affect the energy gap, the
fluctuations that affect just the excited state will capture more
of the character of the solvent motions involved in the excited-
state nonequilibrium relaxation. Thus, use of excited-state
equilibrium fluctuations to predict nonequilibrium dynamics
works well for charge-only changes because the same librational
motions involved both at equilibrium and during the nonequi-
librium dynamics cause relaxation of the charged state without
significantly affecting the neutral solute ground state. If a
significant portion of the dynamics of the nonequilibrium energy
gap comes from changes in the unoccupied-state energy,
however, this type of argument is bound to fail. Figures 5 and
6 make clear that, for the realistic perturbations involving
changes in both size and charge, neither the equilibrium
fluctuations of the excited state nor those of the gap are sufficient
for predicting the nonequilibrium dynamics. This is because the
solvent motions that cause nonequilibrium relaxation are not

present at equilibrium. This is a violation of the LR approxima-
tion in the most basic sense: the perturbations involving size
changes are “large” enough not to be describable by equilibrium
solvent motions, even for the inertial dynamics.

C. Molecular Structure Evolution Associated with Non-
polar Solvation Dynamics. Throughout this paper, we have
contended that, when the size and charge of a reactant change
during an electron-transfer reaction, the different types of solvent
motion present at equilibrium are not equally effective in
relaxing and stabilizing the product. The spectral density
analyses presented in Figures 2 and 6 argue that the solvent
rotational motions present at equilibrium are effective in
accommodating the new charge of the solute but that the solvent
translational motions present at equilibrium are not effective at
adapting to the new solute size. Although the spectral density
analysis provides a great deal of insight, all of the conclusions
rely on assumptions as to which specific solvent motions take
place at particular frequencies. Thus, in this section, we take
advantage of the molecular detail offered by nonequilibrium
simulations to explore the way in which the local solvent
structure evolves following changes in solute size and charge.

Figure 7 shows how the solute oxygen radial distribution
function [gsol-O(r)] evolves for the first 100 fs following
excitation for the same three perturbations considered in Figures
4-6. Each radial distribution function is computed by averaging
10 consecutive configurations per trajectory over the 100
nonequilibrium trajectories, for a total of 1000 configurations.
For example, the dotted curves marked “15 fs” are a nonequi-
librium ensemble average of the dynamical configurations
between 10 and 20 fs after each perturbation. The solid curve
in each panel showsgsol-O(r) for the equilibrium solute before
excitation. Figure 8 shows the data of Figure 7 in a different
way: the distance at which the radial distribution function has

Figure 7. Time-dependent solute-solvent oxygen atom radial distribu-
tion functions [gsol-O(r)] showing the change in solvent structure
following a variety of solute perturbations: positive change in charge
with a simultaneous 20% size decrease (upper panel); negative change
in charge with a simultaneous 20% size increase (center panel); and
positive change in charge with no change in size (lower panel). Each
curve is an average over 10 fs of dynamics; see text for details. The
heavy solid curve is the equilibrium radial distribution function; the
dashed and dotted curves show the nonequilibrium radial distribution
function at different times after excitation.
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its maximum value after the solvent has equilibrated around
the excited-statesolute,rmax, is determined, and the value of
the radial distribution function at this distance,g(rmax), is plotted
as a function of time following excitation. Thus, each trace in
Figure 8 shows how long it takes to reestablish the first solvent
shell around the solute following each of the three perturbations.

The effects of electrostriction are most clearly seen in the
lower panels of Figures 7 and 8, which show the evolution of
gsol-O(r) resulting from the addition of charge to the solute.
Immediately following excitation, Figure 7 shows that the first
solvent shell moves inward toward the solute, with the closest
solvent molecule [the “turn-on” point ing(r)] moving in from
2.7 Å to a distance of 2.4 Å after∼100 fs, a finding similar to
that of the previous work of Rao and Berne.41 This inward
translational motion has little effect on the energy of the
occupied state but causes a small destabilization of the ground
state once the closest molecules have translated inside the
repulsive part of the ground-state potential. Figure 8 shows that
it takes∼200 fs before the new solvent structure around the
charged solute is fully established, leading to the small delayed
glitch in the unoccupied-state energy seen in Figure 5. Figure
7 also shows that, as far as the local solvent structure around
the small solute is concerned, electrostriction is equivalent to a
size decrease of∼15%. Thus, the destabilization of the ground
state takes place slowly following excitation for exactly the same
reasons that relaxation takes place slowly for a size-only
decrease: there is only a small driving force for inward motion,
and averaging over the phase makes the fastest inertial
translational motions ineffective in promoting relaxation.

The upper panels in Figures 7 and 8 show what happens when
the change in charge is accompanied by a 20% size decrease.
For this case, the closest solvent molecules move inward from
a distance of∼2.7 Å to within 1.8 Å of the solute in the first
100 fs following excitation, an effective size decrease of∼35%.

