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The importance of quantum mechanical exchange in determining the electronic properties of molecules has
long been appreciated. Less attention has been paid, however, to how exchange affects the properties of
quantum mechanical objects in the presence of a solvent. How important are spin statistics in determining the
structure and dynamics of such objects? For instance, do fully solvent-supported single-electron states, such
as solvated electrons, interact with each other in such a way that quantum mechanical exchange and correlation
must be taken into account? That is, does the Pauli exclusion principle enhance or supress the formation of
bound pairs of solvated electrons, so-called bipolarons, and what role does the solvent play? We have
approached this question by performing mixed quantum/classical molecular (QM/CM) dynamics simulations
of two excess electrons solvated by bulk liquid water. The mixed QM/CM molecular dynamics is performed
at the level of the Born-Oppenheimer approximation, so that the water motions obey classical mechanics
and the electronic degrees of freedom evolve on the ground state adiabatic energy surface. The two-electron
adiabatic eigenstates are calculated with full configuration interaction (CI) using a highly efficient real-space
method that we have recently introduced (Larsen, R. E.; Schwartz, B. J.J. Chem. Phys.2003, 119, 7672) to
compute the Coulomb and exchange interaction energies. Our calculations show that two excess electrons
form dielectrons, that is, they are confined by the solvent to a single cavity for both singlet and triplet pairing
of the electron spins. When the electrons’ spins are singlet paired, the dielectron is confined to an aspherical,
“potato-shaped” cavity, whereas when the electrons’ spins are triplet paired, the dielectron occupies a “peanut-
shaped” cavity. We find that in both cases water molecules in the first solvation shell solvate the hydrated
dielectron by pointing one of their O-H bonds directly toward the charge, just as occurs with a single hydrated
electron. We examine the time evolution of various dielectron properties and compare and contrast the dielectron
dynamics with the dynamics of a single hydrated electron. Finally, taking advantage of the fact that our CI
calculation generates both ground and excited states, we have computed the optical absorption spectra of
both singlet and triplet dielectrons. We discuss the significance of the predicted optical absorption spectra for
the possible direct spectroscopic observation of hydrated dielectrons.

I. Introduction

The properties of quantum mechanical objects dissolved in
liquids are of great importance for understanding chemical
reaction dynamics in solution. Charge-transfer reactions, for
instance, involve nontrivial changes in electronic structure (a
fundamentally quantum mechanical construction), but the likeli-
hood of these transfers can end up controlled by the largely
classical dynamics and thermodynamics of the solvent.1 This
leads to a key question: how does the classical many-body
dynamics of a solvent combine with the quantum dynamics of
electrons to determine the physical properties of the quantum
mechanical object? Much of the theoretical and simulation work
aimed at answering this question has concentrated on the
properties of an excess electron dissolved in a liquid.2-8 From
a theoretical viewpoint, a single solvated electron is the
canonical case because it provides the simplest possible example
of a quantum object interacting with a solvent.

In addition to being the simplest possible quantum solute,
solvated electrons are ideal candidates for study because their
properties are wholly determined by the solvent, and they will
thus be acutely sensitive to the properties of the liquid in which
they are dissolved. For instance, in nonpolar solvents such as

xenon, electrons occupy a rather large volume and are ultimately
confined only by disorder-induced localization to a region
typically spanning many atomic diameters.4 Polar solvents, on
the other hand, confine the electron to a much smaller region,
and the electron consequently exerts a strong influence on its
local environment.9 In this paper, we focus on electrons
dissolved in the most important polar solvent, water. Early
theories of the solvated electron in a polar solvent treated the
solvent as a dielectric continuum,3 but the subsequent use of
path-integral methods5 allowed molecular details of the solvent
to be included in calculations of ground-state properties of the
solvated electron. The zeroth-order picture that arose from these
calculations is that the electron is a hydrophobic species that
carves out a spherical cavity and is stabilized by the polarization
of the surrounding solvent; the eigenstates of the hydrated
electron are roughly those of a particle in a finite spherical box.
This picture is supported by mixed quantum/classical (QM/CM)
molecular dynamics simulations,6,7 which have reproduced both
the steady-state and ultrafast spectroscopic properties of the
hydrated electron. In addition, recent resonance Raman spectra
also provide strong support for the cavity model of the hydrated
electron.10

One of the great appeals of treating the solvated electron
within a mixed QM/CM formalism is that there is only a single
QM degree of freedom. Thus, the electronic properties are
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determined by a competition between the Heisenberg uncertainty
principle, which drives the electron to spread out, and the solvent
polarization, which responds to keep the electron localized. This
simplicity, however, does not apply to more complex systems,
such as those with more than one interacting electron, because
of the challenge of correctly treating QM exchange and
correlation. For example, there have been hints that QM
exchange effects must be included to correctly treat electron
detachment from (multielectron) atoms dissolved in liquids,11

but up to now there has been relatively little examination of
how exchange effects manifest themselves in the context of
liquid-phase solvation.12

In this paper, we will explore the role of exchange in the
properties of solvated quantum objects by studying the simplest
conceivable system that can show the effects of quantum
mechanical exchange: two electrons dissolved in liquid water.
One can envision two qualitatively different possibilities for how
the two electrons might behave. The two electrons might repel
each other and end up as two independent solvated electrons,
thus minimizing their Coulomb repulsion at the expense of
creating two cavities in the solvent. On the other hand, the
hydrophobicity of the electrons might drive the two electrons
into a single cavity, forming a bound bipolaron, even though
the electrons strongly repel each other. In fact, early continuum
calculations suggested that solvent polarization should be able
to overcome the electron-electron Coulomb repulsion so that
both electrons will occupy a single cavity, forming what has
been called either a bipolaron ordielectron.15 In the early 1990s,
this type of bipolaron formation was seen in Car-Parinello
studies of excess electrons in NH3

13 as well as in simulations
of electrons in molten KCl.14 Moreover, spin density functional
theory (DFT) calculations showed the existence of two distinct
types of dielectron in water clusters.24

Although the DFT-based calculations suggest that bound
dielectrons do exist in polar liquids,13,14,24the accuracy of the
results, as with all DFT calculations, is limited by the choice
of exchange-correlation functional. Furthermore, ground-state-
only DFT-based calculations do not allow for the prediction of
observables that depend on electronic excited states, such as
the absorption spectrum, and thus such calculations have not
been able to make contact with experiment. With recent
advances in computer technology, we believe the time has come
to revisit this model problem and explore the effects of QM
exchange in condensed-phase dynamics. Thus, we study both
spin-singlet and spin-triplet solvated dielectrons using mixed
QM/CM molecular dynamics. We solve the full two-electron
quantum problem using our recently introduced real-space
configuration interaction (CI) with important states method.16

The method is efficient enough to allow us to compute the
electronic structure at every time step of a molecular dynamics
trajectory, and because CI generates excited-state wave func-
tions, the method also lets us make the first ab initio predictions
of the absorption spectrum of this two-electron solvent-supported
species.

The rest of this paper is organized as follows. In section 2,
we discuss the model potentials and computational techniques
used to calculate the mixed QM/CM molecular dynamics of
solvated dielectrons. Section 3 describes the equilibrium proper-
ties of both singlet-paired and triplet-paired dielectrons, focusing
not only on the average energetic and geometric characteristics
of the dielectron but also on the dielectron dynamics. In section
4, we calculate the optical absorption spectrum of both singlet
and triplet dielectrons and compare their spectra to the absorp-
tion spectrum of the (single) solvated electron. In addition, we

discuss the implications the predicted absorption spectra have
for earlier (disputed) claims of the direct experimental observa-
tion of dielectrons.40-42 We close in section 5 with a brief
discussion of the importance of exchange and spin symmetry
in condensed-phase reaction dynamics.