This means that the solvent translational motions needed to
accommodate the excited-state solute, both those resulting from
the size decrease (-20%) and those resulting from electros-
triction (approximately-15%), are roughly additive. The fact
that the closest first-shell molecules travel so far inward causes
the large destabilization of the unoccupied ground state. Figure
8 shows that the distance the first-shell molecules need to
translate is so large that essentially none of them have reached
their new equilibrium position after 50 fs. Even after 400 fs,
the new equilibrium structure is not completely established; as
argued above, some of the molecules were moving the wrong
way at the time of excitation. This leads to a relaxation of the
energy gap that is much slower than that predicted by LR, as
seen in Figure 4.

The center panels in Figures 7 and 8 show the local structural
changes for the case in which the solute gains an electron and
increases its size by 20%. For this perturbation, the closest
molecules move outward, from∼2.7 to ∼2.9 Å, in the first
100 fs following excitation. This is a net outward expansion of
∼7%, again indicating a roughly additive relationship between
the inward translational motions resulting from electrostriction
(approximately-15%) and the outward motions resulting from
the size increase (+20%). The net increase in solute size means
that there is a large force pushing the first-shell solvent
molecules away from the solute. This force acts on the first-
shell molecules whether they are moving in the correct direction
or not, driving the first-shell molecules to rotate slightly to better
fit within the second shell. Thus, the initial outward expansion
of the first shell takes place quickly, as verified by both Figures
7 and 8, so that translation-rotation coupling results in solvent
relaxation that is only slightly faster than that predicted by LR
(Figure 4). Because the translational motions for electrostriction
and for the size increase are nearly balanced, however, relatively
little net translation of the first solvent shell is required. This
means that the final (radial) solvent structure is not very different
from the initial equilibrium structure (Figure 7), so that the
breakdown of the LR prediction is relatively minor.

Finally, Figure 9 shows the angular distribution of the first-
shell solvent molecules around the solute as a function of time
for the same perturbations studied in Figures 4-8. The angle
under consideration here is that between the water molecule
dipole moment vector (µ) and the radial vector connecting the
solute and solvent oxygen atom (r ). The angular distributions
are computed using only those solvent molecules within 5 Å
of the solute; thus, contributions are averaged only from the
12-18 closest molecules at each time step. Like the time-
dependent g(r) values in Figure 7, each trace combines 10 fs of
dynamics per trajectory and is ensemble averaged over the 100
nonequilibrium trajectories. The heavy solid curve in each panel
shows the equilibrium angular distribution around the neutral
solute. The slight peak near cos(µ‚r ) ) 0.4 in the equilibrium
distribution is indicative of hydrophobic hydration; to maintain
favorable hydrogen bonding, the first shell water molecules form
a clathrate-type structure, directing their H-bonds tangentially
around the nonpolar ground-state solute.9,43 The changes in
angular distribution with time seen in Figure 9 reflect the loss
of hydrophobic hydration and the corresponding buildup of an
ionic solvation structure around the newly charged solute.

The upper and lower panels of Figure 9 show the changes in
the first-shell angular distribution when the solute gains a
positive charge with (upper panel) or without (lower panel) an
accompanying 20% size decrease. For both cases, the initial
hydrophobic solvent structure is destroyed and the new first-
shell ionic solvation structure, characterized by a peak near cos-

Figure 8. Time dependence of the value of the solute-solvent oxygen
radial distribution function evaluated at the distance at which the
function is a maximum after the excited-state relaxation is complete,
gsol-O(rmax)[t], for a variety of solute perturbations: positive change in
charge with a simultaneous 20% size decrease (upper panel); negative
change in charge with a simultaneous 20% size increase (center panel);
and positive change in charge with no change in size (lower panel).
The value ofrmax for each case is shown; cf. the first 100 fs of each
curve to Figure 7.
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(µ‚r ) ) 0.7, is nearly fully developed within the first 50 fs
following excitation. The solvent molecule librational oscilla-
tions seen in Figures 4 and 5 are also visible in Figure 9; the
probability of finding solvent molecules oriented with cos(µ‚r )
) 0.7, for example, clearly oscillates in time. Overall, the
angular relaxation of the first-shell solvent molecules is es-
sentially identical for both the charge change and the combined
charge change/size decrease. The similar relaxation dynamics
in the two cases support the conclusions presented above in
conjunction with Figure 6, namely, that the same solvent
rotational motions are responsible for causing relaxation around
a newly charged solute independent of whether the solute’s size
changes. This produces a similar relaxation of the occupied state
for both cases; the differences in the relaxation of the energy
gap result primarily from the way in which the corresponding
change in size affects the unoccupied state (Figure 5).