II. Model and Computational Details

A. Simulation Details. Our simulations of the hydrated
dielectron take place in a box 18.17 Å on a side containing 200
classical water molecules modeled using SPC-flex potentials17

and two QM electrons that interact with the water molecules
via a pseudopotential derived by Schnitker and Rossky.25

Although this pseudopotential does not agree with experiment
as well as more modern versions,20 we chose the Schnittker-
Rossky form to allow direct comparison with the extensive
computer simulations of the (single) hydrated electron that have
been made with this model.6,7 Minimum-image periodic bound-
ary conditions were used for the classical solvent-solvent
interactions.26

Our computational approach to the mixed QM/CM dynamics
of the water-dielectron system uses what we have called the
“real-space configuration interaction with important states
method.” This method has been described in detail in a recent
paper,16 so in this section, we restrict ourselves to a brief review
and a discussion of the computational details specific to the
molecular dynamics simulations of the hydrated dielectron
presented here. The Hamiltonian for two electrons is

where Ĥi is the Hamiltonian for electroni (including the
electron-solvent interaction) andV̂12 is the Coulomb interaction
between the electrons. In CI, we expand the adiabatic dielectron
wave functions in linear combinations of appropriately sym-
metrized products of the single-electron adiabatic eigenstates

where the states{|j〉} are single-electron eigenstates ofĤ1 (or,
equivalently,Ĥ2), the plus sign is used for spin singlet pairs,
and the minus sign when the spins are triplet paired, and in
each product the first single-electron state is for electron 1 and
the second for electron 2. Each dielectron eigenstate is thus
written as |Ψi〉( ) ∑nm cn,m

i |n,m〉(, so that the two-electron
eigenenergies,Ei, become a sum of single-electron adiabatic
eigenenergies, plus a sum of energies that come from computing
the expectation value of the Coulomb potential using|Ψi〉(

where we callVc the Coulomb energy andVex the exchange
energy; explicit formulas for calculatingVc andVex using our
real-space quadrature are given in eqs 8-10 of ref 16.

We compute the two-electron wave functions for each solvent
nuclear configuration by first using an iterative block-Lanczos
procedure to find the adiabatic, single-electron eigenstates on a
16 × 16 × 16 cubic grid. We then construct the two-electron
eigenstates using configuration interaction (CI) as described
above and in ref 16. The CI calculations reported here use a
product basis constructed from all combinations of the lowest
10 single-electron eigenstates. This results in 55 spatially
symmetric product basis states for the spin-singlet dielectron

Ĥ ) Ĥ1 + Ĥ2 + V̂12, (1)

|n,m〉( ) (|n〉|m〉 ( |m〉|n〉)/x2 (m > n)

|n,n〉+ ) |n〉|n〉 (2)

(
〈Ψi|(e2

r12
)|Ψi〉

(
) Vc ( Vex (3)
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and 45 spatially anti-symmetric product basis states for the spin-
triplet dielectron. To reduce the computational cost enough for
molecular dynamics to be practical, we also make what we call
the important statesapproximation.16 The idea is to construct
the full CI matrix infrequently (in this case, everyτupdate) 3
fs) and determine which subset of product basis states make up
99.95% of the ground state (fimp ) 0.9995 in the notation of ref
16); for times between updates, only this subset of important
product basis states is used for the CI calculation. Making this
approximation reduces the average cost of solving for the
dielectron eigenstates by 60% (see Table 4 of ref 16).

All of the molecular dynamics calculations presented in this
paper use the Born-Oppenheimer approximation, and the
dielectron is restricted to be in the ground state at all times.
The force exerted on the water molecules by the electrons is
taken to be the Hellmann-Feynman (HF) force, which is
calculated as described in the Appendix of ref 16. The nuclear
positions and velocities are propagated in time using the velocity
Verlet algorithm with a time step of 1 fs.26 Our Hamiltonian
does not include magnetic fields or other terms that could lead
to mixing between singlet and triplet dielectronic states; this
lack of mixing allows us to run separate spin-coherent singlet
and triplet trajectories.

The results presented in section 3 for the equilibrium
properties of singlet and triplet dielectrons were taken from
separate 30-ps trajectories for each spin mainfold. When run
on a personal computer with an AMD Athlon XP 1700+ CPU,
it took roughly one week to generate 3 ps of dynamics. The
singlet dielectron trajectory was started from a configuration
that was generated by adding a second electron to an equilibrated
hydrated-electron configuration and equilibrating with velocity
rescaling for 3.5 ps. The initial triplet configuration was
generated by taking an equilibrated spin-singlet configuration,
changing the spin state, and equilibrating for 2 ps. The average
temperature for the 30-ps singlet run was 296 K, with a root-
mean-squared (RMS) deviation of 11 K. For the triplet run, the
average temperature was 293 K, with an RMS deviation of 11
K.21 To compare dielectrons to the well-studied (single) hydrated
electron, we also have run a 60-ps trajectory with a single
electron confined to the ground state, with the same simulation
conditions, time step, and grid size as for the dielectron runs.

B. Characterization of the Dielectron. Our study of
dielectrons includes an examination of their shape and size. We
will characterize dielectron geometries using the total charge
density, which is what determines the force the dielectron exerts
on the water molecules. This is most easily accomplished by
computing various moments of the two-electron density,
F(2)(r). We have displayed the explicit form that this two-electron
distribution takes with the CI expansion in ref 16, except that
here for convenience we normalize the density so that
∫ drF(2)(r) ) 1 rather than 2. The average “size” of the dielectron
is given by the radius of gyration,Rgyr, defined by

where the origin of coordinates is taken to be the center-of-
mass of the distribution. In the same fashion, the shape of the
charge distribution is characterized by its three principal
moments of inertia, which are defined to be the eigenvalues of
the moment-of-inertia tensor

whereµ andν denote Cartesian coordinates and the origin of
coordinates is defined at the center of mass, as for eq 4; we

denote the principal moments of inertiaI1, I2, and I3 in
descending order. Note that the principal moments of inertia
are related to the radius of gyration according toRgyr

2 ) (I1 +
I2 + I3)/2. As a measure of how spherical the distribution is,
we also form a symmetry order parameter,η24

which is zero for spherical distributions and one for an infinitely
thin needle.

We are also interested in calculating the diffusion constant
of dielectrons, and particularly in comparing the diffusion
constant of dielectrons to that of the (single) hydrated electron.
We will calculate the diffusion constant from the mean-squared
displacement using the Einstein relation18

wherer (t) denotes the position of the center of mass at timet,
and the brackets denote an equilibrium ensemble average.19 We
calculate the diffusion constant from the slope of the least-
squares line fit to the mean-squared displacement for times 1
< t < 2.5 ps.

III. Equilibrium Properties of Hydrated Dielectrons

In this section, we consider the equilibrium properties of fully
formed dielectrons; we will defer a discussion of their formation
and kinetic stability to a subsequent publication. A simple
description of the hydrated dielectron begins with the cavity
model for the (single) hydrated electron. In this zeroth-order
picture, a hydrated electron is considered to occupy an attractive,
spherical cavity with the attraction caused by the electronic and
nuclear polarization of the surrounding solvent molecules. As
pointed out in the Introduction, this simple picture is consistent
with both continuum dielectric calculations3 and more sophis-
ticated discretized path-integral calculations.5 In addition, mixed
quantum/classical calculations, in which the excess electron
interacts with the (closed-shell) water molecules through a
pseudopotential, have shown that besides the spherically sym-
metric cavity-bound ground state, the hydrated electron has three
p-like cavity-bound excited states, as well as a higher-lying
continuum of delocalized states.6,7,20Calculations using the same
electron-water pseudopotential that we use here give a ground
state energy for the (single) hydrated electron of roughly-2.7
eV, with the three p-like excited states∼2.5 eV higher in
energy.25 Because the cavity occupied by the electron is not
perfectly symmetrical, these p-like excited state are split in
energy by∼0.5 eV.25

Given this picture for the hydrated electron, what might we
anticipate for hydrated dielectrons? For the singlet dielectron,
we anticipate that the ground state primarily will consist of both
electrons in the same single-electron (ground) state in a single
cavity. (For now, we neglect the case of two electrons in widely
separated cavities, which we will explore elsewhere.) To reduce
the Coulomb and exchange repulsion, the cavity containing the
dielectrons ought to be larger than for a single electron but not
so large as to significantly disrupt the hydrogen-bonding network
of the surrounding solvent; the actual size of the cavity will
depend on the balance struck between lowering the Coulomb
and exchange energies and optimizing the solvation structure
around the dielectron.

In contrast, for the triplet dielectron, the Pauli exclusion
principle requires that the electrons never occupy the same

Rgyr
2 ) ∫ drF(2)(r )|r |2 (4)

Iµ,ν ) ∫ drF(2)(r )(|r |2 - rµrν) (5)

η )
2I1 - (I2 + I3)

2I1 + I2 + I3
(6)

D ) lim
tf∞

〈|r (t) - r (0)|2〉/6t (7)
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single-electron state. We therefore anticipate that the triplet
dielectron ground state will consist largely of one electron in
the single-electron ground state of the cavity and the other
electron in the first excited state. The ground and excited states
need not occupy the same spatial regions, so it is quite possible
that the triplet dielectron could end up not being confined to a
single cavity. We shall see later that the triplet dielectron does
occupy a single cavity, but this cavity has two lobes that allow
the electrons to avoid each other, as required by the Pauli
principle.

The equilibrium average properties of the singlet and triplet
dielectron ground states are displayed in Table 1, along with
the corresponding values for the (single) hydrated electron for
comparison. Because the distinct spin states do not mix in the
absence of magnetic fields, we will discuss the singlet and triplet
results separately.

A. Energetics, Geometry, and Solvent Structure.1. The
Singlet Hydrated Dielectron.We first examine the energetics
of the singlet-dielectron ground state, which are summarized
in Table 1. The average ground-state energy of the singlet
dielectron is about-6.0 eV, including+4.7 eV coming from
the electron-electron interaction, demonstrating that the singlet
dielectron interacts more strongly with the solvent than does
the (single) hydrated electron. We can see this more clearly first
by examining the single-electron energies and second by
subtracting the electron-electron repulsive energy from the
dielctron energy. In the first case, we find that the single-electron
ground-state energy in the dielectron cavity is-6.0 eV, 3.3 eV
lower than for the hydrated electron. This deeper potential well
for the dielectron produces 7-8 single-electron cavity-bound
states instead of the four bound states found with the (single)
hydrated electron. In the second case, neglecting electron-
electron repulsion shows that each electron in the dielectron
cavity has an energy of (-6.0-4.7)/2 eV) -5.4 eV, fully 2.7
eV lower than the (single) hydrated electron. Although the

solvation energies estimated with these two methods differ by
0.6 eV, such a difference is not unexpected because the former
analysis neglects the contribution of higher-lying product-basis
states to the dielectron ground state.

Why does the solvent cavity around the dielectron produce a
deeper well than that around a single electron? Some of the
extra stabilization results from the larger size of the dielectron
(see Table 1 and Figure 3, below), which decreases the kinetic
energy per electron from∼2.3 eV to∼1.7 eV. However, this
0.6 eV reduction in kinetic energy still leaves-2.1 eV per
electron that must come from more favorable electron-solvent
interactions in the case of the dielectron. This extra solvation
energy results from the larger radius of gyration of the dielectron
(Table 1), which allows more water molecules to occupy the
first solvation shell. The magnitude of the extra stabilization
can be estimated by the following scaling argument. For the
(single) hydrated electron, the average electron-solvent interac-
tion energy is approximately-5.0 eV, and we expect that this
energy comes predominantly from interactions with molecules
in the first solvation shell. For compact charge densities, such
as the (single) hydrated electron or singlet dielectron, the number

TABLE 1: Average Properties of the Ground State of
Various Aqueous Electronic Speciesa

(e-)2,aq(singlet) (e-)2,aq(triplet) (e-)aq

E (eV) -5.99 (0.17) -4.71 (0.22) -2.74 (0.14)
Vc (eV) 2.57 (0.03) 4.30 (0.08)
Vex (eV) 2.08 (0.03) -1.21 (0.02)
Vaq (eV)b -82.38 (0.56) -82.62 (0.60) -87.06 (0.17)
I1 (Å2)c 4.66 (0.16) 8.12 (0.37) 3.08 (0.21)
I2 (Å2)c 4.07 (0.17) 7.92 (0.37) 2.87 (0.20)
I3 (Å2)c 2.99 (0.14) 2.55 (0.06) 2.52 (0.10)
Rgyr (Å)d 2.42 (0.03) 3.04 (0.06) 2.05 (0.05)
r12 (Å)e 3.91 (0.06) 5.38 (0.12)
ηf 0.14 (0.01) 0.215 (0.003) 0.060 (0.005)
D (× 10-5 cm2/s)g 1.87 [0.08] 1.3 [0.2] 2.0 [0.1]

a The columns labeled singlet and triplet give the properties of the
dielectron in that spin manifold. All dielectron quantities were calculated
from 30-ps trajectories with the two-electron wave function restricted
to the ground state, whereas the average properties of the (single)
aqueous electron were calculated from a single 60-ps trajectory. The
numbers in parentheses represent two standard deviations, calculated
as described in ref 29.b Total water-water interaction energy for all
200 molecules. A 30-ps simulation with no electron in the box yields
Vaq ) -88.64(0.17).c Principal moments of inertia of the dielectron
or electron density, defined as the eigenvalues of the moment-of-inertia
tensor, eq 5.d Radius of gyration of the electron density, eq 4.
e Quantum separation parameter, eq A2, and described in the Appendix.
f Symmetry order parameter, eq 6.g Translational diffusion constant,
eq 7, calculated as discussed in section 2. The linear fits for all three
species hadR2 > 0.997. The numbers in square brackets give the
maximum change toD in either direction that will allow a line to lie
within one standard deviation of〈|r (t) - r (0)|2〉 for all times in the
range fitted.

Figure 1. Representative singlet and triplet dielectron charge densities
with their first-solvation shell of water molecules for representative
singlet and triplet configurations. The blue charge-density contours are
contours of 10% of the maximum dielectron charge density, and the
water molecules are drawn in the CPK representation using the program
gOpenMol(ref 22). For clarity, we have removed two water molecules
in front of the triplet dielectron.
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of first-shell molecules should be proportional toRgyr
2 (Table

1), and in fact scaling the (single) hydrated electron’s solvation

energy by the ratio of the squares of the radii of gyration predicts
a solvation energy per electron of approximately-7.0 eV for
the dielectron. This-2.0 eV enhancement of the solvation
energy is in very good agreement with the-2.1 eV found
directly from the dielectron simulation.

The scaling argument in the above analysis implicitly assumes
that the hydrated electron and dielectron have charge densities
with similar (spherical) shapes. However, the moments of inertia
for the singlet dielectron, which are are also given in Table 1,
show that the dielectron charge density is significantly aspherical
(this can also be seen in the representative charge density
displayed in Figure 1), withI1 ∼ I2 > I3. The dielectron can
therefore be characterized as a slightly lopsided prolate spheroid
(i.e., a potato), with a symmetry parameter (eq 6)η ) 0.14.30

The distortion of the dielectron away from the more spherical
symmetry of the (single) hydrated electron (for whichη ) 0.06)
is caused by the electron-electron repulsion, which forces the
two-electron ground state to include contributions from several
higher-lying product basis states other than|1,1〉+. To reduce
the energy of these higher-lying states, it becomes favorable
for the dielectron to break the spherical symmetry of the cavity.
In other words, the electron loses its symmetry due to a kind of
Jahn-Teller distortion.23 The broken spherical symmetry of the
singlet dielectron is therefore caused by a combination of two
effects: the electron-electron interaction that mixes higher-
lying product states into the two-electron ground state, and the
subsequent stabilization of these higher-lying states by Jahn-
Teller distortion of the solvent cavity.