The center panel in Figure 9 shows the time-dependent
angular distribution for the first-shell solvent molecules when
the solute becomes negatively charged and increases in size.
There are two significant differences between this case and those
shown in the upper and lower panels, in which the charge change
is positive. First, the new ionic solvent structure for the
negatively charged solute has the solvent H atoms pointing
toward the solute, cos(µ‚r ) ) -0.9, instead of the other way
around. Second, the disruption of the equilibrium hydrophobic
solvent structure and the establishment of the new ionic solvation
structure are slightly faster than those seen in the other two
panels where there is a net size decrease. As discussed above,
the expansion of the solute applies a large force to the first-
shell molecules, forcing these molecules to rotate to better fit
between the second-shell molecules to accommodate the new
solute size. This large driving force causes the equilibrium

solvent structure to dissipate in the first 10-20 fs after
excitation, leading to an overall relaxation that is slightly faster
than that when there is a net inward solvent motion due to
electrostriction or a solute size decrease. Overall, the data in
Figures 7-9 support the conclusions drawn from Figures 4-6,
verifying the usefulness of spectral density analysis for the study
of solvation dynamics in water.

IV. Discussion

In this paper, we have used molecular dynamics simulations
to explore the reasons for the breakdown of the LR approxima-
tion in water for realistic perturbations that involve changes in
solute size as well as charge. We find that LR predictions of
mechanical solvation dynamics fail because the solvent trans-
lational motions involved in relaxing the excited-state solute
are not present at equilibrium. For solute size increases, LR
fails because the steepness of the solute-solvent interaction
potential associated with the sudden expansion of the solute
drives the first-shell solvent molecules into the second shell.
The resulting relaxation takes advantage of translation-rotation
coupling to utilize solvent motions that do not occur at
equilibrium, resulting in faster solvation than that predicted by
LR. For solute size decreases, on the other hand, the failure of
LR results from the fact that relaxation requires motions of
solvent molecules into the region formerly occupied by the
ground-state solute. These motions destabilize the energy of the
(unoccupied) ground state by an amount that is tens or hundreds
of times larger thankT; there is no way these motions could be
represented at equilibrium. Moreover, the solvent molecules that
are most important in relaxation, those closest to the solute,
are just as likely to be moving away from the solute as toward
it at the time of excitation, leading to solvation dynamics that
are much slower than those predicted by LR.

We also found that the nonlinearity of the solvent response
can be exacerbated when the size and charge of the solute
change simultaneously. Unlike translational motions, the rota-
tional solvent motions that accompany solute charge changes
are present at equilibrium, resulting in a solvent response that
is nearly linear when solvent librations dominate the relaxation.
The electrostriction resulting from a change in charge also
requires solvent translational motions for relaxation; for the
small solute considered here, these electrostrictive motions are
equivalent to a∼15% size decrease. For cases in which the
size of the solute also changes, the solvent translational motions
required to accommodate the new charge and new size of the
solute turn out to be roughly additive. When the charge change
is combined with a size increase, the effects of electrostriction
and solute expansion nearly cancel, so that little net solvent
translational motion is required. For this case, rotational motions
dominate the solvent response, and LR would work reasonably
well if the subtleties of the small outward solvent translational
motions associated with the net size increase were ignored. For
charge changes combined with solute size decreases, on the other
hand, electrostriction mandates that additional inward solvent
translations beyond those required for the size decrease are
necessary to reestablish equilibrium. The requirement of ad-
ditional solvent translational motions that are not present at
equilibrium results in a massive breakdown of LR.

It is interesting to compare the breakdown of LR that we see
for the combined size-and-charge changes to that observed in
previous works. Ando and Kato have explored the aqueous
solvation dynamics for a model of dimethylaniline in which
both the charge distribution and the Lennard-Jones interaction
potential changed upon excitation.12 Ando and Kato found,

Figure 9. Time-dependent solvent angular distribution functions
showing the change in solvent structure following a variety of solute
perturbations: positive change in charge with a simultaneous 20% size
decrease (upper panel); negative change in charge with a simultaneous
20% size increase (center panel); and positive change in charge with
no change in size (lower panel). The relevant angle is that between the
solvent dipole vector (µ) and the radial vector between the solute and
solvent (r). Each curve is an average over 10 fs of dynamics for those
solvent molecules within 5 Å of the solute; see text for details. The
heavy solid curve is the equilibrium angular distribution; the dashed
and dotted curves show the nonequilibrium angular distribution at
different times after excitation.
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however, that the LR approximation worked remarkably well
for their system. These authors noted that there was essentially
no change in the local solvent structure upon excitation of their
solute,12 a situation similar to our case of the solute that becomes
negatively charged with a size increase. Thus, as argued above,
because little solvent translation is required for relaxation, the
resulting solvation dynamics fall within the linear regime. Other
examples of nonlinear solvation dynamics have appeared in
studies of solvent mixtures.7 In mixtures, the ground state of
the solute is preferentially solvated by one component of the
mixture, while the excited state may be preferentially solvated
by the other component. This means that significant rearrange-
ment of the first solvent shell is required to relax the excited
state, requiring solvent motions that are not present at equilib-
rium.