We turn next in our study of singlet dielectrons to examining
which product-basis states,|n,m〉+, dominate the ground-state
wave function,|Ψ1〉+ ) ∑n,mcnm|n,m〉+. In the limit that there
is no electron-electron repulsion, the ground state dielectron
wave function would simply have both electrons in their single-
electrons-like ground states,|Ψ1〉+ ) |1,1〉+, but the electron-
electron interaction mixes in higher-lying product states so as
to lower the Coulomb and exchange repulsion. We find that,
for every solvent configuration, the dielectron wave function is
dominated by state|1,1〉+, with |c1,1|2 = 0.77 averaged over all
configurations. In addition, there is a considerable contribution
from two other configurations: one with both electrons in the
first single-electron excited state (which resembles ap orbital,
complete with angular node),|c2,2|2 = 0.07, and the other with
one electron in the ground state and one in the fourth single-
electron excited state (which resembles a dz2 orbital), |c1,5|2 =
0.06. We have examined the charge distributions of the single-
electron states for representative solvent configurations and have
found that the lobes of the p-like and d-like states that compose
these low-lying product basis states tend to be aligned along
the long axis of the singlet-dielectron cavity. The remaining
10% of the singlet dielectron wave function is divided among
roughly 15 other product states, none of which have|c|2 greater
than 0.01. To clarify the composition of the singlet dielectron
ground state, Figure 2 shows the charge density contours for
the ground (|1〉, s-like), first excited (|2〉, p-like), and fourth
excited (|5〉, d-like) single electron states for a representative
dielectron water configuration. The figure also displays the
charge densities associated with the three product states, (|1,1〉+,
|2,2〉+, and |1,5〉+) that together make up∼90% of the full
dielectron ground state. Although this figure does give a flavor
for how the p-like and d-like states help to fill dielectron cavity,
it is important to remember that the full two-electron state is a
sum of productwaVe functions, not charge densities. For
example, Figure 2 shows that both of the product states|1,5〉+
and |2,2〉+ have lobes lying outside the charge distribution of

Figure 2. Decomposition of the singlet dielectron wave function into
product-basis states for a representative singlet-dielectron/water con-
figuration. The wire mesh in each panel is drawn for a contour at 10%
of the maximum charge density of this singlet dielectron. The solid
contours on the left, from top to bottom, are drawn at 10% of the charge
density maximum for the first, second, and fifth single-electron states
for this water configuration. The solid contours in the right column
display, from top to bottom, the 10% charge-density-maximum level
of the three two-electron product-basis states that contribute the most
to the singlet dielectron wave function for this water configuration:
|1,1〉+, |2,2〉+, and|1,5〉+ (see section 2.1).

Figure 3. Radial distribution functions for the distance between the
singlet dielectron center-of-mass and various water sites, computed from
a 30-ps equilibrium molecular dynamics simulation using configurations
sampled every 30 fs, for a total of 1000 dielectron/water configurations.
The solid curve represents the dielectron/oxygen radial distribution
function and the dashed curve represents the dielectron/hydrogen
distribution.
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the dielectron, but these lobes cancel each other because the
two product-basis states enter the CI expansion with opposite
phases.

Another important question to consider is to what extent do
the electrons that make up the singlet dielectron retain their
individual identities? Since the singlet dielectron occupies a
single cavity in the solvent, we would not expect to be able to
view the two electrons as distinct entities. This is clearly seen
in the magnitude of the exchange energy relative to the direct
Coulomb repulsion,R ) | Vex/Vc| = 0.8. Despite the significant
overlap between the two electrons, however, the mixing in of
higher-lying product states does help them to avoid each other,
as evidenced byR being less than 1.0.27 Geometrically, we can
see evidence that the electrons do avoid each other by examining
the root-mean-squared separation between the electrons (r12 )
〈Ψ|(r1 - r2)2|Ψ〉, see the Appendix), as shown in Table 1. At
first glance, the large value ofr12 ) 3.9 Å appears rather
surprising because it suggests that the two electrons conspire
to be almost as far apart as they can be given that the size of
the cavity is 2Rgyr = 4.8 Å. However, we show in the Appendix
that when both electrons occupy the same single-electron ground
state, ther12 parameter is simply related to the radius of gyration,
r12

2 ) 2Rgyr
2 . Therefore a better way to measure the average

separation between the two electrons in a single dielectron cavity
is to subtract the contribution from the finite extent of each
electron. Thus, we define theexcessseparation,∆r12 ≡ (r12

2 -
2Rgyr

2 )1/2, as a measure of how effectively the two electrons in
the singlet dielectron cavity avoid each other. The electrons in
the singlet hydrated dielectron have an excess separation∆r12

) 1.9 Å, an excess that amounts to nearly 40% of the average
cavity diameter. Although the two electrons in the dielectron
do avoid each other to a good extent, the appreciable ratio of
exchange to Coulomb energies shows that the singlet dielectron
really is a two-electron quantum object that cannot accurately
be described in terms of distinguishable single electrons. This
is highlighted by the fact that∼23% of the total two electron
wave function comes from higher-lying product-basis states.

What effect does the single dielectron have on the structure
of the surrounding water molecules? Figure 3 displays radial
distribution functions (RDF) between the dielectron center-of-
mass and the classical solvent sites. We define the first solvation
shell as the set of all water molecules whose oxygen site lies
inside the first minimum of the oxygen-dielectron RDF at 4.2
Å and find on average that there are 8.6 molecules in the first
shell. This number is approximately what we would expect in
light of the success of our earlier scaling argument in explaining
the dielectron solvation energy. The (single) hydrated electron
has∼6 molecules in its first solvation shell, and scaling this
number by the relative surface areas of the single and dielectron
gives 6× (2.4/2.0)2 ) 8.4 first-shell waters. Thus, each first-
shell water contributes about equally to the solvation of both
single and dielectrons; the dielectron is better solvated simply
because it is larger and therefore has more first-shell waters.

The RDFs also show that on average one of the O-H bonds
on each first-shell water molecule points toward the dielectron
(see also Figure 1), with a separation between the first hydrogen
and oxygen peaks of about 0.94 Å. This result is consistent
with the ∼1-Å separation between the peaks for the (single)
hydrated electron, which is solvated by each of its six first-
shell water molecules pointing one of their 1.0-Å-long O-H
bonds directly at the electron (i.e., by hydrogen bonding). The
smaller separation between the first peaks for the singlet
dielectron likely results from the aspherical shape of the
dielectron. The simulations show that the first-shell O-H bonds

point toward the local maximum dielectron charge density,
which given the asphericity means that they point slightly away
from the dielectrons’s center-of-mass. The fact that the dielec-
tron has the same sort of hydrogen bonding as the single electron
also helps to justify our earlier scaling argument for the solvation
energy, which could work only if each first-shell solvent
molecule’s orientation relative to the dielectron were the same
as in the first shell of the single electron, as is evidently the
case.

2. The Triplet Hydrated Dielectron.Unlike the spin singlet
case, when the electron spins are triplet paired, it is impossible
for both electrons to occupy the same single-electron eigenstate.
We would therefore expect the product-basis state that contrib-
utes the most to the triplet dielectron wave function to have
one electron in the single-electron ground state and the other
in the first excited single-electron state,|1,2〉-, and we find that
this is indeed the case. Our calculations show that on average
the triplet dielectron wave function has|c1,2|2 ≈ 0.9. Only three
other product states contribute more than 1% to the total:|2,3〉-,
with |c2,3|2 ≈ 0.03; |2,4〉-, with |c2,4|2 ≈ 0.03; and|2,5〉-, with
|c2,5|2 ≈ 0.02. The triplet dielectron therefore shows much more
single-configuration character than the singlet dielectron, pre-
sumably because the exclusion of the|1,1〉 product state reduces
the Coulomb repulsion that mixes in the higher-energy product
configurations.

The ground-state energy of the spin-triplet dielectron, given
in Table 1, is-4.7 eV, including+3.1 eV from the Coulomb
and exchange energies. As was the case for the singlet
dielectron, the electrons that make up the triplet dielectron see
a deeper solvent well than in the (single) hydrated electron case,
with a single-electron ground-state energy of∼-4.8 eV. This
deeper well produces between six and seven bound single-
electron states instead of the four that are typical of (single)
hydrated electrons. Unlike the singlet dielectron, however, the
single-electron energies of the triplet dielectron do not show a
spacing distribution typical of a spherically symmetric cavity.
Instead of the single low-lying state separated from three p-like
states and higher-lying d-like states that we saw for the case of
the singlet dielectron, the triplet dielectron’s cavity produces
two low-lying states, at energies of-4.8 and-3.3 eV, separated
from a band of higher-lying states whose energies are all within
0.5 eV of their neighbors. This pattern suggests that the triplet
dielectron is far less spherical than the singlet dielectron, and
the sphericity paramter,η ≈ 0.2 (see Table 1), shows this to be
the case. Table 1 also shows that the triplet dielectron possesses
a definitecylindrical symmetry, as indicated by the equality of
the two largest moments of inertia. For such an aspherical
distribution, the radius of gyration is not very meaningful, but
we include it in Table 1 for completeness; gyration parameters
describing the principal axes of the triplet dielectron can be
obtained from the principal moments of inertia given in Table
1. The cylindrical symmetry of the triplet dielectron can be seen
in the charge density shown in Figure 1: the triplet dielectron
has a peanut shape, with the distance between the two lobes
being a bit over 5 Å.

A similar peanut shape also has been seen in the spin density
functional calculations of Kaukonen et al. for two electrons in
a water cluster.24 In their simulations, Kaukonen et al. ran
classical dynamical trajectories but took both the oxygen and
hydrogen masses to be 1 amu, so that the trajectories served to
sample configurations rather than to produce true dynamics.
Their calculation always took the two-electron density to be
that of the lowest energy state and found that the ground-state
dielectron charge density switched between two distinct shapes,

Simulations of the Hydrated Dielectron J. Phys. Chem. B, Vol. 108, No. 31, 200411765



a “compact” nearly spherical one and an aspherical “dumbbell”.
We believe that the abrupt shape changes in Kaukonen et al.’s
calculation arise from the lack of spin coherence in the spin
density functional method, which allows fictitious intersystem
crossings in the “dynamics” because the ground state can have
either singlet or triplet spin character. Indeed, the spin polariza-
tions reported by Kaukonen et al. give a net spin of zero for
the “compact” dielectron and a nonzero spin polarization for
the “dumbbell”. We therefore identify their “compact” and
“dumbbell” states as singlet and triplet dielectrons, respec-
tively.28 We see no such intersystem crossings because our
simulations neglect magnetic fields and thus enforce spin
coherence at all times. The fact that spin flips were observed in
Kaukonen et al.’s spin-incoherent simulations, however, shows
that occasionally the singlet and triplet dielectron energy levels
can cross, suggesting that even weak magnetic fields may induce
spin mixing and intersystem crossings. We will explore the
importance of magnetic fields and their ability to induce spin
flips in a subsequent publication.

For the triplet dielectron, the average electron-electron
separationr12 ) 5.4 Å, but as we discussed for the singlet case
and show in the Appendix, the value ofr12 is determined not
just by how much the electrons avoid each other but also by
the dispersion of the single-electron wave functions. As we have
pointed out, the triplet dielectron is composed largely of a
symmetrized product of the lowest two single electron states,
|c1,2|2 ) 0.89, and each of these two states has amplitude in
both lobes of the “peanut”, giving rise to a nonzero exchange
energy. Unlike the singlet case, however, the overlap between
these two single-electron states is not complete, so it is not clear
how to construct an excess separation parameter,∆r12, for the
triplet dielectron. We can show that the electrons do avoid each
other, however, from the ratio of exchange to Coulomb energies,
R ) | Vex/Vc| = 0.3 (Table 1). The small value ofR shows that
we can roughly consider one electron to be in each lobe of the
peanut, with only slight overlap between the two individual
electrons.

Let us now turn from the energy and shape of the triplet
dielectron to study how the solvent packs around this peanut-
shaped object. Because the charge distribution of the triplet
dielectron is more cylindrically than spherically symmetric, the
solvation structure around the triplet dielectron cannot be readily
described in terms ofradial distribution functions and must
instead be described by a cylindrical distribution function7

where the origin is at the center of mass of the dielectron,N(r )
dr is the number of solvent sites within a small volume dr )
Fcyl dFcyl dφ dzof the positionr , thezaxis is taken to be parallel
to the principal axis of the smallest moment of inertia (the long
axis of the peanut),Fcyl is the distance from this axis, andn is
the number density of solvent sites. The distribution averages
over the azimuthal angle about thez axis, and because of the
symmetry of the charge density, we calculategcyl by also
averaging over both the+z and-z bins.

The upper and middle panels of Figure 4 show the cylindrical
distribution functions of hydrogen atoms and oxygen atoms,
respectively, while the bottom panel shows a 2:1 weighted sum
of the hydrogen and oxygen distributions. The upper two panels
reveal that the triplet dielectron excludes the water from the
peanut-shaped cavity occupied by the electrons. The most
pronounced solvent structure is located in the “neck” of the
dielectron, where we see that an oxygen atom tends to lie

midway between the two lobes about 2.3 Å off of the long axis.
The figure also shows two hydrogen peaks between the oxygen
and each lobe of the triplet dielectron that are roughly 1 Å from
the oxygen atom. However, only one of these hydrogen peaks
results from the same water molecule as the central oxygen
atom; the other peak is an artifact of the cylindrical symmetry.
Thus, this pattern of the O and H peaks in the distributions
tells us that, for waters in the neck region, one O-H bond points
directly toward the maximum charge density in one lobe of the
dielectron, while the other O-H bond is less strongly con-
strained by the dielectron and rotates freely to make favorable
H-bond interactions with water molecules in the second shell.
This rotational freedom, which can also be seen in the breadth
of the second peak of the hydrogeng(r) for the case of the
singlet dielectron, explains why no sharp peak associated with

gcyl(Fcyl,z) dFcyl dz ) 1
2πFcyln

N(r ) dr , (8)

Figure 4. Contour plots of the cylindrical distribution function of
distances between the triplet dielectron and various water sites,
computed using eq 8 as described in section 3.1.2. The distribution
was generated from a 30-ps equilibrium molecular dynamics simulation
using configurations sampled every 30 fs, for a total of 1000 dielectron/
water configurations. The spacing between contours is 0.2, with a
maximum value of 1.8. The upper panel is for hydrogen sites, the middle
panel for oxygen sites, and the lower panel is the net site density (a
2/3:1/3 weighted sum of the upper and middle panels). The white contour
in the middle panel replicates thegcyl ) 0.8 contour from the upper,
hydrogen-site, panel. Note that the way we calculategcyl guarantees
perfect symmetry on reflection about thez ) 0 axis; the slight
asymmetries are artifacts of the program used to draw the contours.
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the “unbonded” H atom appears ingcyl. The second O-H bond
of the water whose oxygen is in the neck region of the triplet
dielectron can be distinguished, however, in the bottom panel
of the Figure 4, as the upper lobes of the butterfly-shaped wings
surrounding the large oxygen peak. We have counted the
average number of oxygen atoms that reside in the neck region
-1.0 e z e 1.0 Å andF e 3.0 Å; we find that 50% of the
triplet dielectron configurations have two oxygen atoms in the
neck region, 25% have three, 20% have just one, and the
remaining configurations have either zero or four molecules in
the neck.

Outside the neck region, there is little obvious molecular
structure, but by analyzing of the isodensity contours, we find
strong evidence for H bonding of the first-shell water molecules
to the triplet dielectron. In particular, the distance between the
gcyl ) 0.8 contour for hydrogen (shown as the white line in the
middle panel of Figure 4) and thegcyl ) 0.8 contour for oxygen
is roughly 1 Å when measured along a line between the center
of the nearest lobe and the point in question. This tells us that
the triplet dielectron’s first solvation shell consists of water
molecules whose O-H bonds point radially toward the nearest
maximum charge density. Therefore, just as for the (single)
hydrated electron and for the singlet dielectron, the water
structure around the triplet dielectron consists of local hydrogen
bonding, which allows the first-shell waters to both solvate the
charge and to maintain hydrogen bonding to outer-shell waters.

B. Dynamical Properties of Hydrated Dielectrons.In this
section, we analyze the dynamical properties of dielectrons by
forming normalized autocorrelation functions of dielectron
energetic and structural properties

whereδA ) A - 〈A〉, A is the property of interest,t is the time,
and the angled brackets denote an equilibrium average. The
correlation functions we display in this section were generated
from the 30-ps equilibrium runs described in section 2. Figures
5 and 6 show the full dynamical histories of several properties
of the singlet and triplet dielectron, respectively. Although we
will not discuss the individual trajectories in detail, we do note
that the adiabatic energies and geometrical properties of
dielectrons vary rapidly on time scales associated with individual
water vibrations and librations. The Coulomb and exchange
energies, in contrast, do not show the fast wiggles that are
indicative of strong modulation by individual water molecules.
It is noteworthy that twice during the 30-ps triplet dielectron
trajectory the root-mean-squared separation,r12, increased
rapidly (bottom panel, Figure 6) before returning to its equi-
librium value. Thus, it seems that the triplet dielectron made
two failed attempts to dissociate in just a few tens of
picoseconds.