Although we have focused the simulations in this paper on
ionization of a neutral solute, many charge-transfer reactions
involve further ionization or neutralization of already-charged
solutes. The rough additivity of the solvent translational motions
responding to solute size and charge changes allows us to make
some general predictions regarding the solvent response for a
wide variety of charge-transfer reactions. Consider the case of
a reactant with a+1 charge that serves as the donor in an
electron-transfer reaction, so that the product is a solute with a
+2 charge that is slightly smaller in size than the reactant. The
solvent around the reactant is already favorably oriented to
accommodate a positive charge, so that solvent librational
motions will play a lesser role in the relaxation when the charge
is increased. Instead, we expect the bulk of the relaxation to
result from inward solvent translational motions responding to
both the increased electrostriction and the decreased size of the
product. Thus, based on the above results, we anticipate slow
solvent relaxation dynamics for this type of ionization. A similar
prediction can be made for the case of a positively charged
solute that is neutralized during the course of a reaction. Here,
the loss of electrostriction is equivalent to a solute size increase,
an effect that could be compounded by the fact that gaining an
electron likely causes the neutral product to become larger than
the parent cation. For this case, we would predict rapid solvent
relaxation because of the large driving force for outward solvent
translational motion. An MD simulation corresponding to
exactly this case has already been done by Maroncelli and
Fleming;9 indeed, Figure 20 of ref 9 shows that the nonequi-
librium solvent response following neutralization of an ionized
solute is significantly faster than the reverse reaction in which
a neutral solute is ionized. Finally, recent work exploring the
charge-transfer-to-solvent (CTTS) dynamics of the sodium anion
in THF have found that the time scale for charge transfer is
significantly slower than that for dielectric solvation.44 This is
consistent with the idea of slow solvation resulting from the
large size decrease of the solute associated with the detachment
of the CTTS electron.

Even though the small solute in our simulations does not
resemble the reactants studied in common charge-transfer
systems, we expect its solvation behavior to be representative
of small chemical groups in large molecules of interest. In our
previous paper, we found that the solvent response for solute
shape changes was nearly identical to that for changes in overall
solute size.20 This is a direct consequence of the fact that motions
of only one or two molecules are important in mechanical
relaxation, so that an expansion of the solute in one direction
behaves locally as if the entire solute had expanded by the same
amount. Thus, because most charge-transfer reactions involve
a change in the size or shape of the reactant, we expect that the

observations made for the simple solute studied here will be
applicable to electron-transfer reactions in more complex
molecular systems. Of course, the mechanical interactions
driving solvation dynamics for a local size change in a large
molecule make up a much smaller fraction of the total solvation
energy than those for a size change in the small atomic solutes
considered here. This means that, even though we predict a
breakdown of LR whenever size changes are involved, the
failure of LR should become somewhat less severe in larger
systems.

Finally, the nonlinearity of the solvent response has important
implications for many previous studies of solvation dynamics
in the literature. It is not clear, for example, that LR predictions
should be used when studying the density dependence of
nonpolar solvation dynamics;25 the nonlinear nature of nonpolar
solvation dynamics may cause the nonequilibrium solvent
relaxation to scale in a different way with density than would
be predicted from equilibrium simulations. The nonlinearity
associated with size changes also has implications for spectro-
scopic studies of solvation dynamics. The solvation dynamics
that are measured in transient hole-burning or line-shape
experiments result from the solvent fluctuations present at
equilibrium for the solute in its ground state. Solvent response
functions determined from the time-dependent fluorescence
Stokes shift,2 on the other hand, are sensitive to the nonequi-
librium relaxation of the energy gap following excitation of the
solute. Photon-echo measurements involve an even more
complex solvent response to the presence of an electronic
coherence between the ground and excited electronic states of
the solute.2,45 This means that, for photochemical reactions in
which the reacting species undergo appreciable size changes,
different types of experiments will measure different relaxation
processes. Thus, it makes sense to use an equilibrium solvent
response function to calculate a line shape22,23 and to use
nonequilibrium solvation dynamics to understand time-depend-
ent fluorescence experiments.14,46 It is not clear, however, that
it is legitimate to compare the results of hole-burning experi-
ments to time-dependent fluorescence (or photon-echo) experi-
ments when changes in solute size are involved29-31 because
of the intrinsic nonlinearity of the solvent response. Overall,
given the general importance of solute size changes in charge-
transfer reactions, theories of electron-transfer based on the LR
approximation may not be valid. Moreover, when comparing
different simulation and experimental results, care must be taken
to ensure that the different methods under consideration are
measuring the same solvent relaxation dynamics.
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