1. Dynamics of the Hydrated Singlet Dielectron.Figure 7
shows the autocorrelation functions of the singlet dielectron
ground-state energy, ground-to-first-excited-state energy gap,
Coulomb energy, and exchange energy (cf. Figure 5). Clearly,
both the ground-state energy and the ground-to-first-excited-
state energy gap decorrelate rapidly, on the time scale of the
intramolecular motions of water. The power spectra of these
two correlation functions (not shown) show that the initial
“bounce” at t ) 20 fs and subsequent ringing features arise
from the coupling of the dielectron energies to water bends and
stretches, whereas the slower decay results from librations and
translations. The rapid oscillations in the energy gap are much

smaller in amplitude than those for the ground-state energy
because water motions that rapidly modulate the ground state
tend to likewise modulate the excited states, so that thegap
varies less than the individual energy levels (cf. Figure 5). This
difference in the rate at which the energy levels and energy
gaps decorrelate is similar to that seen with the single hydrated
electron.6,7

In contrast to the full quantum energies, the autocorrelations
of the Coulomb and exchange energies display very little ringing
and decay more slowly, meaning that the Coulomb and exchange
energies are only weakly affected by the intramolecular motions
of nearby water molecules. This is not surprising because, even
though the electron-water pseudopotential is short-ranged, most
of the electron-electron interaction energy comes from regions
of high electron density, near the center of the dielectron cavity.
Because high-density regions are always far from the water
molecules, intramolecular vibrations have little effect on the
“core” of the dielectron charge density. Slower motions are able
to couple to the Coulomb and exchange energies, however,
because large-scale librations and translations can gradually
change the entire shape of the electron density and hence alter
the electron-electron interactions.

Figure 8 displays the autocorrelation of three measures of
the dielectron geometry: the radius of gyration,Rgyr (eq 4), the
quantum separation parameter,r12 (eq A2), and the symmetry
order parameter,η (eq 6). All of these geometric measures have
autocorrelation functions that closely resemble the Coulomb and
exchange energy autocorrelation functions in Figure 7. This
resemblance is to be expected because these geometric measures
are all “bulk” quantities in the sense that they depend on
integrals over the full charge distribution, so they ought to

CA(t) )
〈δA(t)δA(0)〉

〈δA(0)2〉
(9)

Figure 5. Dynamical history of various properties of the singlet
dielectron. The upper panel shows various dielectron energies: the
lowest solid black curve is the dielectron ground-state energy,E1; the
gray curve is the first excited-state energy,E2; the upper solid curve is
the Coulomb energy,VC; and the dashed curve is the exchange energy,
Vex. The lower panel displays two geometric properties of the singlet
dielectron, the radius of gyration,Rgyr (eq 4, black curve), and the root-
mean-squared separation,r12 (eq A2, gray curve).
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display similar correlation behavior as the electron-electron
interactions. The fact that the quantum separation parameter,
r12, also tracks this bulk behavior at first may seem surprising,
until one recalls that (for the singlet dielectron)r12 is related to
the radius of gyration, as discussed in the Appendix.

The final aspect of the dynamics of singlet dielectrons that
we shall address is their long-time, diffusive motion: our
calculated diffusion constant for the singlet dielectron is given
in Table 1. The singlet dielectron diffuses more slowly than
the (single) hydrated electron, which is not all that surprising
in view of the dielectron’s larger size. According to the Stokes-
Einstein relationship, however, the diffusion constant should

be inversely proportional to an object’s radius. Thus, if the
diffusion of these solvent-supported species follows hydrody-
namics, the diffusion constant of the singlet dielectron should
be related to that of the single electron by a factor of (2.4/2.0)-1,
which would give Dsinglet

hydro = 1.7 × 10-5 cm2/s. Thus, the
diffusion constant of the singlet dielectron calculated in our
simulations,Dsinglet = 1.9 × 10-5 cm2/s, is larger than what
would be expected on purely hydrodynamic grounds.

2. Dynamics of the Hydrated Triplet Dielectron.Figure 9
shows the autocorrelations of the triplet dielectron ground-state
energy, ground-to-first-excited-state energy gap, Coulomb en-
ergy, and exchange energy (cf. Figure 6). As with the singlet
dielctron, the ground-state energy decorrelates rapidly and shows
the ringing that results from coupling to the water bends and
stretches. Also as with the (single) hydrated electron and singlet
dielectron, the energy gap of the triplet dielectron decorrelates
much more slowly than the total energy, because the water bends
and stretches tend to modulate all of the energies the same way.
The Coulomb energy of the triplet dielectron also decorrelates
similarly to that of the singlet dielectron, although the initial
rapid decay is slightly greater for the triplet. Interestingly, and
unlike the singlet case, the exchange energy of the triplet
dielectron decorrelates much more rapidly than the Coulomb
energy and on a time scale consistent with strong coupling to
the intramolecular water motions. In fact, the power spectra of
the triplet Coulomb and exchange energies (not displayed) show
that the water bend and stretch peaks modulate the exchange
energy 2-3 times more than the Coulomb energy. The stronger
modulation of the exchange energy likely happens because the

Figure 6. Dynamical history of various properties of the triplet
dielectron. The upper two panels show the same properties as the two
panels of Figure 5 and use the same convention for all curves. The
bottom panel displays the root-mean-squared separation,r12 (eq A2),
for the full 30-ps trajectory. Note the two failed dissociation attempts
at ∼5 and∼20 ps.

Figure 7. Autocorrelation functions of singlet dielectron quantum
energies: the ground-state energy (E1, solid black curve); the ground-
to-first-excited-state energy gap (E12, dash-dotted curve); the Coulomb
energy (VC, dashed curve); and the exchange energy (Vex, solid gray
curve).

Figure 8. Autocorrelation functions for the singlet dielectron geom-
etry: the radius of gyration, eq 4 (Rgyr, solid black curve); the root-
mean-squared separation, eq 13, (r12, dashed curve); and the symmetry-
order parameter, eq 6 (η, solid gray curve).

Figure 9. Autocorrelation functions of triplet dielectron quantum
energies plotted using the same conventions as in Figure 7.
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exchange energy depends on the overlap between the product-
basis wave functions that could be strongly affected by water
motions in the “neck” of the triplet dielectron. Such motions
would have little effect on the triplet Coulomb energy, which
depends only on the overall density and not on the overlap.

Figure 10 displays autocorrelation functions of several
measures of the triplet dielectron geometry: the radius of
gyration,Rgyr (eq 4), the quantum separation parameter,r12 (eq
A2), and the symmetry order parameter,η (eq 6). Each
correlation function decays rapidly, followed by a slower falloff,
just as we saw for the Coulomb and energy gap correlation
functions; however, the amplitude of the initial fast decay (20-
25%) is smaller for these geometric quantities than for the
energy decays (30-35%). The smaller amplitude of the rapid
decay is consistent with the idea that these geometric measures
of the dielectron geometry depend mostly on gross features of
the dielectron’s shape that are modulated only by collective (and
hence slow) water motions.

One other geometric property whose dynamics is of interest
is the orientation of the triplet dielectron. We define the
orientation vector,Ω̂3, to be the unit vector pointing in the
direction of the smallest principle moment of inertia (i.e.,Ω̂3

points along the long axis of the dielectron). During the 30 ps
of our equilibrium run, the triplet dielectron orientation vector
does not decorrelate, and the correlation function never dips
below1/2.31,32This result is not all that surprising if we envision
the peanut as a classical object: it is well known that molecules
of roughly the same size as the triplet dielectron take tens to
hundreds of picoseconds to rotationally decorrelate in water.33

Apparently, the extra freedom to wiggle that quantum mechanics
allows for the solvent-supported triplet dielectron does not help
it to rotate any better than a classical object of similar size.

We conclude our discussion of dynamics of the triplet
dielectron by examining its long-time, diffusive motions. The
diffusion constant, given in Table 1, shows that the triplet
dielectron diffuses significantly more slowly than either the
singlet dielectron or the hydrated electron. This is not surprising
given the large size and highly nonspherical shape of the triplet
dielectron. Is this difference due solely to geometry? To make
the hydrodynamic calculation straightforward, we can crudely
model the triplet charge distribution as a prolate spheroid. For
a prolate spheroid with semiaxesa ) 2.5 Å andc ) 5.8 Å,34

the diffusion constant,D, is related to that of a sphere of radius
r by a factor (2r/3c + r/3a), which would giveDtriplet

hydro ) 1.0 ×
10-5 cm2/s when scaled to the (single) hydrated electron’s
diffusion constant. The triplet dielectron therefore diffuses faster
than would be predicted on purely hydrodynamic grounds as
we also saw for the singlet dielectron. On the other hand, scaling

the singlet dielectron’s diffusion constant by the factor (2Rgyr/
3c + Rgyr/3a), with Rgyr the singlet-dielectron radius of gyration,
gives a predicted triplet diffusion constantDtriplet

hydro = 1.1× 10-5

cm2/s, which is within the error of the simulated value. It seems
therefore that we can consider dielectrons in either spin state to
move in a solvent whose effective viscosity is roughly 20%
smaller than the effective viscosity around the single electron.

IV. Experimental Signatures of Dielectrons: Optical
Absorption of the Singlet and Triplet Hydrated
Dielectron

Now that we have some insight into the basic properties and
dynamics of dielectrons, it is natural to ask how one might
experimentally observe this species. Because the CI method
produces accurate excited states as well as the ground state, we
can compute quantities such as absorption spectra and thus
predict experiments to directly observe these two-electron
species. We should point out that the model we are using for
the electron-water pseudopotential is known to produce an
absorption spectrum of the (single) hydrated electron that is
shifted to the blue of the experimentally measured spectrum by
roughly 0.7 eV.25 Other models recently have been introduced
that correct this problem by altering the pseudopotential or
adding polarizability to the water.20,35 However, our choice of
the Schnitker/Rossky pseudopotential allows us to make detailed
comparisons of the spectra of single electrons and dielectrons
using the best-characterized single-electron model.6,25

We compute the absorption spectrum of dielectrons in their
ground states (denoted state 1) in the inhomogeneous broadening
limit

where Ei is the energy of theith two-electron adiabatic
eigenstate,ε̂ is the polarization vector of the incident radiation,
P ) p1 + p2 is the two-electron momentum vector operator,
and the subscripts refer to which electron each operator acts
upon. For the two-electron wave functions,|Ψi〉(, the plus sign
subscript denotes the spin singlet case and the minus sign
subscript is used for the spin triplet case. In calculating the
spectra, we have made use of the selection rule that dipole
transitions do not flip spins, so that states are only coupled from
the same spin manifold. In practice, we take advantage of the
CI form of our wave functions to write eq 10 as a linear
combination of matrix elements connecting the single-electron
product states

where the product states|nm〉( are defined in eq 2.36 Equation
2 shows that writing the dielectron wave functions in terms of
the single-electron product states,|nm〉(, gives terms in the
absorption spectrum proportional to the square of(〈n′m′|p1 +
p2|nm〉(. If the product wave functions are expanded, it is clear
that the transition dipoles between product states vanish unless
one of the following conditions holds:n′ ) n, n′ ) m, m′ ) n,
or m′ ) m. Schematically, then, we can say that the allowed
electric dipole transitions for dielectrons excite only one of the
electrons at a time. (Note that this statement would literally be

Figure 10. Autocorrelation functions for the triplet dielectron geometry
plotted using the same conventions as in Figure 8.
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true only if each dielectron eigenstate consisted solely of a single
product-basis state.)

As noted in section 2, we construct the two-electron eigen-
states using the lowest 10 single-electron states, so thatN in eq
10 is 55 and 45 for singlet and triplet dielectrons, respectively.
To test the accuracy of using this number of single-electron
states for our product basis, we also have computed the oscillator
strength for the (single) hydrated electron and both dielectrons,
which is proportional to∫ dω ω σ(ω). According to the
Thomas-Reich-Kuhn sum rule,37 the oscillator strength of the
dielectron absorption should be exactly twice that for a single
electron. With 10 single-electron states used to construct the
two-electron basis, we find singlet and triplet dielectron oscil-
lator strengths that are 1.72 and 1.86 times larger than for a
single hydrated electron, respectively. This indicates that use
of only the lowest 10 single-electron states does not generate a
two-electron product basis that is complete enough to rigorously
satisfy the sum rule. We have run test calculations of the
oscillator strength as a function of the number of single-electron
basis states used to construct the CI wave functions for one
singlet and one triplet dielectron configuration, with the results
shown in Table 2. As the number of single-electron states is
increased, the total oscillator strength indeed approaches 2.

Figure 11 shows the absorption spectra of both singlet and
triplet dielectrons, as well as the absorption spectrum of the
(single) hydrated electron for this model. The spectra of both
singlet and triplet dielectrons overlap with the single hydrated

electron absorption, but both types of dielectrons also display
significant absorption to theblue of the single electron. The
“extra” dielectron absorption at high frequencies results from
two effects. First, we saw in section 3.1 that both singlet and
triplet dielectrons occupy solvent cavities with much deeper
attractive wells for the resident electrons. This lowers the
ground-state single-electron energies and also pulls additional
bound single-electron states down from the continuum, giving
rise to the blue tail in the absorption. Second, both the singlet
and especially the triplet dielectron’s solvent cavities are more
asymmetrical than the single electron’s, which leads to a greater
energy splitting between the lowest dielectron excited states than
between the three p-like single-electron states, producing a
broader absorption spectrum.

Do these calculated spectra shed any light on the question of
whether dielectrons have been observed? A variety of indirect
experiments are consistent with the existence of dielectrons. For
example, the magnetic susceptibility of electrons dissolved in
liquid NH3 is found to decrease as the density of electrons
increases, suggesting that, at high enough electron densities,
the electrons begin to form singlet pairs;38 such (peanut-shaped)
singlet pairs were observed in the DFT calculations of Klein
and co-workers.13 In addition, Schmidt and Bartels examined
how thee- + e- annihilation rate varies with ionic strength in
solutions of electrons in water and concluded that the measured
rate requires the formation of an intermediate species, which is
presumably the spin-singlet dielectron.39 While the aforemen-
tioned results are consistent with the existence of dielectrons
in solution, our results suggest that the most straightforward
way to directly observe dielectrons is to look for a concentration
dependence of the absorption in the blue tail of the (single)
hydrated electron’s spectrum. Although such an excess has not
been observed directly, Walker and co-workers found that highly
basic solutions of hydrated electrons at high concentrations
absorbed light to the blue of the single-electron spectrum, and
that excitation of this absorption led to a transient increase in
absorption at the peak of the hydrated electron spectrum.40 Their
conclusion was that whatever was absorbing the blue light
produced additional hydrated electrons, and they tentatively
identified the species as dielectrons (which were photodissoci-
ated to produce (single) electrons). This identification has been
challenged by Meisel et al., who concluded from pulse radiolysis
measurements that, if the dielectron exists, either it does not
absorb light in the ultraviolet or it is much shorter lived than
(single) hydrated electrons under the same conditions.41 Telser
and Shindewolf have also disputed Walker et al.’s interpretation,
and they have identified the blue-absorbing intermediate species
as a solvated neutral metal atom.42 Our computed spectra are
consistent with the observations of Walker et al., but a complete
test of the photodissociation scenario will require nonadiabatic
simulations of photoexcited dielectrons. Such a nonequilibrium
calculation is beyond the scope of this paper, but the calculations
are in progress and will be presented soon.

V. Discussion

In this paper, we have focused on the equilibrium properties
of hydrated dielectrons, which are an example of perhaps the
simplest possible solvent-supported, multielectron quantum
object. By using full CI to solve the two-electron quantum part
of the problem, we have been able to include the effects of
exchange, correlation, and spin statisticsexactly; CI also
generated the excited states needed to compute the absorption
spectrum of these species.

Our calculations show that exchange and spin statistics have
a significant effect on both the energetics and geometry of

TABLE 2: Verification of the Oscillator Strength Sum Rule
for the Calculated Spectroscopy of Singlet and Triplet
Dielectrons

N f2e/f1e
a (singlet) f2e/f1e

a (triplet)

10 1.71 [55] 1.86 [45]
12 1.78 [78] 1.92 [66]
15 1.85 [120] 1.94 [90]
20 1.92 [210] 1.95 [190]

a The numbers reported are the ratios of the oscillator strength of a
singlet or triplet dielectron to the oscillator strength of a (single)
hydrated electron (see section 4). The numbers in brackets are the
number of product-basis states that can be formed fromN single-
electron eigenstates. The table is truncated atN ) 20 because our block-
Lanczos solver runs into numerical trouble forN g 21.

Figure 11. Equlibrium optical absorption spectra for singlet dielectrons
(solid black curve), triplet dielectrons (dashed curve), and for the (single)
hydrated electron (solid gray curve). The singlet and triplet dielectron
spectra were calculated from eq 10 using 10 000 configurations
(sampled every 3 fs from the 30-ps molecular dynamics runs described
in section 2). The (single) hydrated electron absorption spectrum was
computed using a one-electron analogue of eq 10, with the lowest 10
single-electron adiabatic eigenstates from each configuration; this
calculation used 5000 configurations, separated by 1 fs, from a 5-ps
run.
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dielectrons. The mobility of solvent molecules acts in concert
with the ability of electronic wave functions to change shape
so that singlet and triplet states of the dielectron have very
different shapes, energies, and absorption spectra. The differ-
ences between the two types of dielectron can be rationalized
rather easily by invoking a simple version of the Pauli exclusion
principle: triplet-paired electrons avoid each other more than
singlet-paired electrons do. Of course, the particular shape of
each type of dielectron depends on striking a balance between
lowering the electron-electron repulsion and minimizing the
disruption to the solvent structure, leading to qualitatively
different equilibrium shapes for singlet and triplet dielectrons.
Interestingly, for both singlet and triplet dielectrons, this balance
always works to maintain optimal hydrogen bonding of the water
molecules to the charge density.

Unlike the equilibrium shapes and energies, the dynamics of
most dielectron properties are not all that different from the
dynamics of the (single) hydrated electron. Most quantities
showed decorrelation on multiple time scales, indicating cou-
pling to both intramolecular and intermolecular solvent motions,
just as was seen for the (single) hydrated electron. The only
quantities whose dynamics differed qualitatively from the single
electron dynamics were the electron-electron interactions,
which showed very little coupling to rapid, intramolecular water
motions, just as would be expected for diffuse distributions of
charge that are only changed at their edges by rapid water
motions. The basic similarity of the dielectron and single-
electron dynamics suggests that both species behave about the
same as far as the solvent is concerned, as we would expect in
view of the similar hydrogen-bonded solvation structures: the
solvent simply sees an amorphous blob of charge (albeit with
slightly different sizes and shapes) and moves in roughly the
same way regardless of whether there are one or two electrons.

Finally, it is worth reiterating that we have not allowed any
mixing between singlet and triplet states because such mixing
can occur only in the presence of magnetic fields. Liquid water
does possess moving charges and hence locally fluctuating
magnetic fields, so nuclear motions of the solvent could
conceivably induce intersystem crossings, particularly when the
singlet and triplet dielectron energy levels cross. We pointed
out above that such intersystem crossings did occur in Kaukonen
et al.’s density functional simulations (although this was an
artifact of their simulation method), telling us that the lowest
singlet and triplet dielectron energy levels do occasionally cross.
This suggests that even weak coupling between the singlet and
triplet spin manifolds could induce spin mixing and intersystem
crossings. The possibility of intersystem crossing suggests also
that internal conversion of excited singlet dielectrons could
produce long-lived triplet dielectrons. Indeed, because the
absorption spectrum of the triplet dielectron overlaps signifi-
cantly with that of the (single) hydrated electron, the experiments
that Walker and co-workers40 interpreted as the photodissocia-
tion of singlet dielectrons to form (single) hydrated electrons
are also consistent with the formation of long-lived triplet
dielectrons following crossing of an excited dielectron from the
singlet to the triplet manifold. This sort of internal conversion
could also be important in the photophysics of charge-transfer
processes, such as charge-transfer-to-solvent (CTTS) reactions,43

because any internal conversion of an excited-state electron
could prevent recombination of the excited state, and thus could
have a significant effect on CTTS dynamics. Our CI algorithm
can be extended to include such mixing between spin manifolds
for multiple electrons at essentially no additional computational
cost, but we leave these interesting issues to future work.

Appendix A: Quantum-Mechanical Measure of the
Electron-Electron Separation

In this Appendix, we explore in detail the properties of our
measure of the distance between electrons,r12. We begin by
noting that because the electrons are indistinguishable the
difference between the average positions of the two electrons
in a stateΨ(r1,r2) vanishes

where the bold-faced quantities are vectors, the carets denote
quantum mechanical operators, and the subscripts indicate which
electron they operate on. Thus, we must come up with some
other measure of the distance between two indistinguishable
electrons. The simplest such measure of the interelectron
separation is the mean-squared separation, which we define to
be

for any normalized two-electron state|Ψ〉. We refer tor12 as
the root-mean-squared separation.

Does this definition give sensible results? Consider, by way
of example, the case of two widely separated cavities called
the left (L) and right (R) cavities, which have single solvated-
electron ground states,ψL and ψR, respectively. For well-
separated cavities, the interaction between electrons will be
small, so the ground state of the two-electron system can be
considered to be a product state with a single electron in the
ground state of each hole,Ψ0

( ) (ψL(r1)ψR(r2) ( ψR(r1)
ψL(r2))/x2, where the plus sign is for the spin singlet case and
the minus sign is for the spin triplet case. While it is true that
each electron occupiesbothcavities, the form ofΨ0 given above
tells us that, when one electron is in cavity L, the other must
be in cavity R (and vice versa), thus the two electrons are
“separated” from each other. Suppose that the centers of the
left and right cavities are separated by a distancedLR, that the
single-electron state associated with one cavity has no amplitude
to be in the other cavity, and that the single-electron radii of
gyration areaL and aR, respectively. Then the mean-squared
separation between the two electrons isr12

2 ) dLR
2 + (aL

2 +
aR

2), and we see that the root-mean-squared separation,r12, does
give a measure of the distance between electrons in well-
separated solvent cavities. Note that if the two cavities merge
into a single cavity (and electron-electron interactions are
neglected),r12 ) aLx2 ) aRx2.

Although r12 is not literally the distance between the two
electrons even for electrons confined to a single cavity, the root-
mean-squared separation is still a physically meaningful quan-
tity. To see this, we examine the relationship between the
electron-electron interaction energy andr12. We expect that if
r12 is a realistic measure of the interelectron separation, the
interaction energy should vary approximately as 1/r12. To
quantify this, we have used the 30-ps equilibrium runs to
calculate the Spearman rank correlation coefficients ofVc, Vex,
andVc + Vex with 1/r12 for both singlet and triplet dielectrons;
scatter plots of these interactions vs 1/r12 are shown in Figure
12. For the singlet dielectron, the correlation coefficients are
0.811, 0.486, and 0.662 forVc, Vex, andVc + Vex, respectively.
This tells us that, for the singlet dielectron, the overlap between
the electrons produces an energy that correlates well with a
classical, Coulombic point-charge interaction but that the
exchange energy cannot be considered in classical terms. For
the triplet dielectron, the correlation coefficients are 0.855, 0.085

〈Ψ|r̂1 - r̂ 2|Ψ〉 ) 0 (A1)

r12
2 ) 〈Ψ|(r̂1 - r̂ 2)

2|Ψ〉 (A2)
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and 0.997 forVc, Vex, andVc + Vex, respectively. The strong
correlation between the total electron-electron interaction
energy and 1/r12 suggests that for the triplet dielectron the
exchange energy cancels those parts of the Coulomb energy
that come from overlap between the single-electron wave
functions in the “neck” of the triplet dielectron, so that the net
interaction goes very nearly as 1/r12.
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